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Most research in free-storage management  has cen- 
tered around strategies that search a linked list and 
strategies that  partition storage into predetermined 
sizes. Such algorithms are analyzed in terms of CPU 
efficiency and storage efficiency. The subject of this 
study is the free-storage management in the Virtual 
Machinelsystem Product (VMISP) system control pro- 
gram. As a part of this study, simulations were done of 
established, and proposed, dynamic storage algo- 
rithms for the VMISP operating system. Empirical evi- 
dence is given that simplifying statistical assumptions 
about the distribution of interarrival times and holding 
times has high predictive ability. Algorithms such as 
first-fit, modified first-fit, and best-fit are found to be 
CPU-inefficient.  Buddy systems are found to be  very 
fast but suffer from a high degree of internal fragmen- 
tation. A form of extended subpooling is shown to be 
as fast as buddy systems with improved storage effi- 
ciency. This algorithm was implemented for VMISP, 
and then measured.  Results for this algorithm are 
given for several production VMISP systems. 

A n efficient, dynamic storage allocation algorithm 
is essential to  the  performance of complex soft- 

ware systems. These systems require the ability to 
reuse areas of memory for such things  as  control 
blocks, buffers, data areas, and state vectors. The 
reuse ability is needed in order to keep the  total 
memory  requirement reasonable. Without reuse it 
would be  necessary to  permanently assign enough 
storage for each purpose to ensure  a very  low prob- 
ability of exhausting each storage type. Because the 
frequency of obtaining storage may happen  more 
than  one thousand  times per second, throughput 
may be  affected by the processing time  required. 
Unfortunately, storage efficiency and CPU efficiency 
are usually tradeoffs in the selection of an algorithm. 

Storage inefficiency  is a result of fragmentation,  both 
internal, which  is the result of giving out  more 
storage than requested (e.g., by rounding up  to some 
boundary), and external, which is the “checker- 
board” effect caused by alternating blocks of avail- 
able and in-use storage. CPU inefficiency results when 
it becomes necessary to search for a block that will 
satisfy a request for free storage (or the proper place 
to  “insert”  a released item), and can  be measured by 
the  mean  number of blocks inspected per request 
(release). 

Early work in  this  area focused on the relative effi- 
ciency of various strategies that process requests 
against a linked list of available storage blocks. The 
algorithm known as “first-fit’’ consists of searching 
the available list and accepting the first  free area  that 
is greater than or equal to  the required size. When  a 
suitable block is found,  it is split into a block of the 
right size that will  be used and a  fragment  that is left 
on  the free list. The “best-fit’’ strategy consists of 
searching the  entire free list in  order to find a free 
block that if split will leave the smallest fragment. 
Naturally, if an exact fit is found, the search is 
terminated.  There  are two variations of best-fit that 
are distinguished by whether  the first or last of equal 
best-fitting blocks is used. In “worst-fit’’ the free 
block that results in the largest fragment is chosen, 
except that  an exact fit  is taken when found. 
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Collins' simulates first-fit,  best-fit, worst-fit, and ran- 
dom-fit, finding first-fit slightly better than best-fit. 
Iliffe and Jodeit' describe the use  of codeword de- 
scriptors to provide mobility of data in a first-fit 
environment with garbage collection. 

K n ~ w l t o n ~ , ~  and Markowitz et aL5 independently 
developed the binary buddy system. Buddy systems 
maintain space in separate pools by size (e.g., powers 
of two in the binary buddy system). Requests are 

Buddy systems  maintain  space  in 
separate  pools by size. 

rounded up  to  the appropriate size boundary, result- 
ing in internal  fragmentation. If a block of that size 
is not available, an iterative search is made of suc- 
cessively  larger-sized pools until  a block is found. 
This block is then iteratively split into "buddies" 
until  a block exists for the requested size. When 
blocks are released, buddies are recombined if pos- 
sible. 

Ross6 describes the Massachusetts Institute of Tech- 
nology AED free-storage package that uses zone  par- 
titioning  as  a  solution for external  fragmentation. 
Each zone  independently manages its inventory. 
Randel17 demonstrated via a  simulation study that, 
if requests are  rounded  up in an  attempt  to reduce 
the  memory loss due to external  fragmentation,  the 
internal  fragmentation loss rapidly predominates. 
Knuth' gives an excellent review of previous work, 
provides simulation results supporting first-fit over 
best-fit, describes a modified first-fit algorithm that 
starts each search with the block after the last one 
given out  (thereby cycling through  the linked list of 
available blocks), and  recommends  the investigation 
of the Fibonacci buddy system. Campbell' describes 
an optimal-fit algorithm, based on the optimal-stop- 
ping problem on  a fixed-length Markov chain, which 
attempts  to  combine  the best property of first-fit 
(speed) with the best property of  best-fit (reduced 
external fragmentation). 

Purdom, Stigler, and  Cheam''  simulate first-fit,  bi- 
nary buddy, and segregated storage (variable-sized 
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subpools with splitting and recombination-similar 
to  the generalized Fibonacci buddy). The binary 
buddy is found to be  the fastest. Robson" proves 
that for any  nonrelocating strategy the  amount of 
storage required is bounded below by a  function  that 
rises logarithmically with the size  of the blocks that 
are used. Margolin, Parmelee, and Schatzoff'2  de- 
scribe a  study  that led to  an improved algorithm for 
the  computer  control system ~ ~ 1 6 7 .  Since their work 
strongly influenced the  algorithm  currently used on 
the Virtual Machine/System Product (VMISP) and 
since our work can  in  some ways be considered an 
extension of theirs, their work is a key antecedent to 
this  study. 

Hir~chberg'~ follows Knuth's suggestion and does a 
simulation  study of the Fibonacci buddy system vis- 
a-vis the binary buddy system, concluding  that  the 
Fibonacci is superior.  Fenton and Payne14 simulate 
first-fit, Knuth's modified first-fit, best-fit, half-fit, 
and worst-fit. Their  study concludes that best-fit is 
superior; first-fit and half-fit are  somewhat  better 
than modified first-fit; and worst-fit is worst. Shen 
and PetersonIS develop a weighted buddy system 
that provides more sizes than  the  binary  buddy.  They 
find that  internal  fragmentation is decreased often at 
the expense of some increase in  external fragmenta- 
tion  and  conclude  that  the weighted buddy system 
will give good results if the request distribution is 
primarily composed of small sizes. 

Russell16  gives mean value bounds for the over- 
allocation due  to internal  fragmentation  in  a  one- 
level buddy system. Shore" finds through  simulation 
that first-fit and best-fit are generally within one  to 
three percent of each other in terms of memory 
utilization. He provides strong evidence that  the 
relative performance of the two strategies depends 
on  the frequency of requests that  are large compared 
with the average request. In terms of the coefficient 
of variation, a, of the request distribution, he finds 
that first-fit outperforms best-fit when a is greater 
than  or equal  to  one. Bays'' confirms Shore's results 
and also finds modified first-fit to be inferior when 
the  mean request size is less than one-sixteenth the 
total available memory.  Cranston  and  Thomas"  de- 
scribe a simple recombination  scheme for the  Fibon- 
acci buddy systems. Ferguson'' defines a generalized 
Fibonacci scheme and provides tables that  are useful 
in the  generation of these systems. Peterson and 
Norman" study  the binary, Fibonacci, and weighted 
buddy systems and derive the  internal  fragmentation 
for each for the  uniform request distribution.  They 
also provide simulation results that suggest that, 



although  the  internal  fragmentation varies, the  total 
fragmentation (i.e., internal  and external) is about 
the  same for these three  buddy systems. 

In  this paper a  simulation  study is discussed that 
compares  many  dynamic storage allocation strate- 
gies in  medium  and large time-sharing environ- 
ments.  This work resulted in an algorithm that sig- 
nificantly improves  the  performance of large Virtual 
Machine/System Product  Conversational  Monitor 
System (VM/SP C M S ) ~ ~  [vw,  CMSL] systems. 

This  paper first discusses the  environment  in which 
this work was done. Next, the  simulation  method- 
ology is explained. Then  simulation results and per- 
formance results for two systems are  presented. Fi- 
nally, conclusions  are  drawn from this study. 

Background 

The  impetus for this study was provided by hardware 
and software monitor  data collected at  the  Data 
Centers of the IBM Thomas J. Watson Research 
Laboratory  and the former IBM Office Products Di- 
vision (OPD) headquarters. These data indicated  that 
the VM/SP dynamic storage algorithm consumed 11 
to 20 percent of the supervisor-state CPU on the OPD 
3033 Uni-Processor (UP) and  the Research 3033 
Multi-Processor (MP). Under peak load the percent- 
age  was at  the high end of this range. The high CPU 
time caused high lock holding time for the  primitive 
lock on  the MP that  prevents the  concurrent execu- 
tion of the  dynamic storage allocator. The high lock 
holding time  in  turn caused longer lock wait time 
for the  other processor. The wait time  on this lock 
was one  to  one  and  a half percent of elapsed time 
during typical load. 

The instruction  that referenced the next address in 
the linked list of available storage blocks was most 
frequently seen in  the  hardware  monitor samples. 
This  instruction frequently “missed” cache because 
of the relatively large area of memory  containing  the 
linked list. It appears  that searching linked lists tends 
to subvert  the  cache by (1)  yielding a low hit-ratio 
during  the search and (2) leaving the cache full of 
data  that  are very unlikely to be referenced after  the 
search. 

This  study was performed by independent  groups 
working at each data  center. The OPD group was 
working on a  simulation  study, whereas the Research 
group was studying the effects of modifications to 
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the existing vM1.v algorithm.  When  the two groups 
became aware of their common interest, their  shared 
discoveries led the way to  the final solution. 

The fact that there were two independent  groups 
using different tools and techniques  has resulted in 
some inconsistencies in  the analysis that was done 
on  the systems that were studied. However, all ap- 
plicable results are provided. If a specific result is not 
provided for a given system, it is because the analysis 
was not  performed. 

In  order to understand  the work reported  in  this 
paper, it is necessary to understand  the  dynamic 
storage allocation algorithm that was used in VM/370 
at  the  time of this work. All other  algorithms  that 
were studied were measured against this. It proceeds 
as follows. 

Ten stacks, each three  doublewords wide (one  dou- 
bleword is eight bytes of eight bits each), are  main- 
tained for free storage elements less than  or  equal  to 
30 doublewords such that  the first stack services 
requests from one  to three doublewords; the second, 
four  to six doublewords; to  the  tenth, 28 to 30 
doublewords. All requests within this range are 
rounded  up  to  the appropriate  boundary. These 
stacks were called subpools by Margolin et  al., and 
we will use that  term here. Initially all of the subpools 
are  empty. The purpose of the  subpool is to be able 
to find a free storage element  immediately,  thus 
eliminating  any searching of a linked list at all. 

