Analysis of free-storage
algorithms—revisited

Most research in free-storage management has cen-
tered around strategies that search a linked list and
strategies that partition storage into predetermined
sizes. Such algorithms are analyzed in terms of CPU
efficiency and storage efficiency. The subject of this
study is the free-storage management in the Virtual
Machine/System Product (VM/SP) system control pro-
gram. As a part of this study, simulations were done of
established, and proposed, dynamic storage algo-
rithms for the VM|SP operating system. Empirical evi-
dence is given that simplifying statistical assumptions
about the distribution of interarrival times and holding
times has high predictive ability. Algorithms such as
first-fit, modified first-fit, and best-fit are found to be
CPU-inefficient. Buddy systems are found to be very
fast but suffer from a high degree of internal fragmen-
tation. A form of extended subpooling is shown to be
as fast as buddy systems with improved storage effi-
ciency. This algorithm was implemented for VM/SP,
and then measured. Results for this algorithm are
given for several production VM/SP systems,

Al efficient, dynamic storage allocation algorithm
1s essential to the performance of complex soft-
ware systems. These systems require the ability to
reuse areas of memory for such things as control
blocks, buffers, data areas, and state vectors. The
reuse ability is needed in order to keep the total
memory requirement reasonable. Without reuse it
would be necessary to permanently assign enough
storage for each purpose to ensure a very low prob-
ability of exhausting each storage type. Because the
frequency of obtaining storage may happen more
than one thousand times per second, throughput
may be affected by the processing time required.
Unfortunately, storage efficiency and cpu efficiency
are usually tradeoffs in the selection of an algorithm.
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Storage inefliciency is a result of fragmentation, both
internal, which is the result of giving out more
storage than requested (e.g., by rounding up to some
boundary), and external, which is the “checker-
board” effect caused by alternating blocks of avail-
able and in-use storage. CpU inefliciency results when
it becomes necessary to search for a block that will
satisfy a request for free storage {or the proper place
to “insert” a released item), and can be measured by
the mean number of blocks inspected per request
(release).

Early work in this area focused on the relative efh-
ciency of various strategies that process requests
against a linked list of available storage blocks. The
algorithm known as “first-fit” consists of searching
the available list and accepting the first free area that
is greater than or equal to the required size. When a
suitable block is found, it is split into a block of the
right size that will be used and a fragment that is left
on the free list. The “best-fit” strategy consists of
searching the entire free list in order to find a free
block that if split will leave the smallest fragment.
Naturally, if an exact fit is found, the search is
terminated. There are two variations of best-fit that
are distinguished by whether the first or last of equal
best-fitting blocks is used. In “worst-fit” the free
block that results in the largest fragment is chosen,
except that an exact fit is taken when found.
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Collins' simulates first-fit, best-fit, worst-fit, and ran-
dom-fit, finding first-fit slightly better than best-fit.
Iliffe and Jodeit? describe the use of codeword de-
scriptors to provide mobility of data in a first-fit
environment with garbage collection.

Knowlton®** and Markowitz et al.® independently
developed the binary buddy system. Buddy systems
maintain space in separate pools by size (e.g., powers
of two in the binary buddy system). Requests are

Buddy systems maintain space in
separate pools by size.

rounded up to the appropriate size boundary, result-
ing in internal fragmentation. If a block of that size
is not available, an iterative search is made of suc-
cessively larger-sized pools until a block is found.
This block is then iteratively split into “buddies”
until a block exists for the requested size. When
blocks are released, buddies are recombined if pos-
sible.

Ross® describes the Massachusetts Institute of Tech-
nology AED free-storage package that uses zone par-
titioning as a solution for external fragmentation.
Each zone independently manages its inventory.
Randell’ demonstrated via a simulation study that,
if requests are rounded up in an attempt to reduce
the memory loss due to external fragmentation, the
internal fragmentation loss rapidly predominates.
Knuth® gives an excellent review of previous work,
provides simulation results supporting first-fit over
best-fit, describes a modified first-fit algorithm that
starts each search with the block after the last one
given out (thereby cycling through the linked list of
available blocks), and recommends the investigation
of the Fibonacci buddy system. Campbell® describes
an optimal-fit algorithm, based on the optimal-stop-
ping problem on a fixed-length Markov chain, which
attempts to combine the best property of first-fit
(speed) with the best property of best-fit (reduced
external fragmentation).

Purdom, Stigler, and Cheam'® simulate first-fit, bi-
nary buddy, and segregated storage (variable-sized
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subpools with splitting and recombination—similar
to the generalized Fibonacci buddy). The binary
buddy is found to be the fastest. Robson!! proves
that for any nonrelocating strategy the amount of
storage required is bounded below by a function that
rises logarithmically with the size of the blocks that
are used. Margolin, Parmelee, and Schatzoff'? de-
scribe a study that led to an improved algorithm for
the computer control system CP/67. Since their work
strongly influenced the algorithm currently used on
the Virtual Machine/System Product (vm/sp) and
since our work can in some ways be considered an
extension of theirs, their work is a key antecedent to
this study.

Hirschberg'? follows Knuth’s suggestion and does a
simulation study of the Fibonacci buddy system vis-
a-vis the binary buddy system, concluding that the
Fibonacci is superior. Fenton and Payne'* simulate
first-fit, Knuth’s modified first-fit, best-fit, half-fit,
and worst-fit. Their study concludes that best-fit is
superior; first-fit and half-fit are somewhat better
than modified first-fit; and worst-fit is worst. Shen
and Peterson'> develop a weighted buddy system
that provides more sizes than the binary buddy. They
find that internal fragmentation is decreased often at
the expense of some increase in external fragmenta-
tion and conclude that the weighted buddy system
will give good results if the request distribution is
primarily composed of small sizes.

Russell'® gives mean value bounds for the over-
allocation due to internal fragmentation in a one-
level buddy system. Shore!” finds through simulation
that first-fit and best-fit are generally within one to
three percent of each other in terms of memory
utilization. He provides strong evidence that the
relative performance of the two strategies depends
on the frequency of requests that are large compared
with the average request. In terms of the coefficient
of variation, «, of the request distribution, he finds
that first-fit outperforms best-fit when « is greater
than or equal to one. Bays'® confirms Shore’s results
and also finds modified first-fit to be inferior when
the mean request size is less than one-sixteenth the
total available memory. Cranston and Thomas'® de-
scribe a simple recombination scheme for the Fibon-
acci buddy systems. Ferguson?® defines a generalized
Fibonacci scheme and provides tables that are useful
in the generation of these systems. Peterson and
Norman?' study the binary, Fibonacci, and weighted
buddy systems and derive the internal fragmentation
for each for the uniform request distribution. They
also provide simulation results that suggest that,
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although the internal fragmentation varies, the total
fragmentation (i.e., internal and external}) is about
the same for these three buddy systems.

In this paper a simulation study is discussed that
compares many dynamic storage allocation strate-
gies in medium and large time-sharing environ-
ments. This work resulted in an algorithm that sig-
nificantly improves the performance of large Virtual
Machine/System Product Conversational Monitor
System (vM/SP cMS)? [vMmt, cMmsl1] systems,

This paper first discusses the environment in which
this work was done. Next, the simulation method-
ology is explained. Then simulation results and per-
formance results for two systems are presented. Fi-
nally, conclusions are drawn from this study.

Background

The impetus for this study was provided by hardware
and software monitor data collected at the Data
Centers of the 1BM Thomas J. Watson Research
Laboratory and the former 18M Office Products Di-
vision (OPD) headquarters. These data indicated that
the vm/sp dynamic storage algorithm consumed 11
to 20 percent of the supervisor-state CPU on the OPD
3033 Uni-Processor (Up) and the Research 3033
Multi-Processor (MP). Under peak load the percent-
age was at the high end of this range. The high cpu
time caused high lock holding time for the primitive
lock on the MP that prevents the concurrent execu-
tion of the dynamic storage allocator. The high lock
holding time in turn caused longer lock wait time
for the other processor. The wait time on this lock
was one to one and a half percent of elapsed time
during typical load.

The instruction that referenced the next address in
the linked list of available storage blocks was most
frequently seen in the hardware monitor samples.
This instruction frequently “missed” cache because
of the relatively large area of memory containing the
linked list. It appears that searching linked lists tends
to subvert the cache by (1) yielding a low hit-ratio
during the search and (2) leaving the cache full of
data that are very unlikely to be referenced after the
search.

This study was performed by independent groups
working at each data center. The OPD group was
working on a simulation study, whereas the Research
group was studying the effects of modifications to
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the existing vM/sP algorithm. When the two groups
became aware of their common interest, their shared
discoveries led the way to the final solution.

The fact that there were two independent groups
using different tools and techniques has resulted in
some inconsistencies in the analysis that was done
on the systems that were studied. However, all ap-
plicable results are provided. If a specific result is not
provided for a given system, it is because the analysis
was not performed.