If the request cannot be satisfied by a  subpool,  either 
because the  subpool  is  empty or  the request  is greater 
than 30 doublewords, a search is made of a linked 
list of available storage blocks. This list is called the 
free list and is maintained  in  order of increasing 
address. The list  is ordered by storage address in 
order  to facilitate the coalescing of a newly freed 
block with adjacent free blocks. Initially the free  list 
consists of one block which represents the storage 
dedicated as  dynamic storage at system generation 
(an integral number of 4096-byte pages).  If the free 
list  is empty  or  cannot satisfy the request, a page (or 
multiple pages if the request exceeds 4096 bytes) is 
“borrowed”  from  the page pool that provides real 
memory to users and  the  operating system itself. 
However, if the request that  cannot be  satisfied is 
less than  or equal to 27 doublewords, an attempt is 
first made to “split” a larger subpool block into 
smaller sizes. If the split is not possible, a page is 
borrowed from the page pool with the  intention of 
returning  it  as  soon as possible. The act of borrowing 
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is called “extending,” and  the borrowed page is called 
an “extended” page. Whenever a release of a block 
causes an extended page to be completely contained 
in  the free list, it is returned to  the page pool. Because 
the dedicated dynamic storage is initially generated 
at  the  top of memory (i.e., highest addresses), all 
available blocks from extended pages  will be at  the 
front of the free list. 

The searching of the free list proceeds as follows: 

If an exact fit is  found with a  nonextended block, 
the search is terminated and  the block is used to 
satisfy the request. 
If an exact fit is not  found  and  the request size is 
less than  or  equal  to 30 doublewords, the low end 
of the first larger nonextended block is used. If 
there  is no nonextended block greater than  or 
equal to  the requested size, the last equal or larger 
extended block is used with an equal size taking 
precedence. If it is necessary to use a larger block, 
the low end of this block is given out. 
For requests greater than 30 doublewords  a similar 
strategy is used, except that  the high end of the 
last larger block is used in  the case where there is 
no exact match. 

Release of storage to  the free  list proceeds as follows: 

Upon release, blocks less than  or equal  to 30 
doublewords are pushed into  the  appropriate sub- 

Items greater than 30 doublewords  are inserted 
directly into  the free list. Proper  placement  in  the 
free list requires a serial search through  the  ad- 
dress-ordered list until  the correct place is found. 
If they are  adjacent to  another free block(s), the 
blocks are coalesced into  a single larger block. 

In  the periodic emptying of the subpools, whenever 
any user leaves the system, or  at least once an  hour, 
all blocks in  the  ten  subpools  are removed and 
inserted into  the free list. This  procedure allows for 
downward adjustment of the  number of blocks after 
an  unusual  requirement for a  particular size, and  it 
allows extended pages to be returned. 

The ten-subpool strategy is derived from Margolin 
et al., who found  that over 99 percent of all requests 
in CP/67 were in this size range. This  study  found 
that this percentage has deteriorated with time (e.g., 
from 93.4 to 97.0 percent on the systems that we 
studied) and is currently  a  function of the release 
level of VM/SP, local modifications, and local request 
distributions. 

pool. 
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This linked-list allocation strategy segregates “small” 
requests at  the low end of the  dynamic storage block 
and “larger” requests at  the high end, except that  an 
exact match is always taken regardless of where it is 
in storage. This is a variation of  best-fit that  attempts 
to control  external  fragmentation even further. Be- 
cause it is an interesting strategy independent of the 
subpools, it is included  in  the  simulation  study to 
see how it  compared with the  traditional first-fit and 
best-fit methods. 

Method 

It was decided that  the only reasonable way to study 
the effect  of various  dynamic storage algorithms on 
VM/SP was a  simulation  study. The alternative of 
multiple changes to  the real system was rejected as 
being inflexible and risking severe performance deg- 
radation and system outages. 

Next it was  necessary to decide how to represent the 
VM/SP dynamic storage environment  to a  simulator. 
Margolin et a]. rejected the use of simplifying statis- 
tical assumptions in the request and holding distri- 
butions and elected instead to modify cP/67 to log 
requests to tape. In this way they could  rather  accu- 
rately (some requests were  lost because of buffer 
overruns) recreate the  dynamic storage environment 
for a given day. We  were concerned  that  this  ap- 
proach would not  be feasible in our  environment 
primarily because the high request plus  return rates 
(over 2000 per second) would force a difficult trade- 
off between significant data loss and perturbation of 
the system. In addition, we wanted to develop a 
technique  that would be more flexible in  that  it 
would not require large amounts of data  as  input. 

The successful use  of simplifying assumptions, such 
as exponentially distributed service times, in queuing 
network analysis (see B ~ z e n * ~ )  encouraged us to use 
the following method: 

VM/SP was modified to collect, for each size  re- 
quested,  the  mean  number of blocks outstanding 
(i.e., in use) and  the total  number of requests at 
any  point  in  time. The mean number of blocks in 
use  was computed by incrementing  a vector ele- 
ment  (corresponding to the size) for each request 
satisfied and  decrementing for each return. At any 
instant  in  time  this  element is equal to the  number 
of blocks outstanding for the size. The total num- 
ber of requests was computed by incrementing  a 
vector element for each request. 
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A sampling program was written to  compute from 
these data  the mean interarrival time in seconds, 
mean holding time in seconds, and mean number 
of  blocks outstanding for each size over any time 
interval. This was done as follows: 

1. Mean interarrival time  (in seconds), t = 
S A T ,  - yo) 
where 
s = sample interval in seconds 
ro = total number of requests from system 

startup (i.e., IPL) to  the  start of the sample 
interval 

Y, = total number of requests from system 
startup (i.e., IPL) to  the end of the sample 
interval 

2. Mean holding time  (in seconds) = Nt 
where 
N = mean number of blocks. outstanding 

(computed from samples of the vector 
element) 

The relationship of the mean interarrival time, 
the mean holding time, and  the mean number 
of blocks outstanding is similar to  that defined 
by Little’s  result in queuing theory,24 which 
gives the relationship between the mean num- 
ber  of customers in a queuing system (L),  the 
mean arrival rate (X), and  the mean time ( W )  
spent in the system  as L = X W. Consider a 
customer picking up a cart at the  entrance of a 
supermarket and using the cart as he makes his 
way through a number of  servers,  finally  re- 
turning it at the  entrance as he  leaves.  We can 
make an analogy  between the supermarket cus- 
tomer  and a time-sharing user. The cart then 
becomes the  dynamic storage required to sup- 
port the user’s sojourn through the time-shar- 
ing system (i.e., queuing system), and  the av- 
erage arrival rate and average  residency time of 
dynamic storage in  the system will have a direct 
correlation with those statistics for users. A 
similar analogy can be made on a micro scale 
for the  dynamic storage  used for events such as 
I/O operations. 

the system-that are  not properly modeled by a 
stochastic process. However, similar phenomena oc- 
cur in those aspects of computing systems that  are 
modeled with reasonable accuracy by queuing net- 
works, and we were hopeful that we would achieve 
results of similar accuracy. The later validation of 
the simulation results, by comparison to measure- 
ments of real systems, supports the use  of these 
assumptions (see section on system  results). 

In order to provide the  data structures necessary to 
simulate the various algorithms of interest, a discrete 
event simulator was written in Pascal. This program 
performs the following functions: 

1. Reads (from a parameter file) the size  of dedicated 
dynamic storage, mean interlog-off time (used by 
the  standard VM/SP and subpooling algorithms), 
and, for each size, the mean interarrival time  and 
the mean holding time. 

2. Initializes the simulation by scheduling the  stop 
event, first sample event, first checkpoint event, 
and, for each size, the first request. Also,  if appli- 
cable, the first user log-off event was scheduled. 
A different pseudo random-number generator 
was  used for the log-off event so that all  algo- 
rithms would have the same series of storage 
requests and releases. 

3. Maintains  the event list using a time-indexed 
method.25 

4. Provides checkpoint and restart capability. 
5. Provides a sampling and statistics generation fa- 

cility. 
6. Provides a uniform interface to external routines 

to handle storage request, storage release, and user 
log-off events. 

Each algorithm was written as a separate subprogram 
that was called by this main program to service an 
event such as a dynamic storage request, dynamic 
storage return,  or user log-off (if appropriate to the 
algorithm). 

Results 

Simulation  results. The following VM/SP systems 
were modified to collect parameters for the simula- 

Having the mean interarrival time  and mean holding 
time for each size, we then  made  the simplifying FRKVMI, a 3033 UP serving an average of 280-340 
assumption, in the simulation study, that  the inter- logged users at  the former Office Products Division 
arrival times and hold times were exponentially dis- Headquarters in Franklin Lakes,  New Jersey. 
tributed.  There are allocation phenomena-such as YKTVMV, a 3033 MP serving an average of 450- 
the “simultaneous” creation (deletion) of different- 540 logged users at  the  Thomas J. Watson Re- 
sized control blocks when a user  logs on (logs off) search Center in Yorktown Heights, New York. 

tion study: 
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CAMBRIDG, a 158 UP serving an average  of 40-50 
logged users at  the IBM Cambridge Scientific Cen- 
ter in Cambridge, Massachusetts. 

The three tables in  the Appendix give the dynamic 
storage parameters for each of these systems. The 
mean interarrival and holding times are given in 
seconds for each doubleword size.  Sizes not listed 
did not have any activity during  the  parameter col- 
lection period. Ten milliseconds was the  minimum 
holding time used for the simulation. The  minimum 
holding time was introduced because there were 
some storage sizes that had infrequent requests with 
short durations. The accuracy of the sampled holding 
time for these sizes  was poor, and it sometimes led 
to unreasonably short holding times. These requests 
were so infrequent that  the  adjustments are not a 
factor in the results. Requests greater than 5 12 dou- 
blewords  were rare (less than 0.007 percent of all 
requests at FRKvMl and less than 0.017 percent at 
YKTVMV and CAMBRIDG) and have been combined 
with the 5 12-request data. 

At Franklin Lakes, samples were taken during a two- 
hour period of typical afternoon load. The free- 
storage vectors were sampled at 30-second intervals. 
In order to see if this sampled distribution would 
yield simulation results that were analogous to those 
measured on the real system, three of the simulation 
metrics were compared with samples from days of 
FRKvMl activity that had a user load similar to  that 
during which the parameters were collected. The 
simulation results were found to be typical of those 
measured on FRKVM 1 .  The three days given in Table 
1 are representative and illustrate the range  of the 
measured data. 

At Yorktown Heights and Cambridge, samples were 
collected during similar periods of typical load, but 
were not correlated to the activity on separate days 
as at Franklin Lakes. However, the storage utiliza- 
tion  and mean free  list  size  were within the ranges 
witnessed on  the real  systems. 

Tables 2-4 give the simulation results for each sys- 
tem.  The metrics used in this study are defined as 
follows: 

Mean items visited per request: The  minimum 
possible value is 1 .O. This is the primary measure- 
ment of CPU efficiency.  In a linked-list strategy, 
this is the  number of items visited on the list.  An 
item popped from a subpool that is  singly linked 
is counted as one visit. An item popped from a 
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Table  1  'FRKVM1  simulation  versus  observed  values 

Source  Mean Mean  Mean 
Subpool  Hit Freelist  Pages 

Ratio Length  Used* 

sample  day 1 0.938 569 613 
sample  day 2 0.946 695 584 
sample  day 3 0.933 884 672 

simulation 0.943 704 630 

*mean pages  used = dedicated  dynamic  storage  pages + mean extended  pages. 

subpool that is doubly linked (e.g., buddy systems) 
is counted as two visits  if the subpool is not left 
empty by its removal, otherwise as one visit. 
Mean items visited per release: The  minimum 
possible value is 1 .O. In a linked-list strategy, this 
is the  number of items visited on the list in order 
to find the proper place to  insertthe released item. 
An item pushed into a singly linked subpool is 
counted as one visit.  An item pushed into a non- 
empty doubly linked subpool is counted  as two 
visits. 
Subpool hit ratio: The ratio of requests that were 
satisfied by a subpool block to  the total number 
of requests, This is only applicable to algorithms 
that use some form of subpooling. 
Mean free-list  size: The mean number of items on 
the linked list of available storage blocks. This size 
is an  indicator of external fragmentation and, in 
many algorithms, directly affects the mean num- 
ber  of items visited. 
Extend rate: The mean number of requests per 
minute for an extended page that occurred during 
the last hour of simulated time. Higher rates incur 
higher CPU overhead. 
Extended pages: The mean and  maximum  num- 
ber  of extended pages that were required above 
the initial dynamic storage allocation. Note that 
there is no relationship between the extend rate 
and the  number of extended pages. For example, 
the repeated request and release  of one extended 
page  will  result in a high rate but low  (less than 
one) mean number of extended pages. Some al- 
gorithms hold extended pages longer than others 
and consequently have a lower extend rate. 
Mean storage out: The mean number of  pages in 
use  (given out but not yet returned) during the 
simulation. 
Storage efficiency: The ratio of the mean requested 
(i.e., before any rounding  up) storage in use to  the 
mean storage required by the algorithm. That is, 
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able 2 FRKVMl  simulation  results (3033 UP) 

Algorithm Mean  Items  Mean  Items  Subpool  Mean  Extend  Rate  Extended  Pages  Mean  Storage  Storage 
Visited  per  Visited  per  Hit  Freelist  (pageslmin)  Mean-max  Out  (pages)  Efficiency 

Request  Release  Ratio  Length 

standard 30.6  17.8 0.943  704 287  130-159 

first-fit 949.2 896.8 3157  309 117-145 
best-fit-last 245.0 186.0 1108  266 94-  126 
best-fit-first 273.5 204.0 1162  264 94-  127 
first-fit* 95.8 79.3 1062  30 1 137-166 
mod-first-fit* 22.5 835.7 8321 35 601-651 
best-fit-first* 84.2 50.3 355  262 120-149 
best-fit-last* 11 1.7 95.0 348  256 123-  150 

Uniform  subpools: 
I-wide  6.5  2.1  0.995  1145  23  157-196 
2-wide  4.5  1.7 0.996  91 1 21  154-185 
3-wide  3.8 1.8  0.995  699  13  166-  196 
4-wide  3.1  1.6 0.995 512 22  157-187 

2-Level  subpools  divided at 128  doubleword  boundary: 
(e& 2/32 = 64  2-doubleword-wide  subpools to 128  #en 12 32-doubleword-wide  subpools to 512) 
1-32 5.6  1.8 0.995 1052 40 136-163 
1-32** 2.4  2.1 0.995 I175 28  140-  174 
2-16 4.2  1.6 0.995 830 22  139-164 
2-32 4.2  1.6 0.996 813 28  140-168 
2-64 4.5  1.7 0.995 851 31  147-173 
4-64  3.0  1.6  0.995  407  30  156-1  84 
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564.2 
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564.2 
592.8 
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564.2 
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592.4 
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572.6 
578.0 
583.2 
594.0 
612.0 

0.896 

0.914 
0.947 
0.949 
0.886 
0.5 14 
0.909 
0.906 

0.859 
0.862 
0.847 
0.858 

0.886 
0.881 
0.883 
0.882 
0.872 
0.860 

BUDDY  SYSTEMS: 

Algorithm  Mean  Items  Mean  Items  Split  Join  Extend  Rate  Extended  Pages  Mean  Storage  Storage 
Visited  per  Visited  per  Rate  Rate  (pages/min)  Mean-max  Out  (pages)  Efficiency 

Request  Release 

binary 2.00 3.01 0.0080 0.0074 393 372-403 849.9 0.647 
binary (no tags) 1.02 29.28 0.0058 0.0052 339  258-293 737.6 0.744 
mod-Fibonacci 2.04 3.04 0.0156 0.0147 15  276-308 651.8 0.727 

* = minimum fragment left on free list was 5 doublewords. 

dedicated dynamic storage: 500 pages. 
** = two free lists with maximum size block maintained for each 

mean time between users logging OE 5.1 seconds. 

mean requests per second 1048. 
mean requested  storage in use: 564.2 pages. 
mean number of blocks in use: 17 509. 

storage  efficiency = (mean requested storage in 
use)/[(initial storage allocation) + (mean extended 
storage)]. 

In addition, for the buddy systems the following 
metrics were  used: 

Split rate: the mean number of splits caused by a 

Join rate: the mean number of joins caused by a 
free-storage request 

free-storage return 

The YKTVMV and CAMBRIDG simulations were  al- 
lowed to stabilize for two hours of simulated time 
and then  run for four hours of simulated time.  The 

FRKvMl simulation was  allowed to stabilize for 30 
minutes of simulated time and then run for 7.5 hours 
of simulated time. The stabilization time of the 
simulation was empirically determined by studying 
the stabilization of the storage out (i.e.,  being  held). 
Most algorithms had stabilized (in terms of speed 
and storage  efficiency) a considerable time before the 
end of the simulation run-a notable exception was 
modified-first-fit. 

The simulation results will be discussed in sections 
by the general algorithm categories. 

VM/SP algorithm. The simulation of the  standard 
VM/SP algorithm confirmed that there was significant 
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Table 3 YKTVMV  simulation  results  (3033  MP) 

Algorithm  Mean  Items  Mean  Items  Subpool  Mean  Extend  Rate  Extended  Pages  Mean  Storage  Storage 
Visited  per  Visited  per  Hit  Freelist  (pageslmin)  Mean-max  Out  (pages)  Efficiency 
Request  Release  Ratio  Length 

standard 69.3  39.4  0.917  1030  282  76-109  802.4  0.887 

first-fit 1678.9 1591.1 4574 2 94 4 1-72 748.8 0.926 
best-fit-last 287.6 197.7 1376 285  10-38 748.8 0.962 
best-fit-first 365.0 260.7 1427 23 1 10-38 748.8 0.963 
first-fit* 157.6 124.8 1516 293  67-100 785.8 0.896 
mod-first-fit* 80.1 1812.7 1 1886 196  553-601 776.6 0.567 
best-fit-first* 100.8 49.4 350 262  36-68 783.7 0.932 
best-fit-last* 113.7 83.6 32 1 250  39-74 785.8 0.928 

Uniform  subpools: 
1 -wide  7.0  2.8  0.995  1617 15 107-171  748.8 0.856 
2-wide  4.6  2.2 0.995 1337  13  105-152 769.3  0.858 
3-wide  4.5  2.1  0.995  1215 13 129-168  807.1  0.834 
4-wide  4.5 1.9  0.995  1161 8 148-185  835.4  0.817 

2-Level subpools  divided at 128  doubleword  boundary: 
(e.g. 2/32 = 64  2-doubleword-wide  subpools to 128 then 12 32-doubleword-wide  subpools to 512) 
1/32  4.8 2.5  0.995  1626  14  75-103 754.2  0.889 
1/32**  2.5  2.2  0.995  1632 12  75-106  754.2 0.888 
211 6  3.9  2.0  0.996  1397  7  83-1 13  771.1 0.880 
2/32 3.8  2.0 0.996  1405  9 81-1  10  774.5 0.882 
2/64 3.6  2.0  0.996  1381 8 83-1  12  781.4  0.880 
4/64 4.1 1.8  0.996 1133  6 137-168 847.3  0.827 

BUDDY SYSTEMS 

Algorithm  Mean  Items  Mean  Items  Split  Join  Extend  Rate  Extended  Pages  Mean  Storage  Storage 
Visited  per  Visited  per  Rate  Rate  (pages/min)  Mean-max  Out  (pages)  Efficiency 
Request  Release 

binary 2.00 3.00 0.0065 0.0054 41 1 400-445 1 140.9 0.64 1 
binary (no tags) 1.02 49.42 0.0063 0.0051 343 278-320 1027.8 0.716 
mod-Fibonacci 2.13 3.12 0.0590 0.0576 209  181-219 901.2 0.789 

Algorithm  Mean  Items  Mean  Items  Storage 
Visited  per  Visited  per  Efficiency 

Request  Release 

better-fit 14.5 20.8 0.650 
leftmost-fit 35.0 41.0 0.928 
best-fit-last 284.0 205.4 0.962 

= minimum fragment left on free list was 5 doublewords. 
** = two free lists with maximum size block maintamed for each. 
dedicated dynamic storage: 768 pages. 
mean time between usen logging off: 14.6 seconds. 

mean requests per second: 1034. 
mean requested  storage  in use: 748.8 pages. 
mean number of blocks in use: 21 344. 

search overhead in the FRKVMI and YKTVMV Systems. 
In particular, the YKTVMV system had an especially 
high overhead. The lower subpool hit ratios vis-a-vis 
the cp/67 of the Margolin et al. study are  due  to  the 
growth in size of system control blocks and buffers 
over the intervening releases of VMISP. The mean 
number of items inspected per request is  largely a 
function of the subpool hit ratio and  the mean 
number of blocks on  the free  list. 

It was surprising that  the CAMBRIDG system  was 
performing considerably better than FRKVMl and 
YKTVMV. The FRKVMl 3033 UP had approximately 
4.5 times the CPU power of the CAMBRIDG processor. 
However, the total number of blocks searched per 
second for requests was 32 070 (1048 requests per 
second x 30.6 items inspected per request) for 

of 30: 1. This was only partially accounted for by the 
FRKVMl and 1070 (198 X 5.4) for CAMBRIDG-a ratio 



Table 4 CAMBRIDG  simulation  results (158 UP) 

Algoihhm  Mean  Items  Mean  Items  Subpool  Mean  Extend  Rate  Extended  Pages  Mean  Storage  Storage 
Visited per Visited  per  Hit  Freelist  (pages/min)  Mean-max  Out  (pages)  Efficiency 

Request  Release  Ratio  Length 

standard 5.4 4.3  0.962  140 34  0.6-9 
First-fit,  best-fit,  etc.: 
standard-without- 
subpooling 54.3 40.2  206  4  0.077-5 
first-fit  213.3  212.1  640 16  0.5-8 
best-fit-last  84.0  58.4  258 1 0.008-4 
best-fit-first  95.9  66.7  263 1 0.008-4 
first-fit*  33.3  33.0  246 25 1-10 
mod-first-fit*  7.2  200.2  1034  24  44-53 
best-fit-first*  35.8  21.7  77  7 0.042-4 
best-fit-last*  39.4  29.2  77  16  0.077-5 

Uniform  subpools: 
1 -wide  2.3  1.5 0.994  318  6  33-59 
2-wide  1.9  1.3  0.995  259 7 31-52 
3-wide  1.7  1.2  0.996  221  7 28-45 
4-wide  1.5  1.2 0.996 181 3 27-41 