In order to understand the work reported in this
paper, it is necessary to understand the dynamic
storage allocation algorithm that was used in vMm/370
at the time of this work. All other algorithms that
were studied were measured against this. It proceeds
as follows.

Ten stacks, each three doublewords wide (one dou-
bleword is eight bytes of eight bits each), are main-
tained for free storage elements less than or equal to
30 doublewords such that the first stack services
requests from one to three doublewords; the second,
four to six doublewords; to the tenth, 28 to 30
doublewords. All requests within this range are
rounded up to the appropriate boundary. These
stacks were called subpools by Margolin et al., and
we will use that term here. Initially all of the subpools
are empty. The purpose of the subpool is to be able
to find a free storage element immediately, thus
eliminating any searching of a linked list at all.

If the request cannot be satisfied by a subpool, either
because the subpool is empty or the request is greater
than 30 doublewords, a search is made of a linked
list of available storage blocks. This list is called the
free list and is maintained in order of increasing
address. The list is ordered by storage address in
order to facilitate the coalescing of a newly freed
block with adjacent free blocks. Initially the free list
consists of one block which represents the storage
dedicated as dynamic storage at system generation
(an integral number of 4096-byte pages). If the free
list is empty or cannot satisfy the request, a page (or
multiple pages if the request exceeds 4096 bytes) is
“borrowed” from the page pool that provides real
memory to users and the operating system itself.
However, if the request that cannot be satisfied is
less than or equal to 27 doublewords, an attempt is
first made to “split” a larger subpool block into
smaller sizes. If the split is not possible, a page is
borrowed from the page pool with the intention of
returning it as soon as possible. The act of borrowing
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is called “extending,” and the borrowed page is called
an “extended” page. Whenever a release of a block
causes an extended page to be completely contained
in the free list, it is returned to the page pool. Because
the dedicated dynamic storage is initially generated
at the top of memory (i.e., highest addresses), all
available blocks from extended pages will be at the
front of the free list.

The searching of the free list proceeds as follows:

«, If an exact fit is found with a nonextended block,
the search is terminated and the block is used to
satisfy the request.

. If an exact fit is not found and the request size is
less than or equal to 30 doublewords, the low end
of the first larger nonextended block is used. If
there is no nonextended block greater than or
equal to the requested size, the last equal or larger
extended block is used with an equal size taking
precedence. If it is necessary to use a larger block,
the low end of this block is given out.

+, For requests greater than 30 doublewords a similar
strategy is used, except that the high end of the
last larger block is used in the case where there is
no exact match.

Release of storage to the free list proceeds as follows:

*, Upon release, blocks less than or equal to 30
doublewords are pushed into the appropriate sub-
pool.

¢, Items greater than 30 doublewords are inserted
directly into the free list. Proper placement in the
free list requires a serial search through the ad-
dress-ordered list until the correct place is found.
If they are adjacent to another free block(s), the
blocks are coalesced into a single larger block.

In the periodic emptying of the subpools, whenever
any user leaves the system, or at least once an hour,
all blocks in the ten subpools are removed and
inserted into the free list. This procedure allows for
downward adjustment of the number of blocks after
an unusual requirement for a particular size, and it
allows extended pages to be returned.

The ten-subpool strategy is derived from Margolin
et al., who found that over 99 percent of all requests
in Cp/67 were in this size range. This study found
that this percentage has deteriorated with time (e.g.,
from 93.4 to 97.0 percent on the systems that we
studied) and is currently a function of the release
level of vMysp, local modifications, and local request
distributions.
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This linked-list allocation strategy segregates “small”
requests at the low end of the dynamic storage block
and “larger” requests at the high end, except that an
exact match is always taken regardless of where it is
in storage. This is a variation of best-fit that attempts
to control external fragmentation even further. Be-
cause it 1s an interesting strategy independent of the
subpools, it is included in the simulation study to
see how it compared with the traditional first-fit and
best-fit methods.

Method

It was decided that the only reasonable way to study
the effect of various dynamic storage algorithms on
vM/SP was a simulation study. The alternative of
multiple changes to the real system was rejected as
being inflexible and risking severe performance deg-
radation and system outages.

Next it was necessary to decide how to represent the
vM/sp dynamic storage environment to a simulator.
Margolin et al. rejected the use of simplifying statis-
tical assumptions in the request and holding distri-
butions and elected instead to modify cp/67 to log
requests to tape. In this way they could rather accu-
rately (some requests were lost because of buffer
overruns) recreate the dynamic storage environment
for a given day. We were concerned that this ap-
proach would not be feasible in our environment
primarily because the high request plus return rates
(over 2000 per second) would force a difficult trade-
off between significant data loss and perturbation of
the system. In addition, we wanted to develop a
technique that would be more flexible in that it
would not require large amounts of data as input.

The successful use of simplifying assumptions, such
as exponentially distributed service times, in queuing
network analysis (see Buzen®) encouraged us to use
the following method:

*, VM/SP was modified to collect, for each size re-
quested, the mean number of blocks outstanding
(i.e., in use) and the total number of requests at
any point in time. The mean number of blocks in
use was computed by incrementing a vector ele-
ment (corresponding to the size) for each request
satisfied and decrementing for each return. At any
instant in time this element is equal to the number
of blocks outstanding for the size. The total num-
ber of requests was computed by incrementing a
vector element for each request.
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% A sampling program was written to compute from
these data the mean interarrival time in seconds,
mean holding time in seconds, and mean number
of blocks outstanding for each size over any time
interval. This was done as follows:

1. Mean interarrival time (in seconds), ¢ =

s/(ry — 1)

where

s = sample interval in seconds

r, = total number of requests from system
startup (i.e., IPL) to the start of the sample
interval

r, = total number of requests from system
startup (i.e., IPL) to the end of the sample
interval

2. Mean holding time (in seconds) = N¢
where
N = mean number of blocks- outstanding
(computed from samples of the vector
element)

The relationship of the mean interarrival time,
the mean holding time, and the mean number
of blocks outstanding is similar to that defined
by Little’s result in queuing theory,* which
gives the relationship between the mean num-
ber of customers in a queuing system (L), the
mean arrival rate (\), and the mean time (W)
spent in the system as L = AW. Consider a
customer picking up a cart at the entrance of a
supermarket and using the cart as he makes his
way through a number of servers, finally re-
turning it at the entrance as he leaves. We can
make an analogy between the supermarket cus-
tomer and a time-sharing user. The cart then
becomes the dynamic storage required to sup-
port the user’s sojourn through the time-shar-
ing system (i.e., queuing system), and the av-
erage arrival rate and average residency time of
dynamic storage in the system will have a direct
correlation with those statistics for users. A
similar analogy can be made on a micro scale
for the dynamic storage used for events such as
1/0 operations. .

Having the mean interarrival time and mean holding
time for each size, we then made the simplifying
assumption, in the simulation study, that the inter-
arrival times and hold times were exponentially dis-
tributed. There are allocation phenomena—such as
the “simultaneous” creation (deletion) of different-
sized control blocks when a user logs on (logs off)
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the system—that are not properly modeled by a
stochastic process. However, similar phenomena oc-
cur in those aspects of computing systems that are
modeled with reasonable accuracy by queuing net-
works, and we were hopeful that we would achieve
results of similar accuracy. The later validation of
the simulation results, by comparison to measure-
ments of real systems, supports the use of these
assumptions (see section on system results).

In order to provide the data structures necessary to
simulate the various algorithms of interest, a discrete
event simulator was written in Pascal. This program
performs the following functions:

1. Reads (from a parameter file) the size of dedicated
dynamic storage, mean interlog-off time (used by
the standard vM/sp and subpooling algorithms),
and, for each size, the mean interarrival time and
the mean holding time.

2. Initializes the simulation by scheduling the stop
event, first sample event, first checkpoint event,
and, for each size, the first request. Also, if appli-
cable, the first user log-off event was scheduled.
A different pseudo random-number generator
was used for the log-off event so that all algo-
rithms would have the same series of storage
requests and releases.

3. Maintains the event list using a time-indexed
method.?

4. Provides checkpoint and restart capability.

5. Provides a sampling and statistics generation fa-
cility.

6. Provides a uniform interface to external routines
to handle storage request, storage release, and user
log-off events.

Each algorithm was written as a separate subprogram
that was called by this main program to service an
event such as a dynamic storage request, dynamic
storage return, or user log-off (if appropriate to the
algorithm).

Results

Simulation results. The following vM/sp systems
were modified to collect parameters for the simula-
tion study:

% FRKVMI, a 3033 UP serving an average of 280-340
logged users at the former Office Products Division
Headquarters in Franklin Lakes, New Jersey.

% YKTVMV, a 3033 MP serving an average of 450-
540 logged users at the Thomas J. Watson Re-
search Center in Yorktown Heights, New York.
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* CAMBRIDG, a 158 UP serving an average of 40-50
logged users at the 1BM Cambridge Scientific Cen-
ter in Cambridge, Massachusetts.