2-Level  subpools  divided at 128  doubleword  boundary: 
(e.g. 2/32 = 64 2-doubleword-wide  subpools to 128 then 12  32-doubleword-wide subpools to 512) 

1-32** 1.4 1.3 0.996  290 1 18-30 
1-32  1.6  1.3  0.996  281 1 18-27 

2-16 1.5 1.2 0.997 229  2 21-28 
2-32 1.4  1.2 0.997 218 1 18-27 
2-64 1.4  1.2 0.997 215 1 16-22 
4-64 1.2 1.1 0.997 153 1 16-24 
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BUDDY SYSTEMS 
Algorithm  Mean  Items  Mean  Items  Split  Join  Extend  Rate  Extended  Pages  Mean  Storage  Storage 

Visited  per  Visited  per  Rate  Rate  (pages/min)  Mean-max  Out  (pages)  Efficiency 
Resuest  Release 

binary 2.00 3.01 0.0133 0.0127 47  22-32 103.7 0.683 
binary (no tags) I .03 15.28 0.0139 0.0134 45  21-31 102.7 0.688 
mod-Fibonacci 2.04 3.04 0.0224 0.0217 28  27-36 92.0 0.655 

* = minimum fragment left on free list was 5 doublewords. 
** = two free lists with maximum size block maintained for each 
dedicated dynamic storage: 90 pages. 
mean  time between users logging off: 73.5 seconds. 

mean requests per second 198. 
mean requested storage in use: 16.4 pages 
mean number of blocks in use: 2356. 

more favorable CAMBRIDG subpool hit ratio (in the 
simulation, the subpool hit ratios are 0.962 for CAM- 
BRIDG and 0.943 for FRKVMI). The  major factor is 
that both the request rate and  the mean number of 
items on the free  list are roughly proportional to  the 
user load (and therefore the CPU capacity), Conse- 
quently, even  with a constant subpool hit ratio, this 
tends to make the overhead (in terms of the  number 
of items inspected per second) of the strategies that 
search a linked list proportional to  the square of the 
relative system capacity. The fact that supervisor 
time for free-storage management is not linear with 
system  size  is known as a “large system  effect,”  which 
is undesirable and  to be eliminated. 

First-fit, modified first-fit, best-fit, and standard 
VM/SP without subpools. Although it was immedi- 
ately obvious that  none of these algorithms would 
be competitive in a VM/sP environment, we were 
surprised by some of the results. Best-fit  significantly 
outperformed first-fit with these distributions. In ad- 
dition, best-fit-last  (i.e.,  using the last  of  several equal 
best  fits)  was superior to best-fit-first,  especially with 
the larger systems. The  standard VM/SP algorithm 
without subpooling was simulated with the CAM- 
BRIDG distribution and was superior to best-fit. 

All  of these algorithms were decidedly inferior to  the 
standard V M ~ P  algorithm. Modified  first fit ap- 
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proaches the  standard algorithm in  terms of speed 
but requires over 50 percent additional memory. 
The VM/SP dynamic storage distribution with its wide 
range of request sizes and preponderance of requests 
for smaller-sized  blocks presents a difficult environ- 
ment for modified first-fit  (cf. BaysJ8). This algorithm 
cycles around memory, fragmenting the blocks that 
are necessary to fill the occasional large request. 

In an  attempt  to reduce the search overhead of these 
algorithms, Knuth's suggestion* to  eliminate small 
fragments (i.e., rounding up  the request if the re- 
maining fragment is  less than some threshold) was 
implemented using a threshold of five doublewords. 
This threshold was derived empirically from simu- 
lation experiments. However, we did  not  increment 
each request by the doubleword that would be  re- 
quired in VM/SP to keep track of the actual amount 
of storage given. Therefore, although these results 
overestimate the storage efficiency in VM/SP, they 
more closely resemble what might be expected on a 
system  with smaller free-storage granularity and 
demonstrate the storage overhead inherent in using 
the threshold. 

Using this threshold, best-fit  still outperformed first- 
fit, although the distance between them was greatly 
reduced. It was discovered that, with the threshold, 
best-fit-first  was superior to best-fit-last. 

The mean number of items inspected per release 
could be  significantly reduced for all of these algo- 
rithms by adding tags and a size  field to each block 
so that a returned block can be immediately inserted 
into a doubly linked list. This technique, described 
in Knuth,' would require an additional doubleword 
in VM/SP and would consequently reduce memory 
efficiency. The loss due  to this internal fragmentation 
would be about 2360, 17 5 10, and 27 340 double- 
words (i.e., one doubleword for each of the mean 
number Of items being held) for CAMBRIDG, FRKVMl, 
and YKTVMV, respectively. 

Best-fit and first-fit  have  two advantages: 

1. High  storage  efficiency. 
2. The ability to  return a block of storage piecemeal. 

In most of the  other strategies studied, a block 
must be returned as one piece. Although piece- 
meal  release  is not required in  VM/SP, it might be 
in other environments. 

If piecemeal release  is not required, the  other advan- 
tage,  high  storage  efficiency, comes at such a per- 
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formance penalty that we doubt these strategies 
would be attractive on any system with high  free- 
storage activity. 

Extended subpooling. Since it was clear that  the 
mean number of items searched in  the  standard VM/ 
SP algorithm would be reduced if the subpool hit 
ratio were improved, the next step was to experiment 
with variations of extended subpooling. First, the 
subpool coverage  was increased from the 1-to-30- 
doubleword request range  of the  standard algorithm 
to 1 to 5 12 doublewords. The rare request for a block 
greater than 5 12 doublewords would cause a search 
of the free  list. The initial work involved subpools of 
uniform width (i.e., for subpools of width n, the 5 12- 
doubleword range is divided into 5 12/n subpools 
such that  the first subpool contains storage of size n 
and services requests in the range 1 to n, the second 
subpool contains storage of  size 2n and services n + 
1 to 2n, and  the  kth subpool contains storage of  size 
kn and services ( k  - l)n + 1 to kn). The simulation 
results for subpools of widths 1-4 are given in Tables 
2-4 for each of the three systems. Storage efficiency 
deteriorated with widths greater than four. The uni- 
form-4 (i.e., n = 4) algorithm was subsequently run 
on FRKVM 1 and YKTVMV. The results are given in  the 
next section. 

Nonuniform subpool widths were tried at Yorktown 
Heights,  with the sizes  selected to match the mea- 
sured request frequency, in order to limit internal 
fragmentation loss. The performance results were 
very good, but they came  at a considerable cost in 
terms of program complexity. Experience shows that 
control block and buffer  sizes  (which  largely deter- 
mine the distribution) are  quite dynamic in vM/sP, 
varying from release to release and also being subject 
to local modifications. Any closely matched sub- 
pooling arrangement would lack robustness, a qual- 
ity that we wanted to preserve. For this reason, 
uniform-width subpools were chosen after consider- 
ing the alternative of tailoring the subpools. 

In order to improve the ability of the system to 
return extended pages after a demand surge, we 
studied the effect  of maintaining extended blocks on 
a separate subpool for each interval. These extended 
blocks were then used only if the primary subpool 
was empty. This approach resulted in better storage 
efficiency and was  used in all  of the extended sub- 
pooling simulations. 

Experiments were done with less  severe methods of 
controlling the subpool inventory than purging them 



when a user  logs  off (this occurred about once every 
five seconds on  FRKVMI). If nothing is done, storage 
inefficiency results as the subpool inventory grows 
with demand surges and never shrinks. This phe- 
nomenon is explained in detail by Margolin et al. It 
was found  that by time-stamping blocks  when they 
are pushed onto  the subpool stack and only releasing 
the  “old” blocks, the speed of the algorithm is im- 

The  two-level  approach  reduced 
the  external  fragmentation loss. 

proved with no significant  loss in storage  efficiency. 
In fact, allowing  large blocks to remain in the sub- 
pools, if they have been recently used, protects them 
from being split and reduces this form of external 
fragmentation. The following procedure was  used in 
all  of the extended subpooling simulations: 

Whenever a user  leaves the system (i.e.,  logs off) 
or at least once an hour, a scan is made of all the 
subpools. (This logging-off  was assumed to be a 
Poisson  process; the mean interlog-off time was 
derived from vM/h!lonitor data.) 
During this scan all  blocks are removed from the 
subpools dedicated to extended storage and  in- 
serted into  the free  list. Extended pages that  are 
completely contained in  the free  list are returned 
to the page pool. 
For the subpools containing nonextended blocks, 
the total amount of subpool inventory is com- 
puted as the subpool is searched. Until  the storage 
contained in  the subpool exceeds two pages, an 
age threshold of  120 seconds is used. After two 
pages, the threshold is quartered (i.e.,  30  seconds). 
These thresholds have been determined empiri- 
cally by simulation. Whenever a block is found 
that has resided in  the subpool for this amount of 
time (whichever is appropriate), that  and all older 
blocks are removed and returned to  the free  list. 
After some of these algorithms were installed in 
VM/SP systems, we studied the relationship be- 
tween this age threshold and both the subpool hit 
ratio  and storage  efficiency. The results of this 
study are discussed in the next section. 
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A comparison of the simulation results for uniform- 
width subpools between the CAMBRIDG and YKTVMV 
systems is informative. External fragmentation loss 
in the form of subpool inventory predominates on 
the smaller CAMBRIDG system, whereas internal frag- 
mentation loss becomes more important  on  the 
larger YKTVMV system. For example, of the uniform- 
width subpools, the four-doubleword width yields 
the best storage efficiency at CAMBRIDG, and  the two- 
doubleword width is best at YKTVMV. The fact that 
two-doubleword subpools are slightly more efficient 
in use  of storage than one-doubleword subpools even 
at YKTVMV is evidence that external fragmentation is 
still significant. That is, although 20 pages (749 ver- 
sus 769) less  storage  were  given out with one-double- 
word subpools as compared with two-doubleword 
subpools, two pages (107 versus 105) of additional 
storage  were required because of external fragmen- 
tation. This external fragmentation loss  was primar- 
ily due  to inventory in  the larger-sized subpools. 

This situation led to consideration of the feasibility 
of a two-width subpooling arrangement that would 
tend to reduce both  the  internal and external frag- 
mentation loss and still remain robust. Most of the 
large requests were found  to have short holding 
times. These are typically 110 buffers. A study of the 
mean number of items outstanding by  size for each 
of the distributions disclosed that a division at  the 
128-doubleword size was attractive in  that  not much 
storage was being  held above this size, and, in addi- 
tion, it was far enough above the major control block 
sizes to allow them considerable growth before this 
condition would change. By using  larger-sized sub- 
pools above this boundary, we found  that  the sub- 
pool inventory was substantially reduced without a 
compensatory loss because  of internal fragmenta- 
tion. In the tables and text these two-width subpool- 
ing strategies are referred to  in  the form “LIH,” 
where L equals the width in doublewords of the 
subpools below the 128-doubleword boundary and 
H equals the width in doublewords of the subpools 
above this boundary. On  the largest system studied, 
YKTVMV, several  of these algorithms yielded a storage 
efficiency comparable to  the standard VM/SP algo- 
rithm with  significantly reduced search overhead. 
The YKTVMV simulation results (see Table 3) show 
that 1/32 and 2/32 are 14 and 18 times faster re- 
spectively than  the  standard VMISP algorithm and 
within one percent of the storage efficiency-with 1/ 
32 actually using one page  less. 

One of the effects  of the two-level approach was to 
reduce external fragmentation loss to  the  point where 
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internal fragmentation predominates. Those algo- 
rithms  that used the minimum-width subpool (i.e., 
one doubleword) below the  boundary were superior 

In  a  buddy  system,  storage is 
allocated in  subpools of varying 

size. 

~~ 

in terms of memory efficiency (within this class  of 
algorithm) on the two largest systems (FRKVMI and 
YKTVMV). The fact that their efficiency increased with 
system  size  is an indication that  internal fragmenta- 
tion becomes increasingly important as the  number 
of  blocks in use  increases. 

On systems that extend frequently, the fact that 
extended blocks are ordered on the  front of the free 
list impacts the performance of any algorithm (such 
as extended subpooling) that is an extension of the 
standard VM/SP algorithm. This is  because of the 
preference for items within the dedicated free-storage 
block  (i.e., nonextended) when the free list  is 
searched (see earlier discussion on background). 
Therefore, the simulation of one of the best extended 
subpooling algorithms was  modified so that two free 
lists  were maintained: one each for extended and 
nonextended blocks. In addition,  the size  of the 
largest  block on each  free  list and  the number of 
these on the free  list  was maintained. In this way, 
the search of a free  list could be completely avoided 
if failure was certain. In addition, first-fit  was  used 
on the extended free list. The results indicated sig- 
nificant further improvement of the speed of these 
algorithms on the larger  systems. On YKTVMV the 1/ 
32 strategy with two free  lists had one-half the search 
overhead of the  “standard” 1/32 with  essentially the 
same storage  efficiency (a difference  of  less than  one 
page). On FRKVMl the search overhead was slightly 
less than one-half, and four additional pages  were 
required (an increase of less than  one percent). 

Finally, the effect of splitting a block from a larger 
subpool to satisfy a request for an empty, smaller 
subpool if the system  would otherwise have to extend 
was studied. This was being done  in  the  standard 
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VM/SP algorithm. The simulation results indicated 
that this splitting was not worthwhile as it resulted 
in slightly  less  speed and storage  efficiency because 
of increased external fragmentation. With the I /32 
strategy and  the YKTVMV parameters, the overhead 
increased to 5.5 items inspected per request (from 
4.8), and  the number of extended pages increased to 
77 (from 75). Attempts to improve this  outcome by 
setting a minimum size on the fragment left  by the 
split were unsuccessful. 

Buddy systems. In a buddy system, storage is allo- 
cated in subpools of  varying  size  (e.g.,  powers-of-two 
in the binary buddy system). Initially all storage  is 
allocated in  the largest subpool or in a large contig- 
uous block separate from the subpools. All requests 
are  rounded up  to the nearest subpool boundary. If 
a requested subpool is empty,  the next larger subpool 
is checked, and if it is not empty, a block is taken 
and split into buddies, one of  which is used to satisfy 
the initial request. If the next larger subpool is empty, 
the search/split logic  is applied recursively until the 
request is  satisfied. Upon release, if the buddy of the 
block is available (i.e., not  in use), they are joined 
and placed in  the larger subpool. This  joining con- 
tinues until  the largest  size  is reached or a buddy is 
found to be in use. 

In the binary buddy system, buddies are always the 
same size. In other buddy systems such as the Fibon- 
acci and generalized Fibonacci, this is not  the case. 
This inequality not only tends to complicate the 
algorithm, but, as the simulations demonstrated, it 
can also increase the external fragmentation. In non- 
binary systems, an active subpool with long hold 
times can cause frequent splitting of its neighbor into 
its own size and a potentially unpopular size. This 
combination will build up large unusable subpool 
inventories and reduce the storage  efficiency  of the 
system. We call this the “sawdust phenomenon.” 

Buddy systems were among  the fastest strategies that 
we studied, all of them having close to  the  minimum 
search overhead. The following buddy systems were 
simulated. 

Binary  buddy with tags. Knuth’ recommends a 
“tagged” buddy system in which a tag field is kept 
with each block  of storage. This tag field indicates 
whether the block  of storage is in use or free. When 
a block  is returned, one need only check the tag  of 
the proper adjacent block of storage to decide if the 
buddy is  free. In V M ~ P  the tag requires an additional 
doubleword for each block since storage is given out 
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Table 5 Modified  Fibonacci  buddy  characteristics 

n 1 2  3 4 5 6  7 8 9 10 11 12  13  14 15 16 17 18 19 20 

8 1 2 3 4 5 7 10 14 19 26 36 50 69 95 131 181 250 345 476 512 

s l *  1 1  1 2  3 4 5 6 7 8 9 1 0 1 1  12 13 14 15 16 1 1  
sh * 1 2 3 4 5 6 7 8 9 10 1 1  12  13 14  15 16  17 18  19 
j l *  1 1  1 2  3 4 5 6 7 8 9 1 0 1 1  12  13 14  15 1 1  * 
jh * 5 6 7 8 9 10 1 1  12 13  14 15 16  17 18 * * * * * 

*means that  the  particular case could not  happen. 

in  doubleword  units. The increased  storage require- 
ments caused  by this situation might not be as  severe 
on other systems  with a smaller storage granularity. 

Binary  buddy without tags. This algorithm was the 
same as  above  except that tags  were not used, and 
therefore, on release a search  had to be made for the 
buddy. The increased  storage efficiency  was notable 
on the large  systems.  However, in our opinion, this 
improvement was more than offset  by the increased 
search  overhead on returns. 

Modified Fibonacci buddy. The Fibonacci  buddy 
systems were recommended’  as a possible solution 
to the internal fragmentation characteristics of the 
binary buddy. We attempted to tailor the Fibonacci 
buddy  system to our distributions by using a modi- 
fied Fibonacci  sequencez0  as follows: 

F(1) = 1 
F(2) = 1 
F(3) = 1 
F(4) = 1 
F(5) = 1 
F(n) = F(n - 1) + F(n - 4) (approximately) 

Since the first  five terms of this sequence are the 
same size, they are combined into one subpool. 
Some adjustment is  necessary to make the subpool 
sizes  come out so that the largest subpool is one page 
(5 12 doublewords). Table 5 was  used  in determining 
how to split and join subpools. In this table “n” is 
the subpool number, “s” is the number of double- 
words  in the subpool, “sl” is the subpool in which to 
place the lower  buddy at split time, “sh” is the 
subpool in which to place the upper buddy at split 
time, ‘31’’ is the subpool to search  for the lower  buddy 
at join time, and  “jh” is the subpool to search  for 
the upper buddy at  join time. 

This modified  Fibonacci  buddy gave  mixed  results. 
On the largest  system, YKTVMV, it was  significantly 
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superior to both forms of the binary buddy. The 
“sawdust  phenomenon’’ was evident with the 

reason this strategy did not perform  as well there as 
at YKTVMV. We think that this lack  of  robustness  of 
the Fibonacci  buddy  systems could be a significant 
problem in an operating system  with control block 
structures that change  as frequently as  those in VMI 
SP. On  systems  with a fixed,  well-defined  storage 
request distribution, it might  be  possible to  “tune” 
the modified  Fibonacci  systems to give  good  storage 
efficiency combined with  low CPU overhead.  But a 
simpler subpooling algorithm will probably give 
comparable results  with less complexity and more 
robustness. 

Better-fit and leftmost-fit.  After this study was com- 
pleted, C .  J. Stephenson informed us of two  new 
algorithms,  better-fit and leftmost-fit, that he had 
devised  using a “Cartesian”  tree. A detailed  descrip- 
tion of  Cartesian trees and the storage  allocation 
strategies  based on them is in  Stephenson.26  When 
used  for  storage allocation, a Cartesian tree has the 
following properties for any node S :  

1. Addresses  of  left descendants (if any) < address 

2. Length  of  left  son  (if any) 5 length of S 2 length 

FRKVMl and CAMBRIDG distributions and was the 

of S > address of right descendants (if any) 

of right son (if any) 

Figure I is an example of a Cartesian tree as it might 
appear in a dynamic storage allocation application. 
For descriptive  purposes,  each  node contains a tuple 
of the form a,s where 

a = address of storage  block 
s = size  of storage  block 

(Stephenson points out that in  practice it is often 
preferable to have the size  of  each node contained 
in  its parent, i.e.,  in the same place  as its address.) 
The “anchor” or head  of the free-storage  list points 
to the root (103,14)  of this tree. 
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Figure 1 Example of a  Cartesian  tree  used for dynamic  storage  allocation 

R 

The better-fit  strategy  selects a node by descending 
the tree, from the root, so that  at each decision point 
the better-fitting son  is chosen. The descent stops 
when both sons are too short or nonexistent. 

Leftmost-fit  selects the leftmost node of sufficient 
length. It is identical to first-fit in terms of the storage 
that is allocated. 

In order to test these strategies in  the VM/SP environ- 
ment, simulations were run using the YKTVMV pa- 
rameters. Stephenson provided the algorithms that 
were then adapted to the Pascal simulator. The al- 
gorithms were not written specifically for the VM/SP 
environment  and therefore were  given  sufficient stor- 
age to avoid extending. We also ran best-fit in a 
nonextend mode so that  the difference  between the 
extend and nonextend modes would  be measured. 

Initial simulation results indicated that leftmost-fit 
performed well but  that better-fit suffered from se- 
vere external fragmentation. The three strategies 
(best-fit, better-fit, and leftmost-fit) were then modi- 
fied  so that, after the simulation had stabilized, the 

fragment size  left after satisfying a request was 
counted by size. The results are given in Table 6 .  It 
is clear that  the “winning” node in better-fit causes 
more fragmentation than in best-fit or leftmost-fit. 
The VM/SP distribution seems to be almost as patho- 
logical for this strategy as for modified  first-fit.  Ste- 
phenson has found  that better-fit works well with 
other distributions, and therefore it is  of potential 
interest in applications. 

The relative speed  of  leftmost-fit makes this algo- 
rithm a good  strategy to use “behind” subpooling. If 
this were done in VMISP, for example, the extended 
subpooling strategies would all have mean-items- 
visited  values that  are less than 2.0. Perhaps more 
important for machines with a cache, leftmost-fit 
disturbs the cache significantly  less than  the tradi- 
tional linked-list strategies. 