The three tables in the Appendix give the dynamic
storage parameters for each of these systems. The
mean interarrival and holding times are given in
seconds for each doubleword size. Sizes not listed
did not have any activity during the parameter col-
lection period. Ten milliseconds was the minimum
holding time used for the simulation. The minimum
holding time was introduced because there were
some storage sizes that had infrequent requests with
short durations. The accuracy of the sampled holding
time for these sizes was poor, and it sometimes led
to unreasonably short holding times. These requests
were so infrequent that the adjustments are not a
factor in the results. Requests greater than 512 dou-
blewords were rare (less than 0.007 percent of all
requests at FRKVM1 and less than 0.017 percent at
YKTVMV and CAMBRIDG) and have been combined
with the 512-request data.

At Franklin Lakes, samples were taken during a two-
hour period of typical afternoon load. The free-
storage vectors were sampled at 30-second intervals.
In order to see if this sampled distribution would
yield simulation results that were analogous to those
measured on the real system, three of the simulation
metrics were compared with samples from days of
FRKVM1 activity that had a user load similar to that
during which the parameters were collected. The
simulation results were found to be typical of those
measured on FRKvM1. The three days given in Table
1 are representative and illustrate the range of the
measured data.

At Yorktown Heights and Cambridge, samples were
collected during similar periods of typical load, but
were not correlated to the activity on separate days
as at Franklin Lakes. However, the storage utiliza-
tion and mean free list size were within the ranges
witnessed on the real systems.

Tables 2-4 give the simulation results for each sys-
tem. The metrics used in this study are defined as
follows:

e Mean items visited per request: The minimum
possible value is 1.0. This is the primary measure-
ment of cpuU efficiency. In a linked-list strategy,
this is the number of items visited on the list. An
item popped from a subpool that is singly linked
is counted as one visit. An item popped from a
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Table 1 FRKVM1 simulation versus observed values

Source Mean Mean Mean

Subpool Hit Freelist Pages

Ratio Length Used*
sample day | 0.938 569 613
sample day 2 0.946 695 584
sample day 3 0.933 884 672
simulation 0.943 704 630

*mean pages used = dedicated dynamic storage pages + mean extended pages.

subpool that is doubly linked (e.g., buddy systems)
1s counted as two visits if the subpool is not left
empty by its removal, otherwise as one visit.

e Mean items visited per release: The minimum
possible value is 1.0. In a linked-list strategy, this
is the number of items visited on the list in order
to find the proper place to insert the released item.
An item pushed into a singly linked subpool is
counted as one visit. An item pushed into a non-
empty doubly linked subpool is counted as two
visits.

¢ Subpool hit ratio: The ratio of requests that were
satisfied by a subpool block to the total number
of requests, This is only applicable to algorithms
that use some form of subpooling.

* Mean free-list size: The mean number of items on
the linked list of available storage blocks. This size
is an indicator of external fragmentation and, in
many algorithms, directly affects the mean num-
ber of items visited.

e Extend rate: The mean number of requests per
minute for an extended page that occurred during
the last hour of simulated time. Higher rates incur
higher cpuU overhead.

» Extended pages: The mean and maximum num-
ber of extended pages that were required above
the initial dynamic storage allocation. Note that
there is no relationship between the extend rate
and the number of extended pages. For example,
the repeated request and release of one extended
page will result in a high rate but low (less than
one) mean number of extended pages. Some al-
gorithms hold extended pages longer than others
and consequently have a lower extend rate.

e Mean storage out: The mean number of pages in
use (given out but not yet returned) during the
simulation.

» Storage efficiency: The ratio of the mean requested
(i.e., before any rounding up) storage in use to the
mean storage required by the algorithm. That is,
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Table 2 FRKVM1 simulation results (3033 UP)

Algorithm Mean Items Mean ltems Subpool Mean Extend Rate  Extended Pages Mean Storage Storage
Visited per Visited per Hit Freelist (pages/min) Mean-max Out (pages) Efficiency
Request Release Ratio Length
standard 30.6 17.8 0.943 704 287 130-159 5912 0.896
first-fit 949.2 896.8 3157 309 117-145 564.2 0914
best-fit-last 245.0 186.0 1108 266 94-126 564.2 0.947
best-fit-first 273.5 204.0 1162 264 94-127 564.2 0.949
first-fit* 95.8 79.3 1062 301 137-166 592.8 0.886
mod-first-fit* 22.5 835.7 8321 35 601-651 580.2 0.514
best-fit-first* 84.2 50.3 355 262 120-149 594.7 0.909
best-fit-last* 1117 95.0 348 256 123-150 595.8 0.906
Uniform subpools:
1-wide 6.5 2.1 0.995 1145 23 157-196 564.2 0.859
2-wide 4.5 1.7 0.996 911 21 154-185 575.0 0.862
3-wide 3.8 1.8 0.995 699 13 166~-196 592.4 0.847
4-wide 34 1.6 0.995 512 22 157-187 593.1 0.858
2-Level subpools divided at 128 doubleword boundary:
(e.g. 2/32 = 64 2-doubleword-wide subpools to 128 then 12 32-doubleword-wide subpools to 512)
1-32 5.6 1.8 0.995 1052 40 136-163 572.6 0.886
1-32%* 24 2.1 0.995 1175 28 140-174 572.6 0.881
2-16 42 1.6 0.995 830 22 139-164 578.0 0.883
2-32 4.2 1.6 0.996 813 28 140-168 583.2 0.882
2-64 4.5 1.7 0.995 851 31 147-173 594.0 0.872
4-64 3.0 1.6 0.995 407 30 156-184 612.0 0.860
BUDDY SYSTEMS:
Algorithm Mean items Mean ltems  Split Join Extend Rate  Extended Pages Mean Storage Storage
Visited per Visited per Rate Rate (pages/min) Mean-max Out (pages) Efficiency
Request Release
binary 2.00 3.0t 0.0080 0.0074 393 372-403 8499 0.647
binary (no tags) 1.02 29.28 0.0058  0.0052 339 258-293 737.6 0.744
mod-Fibonacci 2.04 3.04 0.0156  0.0147 15 276-308 651.8 0.727

* = minimum fragment left on free list was 5 doublewords.

** = two free lists with maximum size block maintained for each.
dedicated dynamic storage: 500 pages.

mean time between users logging off: 5.7 seconds.

storage efficiency = (mean requested storage in
use)/[(initial storage allocation) + (mean extended
storage)].

In addition, for the buddy systems the following
metrics were used:

¢ Split rate: the mean number of splits caused by a
free-storage request

 Join rate: the mean number of joins caused by a
free-storage return

The YKTvMV and CAMBRIDG simulations were al-
lowed to stabilize for two hours of simulated time
and then run for four hours of simulated time. The
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mean requests per second: 1048.
mean requested storage in use: 564.2 pages.
mean number of blocks in use: 17 509.

FRKVM! simulation was allowed to stabilize for 30
minutes of simulated time and then run for 7.5 hours
of simulated time. The stabilization time of the
simulation was empirically determined by studying
the stabilization of the storage out (i.e., being held).
Most algorithms had stabilized {(in terms of speed
and storage efficiency) a considerable time before the
end of the simulation run—a notable exception was
modified-first-fit.

The simulation results will be discussed in sections
by the general algorithm categories.

VM/SP algorithm. The simulation of the standard
vM/sp algorithm confirmed that there was significant
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Table 3 YKTVMV simulation results (3033 MP)

Algorithm Mean Items Mean items Subpool Mean Extend Rate  Extended Pages Mean Storage  Storage
Visited per Visited per Hit Freelist (pages/min) Mean-max Out (pages) Efficiency
Request Release Ratio Length
standard 69.3 394 0917 1030 282 76-109 802.4 0.887
first-fit 1678.9 1591.1 4574 294 41-72 748.8 0.926
best-fit-last 287.6 197.7 1376 285 10-38 748.8 0.962
best-fit-first 365.0 260.7 1427 231 10-38 748.8 0.963
first-fit* 157.6 124.8 1516 293 67-100 785.8 0.896
mod-first-fit* 80.1 1812.7 11886 196 553-601 776.6 0.567
best-fit-first* 100.8 49.4 350 262 36-68 783.7 0.932
best-fit-last* 113.7 83.6 321 250 39-74 785.8 0.928
Uniform subpools:
1-wide 7.0 2.8 0.995 1617 15 107-171 748.8 0.856
2-wide 4.6 22 0.995 1337 13 105-152 769.3 0.858
3-wide 4.5 2.1 0.995 1215 13 129-168 807.1 0.834
4-wide 4.5 1.9 0.995 1161 8 148-185 835.4 0.817
2-Level subpools divided at 128 doubleword boundary:
(e.g. 2/32 = 64 2-doubleword-wide subpools to 128 then 12 32-doubleword-wide subpools to 512)
1/32 4.8 2.5 0.995 1626 14 75-103 754.2 0.889
1/32%* 2.5 22 0.995 1632 12 75-106 754.2 0.888
2/16 39 2.0 0.996 1397 7 83-113 771.1 0.880
2/32 3.8 2.0 0.996 1405 9 81-110 774.5 0.882
2/64 3.6 2.0 0.996 1381 8 83-112 781.4 0.880
4/64 4.1 1.8 0.996 1133 6 137-168 847.3 0.827
BUDDY SYSTEMS:
Algorithm Mean Items Mean ltems  Split Join Extend Rate  Extended Pages Mean Storage Storage
Visited per Visited per  Rate Rate (pages/min) Mean-max Out (pages) Efficiency
Request Release
binary 2.00 3.00 0.0065 0.0054 411 400-445 1140.9 0.641
binary (no tags) 1.02 49.42 0.0063  0.0051 343 278-320 1027.8 0.716
mod-Fibonacci 2.13 3.12 0.0590 0.0576 209 181-219 901.2 0.789
Algorithm Mean items Mean Items Storage
Visited per Visited per Efficiency
Request Release
better-fit 14.5 20.8 0.650
leftmost-fit 35.0 41.0 0.928
best-fit-last 284.0 205.4 0.962

® = minimum fragment left on free list was 5 doublewords.

** = two free lists with maximum size block maintained for each.
dedicated dynamic storage: 768 pages.

mean time between users logging off: 14.6 seconds.

search overhead in the FRKvM1 and YKTVMYV systems.
In particular, the YKTVMV system had an especially
high overhead. The lower subpool hit ratios vis-a-vis
the cp/67 of the Margolin et al. study are due to the
growth in size of system control blocks and buffers
over the intervening releases of vMm/sp. The mean
number of items inspected per request is largely a
function of the subpool hit ratio and the mean
number of blocks on the free list.
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mean requests per second: 1034.
mean requested storage in use: 748.8 pages.
mean number of blocks in use: 27 344.

It was surprising that the CAMBRIDG system was
performing considerably better than FRKVM1 and
YKTVMV. The FRKVM1 3033 up had approximately
4.5 times the cPU power of the CAMBRIDG processor.
However, the total number of blocks searched per
second for requests was 32 070 (1048 requests per
second X 30.6 items inspected per request) for
FRKVM1 and 1070 (198 X 5.4) for CAMBRIDG—a ratio
of 30:1. This was only partially accounted for by the
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Table 4 CAMBRIDG simulation results (158 UP)

Algorithm Mean items Mean ltems Subpool Mean Extend Rate  Extended Pages Mean Storage Storage
Visited per Visited per Hit Freelist (pages/min) Mean-max Out (pages) Efficiency
Request Release Ratio Length

standard 5.4 4.3 0.962 140 34 0.6-9 78.2 0.843
First-fit, best-fit, etc.:
standard-without-
subpooling 54.3 40.2 206 4 0.077-5 76.4 0.848
first-fit 213.3 212.1 640 16 0.5-8 76.4 0.844
best-fit-last 84.0 584 258 1 0.008-4 76.4 0.849
best-fit-first 95.9 66.7 263 1 0.008-4 76.4 0.849
first-fit* 333 33.0 246 25 1-10 79.7 0.839
mod-first-fit* 7.2 200.2 1034 24 44-53 78.3 0.570
best-fit-first* 35.8 21.7 77 7 0.042-4 79.2 0.849
best-fit-last* 39.4 29.2 77 16 0.077-5 79.2 0.848
Uniform subpools:
1-wide 2.3 1.5 0.994 318 6 33-59 76.4 0.620
2-wide 1.9 1.3 0.995 259 7 31-52 79.1 0.632
3-wide 1.7 1.2 0.996 221 7 28-45 78.4 0.646
4-wide 1.5 1.2 0.996 181 3 27-41 82.8 0.653
2-Level subpools divided at 128 doubleword boundary:
(e.g. 2/32 = 64 2-doubleword-wide subpools to 128 then 12 32-doubleword-wide subpools to 512)
1-32 1.6 1.3 0.996 281 1 18-27 76.9 0.707
1232 1.4 1.3 0.996 290 1 18-30 76.9 0.707
2-16 1.5 1.2 0.997 229 2 21-28 79.2 0.691
2-32 1.4 1.2 0.997 218 1 18-27 79.5 0.707
2-64 1.4 1.2 0.997 215 1 16-22 80.0 0.719
4-64 1.2 1.1 0.997 153 1 16-24 83.7 0.719
BUDDY SYSTEMS:

Algorithm Mean ltems Mean items  Split Join Extend Rate  Extended Pages Mean Storage  Storage

Visited per Visited per Rate Rate (pages/min) Mean-max Out (pages) Efficiency
Request Release

binary 2.00 3.0t 0.0133  0.0127 47 22-32 103.7 0.683
binary (no tags) 1.03 15.28 0.0139 0.0134 45 21-31 102.7 0.688
mod-Fibonacci 2.04 3.04 0.0224 0.0217 28 27-36 92.0 0.655

* = minimum fragment left on free list was 5 doublewords.

** = two free lists with maximum size block maintained for each.
dedicated dynamic storage: 90 pages.

mean time between users logging off: 73.5 seconds.

more favorable CAMBRIDG subpool hit ratio (in the
simulation, the subpool hit ratios are 0.962 for caM-
BRIDG and 0.943 for FRKvVM1). The major factor is
that both the request rate and the mean number of
items on the free list are roughly proportional to the
user load (and therefore the cPU capacity). Conse-
quently, even with a constant subpool hit ratio, this
tends to make the overhead (in terms of the number
of items inspected per second) of the strategies that
search a linked list proportional to the square of the
relative system capacity. The fact that supervisor
time for free-storage management is not linear with
system size is known as a “large system effect,” which
is undesirable and to be eliminated.
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mean requests per second: 198.
mean requested storage in use: 76.4 pages.
mean number of blocks in use: 2356.

First-fit, modified first-fit, best-fit, and standard
VM/SP without subpools. Although it was immedi-
ately obvious that none of these algorithms would
be competitive in a VM/SP environment, we were
surprised by some of the results. Best-fit significantly
outperformed first-fit with these distributions. In ad-
dition, best-fit-last (i.e., using the last of several equal
best fits) was superior to best-fit-first, especially with
the larger systems. The standard vm/sp algorithm
without subpooling was simulated with the CAM-
BRIDG distribution and was superior to best-fit.

All of these algorithms were decidedly inferior to the
standard vmysP algorithm. Modified first fit ap-
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proaches the standard algorithm in terms of speed
but requires over 50 percent additional memory.
The vM/sp dynamic storage distribution with its wide
range of request sizes and preponderance of requests
for smaller-sized blocks presents a difficult environ-
ment for modified first-fit (cf. Bays'®). This algorithm
cycles around memory, fragmenting the blocks that
are necessary to fill the occasional large request.

In an attempt to reduce the search overhead of these
algorithms, Knuth’s suggestion® to eliminate small
fragments (i.e., rounding up the request if the re-
maining fragment is less than some threshold) was
implemented using a threshold of five doublewords.
This threshold was derived empirically from simu-
lation experiments. However, we did not increment
each request by the doubleword that would be re-
quired in vM/sP to keep track of the actual amount
of storage given. Therefore, although these results
overestimate the storage efficiency in vm/sp, they
more closely resemble what might be expected on a
system with smaller free-storage granularity and
demonstrate the storage overhead inherent in using
the threshold.

Using this threshold, best-fit still outperformed first-
fit, although the distance between them was greatly
reduced. It was discovered that, with the threshold,
best-fit-first was superior to best-fit-last.

The mean number of items inspected per release
could be significantly reduced for all of these algo-
rithms by adding tags and a size field to each block
so that a returned block can be immediately inserted
into a doubly linked list. This technique, described
in Knuth,® would require an additional doubleword
in vM/sP and would consequently reduce memory
efficiency. The loss due to this internal fragmentation
would be about 2360, 17 510, and 27 340 double-
words (i.e., one doubleword for each of the mean
number of items being held) for CAMBRIDG, FRKVM1,
and YKTVMYV, respectively.

Best-fit and first-fit have two advantages:

1. High storage efficiency.

2. The ability to return a block of storage piecemeal.
In most of the other strategies studied, a block
must be returned as one piece. Although piece-
meal release is not required in VM/SP, it might be
in other environments.

If piecemeal release is not required, the other advan-
tage, high storage efficiency, comes at such a per-
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formance penalty that we doubt these strategies
would be attractive on any system with high free-
storage activity.