System results 

Before the simulation study was completed, the uni- 
form-4-wide algorithm was run for two months  on 
FRKVMI and subsequently for a shorter period on 
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Table 6 Fragments  left  by  best-fit,  better-fit,  and  leftmost-fit 
(YKNMV distribution) 

Size of  Cumulative Oh of Total  Fragments 
Fragment  Left 

Best-Fit  Better-Fit  First-Fit  and 
Leftmost-Fit 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
20 
30 
40 
50 
60 
70 
80 
90 

100 
200 
300 
400 
500 

88.774 
93.735 
95.586 
96.734 
97.590 
98.060 
98.329 
98.562 
98.789 
98.961 
99.069 
99.532 
99.675 
99.750 
99.777 
99.796 
99.810 

. 99.819 
99.827 
99.832 
99.900 
99.939 
99.946 
99.954 

49.278 65.354 
62.687 77.00 1 
68.550 82.890 
72.310 86.692 
75.357 89.595 
77.858 91.720 
79.676 93.229 
8 1.308 94.596 
82.769 95.542 
84.687 96.350 
86.961 96.158 
93.026 98.073 
95.725 98.51 1 
97.224 98.816 
98.113 98.980 
98.731 99.096 
99.090 99.200 
99.333 99.272 
99.506 99.333 
99.628 99.383 
99.950 99.647 
99.980 99.799 
99.986 99.850 
99.993 99.886 

Table 7 Standard  VM/370  versus 2/32 at YKNMV 

Base  Modified  Percent 
System  System  Improvement 

System CPU 82.8 78.2 
Problem CPU 67.8 

5.6 reduction 
74.8 10.3 increase 

System/prob I .22 1 1.045 14.4 decrease 
Free  lock  spin 1.1 0.1 
(percent of elapsed  time) 
free  lock hold 14.8 4.5  69.6 decrease 
(percent of elapsed  time) 

YKTVMV. After the advantages of  two-level subpool- 
ing  became evident, it was replaced  with the 2/32 
algorithm (i.e., two-doubleword-wide subpools up to 
the 128-doubleword boundary and then 32-double- 
word-wide subpools for  those  sizes  above this bound- 
ary) on both systems. This replacement gave  us an 
opportunity to test the predictive  ability of the sim- 
ulator with  two  algorithms. 

Hardware and software monitoring at Franklin 
Lakes and Yorktown  Heights indicated a reduction 
in the supervisor state CPU utilization to 4-5 percent 
from the previous 15-20 percent for both of these 
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algorithms. At F R K v M l  the subpool hit ratios were 
monitored from 8:30 AM to 4:30 PM (the period of 
heaviest  daily  activity) and found to be  consistently 
within +/- 0.00 1 of the predicted  values on a daily 
basis. 

The simulation results indicated that on F R K v M i  the 
2/32 algorithm would require 0.974 of the storage 
needed by uniform-4 wide. The observed  value was 
0.973. This comparison was not made on YKTVMV 
because the uniform-4 algorithm was run with a free- 
storage “trap” (a method of “trapping” dynamic 
storage  release  violations  by appending extra  storage 
containing size and requestor information to each 
request) which  was not used  with 2/32. 

At YKTVMV a comparison was made of the standard 
VM/SP algorithm with 2/32. Evaluation was done by 
comparing software monitor data from the same 
hour of the same day of the week for the base and 
modified  systems. The results are shown  in Table 7. 

The most  valid  measure  of the overall  value is the 
10.3 percent increase in virtual time. The 5.6 percent 
reduction in  supervisor time understates the value of 
the change. The decreased  supervisor time allows 
more virtual time, which in turn increases  supervisor 
time because  of  services  required. 

The 2/32  strategy  results in free-storage management 
being  reduced  from 14.8 percent to 4.5 percent of 
elapsed time. This in turn allows about ten percent 
more virtual time to be  given to the users  of the 
system. 

The System/Prob ratio shows the supervisor time 
needed to support one unit of virtual time. Thus, 
the supervisor time per unit of useful  work  has  been 
reduced by 14.4 percent. 

During the study a model was created to relate  lock 
holding  probability to lock spin probability. The 
model was  useful  because the vM/Monitor  is  able to 
report lock  spin time, but not lock  holding time. 
Lock holding is another way to measure the time 
spent doing free-storage management, because that 
is the  only use  of the lock. 

The simulator predicted that the 2/32 strategy  would 
require 0.6 percent more storage than standard VM/ 
SP on YKTVMV. During the period of the test at 
YKTVMV, the 2/32 strategy used an average of 0.6 
percent  less  storage than standard VM/SP. This result 
(combined with the F R K v M l  results)  is  evidence that 
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Figure 2 Subpool  hit  ratio  as  a  function  of  subpool  release  time  threshold  at FRKVMl 
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this method of simulation can predict the relative 
storage  efficiency of allocation strategies with reason- 
able accuracy. 

Finally, the speed-storage tradeoff involved in the 
subpool release time threshold was studied. This time 
was  used as the age criterion for removing blocks 
from the subpools whenever a user logged  off (except 
that all extended blocks  were  always removed). After 
the 2/32 algorithm was installed on FRKvM1, the 
time threshold was varied and plotted to show the 
relationship to  the subpool hit ratio and  the mean 
number of  pages required per  user [= (dedicated 
pages + mean extended pages)/(mean number of 
logged-on  users)]. The results are shown in Figures 
2 and 3. Each point on the graph is one day’s 
observation. Note that although the range of subpool 
hit ratios is narrow, the simulation study indicated 
that very small changes in the hit ratio adversely 
affected the mean search overhead due  to  the size of 

the free  list. It is apparent  that  the subpool hit ratio 
is  affected by the release threshold. The correlation 
coefficient  is 0.76. However, storage  efficiency does 
not appear to have any relationship to this threshold 
over the  time range studied: the correlation coeffi- 
cient is -0.08. 

The simulation study indicated that large threshold 
values will result in serious external fragmentation 
in the form of  large subpool inventories. Also, it was 
observed that hardware and load anomalies occa- 
sionally cause a transient demand surge for a specific 
storage size  (e.g., the storage associated with an I/O 
event), and large threshold values hinder the ability 
of the system to reuse this storage. This observation 
suggests that  the threshold should be set at  the point 
where the subpool hit ratio starts to flatten out. Such 
a setting results in  very  low search overhead and still 
allows the system to recover from demand surges in 
a reasonable amount of time. 
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Figure 3 Mean  storage  per  logged  user  as  a  function  of subpool release  time  threshold  at FRKVMl 
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Conclusions 

Empirical results indicate that simplifying distribu- 
tion assumptions about interarrival and holding 
times based on estimated means can be  used  with 
high predictive ability in  the simulation of dynamic 
storage systems. The  traditional best-fit and first-fit 
strategies,  which are based on  the searching of a 
linked list  of available blocks, are too slow for large 
systems with the dynamic storage characteristics of 
VMISP. The standard VM/SP algorithm was found  to 
have  high search overhead on the larger systems. 
Indeed, there is evidence that this search overhead 
increases approximately in relation to  the square of 
the relative  system capacity. The buddy systems, 
which  have  been popular in  the recent literature, 
were among  the fastest strategies studied, though 
severely handicapped by storage inefficiency.  An  ex- 
tended subpooling strategy was described that is as 

0 
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0 

0 0 0  0 
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0 

THRESHOLD I N  S E C O N D S  
/ 
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fast as the buddy systems with superior storage effi- 
ciency. 

As a result of this study, a generalized  two-level 
subpooling algorithm (nominally 2/32) was incor- 
porated in Release 2 of the HPO (High Performance 
Option) for VM/SP. 
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Appendix:  System  dynamic  storage  parameters 
Table 8 FRKVM1 parameters  (Interarrival  and  holding  times in  seconds) 

1 
Size 

1 
2 

4 
3 

6 
5 

8 
7 

9 
I O  
I 1  
12 
13 
14 

16 
15 

17 
18 
19 
20 

22 
21 

23 
24 
25 
26 
27 
28 
29 
30 

32 
31 

33 
34 
35 
36 
37 
38 

40 
39 

41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 

60 
59 

61 
62 

64 
63 

65 
66 

~ 

IAT 
0.320 
0.0655 

0.305 
0.307 

0.625 
0.208 
0.0326 
1.127 

0.00282 
0.003 12 

0.00631 
0.0165 
0.698 
0.253 
0.491 
0.225 
0.387 
0.0475 
0.198 
0.278 
6.459 

10.305 
5.047 

0. I87 

20.000 
1.346 

67.500 
1.422 
0.579 

12.108 
0.554 

23.894 
51.923 
87.097 
24.545 

81.818 
0.232 

21.774 
0.294 

0.319 
28.723 

28.421 
39. I30 

34.6 I5 
33.750 
103.846 
3.121 
41.538 
34.6 I5 
30.000 
27.835 
31.765 

65.854 
30.337 

26.471 

41.538 
2.970 

67.500 
0.320 

27.551 
32.530 

35.526 
19.853 

33.750 
3.277 
61.364 

HT 
258.425 

920.525 
125.260 

320.293 
277.229 
165.560 
14.890 
144.338 
0.343 
0.158 
0.395 
1.678 
0.877 
1.877 
35.754 
671.280 
4.986 
4.480 
8.426 
77.406 
6.459 
0.0 I O  
12.706 
743.065 
125.637 

0.010 
0.010 
0.047 
0.058 
45.978 
540.8 I I 

0.010 
0.010 

532.096 
0.010 

0.010 
2.110 

1000.655 
0.082 

2.660 

161.726 
0.316 

0.010 

241.515 
0.010 

530.186 
0.010 

0.010 
0.381 

543.330 
1.225 
1.398 
0.334 

40.871 
2.173 

0.457 
0.131 

0.010 
0.743 
7 I ,027 
0.010 

0.010 
0.437 

19.552 
0.371 

0.010 

Size IAT 
67  29.671 
68  38.029 
69  36.000 
70  45.000 
71  45.763 
72  49.091 
73  27.836 
74  4.259 
75  22.500 
76  36.487 
77  23.077 
78  48.215 

80  4.624 
79  22.500 

81  31.765 
82  43.549 
83  3.431 
84  5.745 

86  39.706 
85  41.539 

87  36.987 
88  21.600 

90  45.000 
89  25.715 

91  44.263 
92  0.616 
93  30.000 

95  61.364 
94  25.472 

96 36.987 
97 29.348 
98 48.215 
99 1.193 

1 0 0  36.987 
101 8.971 
102 36.987 
103 33.750 
104 15.607 
105 23.077 
106 14.063 
107 27.552 
108 34.178 
109 40.299 
110 5.649 
I l l  43.549 
I12 31.035 
113 31.035 
114 45.763 
I15 36.987 
116 33.334 
117 16.266 
118 39.706 