Extended subpooling. Since it was clear that the
mean number of items searched in the standard vmy
sp algorithm would be reduced if the subpool hit
ratio were improved, the next step was to experiment
with variations of extended subpooling. First, the
subpool coverage was increased from the 1-to-30-
doubleword request range of the standard algorithm
to 1 to 512 doublewords. The rare request for a block
greater than 512 doublewords would cause a search
of the free list. The initial work involved subpools of
uniform width (i.e., for subpools of width #, the 512-
doubleword range is divided into 512/n subpools
such that the first subpoo! contains storage of size n
and services requests in the range 1 to n, the second
subpool contains storage of size 2n and services n +
1 to 2n, and the kth subpool contains storage of size
kn and services (k — 1)n + 1 to kn). The simulation
results for subpools of widths 1-4 are given in Tables
2-4 for each of the three systems. Storage efficiency
deteriorated with widths greater than four. The uni-
form-4 (i.e., n = 4) algorithm was subsequently run
on FRKVM1 and YKTVMYV. The results are given in the
next section.

Nonuniform subpool widths were tried at Yorktown
Heights, with the sizes selected to match the mea-
sured request frequency, in order to limit internal
fragmentation loss. The performance results were
very good, but they came at a considerable cost in
terms of program complexity. Experience shows that
control block and buffer sizes (which largely deter-
mine the distribution) are quite dynamic in vM/SP,
varying from release to release and also being subject
to local modifications. Any closely matched sub-
pooling arrangement would lack robustness, a qual-
ity that we wanted to preserve. For this reason,
uniform-width subpools were chosen after consider-
ing the alternative of tailoring the subpools.

In order to improve the ability of the system to
return extended pages after a demand surge, we
studied the effect of maintaining extended blocks on
a separate subpool for each interval. These extended
blocks were then used only if the primary subpool
was empty. This approach resulted in better storage
efficiency and was used in all of the extended sub-
pooling simulations.

Experiments were done with less severe methods of
controlling the subpool inventory than purging them
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when a user logs off (this occurred about once every
five seconds on FRkvM1). If nothing is done, storage
inefficiency results as the subpool inventory grows
with demand surges and never shrinks. This phe-
nomenon is explained in detail by Margolin et al. It
was found that by time-stamping blocks when they
are pushed onto the subpool stack and only releasing
the “old” blocks, the speed of the algorithm is im-

The two-level approach reduced
the external fragmentation loss.

proved with no significant loss in storage efficiency.
In fact, allowing large blocks to remain in the sub-
pools, if they have been recently used, protects them
from being split and reduces this form of external
fragmentation. The following procedure was used in
all of the extended subpooling simulations:

» Whenever a user leaves the system (i.e., logs off)
or at least once an hour, a scan is made of all the
subpools. (This logging-off was assumed to be a
Poisson process; the mean interlog-off time was
derived from vM/Monitor data.)

» During this scan all blocks are removed from the
subpools dedicated to extended storage and in-
serted into the free list. Extended pages that are
completely contained in the free list are returned
to the page pool.

« For the subpools containing nonextended blocks,
the total amount of subpool inventory is com-
puted as the subpool is searched. Until the storage
contained in the subpool exceeds two pages, an
age threshold of 120 seconds is used. After two
pages, the threshold is quartered (i.e., 30 seconds).
These thresholds have been determined empiri-
cally by simulation. Whenever a block is found
that has resided in the subpool for this amount of
time (whichever is appropriate), that and all older
blocks are removed and returned to the free list.
After some of these algorithms were installed in
vM/SP systems, we studied the relationship be-
tween this age threshold and both the subpool hit
ratio and storage efficiency. The results of this
study are discussed in the next section.
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A comparison of the simulation results for uniform-
width subpools between the CAMBRIDG and YKTVMV
systems is informative. External fragmentation loss
in the form of subpool inventory predominates on
the smaller CAMBRIDG system, whereas internal frag-
mentation loss becomes more important on the
larger YKTVMV system. For example, of the uniform-
width subpools, the four-doubleword width “yields
the best storage efficiency at CAMBRIDG, and the two-
doubleword width is best at yYkTvmv. The fact that
two-doubleword subpools are slightly more efficient
in use of storage than one-doubleword subpools even
at YKTVMYV is evidence that external fragmentation is
still significant. That is, although 20 pages (749 ver-
sus 769) less storage were given out with one-double-
word subpools as compared with two-doubleword
subpools, two pages (107 versus 105) of additional
storage were required because of external fragmen-
tation. This external fragmentation loss was primar-
ily due to inventory in the larger-sized subpools.

This situation led to consideration of the feasibility
of a two-width subpooling arrangement that would
tend to reduce both the internal and external frag-
mentation loss and still remain robust. Most of the
large requests were found to have short holding
times. These are typically 1/0 buffers. A study of the
mean number of items outstanding by size for each
of the distributions disclosed that a division at the
128-doubleword size was attractive in that not much
storage was being held above this size, and, in addi-
tion, it was far enough above the major control block
sizes to allow them considerable growth before this
condition would change. By using larger-sized sub-
pools above this boundary, we found that the sub-
pool inventory was substantially reduced without a
compensatory loss because of internal fragmenta-
tion. In the tables and text these two-width subpool-
ing strategies are referred to in the form “L/H.,”
where L equals the width in doublewords of the
subpools below the 128-doubleword boundary and
H equals the width in doublewords of the subpools
above this boundary. On the largest system studied,
YKTVMYV, several of these algorithms yielded a storage
efficiency comparable to the standard vm/sp algo-
rithm with significantly reduced search overhead.
The YKTVMV simulation results (see Table 3) show
that 1/32 and 2/32 are 14 and 18 times faster re-
spectively than the standard vM/sp algorithm and
within one percent of the storage efficiency—with 1/
32 actually using one page less.

One of the effects of the two-level approach was to
reduce external fragmentation loss to the point where
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internal fragmentation predominates. Those algo-
rithms that used the minimum-width subpool (i.e.,
one doubleword) below the boundary were superior

In a buddy system, storage is
allocated in subpools of varying
size.

in terms of memory efficiency (within this class of
algorithm) on the two largest systems (FRKVMi and
YKTVMV). The fact that their efficiency increased with
system size is an indication that internal fragmenta-
tion becomes increasingly important as the number
of blocks in use increases.

On systems that extend frequently, the fact that
extended blocks are ordered on the front of the free
list impacts the performance of any algorithm (such
as extended subpooling) that is an extension of the
standard vm/sp algorithm. This is because of the
preference for items within the dedicated free-storage
block (i.e., nonextended) when the free list is
searched (see earlier discussion on background).
Therefore, the simulation of one of the best extended
subpooling algorithms was modified so that two free
lists were maintained: one each for extended and
nonextended blocks. In addition, the size of the
largest block on each free list and the number of
these on the free list was maintained. In this way,
the search of a free list could be completely avoided
if failure was certain. In addition, first-fit was used
on the extended free list. The results indicated sig-
nificant further improvement of the speed of these
algorithms on the larger systems. On YKTVMYV the 1/
32 strategy with two free lists had one-half the search
overhead of the “standard” 1/32 with essentially the
same storage efficiency (a difference of less than one
page). On FrKVM! the search overhead was slightly
less than one-half, and four additional pages were
required (an increase of less than one percent).

Finally, the effect of splitting a block from a larger
subpool to satisfy a request for an empty, smaller
subpool if the system would otherwise have to extend
was studied. This was being done in the standard
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vM/sp algorithm. The simulation results indicated
that this splitting was not worthwhile as it resulted
in slightly less speed and storage efficiency because
of increased external fragmentation. With the /32
strategy and the YKTVMV parameters, the overhead
increased to 5.5 items inspected per request (from
4.8), and the number of extended pages increased to
77 (from 75). Attempts to improve this outcome by
setting a minimum size on the fragment left by the
split were unsuccessful.

Buddy systems. In a buddy system, storage is allo-
cated in subpools of varying size (e.g., powers-of-two
in the binary buddy system). Initially all storage is
allocated in the largest subpool or in a large contig-
uous block separate from the subpools. All requests
are rounded up to the nearest subpool boundary. If
arequested subpool is empty, the next larger subpool
is checked, and if it is not empty, a block is taken
and split into buddies, one of which is used to satisfy
the initial request. If the next larger subpool is empty,
the search/split logic is applied recursively until the
request is satisfied. Upon release, if the buddy of the
block is available (i.e., not in use), they are joined
and placed in the larger subpool. This joining con-
tinues until the largest size is reached or a buddy is
found to be in use.

In the binary buddy system, buddies are always the
same size. In other buddy systems such as the Fibon-
acci and generalized Fibonacci, this is not the case.
This inequality not only tends to complicate the
algorithm, but, as the simulations demonstrated, it
can also increase the external fragmentation. In non-
binary systems, an active subpool with long hold
times can cause frequent splitting of its neighbor into
its own size and a potentially unpopular size. This
combination will build up large unusable subpool
inventories and reduce the storage efficiency of the
system. We call this the “sawdust phenomenon.”

Buddy systems were among the fastest strategies that
we studied, all of them having close to the minimum
search overhead. The following buddy systems were
simulated.