120  25.000 
119  9.061 

121  54.000 
122  24.546 
123  40.299 
124  48.215 
125 24.771 
126  22.500 

128  4.937 
127  18.494 

129  44.263 
130  12.386 
131 20.770 
132 56.250 

HT  Size IAT KT  Size  IAT  HT 

0.837 
0.653 

435.015 
0.396 

0.504 
0.540 
0.919 

233.505 
0.094 

0.010 
0.254 
0.010 

25.738 
0.743 

0.010 
0.480 

1632.512 
0.151 

60.937 

0.814 
1.311 

0.010 

103.995 
0.283 

0.055 
0.010 

0.330 
0.28 I 
10.248 

0.323 
1.221 

0.010 

75.194 
0.027 

0.297 
0.407 

65.550 
0.372 

0.508 
0.155 
0.304 
0.010 

0.379 
0.010 

1.438 
0.010 
0.683 
0.504 

0.010 
0.407 

465.360 
0.874 
0.299 
0.550 
1.188 
0.810 
0.887 

0.545 
1.592 

0.990 

0.109 
0.814 

374.310 
0.010 

1.392 
1.857 

133 
134 
135 
I36 
I37 
138 
139 
I40 
141 
I42 
143 

145 
I44 

I46 
147 
I48 
149 
150 
151 
I52 
153 
I54 
155 

157 
156 

158 
159 
I 60 
161 
162 
163 
164 
165 
166 
167 

I69 
168 

170 
171 
I72 
173 

175 
I74 

176 
177 
178 
I79 

181 
I80 

182 
183 
I84 
185 

187 
I86 

188 
I89 
I90 
191 

193 
192 

194 
195 
I96 
197 
198 

42.858 
42.858 
35.065 
42.858 

48.215 
0.565 

41.539 

49.091 
34.178 

35.527 

25.715 
18.000 

40.910 
38.029 
38.029 
40.910 
32.927 

71.053 
36.000 

84.375 
31.396 
29.671 
40.910 

45.000 
22.1  32 

44.263 
41.539 

20.931 
50.944 

61.364 
52.942 

44.263 
50.000 

57.447 
77.143 
84.375 
21.775 
41.539 
60.000 
36.487 

42.858 
54.000 

93.104 
57.447 

158.824 
87.097 

84.375 
75.000 
62.791 
33.750 

64.286 
39.706 

71.053 
84.375 
112.500 
50.000 
56.250 
64.286 
96.429 
42.858 
58.696 
61.364 
33.750 

135.000 
142.106 

108.000 

0.943 
1.415 

343.25 I 
1.415 
0. IO7 
0.531 
0.914 
1.128 

24  1.086 
1.990 

637.992 
0.566 
1.350 
0.837 
0.837 

0.725 
1.800 

2.412 
0.782 
1.857 
0.691 
1.306 

4 17.040 
1.800 

1.485 
1.948 
0.914 
54.357 
0.231 
1.748 
2.025 
0.550 
1.948 

2.546 
3.218 

1.857 
518.226 
0.457 

36.487 
0.660 

1.188 
0.010 
0.010 
2.528 
1.917 
0.010 
5.654 
3.300 

605.239 
1.382 

0.437 

0.782 
1.415 

0.010 

0.010 
3.7 13 

1.238 
0.708 
1 . 0 6 1  
0.472 
0.646 
0.010 

446.614 
4.690 

0.010 
1.485 

200  61.364 
199  122.728 

201  64.286 

203  50.000 
202  51.924 

204  25.472 
205 I 0 0 . o W  
206  96.429 
207  207.693 

209  150.000 
208  41.539 

210  36.487 
21 I 207.693 
212  36.987 
213 7.827 

215  42.188 
214  4.252 

216  103.847 
217  128.572 
218  48.215 
219  22.690 

221  9.061 
220  2.594 

222  60.000 
223  65.854 
224  45.763 
225  108.000 
226  38.029 
227  7.606 
228  2.306 
229  158.824 
230  15.607 
231  270.000 
232  22.132 
233  57.447 
234  49.091 
235  72.973 
236  51.924 
237  29.033 
238  300.000 
239  3.948 
240  8.518 
241  90.000 
242  5.379 
243  9.408 

245  42.858 
244  150.000 

246  50.944 
247  2.971 
248  45.000 
249  57.447 
250  4.405 
251 14.674 
252  52.942 
253  21.952 
254  96.429 
255  2.622 
256  12.108 
257  7.989 
258  192.858 
259  93.104 
260  65.854 
261  72.973 
262  8.360 
263  2.316 
264  67.500 

0.010 
1.350 
0.010 
1.143 
0.010 
0.010 

100.000 
3.183 
2.285 

745.367 

1.205 
1.650 

0.010 
0.010 
0.087 
0.047 
0.010 
0.010 

0.010 
0.010 

0.500 
1.326 

140.138 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.077 

0.344 
0.010 

0.010 
0.487 

544.369 
0.010 

0.803 
0.572 
0.010 
0.010 
0.569 
1.610 
0.990 
0.237 
0.207 
0.010 
0.0 IO 
0.010 
25.281 
0.010 
0.010 

0.646 
1.128 

0.010 

0.010 
0.242 

1.340 
0.010 
0.176 
0.010 

337.303 
0.010 

0.010 
0.010 
0.05 I 
0.743 

Size IAT 
265  270.000 
266  16.072 
267  385.715 
268  31.396 
269  207.693 
270  450.000 
271  142.106 
272  122.728 

274  2700.000 
273  60.000 

276  4.012 
277  8.710 
278  158.824 
279  6.068 
280  50.944 
281  540.000 
282  450.000 
283  207.693 

285  675.000 
284  300.000 

286  81.819 
287  2700.000 
288  4.531 
289  540.000 
290  675.000 
291  540.000 
292  540.000 
293  2700.000 
294  192.858 
295  2700.000 
296  1350.000 
297  2700.000 
298  2700.000 
299  117.392 

301  45.000 
300  900.000 

302  2700.000 
303  2700.000 
304  207.693 
312  128.572 
314  1.790 
325  135.000 
329  2700.000 
333 2700.000 
338  142.106 
351 135.000 
364  135.000 
376  29.671 
377  135.000 
390  142.106 
401  7.737 
403  142.106 
416  150.000 
429  207.693 
431  4.116 
442  245.455 
451  0.292 
455  300.000 
468  337.500 
481  10.113 
494  900.000 
501  2700.000 
507  2700.000 
509 1 1.490 
512  900.000 

HT 
0.010 

0.010 
0.354 

0.0 IO 
0.010 
0.010 
1.564 

60.000 
0.010 

0.010 
0.490 
1.647 
0.010 
0.067 

0.010 
1.121 

0.010 
0.010 
0.010 
0.010 

115.446 
0.010 
1.160 
5.940 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
14.850 

0.010 
0.010 

146.035 
0.010 
0.010 
0.010 
0.010 
2.285 

132.815 

48.060 
0.120 

0.010 
0.010 
96.348 

0.010 
2.970 

0.327 

0.010 
1.485 

108.995 
0.086 

1305.000 
990.070 
0.23 I 

1161.737 
0.163 

1019.925 
563.400 

1479.600 
22.925 

9871.200 
0.010 

5799.600 
0.253 
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Table 9 YKTVMV parameters 

Size 
I 
2 

4 
3 

5 
6 
7 
8 
9 

10 
I I  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 

40 
39 

41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
5 1  
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 

~ 

IAT HT ~ _ _ _ _ _  
0.111 235.1 14 
0.07 I 
0.146 
0.160 
0.257 
0.089 
0.029 
0.369 
0.08 I 
0.001  57 
0.00655 
0.041 
0.296 
0.423 
0.080 
0.420 
0.153 
0.299 
0.109 

11.321 
0. 194 

16.438 
8.824 

0.284 

6.883 
5.136 

6.486 

0.406 
5.070 

1.479 
0.038 

22.086 
34.61 5 

45.000 
0.372 

20. I12 
1.468 
0.582 

64.286 
16.514 

48.649 
61.017 

63.158 
50.000 

55.385 
52.174 

17.648 
0.956 

27.693 
29.033 
38.298 
67.925 
80.000 

133.334 
42.353 

60.000 
1.930 

22.642 
45.570 
40.450 
24. I62 

5 1.429 
0.149 

67.925 
1.311 

58.065 
92.308 
94.737 
29.269 
27.907 
85.715 
26.667 
9.891 

273.841 
162.205 

869.713 
36.054 

199.510 
2  1.422 

186.698 
36.310 
4.742 
0.089 

16.623 
I .230 

13.527 
4.119 

1240.163 
11.882 
63.398 
4.506 

3 1.643 
51.317 

69.32 I 
17.938 

3044.506 
583.533 

0.010 
0.538 
0.0 I O  
0.034 

162.055 
16.163 
2.873 
0.729 

81.556 
0.010 

100.901 
1.639 
0.029 

3397.707 
1842.879 

0.0 10 

50.000 
2.014 

1.074 
1047.711 

0.010 
245.050 

12862.935 
384.453 
167.429 

0.65 I 
3.397 
1.360 

58.575 
0.010 

0.033 
1.020 
0.010 
0.010 

161.798 
0.010 
0.325 

409.789 
55.697 

0.010 
1.442 

0.010 
1.570 

1.464 
29.777 

162.214 
1.458 

5212.751 

Size 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 

100 
99 

101 
I02 
103 
I04 
105 
I06 
107 
108 
109 
1 IO 
I l l  
112 
113 
1 I4 
115 
I I6 
I I7 
I18 
I I9 
I20 
121 
122 
123 
124 
125 
126 
127 
128 
I29 
I30 
131 
I32 
I33 
134 
135 
136 
137 
138 
I39 
I40 
141 
142 
143 
I44 
I45 
I46 

~ 

IAT 
~ 

1.521 

109.091 
56.250 

65.455 
65.455 
50.705 
45.570 
30.253 
59.017 

1.209 

40.450 
5 1.429 

44.445 

120.000 
94.737 

48.000 
23.842 
85.715 
0.880 

I20.000 

78.261 
52.942 

50.705 
31.579 

24. I62 
87.805 

42.353 

53.732 
2.488 

53.732 
41.861 
69.23 I 
92.308 
48.649 
33.645 
52.942 
6.197 

102.858 
63.158 
64.286 
80.000 

100.000 
40.000 
40.000 
33.963 

29.509 
5.599 

67.925 

64.286 
59.017 

52.174 
81.819 
45.570 
31.859 

2 I .053 
2.4 I8 

44.445 
6.991 

80.000 

116.129 
63.158 

76.596 
81.819 
0. I92 

60.000 
36.735 

27.273 
46.154 
41.861 

102.858 
90.000 

73.470 
0.680 

HT 
0.077 
0.010 
0.010 
0.010 
0.010 

204.49 1 
94.922 

992.784 
0.010 
0.122 
0.010 
2.023 
3.689 
3.127 
2.040 

2175.902 
0.816 

0.010 
0.044 

0.900 
2.040 

0.010 
5.244 

0.010 
2.622 

1793.163 
43.073 
0.207 
0.914 
0.914 
0.712 

0.010 
3.462 

1635.712 
0.828 

0.900 
0.106 
1.749 
1.074 
1.093 

100.000 
1.360 

0.010 
2264.680 

0.578 
0.185 
0.502 
2.242 
1.948 
1.093 
0.010 

2425.079 
1.391 

0.201 
1.052 

0.010 
0.469 

0.010 
1.467 

I .074 

3658.749 
0.010 

0.010 
0.058 
0.625 
0.010 
0.900 
0.785 
0.010 

2 l69.W 
1.749 

0.012 
0.010 

~ 

- 

e 
147 
I48 
I49 
I50 
151 
I52 
153 
I54 
155 
156 
157 
158 
159 
160 
161 
162 
163 
I64 
165 
I66 
167 
168 
169 
170 
171 
172 
173 
I74 
175 
I76 
177 
178 
179 
180 
181 
182 
183 
184 
185 
I86 
I87 
I88 
I89 
I90 
191 
192 
193 
I94 
195 
196 
197 
198 
199 
200 
20 1 
202 
203 
204 
205 
206 
207 
208 
209 
210 
21 1 
212 
213 
214 
215 
216 
217 
218 
219 