Binary buddy with tags. Knuth® recommends a
“tagged” buddy system in which a tag field is kept
with each block of storage. This tag field indicates
whether the block of storage is in use or free. When
a block is returned, one need only check the tag of
the proper adjacent block of storage to decide if the
buddy is free. In vM/sP the tag requires an additional
doubleword for each block since storage is given out
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Table 5 Modified Fibonacci buddy characteristics

n 1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16 17 18 19 20
s 1 2 3 4 5 7 10 114 19 26 36 50 69 95 131 181 250 345 476 512
sl * 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 11
sh * 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
) B 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 11 *
jh * 5 6 7 8 9 10 11 12 13 14 15 16 17 18 * * * * *

*means that the particular case could not happen.

in doubleword units. The increased storage require-
ments caused by this situation might not be as severe
on other systems with a smaller storage granularity.

Binary buddy without tags. This algorithm was the
same as above except that tags were not used, and
therefore, on release a search had to be made for the
buddy. The increased storage efficiency was notable
on the large systems. However, in our opinion, this
improvement was more than offset by the increased
search overhead on returns.

Modified Fibonacci buddy. The Fibonacci buddy
systems were recommended® as a possible solution
to the internal fragmentation characteristics of the
binary buddy. We attempted to tailor the Fibonacci
buddy system to our distributions by using a modi-
fied Fibonacci sequence® as follows:

F(1)=1
FQ2)=1
F(3) =1
F@4)=1
F(5)=1

F(n) = F(n — 1) + F(n — 4) (approximately)

Since the first five terms of this sequence are the
same size, they are combined into one subpool.
Some adjustment is necessary to make the subpool
sizes come out so that the largest subpool is one page
(512 doublewords). Table 5 was used in determining
how to split and join subpools. In this table “n” is
the subpool number, “s” is the number of double-
words in the subpool, “sl” is the subpool in which to
place the lower buddy at split time, “sh” is the
subpool in which to place the upper buddy at split
time, “j1” is the subpool to search for the lower buddy
at join time, and “jh” is the subpool to search for
the upper buddy at join time.

This modified Fibonacci buddy gave mixed results.
On the largest system, YKTVMv, it was significantly
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superior to both forms of the binary buddy. The
“sawdust phenomenon” was evident with the
FRKVM1 and CAMBRIDG distributions and was the
reason this strategy did not perform as well there as
at YKTVMV, We think that this lack of robustness of
the Fibonacci buddy systems could be a significant
problem in an operating system with control block
structures that change as frequently as those in vm/
sp. On systems with a fixed, well-defined storage
request distribution, it might be possible to “tune”
the modified Fibonacci systems to give good storage
efficiency combined with low CPU overhead. But a
simpler subpooling algorithm will probably give
comparable results with less complexity and more
robustness.

Better-fit and leftmost-fit. After this study was com-
pleted, C. J. Stephenson informed us of two new
algorithms, better-fit and leftmost-fit, that he had
devised using a “cartesian” tree. A detailed descrip-
tion of cartesian trees and the storage allocation
strategies based on them is in Stephenson.”® When
used for storage allocation, a cartesian tree has the
following properties for any node S:

1. Addresses of left descendants (if any) < address
of 8§ > address of right descendants (if any)

2. Length of left son (if any) < length of S = length
of right son (if any)

Figure 1 is an example of a cartesian tree as it might
appear in a dynamic storage allocation application.
For descriptive purposes, each node contains a tuple
of the form a,s where

a = address of storage block
s = size of storage block

(Stephenson points out that in practice it is often
preferable to have the size of each node contained
in its parent, i.e., in the same place as its address.)
The “anchor” or head of the free-storage list points
to the root (103,14) of this tree.
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Figure 1 Example of a cartesian tree used for dynamic storage allocation

The better-fit strategy selects a node by descending
the tree, from the root, so that at each decision point
the better-fitting son is chosen. The descent stops
when both sons are too short or nonexistent.

Leftmost-fit selects the leftmost node of sufficient
length. It is identical to first-fit in terms of the storage
that is allocated.

In order to test these strategies in the vM/SP environ-
ment, simulations were run using the YKTVMV pa-
rameters. Stephenson provided the algorithms that
were then adapted to the Pascal simulator. The al-
gorithms were not written specifically for the vm/sp
environment and therefore were given sufficient stor-
age to avoid extending. We also ran best-fit in a
nonextend mode so that the difference between the
extend and nonextend modes would be measured.

Initial simulation results indicated that leftmost-fit
performed well but that better-fit suffered from se-
vere external fragmentation. The three strategies
(best-fit, better-fit, and leftmost-fit) were then modi-
fied so that, after the simulation had stabilized, the
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fragment size left after satisfying a request was
counted by size. The results are given in Table 6. It
is clear that the “winning” node in better-fit causes
more fragmentation than in best-fit or leftmost-fit.
The vM/sp distribution seems to be almost as patho-
logical for this strategy as for modified first-fit. Ste-
phenson has found that better-fit works well with
other distributions, and therefore it is of potential
interest in applications.

The relative speed of leftmost-fit makes this algo-
rithm a good strategy to use “behind” subpooling. If
this were done in vM/sP, for example, the extended
subpooling strategies would all have mean-items-
visited values that are less than 2.0. Perhaps more
important for machines with a cache, leftmost-fit
disturbs the cache significantly less than the tradi-
tional linked-list strategies.

System results

Before the simulation study was completed, the uni-
form-4-wide algorithm was run for two months on
FRKVMI! and subsequently for a shorter period on
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Table 6 Fragments left by best-fit, better-fit, and leftmost-fit

(YKTVMV distribution)

Size of Cumulative % of Total Fragments
Fragment Left Best-Fit Better-Fit  First-Fit and
Leftmost-Fit

0 88.774 49.278 65.354
1 93.735 62.687 77.001
2 95.586 68.550 82.890
3 96.734 72.310 86.692
4 97.590 75.357 89.595
5 98.060 77.858 91.720
6 98.329 79.676 93.229
7 98.562 81.308 94.596
8 98.789 82.769 95.542
9 98.961 84.687 96.350
10 99.069 86.961 96.758
20 99.532 93.026 98.073
30 99.675 95.725 98.511
40 99.750 97.224 98.816
50 99.777 98.113 98.980
60 99.796 98.731 99.096
70 99.810 99.090 99.200
80 : 99.819 99.333 99.272
90 99.827 99.506 99.333
100 99.832 99.628 99.383
200 99.900 99.950 99.647
300 99.939 99.980 99.799
400 99.946 99.986 99.850
500 99.954 99.993 99.886

Table 7 Standard VM/370 versus 2/32 at YKTVMV

Base Modified Percent

System System Improvement
System CPU 82.8 78.2 5.6 reduction
Problem CPU 67.8 74.8 10.3 increase
System/prob 1.221 1.045 14.4 decrease
Free lock spin 1.1 0.1 ‘
(percent of elapsed time)
free lock hold 14.8 4.5 69.6 decrease
(percent of elapsed time)

YKTVMV. After the advantages of two-level subpool-
ing became evident, it was replaced with the 2/32
algorithm (i.e., two-doubleword-wide subpools up to
the 128-doubleword boundary and then 32-double-
word-wide subpools for those sizes above this bound-
ary) on both systems. This replacement gave us an
opportunity to test the predictive ability of the sim-
ulator with two algorithms.

Hardware and software monitoring at Franklin
Lakes and Yorktown Heights indicated a reduction
in the supervisor state CPU utilization to 4-5 percent
from the previous 15-20 percent for both of these
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algorithms. At FRKvM1 the subpool hit ratios were
monitored from 8:30 AM to 4:30 pMm (the period of
heaviest daily activity) and found to be consistently
within +/— 0.001 of the predicted values on a daily
basis.

The simulation results indicated that on FRKvM1 the
2/32 algorithm would require 0.974 of the storage
needed by uniform-4 wide. The observed value was
0.973. This comparison was not made on YKTVMV
because the uniform-4 algorithm was run with a free-
storage “trap” (a method of “trapping” dynamic
storage release violations by appending extra storage
containing size and requestor information to each
request) which was not used with 2/32.

At YKTVMV a comparison was made of the standard
vM/sP algorithm with 2/32. Evaluation was done by
comparing software monitor data from the same
hour of the same day of the week for the base and
modified systems. The results are shown in Table 7.

The most valid measure of the overall value is the
10.3 percent increase in virtual time. The 5.6 percent
reduction in supervisor time understates the value of
the change. The decreased supervisor time allows
more virtual time, which in turn increases supervisor
time because of services required.

The 2/32 strategy results in free-storage management
being reduced from 14.8 percent to 4.5 percent of
elapsed time. This in turn allows about ten percent
more virtual time to be given to the users of the
system.

The System/Prob ratio shows the supervisor time
needed to support one unit of virtual time. Thus,
the supervisor time per unit of useful work has been
reduced by 14.4 percent.

During the study a model was created to relate lock
holding probability to lock spin probability. The
model was useful because the vM/Monitor is able to
report lock spin time, but not lock holding time.
Lock holding is another way to measure the time
spent doing free-storage management, because that
is the only use of the lock.

The simulator predicted that the 2/32 strategy would
require 0.6 percent more storage than standard vm/
SP on YKTVMV. During the period of the test at
YKTVMYV, the 2/32 strategy used an average of 0.6
percent less storage than standard vM/sp. This result
(combined with the FRKVM1 results) is evidence that
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Figure 2 Subpool hit ratio as a function of subpool release time threshold at FRKVM1
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this method of simulation can predict the relative
storage efficiency of allocation strategies with reason-
able accuracy.

Finally, the speed-storage tradeoff involved in the
subpool release time threshold was studied. This time
was used as the age criterion for removing blocks
from the subpools whenever a user logged off (except
that all extended blocks were always removed). After
the 2/32 algorithm was installed on FRkvVMI, the
time threshold was varied and plotted to show the
relationship to the subpool hit ratio and the mean
number of pages required per user [= (dedicated
pages + mean extended pages)/(mean number of
logged-on users)]. The results are shown in Figures
2 and 3. Each point on the graph is one day’s
observation. Note that although the range of subpool
hit ratios is narrow, the simulation study indicated
that very small changes in the hit ratio adversely
affected the mean search overhead due to the size of
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the free list. It is apparent that the subpool hit ratio
is affected by the release threshold. The correlation
coefficient is 0.76. However, storage efficiency does
not appear to have any relationship to this threshold
over the time range studied: the correlation coeffi-
cient is —0.08.

The simulation study indicated that large threshold
values will result in serious external fragmentation
in the form of large subpool inventories. Also, it was
observed that hardware and load anomalies occa-
sionally cause a transient demand surge for a specific
storage size (e.g., the storage associated with an 1/0
event), and large threshold values hinder the ability
of the system to reuse this storage. This observation
suggests that the threshold should be set at the point
where the subpool hit ratio starts to flatten out. Such
a setting results in very low search overhead and still
allows the system to recover from demand surges in
a reasonable amount of time.
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Figure 3 Mean storage per logged user as a function of subpool release time threshold at FRKVM1
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Conclusions

Empirical results indicate that simplifying distribu-
tion assumptions about interarrival and holding
times based on estimated means can be used with
high predictive ability in the simulation of dynamic
storage systems. The traditional best-fit and first-fit
strategies, which are based on the searching of a
linked list of available blocks, are too slow for large
systems with the dynamic storage characteristics of
vM/sp. The standard vm/sp algorithm was found to
have high search overhead on the larger systems.
Indeed, there is evidence that this search overhead
increases approximately in relation to the square of
the relative system capacity. The buddy systems,
which have been popular in the recent literature,
were among the fastest strategies studied, though
severely handicapped by storage inefficiency. An ex-
tended subpooling strategy was described that is as

60 Bsozman ET AL

| i l I I | \ ]

90 100 110 120 130 140 150 16O

fast as the buddy systems with superior storage effi-
ciency.

As a result of this study, a generalized two-level
subpooling algorithm (nominally 2/32) was incor-
porated in Release 2 of the HpPo (High Performance
Option) for vm/sp.
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Appendix: System dynamic storage parameters

Table 8 FRKVM1 parameters (Interarrival and holding times in seconds)

Size AT HT Size IAT HT Size AT HT Size AT HT Size AT HT

0.320 258.425 67  29.671 0.653 133 42.858 1.415 199 122.728 0.010 265 270.000 0.010
0.0655 125.260 68 38.029 0.837 134 42.858 0.943 200 61.364 1.350 266 16.072 0.354
0.307 920.525 69 36.000 0.396 135 35.065  343.251 201 64,286 0.010 267 385.715 0.010
0.305 320.293 70 45.000 435.015 136 42.858 1415 202 51.924 1.143 268 31.396 0.010
0.625 277.229 71 45763 0.504 137 0.565 0.107 203 50.000 0.010 207.693 0.010
0.208 165.560 72 49.09 0.540 138 48.215 0.531 204 25.472 0.010 450.000 0.010
0.0326 14.890 73 27.836 0.919 139 41.539 0914 205 100.000 100.000 142.106 1.564
1.127 144,338 74 4.259 0.094 140 34.178 1.128 206 96.429 3.183 122.728 0.010
0.00312 0.343 75 22.500 233.505 141 49.091 241.086 207 207.693 2.285 60.000 60.000
0.00282 0.158 76 36.487 0.010 142 35.527 1.990 208 41539 745.367 2700.000 0.010
0.00631 0.395 77 23.077 0.254 143 18.000  637.992 209 150.000 1.650 4.012 0.490
0.0165 1.678 48.215 0.010 144 25.715 0.566 210 36.487 1.205 8.710 1.647
0.698 0.877 22.500 0.743 145 40.910 1.350 211 207.693 0.010 158.824 0.010
0.253 1.877 4.624 25.738 146 38.029 0.837 212 36.987 0.010 6.068 0.067
0.491 35.754 31.765 0.010 147 38.029 0.837 213 7.827 0.087 50.944 1121
0.225 671.280 43.549 0.480 148 40.910 1.800 214 4.252 0.047 540.000 0.010
0.387 4.986 3.431 0.151 149 32927 0.725 215 42,188 0.010 450.000 0.010
0.0475 4.480 5.745 1632.512 150 36.000 2412 216 103.847 0.010 207.693 0.010
0.198 8.426 41.539 60.937 151 71.053 0.782 217 128.572 0.010 300.000 0.010
0.278 77.406 39.706 1311 152 84.375 1.857 218 48.215 0.010 675.000 0.010
6.459 6.459 36.987 0.814 153 31.396 0.691 219 22.690 0.500 81.819 115.446
5.047 0.010 21.600 0.010 154 29.671 1.306 220 2.594 1.326 2700.000 0.010
10.305 12.706 25.715 0.283 155 40910 1.800 221 9.061 140.138 4.531 1.160
0.187 743.065 45.000 103.995 156 22132 417.040 222 60.000 0.010 540.000 5.940
1.346 125.637 44.263 0.010 157 45.000 1.485 223 65.854 0.010 675.000 0.010
20.000 0.010 0.616 0.055 158 44.263 1.948 224 45.763 0.010 540.000 0.010
67.500 0.010 30.000 0.330 159 41.539 0.914 225 108.000 0.010 540.000 0.010
1.422 0.047 25472 0.281 160 50.944 54.357 226 38.029 0.010 2700.000 0.010
0.579 0.058 61.364 10.248 161 20931 0.231 227 7.606 0.010 192.858 0.010
0.554 45.978 36.987 1.221 162 52.942 1.748 228 2.306 0.077 2700.000 0.010
12.108 540.811 29.348 0.323 163 61.364 2,025 229 158.824 0.010 1350.000 14.850
23.894 0.010 48.215 0.010 164 50.000 0.550 15.607 0.344 2700.000 0.010
51.923 0.010 1.193 0.027 165 44.263 1.948 270.000 0.010 2700.000 0.010
87.097 0.010 36.987 75.194 166 57.447 3.218 22,132 0.487 117.392 146.035
24.545 532.096 8.971 0.297 167 77.143 2.546 57.447 0.010 900.000 0.010
0.232 2.110 36.987 0.407 168 84.375 1.857 49.091 544.369 45.000 0.010
81.818 0.010 33.750 0.372 169 21.775 518.226 72973 0.803 2700.000 0.010
0.294 0.082 15.607 65.550 170 41.539 0.457 51.924 0.572 2700.000 0.010
21.774 1000.655 23.077 0.508 171 60.000 0.660 29.033 0.010 207.693 2.285
0.319 2.660 14.063 0.155 172 36.487 36.487 300.000 0.010 128.572 132.815
28.723 0.316 27.552 0.304 173 54.000 1.188 3.948 0.569 1.790 0.120
39.130 161.726 34.178 0.010 174 42.858 0.010 8518 1.610 135.000 48.060
28.421 0.010 40.299 0.010 175 93.104 0.010 90.000 0.990 2700.000 0.010
34.615 0.010 5.649 0.379 176 57.447 2.528 5.379 0.237 2700.000 0.010
33.750 241.515 43.549 1.438 177 87.097 1.917 9.408 0.207 142.106 96.348
103.846 0.010 31.035 0.010 178 158.824 0.010 150.000 0.010 135.000 2970
3.121 530.186 31.035 0.683 179 84.375 5.654 42,858 0.010 135.000 0.010
41.538 0.010 45.763 0.504 180 75.000 3.300 50.944 0.010 29.671 0.327
34.615 0.381 36.987 0.407 181 62.791 1.382 2971 25.281 135.000 1.485
30.000 543.330 33334 0.010 182 33750  605.239 45.000 0.010 142.106 0.010
27.835 1.225 16.266 465.360 183 39.706 0.437 57.447 0.010 7.737 0.086
31.765 1.398 39.706 0.874 184 64,286 1.415 4.405 1.128 142.106 108.995
30.337 0.334 9.061 0.299 185 71.053 0.782 14.674 0.646 150.000 1305.000
65.854 2.173 25.000 0.550 186 84.375 0.010 52942 0.010 207.693 990.070
26.471 40.871 54.000 1.188 187 112.500 3.713 21.952 0.242 4.116 0.231
2.970 0.131 24.546 0.810 188 50.000 0.010 96.429 0.010 245.455 1161.737
41.538 0.457 40.299 0.887 189 56.250 1.238 2.622 1.340 0.292 0.163
0.320 0.010 48.215 1.592 190 64.286 0.708 12.108 0.010 300.000 563.400
67.500 0.743 24.771 0.545 191 96.429 1.061 7.989 0.176 337.500 1019.925
27.551 71.027 22.500 0.990 192 42.858 0472 192.858 0.010 10.113 22925
32530 0.010 18.494 0.814 193 58.696 0.646 93.104 0.010 900.000 1479.600
19.853 0.437 4937 0.109 194 61.364 0.010 65854  337.303 2700.000 0.010
35.526 0.010 44.263 0.010 195 33.750  446.614 72973 0.010 2700.000  9871.200
33.750 0.371 12.386 374.310 196 142.106 4.690 8.360 0.010 11.490 0.253
3.277 19.552 20.770 1.392 197 135.000 1.485 2.316 0.051 900.000  5799.600
61.364 0.010 56.250 1.857 198 108.000 0.010 67.500 0.743
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Table 9 YKTVMV parameters