IAT HT Size 
36.000 
43.374 
25.532 
35.644 
35.644 
25.532 

31.579 
8.675 

70.589 

43.903 
92.308 

92.308 
67.925 

37.114 
1.117 

43.903 
62.069 
72.000 
29.269 
92.308 

120.000 
105.883 
133.334 
50.705 

102.858 
5 1.429 

5  1.429 
45.000 
29.509 
54.546 
48.649 
61.017 

105.883 
73.470 

163.637 
76.596 

144.000 
62.069 

156.522 
87.805 
73.470 
35.644 

144.000 
102.858 
80.000 
87.805 

133.334 
150.000 
87.805 

45.570 
19.673 

94.737 
54.546 
55.385 

225.000 
50.000 

171.429 
120.000 

257.143 
150.000 

156.522 
65.455 

25.900 
39.561 
62.069 
76.596 

1.995 

276.923 
36.735 

90.000 
138.462 
37.1  14 
4.206 

0.010 
0.010 
0.010 
0.606 
0.010 
0.010 

155.278 
0.010 
I .200 
0.010 
0.747 
0.010 
1.155 
1.136 

395.869 
0.010 

0.010 
0.010 
0.498 

92.308 
0.010 
0.010 
0.010 
1.674 

612.875 
0.010 
0.010 
0.010 
0.010 
0.928 
0.010 
0.010 

383.290 
0.010 

0.010 
0.010 
0.010 

0.010 
1.056 

1.493 
1.249 
0.010 

1000.800 
0.010 
1.360 
0.010 
0.010 
0.010 
0.010 
0.010 

552.600 
0.010 

0.010 
0.010 
0.010 
0.010 
0.010 
0.010 

300.000 
0.010 

363.273 
0.010 
0.010 
0.010 
0.010 
0.010 
0.234 
0.010 

361.530 
0.010 

0.010 
0.010 
0.072 

220 
22 I 
222 
223 
224 
225 
226 
227 
228 
229 
230 
231 
232 
233 
234 
235 
236 
237 
238 
239 
240 
24 I 
242 
243 
244 
245 
246 
247 
248 
249 
250 
25 I 
252 
253 
254 
255 
256 
257 
258 
259 
260 
26 I 
262 
263 
264 
265 
266 
267 
268 
269 
270 
27 1 
272 
273 
274 
275 
276 
277 
278 
279 
280 
28 I 
282 
283 
284 
285 
286 
287 
288 
289 
290 
29 I 
292 

IAT 

0.583 
3.282 

2.215 

2 1  1.765 
76.596 

21 1.765 
73.470 
36.000 
6.041 
9.231 

30.000 
50.000 

124.138 
25.532 

90.000 
55.385 

49.3  16 
75.000 
16.290 
3.472 

15.063 
47.369 
21.053 
64.286 
70.589 
54.546 
47.369 

1.822 

60.000 
26.667 

8.552 
102.858 
45.000 
37.1  14 

0.788 
3.766 

0.85 I 
7.469 

83.721 

21  1.765 
72.000 

67.925 
83.721 

171.429 
13.954 

11.689 
32.143 
50.705 

257.143 
29.509 

163.637 
240.000 

80.000 

128.572 
53.732 

16.745 

15.190 
3.374 

257.143 
327.273 
63.158 

360.000 
100.000 
133.334 
109.091 
36.735 
28.800 

102.858 
87.805 
4.187 

211.765 
180.000 

120.000 

~ 

HT 
5.579 
0.156 
0.149 
0.010 
0.010 

21  1.765 
0.010 
0.010 
0.200 
0.157 
0.510 
0.010 
0.010 
0.010 
0.010 
0.010 
0.839 
0.010 
0.277 
0.289 
0.498 
0.010 
0.010 

64.286 
0.010 
0.010 
2.369 
0.214 
0.454 
0.010 
3.139 
0.010 

45.000 
0.010 
3.326 
0.289 
0.228 
0.010 
0.010 
0.010 
0.010 

118.868 
0.010 
0.010 
5.658 
0.386 
0.547 
0.010 
0.010 

204.546 
0.010 

0.010 
0.010 

0.010 
1.774 

0.285 
0.281 
0.502 
0.010 
0.010 
0.010 
0.010 
0.0 IO 
0.010 
1.855 
0.010 
0.490 
0.010 
0.010 

0.010 
1.466 

0.010 
0.010 

~ 

Size  IAT HT 
293 
294 
295 
296 
297 
298 
299 
300 
30 I 
302 
303 
304 
305 
306 
307 
308 
309 
310 
311 
312 
314 
315 
316 
317 
318 
319 
320 
321 
322 
323 
327 
328 
329 
330 
331 
332 
333 
334 
335 
336 
337 
338 
339 
340 
342 
345 
346 
347 
348 
350 
352 
353 
355 
356 
360 
36 I 
362 
364 
365 
366 
367 
370 
377 
382 
4 0 1  
431 
45 I 
48 I 
483 
50 I 
512 

I7 I .429 

514.286 
124.138 

211.765 
240.000 
112.500 
360.000 
I7 1.429 

240.000 
26.278 

720.000 
257.143 

276.923 
81.819 

300.000 
163.637 

257.143 
327.273 
257.143 
514.286 

1800.000 
3.232 

1800.000 
600.000 

600.000 
240.000 

3600.000 
900.000 

1200.000 
100.000 

3600.000 
600.000 
600.000 
600.000 
450.000 
900.000 

1200.000 
276.923 

900.000 
720.000 

3600.000 
360.000 

3600.000 
1200.000 

3600.000 
3600.000 
240.000 

52.942 
3600.000 

94.737 
1800.000 
900.000 

3600.000 
720.000 

3600.000 
1800.000 

3600.000 
3600.000 
3600.000 
360.000 

1800.000 
105.883 
720.000 
900.000 

5 14.286 
52.174 

2.755 

18.368 
0.38 I 

2.757 
5.715 

0.010 
0.010 
0.010 
0.010 

240.000 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 

1800.000 
0.055 

0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.0 I O  
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 

I800.000 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.138 
0.032 
0.607 
0.010 

22.955 
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able 10 CAMBRIDG  parameters 

Sire IAT HT Size IAT HT Size IAT 
I 
2 
3 
4 
5 
6 
7 
8 
9 

I I  
IO 

12 
13 
14 
15 
16 
17 
18 

20 
19 

21 
22 
23 

25 
24 

26 
27 
28 
29 

31 
30 

32 
33 

35 
34 

36 
37 
38 

40 
39 

41 

43 
42 

45 
46 
47 
48 
49 
50 
5 1  
52 
53 
54 
55 

0.471 
1.031 

2.200 
2.007 
3.830 
1.297 
0.203 
4.640 
0.500 
0.00673 
0.053 
0.124 
0.998 
4.450 
3.258 
1.685 
2.162 
7.332 
5.547 
2.218 

225.000 
31.579 

62.069 

16.438 
1.905 

211.765 
59.017 
14.575 
6.040 
9.575 
0.806 

360.000 
189.474 

257.143 

189.474 
11.356 

5.210 
2.824 
90.000 
156.522 
450.000 
124.138 

720.000 
163.636 

138.462 
6.  I54 

I7  1.429 

200.000 
17  1.429 

128.572 
I50.000 
450.000 
5 14.286 
156.522 

33.633 
52.478 
208.516 
42.608 

1505.938 
255.006 
12.464 
41.442 
19.587 
0.29 I 
0.35 I 
8.233 
1.231 

1862.388 
20.617 

42.703 
7.889 

35.040 
5.499 

8.937 
1.923 

0.010 
1438.944 
830.666 
189.863 
0.010 
0.010 
0.48 I 
0.405 

242.876 
14.278 
0.010 
0.010 

283.344 
0.010 

2542.168 
0.089 
0.048 

988.748 
340.470 

0.010 
0.010 

2543.760 
0.010 

0.010 
0.010 

5 14.286 
0.010 

60.000 
0.0 IO 
0.010 
0.010 
0.010 
0.010 

57 
58 
59 
60 
61 

65 
62 

66 
68 
69 
70 
71 
72 
73 
14 

78 
76 

79 
80 
83 
84 
85 
86 
87 
88 

90 
89 

92 
95 
96 
97 
98 

100 
99 

101 
I04 
105 
106 
107 
108 
I09 

I l l  
I IO 

I12 
I I5 
I I7 
I18 
I I9 
I20 
121 
I26 
128 
129 
I30 

600.000 
189.474 

276.924 
128.572 

276.924 

13.044 
2.581 

400.000 
257.143 
83.721 
400.000 
400.000 
300.000 
225.000 
14.635 

400.000 
900.000 

257.143 
150.000 
7.244 

300.000 
720.000 
327.273 

276.924 
600.000 

189.474 
163.637 
10.170 
600.000 
180.000 

720.000 
150.000 

5 14.286 
189.474 

360.000 
21.687 

400.000 
300.000 
I7  1.429 
18O.Ooo 
900.000 
13.900 
450.000 
900.000 
600.000 
514.286 
360.000 
34.952 
900.000 
600.000 
276.924 
12.414 
450.000 

5 1.429 

600.000 
0.010 
0.010 
0.010 
4.708 

24.783 
0.044 

0.010 

3692.091 
0.010 

233.200 
0.010 
0.010 
0.010 

3615.300 
0.010 

0.010 
0.010 

4.950 
0.124 
0.010 
0.010 
0.010 
0.010 
4.708 
3.222 

1270.964 
0.010 
0.010 
0.010 
2.550 

997.958 
0.010 

514.286 
0.369 
0.010 
0.010 
5.100 
2.9 I5 

909.000 
0.010 
0.010 
0.010 
0.010 
10.200 

1996.972 
0.010 
0.010 
0.010 
0.010 

1998.554 
0.212 
0.010 
0.010 

132  360.000 
135 900.000 
137  1.177 
139  92.308 
I40  156.522 

143  720.000 
141  257.143 

146  300.000 
147  514.286 

IS0 600.000 
149  900.000 

151 900.000 
153 50.000 
154  450.000 
155 900.000 
158  450.000 
160  3.013 

164  97.298 
161  720.000 

165  150.000 
170  720.000 
171  120.000 
172  900.000 
176  600.000 
177  900.000 
181  450.000 
182  900.000 
184  450.000 
185 450.000 
186  180.000 
187  514.286 
188  360.000 
192  720.000 
193  900.000 

200  300.000 
199  300.000 

202  720.000 
204  600.000 
211  400.000 
212  240.000 
214  327.273 
216  720.000 
217  189.474 

219  200.000 
218  360.000 

220  40.910 
221  78.261 

223  514.286 
222  13.187 

225  600.000 
227  600.000 

230  900.000 
228  900.000 

231  80.000 

KT 
0.010 

3480.300 
0.039 
0.010 
0.010 
0.010 
0.010 
0.010 
0.0 IO 
0.010 
0.010 
15.300 
0.010 
0.010 
0.010 
0.010 
3.013 
0.010 
0.010 
0.010 
0.010 

240.000 
0.010 
0.0 IO 
0.010 
0.010 
0.010 
0.0 IO 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 

0.010 
3.396 

0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
1.360 
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