Size IAT HT Size IAT HT Size IAT HT Size IAT HT Size IAT HT
1 0.111 235114 74 1.521 0.077 147 36.000 0.010 220 3.282 5.579 293 171.429 0.010
2 0.07t 273.841 75 56.250 0.010 148 43.374 0.010 221 0.583 0.156 294 124.138 0.010
3 0.146 162.205 76 109.091 0.010 149 25.532 0.010 222 2215 0.149 295 514.286 0.010
4 0.160 36.054 77 65.455 0.010 150 35.644 0.606 223 76.596 0.010 296 211.765 0.010
5 0.257 869.713 78 65.455 0.010 151 35.644 0.010 224 211765 0.010 297 240.000 240.000
6 0.089 199.510 7 50.705 204.491 152 25.532 0.010 225 211765 211765 298 112.500 0.010
7 0.029 21.422 80 45.570 94,922 153 8.675 155.278 226 73.470 0.010 299 360.000 0.010
8 0.369 186.698 81 30.253 992,784 154 31.579 0.010 227 36.000 0.010 300 171.429 0.010
9 0.081 36.310 82 59.017 0.010 155 70.589 1.200 228 6.041 0.200 301 26.278 0.010
10 0.00157 4.742 83 1.209 0.122 156 92.308 0.010 229 9.231 0.157 302 240.000 0.010
11 0.00655 0.089 84 51.429 0.010 157 43.903 0.747 230 30.000 0.510 303 720.000 0.010
12 0.041 16.623 85 40.450 2,023 158 92.308 0.010 231 50.000 0.010 304 257.143 0.010
13 0.296 1.230 86 44.445 3.689 159 67.925 1.155 232 25.532 0.010 305 81.819 0.010
14 0.423 13.527 87 94.737 3.127 160 1117 1.136 233 124,138 0.010 306 276.923 0.010
15 0.080 4.119 88 120.000 2.040 161 37.114 0.010 234 55.385 0.010 307 163.637 0.010
16 0.420 1240.163 89 48.000 0.816 162 43,903 395.869 235 90.000 0.010 308 300.000 0.010
17 0.153 11.882 90 23842 2175.902 163 62.069 0.010 236 49.316 0.83% 309 257.143 0.010
8 0.29% 63.398 91 85.715 0.010 164 72.000 0.010 237 75.000 0.010 310 327.273 0.010
19 0.109 4.506 92 0.880 0.044 165 29.269 0.498 238 16.290 0.277 31 257.143 0.010
20 0.194 31.643 93 120.000 2.040 166 92.308 92.308 23% 3472 0.289 312 514.286 0.010
21 11.321 51317 94 52.942 0.900 167 120.000 0.010 240 15.063 0.498 314 3.232 0.055
22 8.824 17.938 95 78.261 5.244 168 105.883 0.010 241 47.369 0.010 315 1800.000 1800.000
23 16.438 69.321 96 50.705 0.010 169 133.334 0.010 242 21.053 0.010 316 600.000 0.010
24 0.284 583.533 97 31.579 2,622 170 50.705 1.674 243 64.286 64.286 317 1800.000 0.010
25 5.136 3044.506 98 87.805 0.010 171 51.429 612.875 244 70.589 0.010 318 600.000 0.010
26 6.883 0.010 99 24.162 1793.163 172 102.858 0.010 245 54.546 0.010 319 240.000 0.010
27 6.486 0.538 100 42.353 43.073 173 51.429 0.010 246 47.369 2.369 320 900.000 0.010
28 5.070 0.010 101 2.488 0.207 174 45.000 0.010 247 1.822 0.214 321 3600.000 0.010
29 0.406 0.034 102 53.732 0.914 175 29.509 0.010 248 26.667 0.454 322 1200.000 0.010
30 1.479 162.055 103 53.732 0914 176 54.546 0.928 249 60.000 0.010 323 100.000 0.010
31 0.038 16.163 104 41.861 0.712 177 48.649 0.010 250 8.552 3.13% 327 3600.000 0.010
32 34.615 2.873 105 69.231 3.462 178 61.017 0.010 251 102.858 0.010 328 600.000 0.010
33 22.086 0.729 106 92.308 0.010 179 105.883 0.010 252 45.000 45.000 329 600.000 0.010
34 45,000 0.010 107 48.649 0.828 180 73.470 383.290 253 37.114 0.010 330 600.000 0.010
35 0.372 81.556 108 33.645 1635.712 181 76.596 0.010 254 3.766 3.326 331 450.000 0.010
36 20.112 100.901 109 52.942 0.900 182 163.637 0.010 255 0.788 0.289 332 900.000 0.010
37 1.468 1.639 110 6.197 0.106 183 144.000 0.010 256 0.851 0.228 333 276.923 0.010
33 0.582 0.029 111 102.858 1.749 184 62.069 1.056 257 7.469 0.010 334 1200.000 0.010
39 16.514 3397.707 112 63.158 1.074 185 156.522 0.010 258 83.721 0.010 335 900.000 0.010
40 64.286 1842.879 113 64.286 1.093 186 87.805 1.493 259 72.000 0.010 336 720.000 0.010
41 48.649 0.010 114 80.000 1.360 187 73.470 1.249 260 211.765 0.010 337 360.000 0.010
42 61.017 2.014 115 100.000 100.000 188 35.644 0.010 261 67.925 118.868 338 3600.000 0.010
43 50.000 50.000 116 40.000 0.010 189 144.000 1000.800 262 83.721 0.010 339 1200.000 0.010
44 63.158 1.074 117 40.000  2264.680 190 102.858 0.010 263 13.954 0.010 340 3600.000 0.010
45 55.385 1047.711 118 33.963 0.578 191 80.000 1.360 264 171.429 5.658 342 3600.000 0.010
46 52.174 0.010 119 5.599 0.185 192 87.805 0.010 265 11.689 0.386 345 3600.000 0.010
47 0.956 245,050 120 29.509 0.502 193 133.334 0.010 266 32.143 0.547 346 240.000 0.010
48 17.648 12862.935 121 67.925 2.242 194 150.000 0.010 267 50.705 0.010 347 52.942 0.010
49 27.693 384.453 122 59.017 1.948 195 87.805 0.010 268 29.509 0.010 348 3600.000 0.010
50 29.033 167.429 123 64.286 1.093 196 19.673 0.010 269 257.143 0.010 350 94,737 0.010
51 38.298 0.651 124 52.174 0.010 197 45.570 0.010 270 163.637  204.546 352 1800.000 0.010
52 67.925 3.397 125 81.819 1.391 198 94,737 552.600 271 240.000 0.010 353 900.000 0.010
53 80.000 1.360 126 45.570 2425079 199 54.546 0.010 272 80.000 0.010 355 720.000 0.010
54 133.334 0.010 127 31.859 1.052 200 55.385 0.010 273 53.732 1.774 356 3600.000 0.010
55 42.353 58.575 128 2.418 0.201 201 225.000 0.010 274 128.572 0.010 360 1800.000 1800.000
56 1.930 0.033 129 21.053 0.010 202 50.000 0.010 275 16.745 0.285 361 3600.000 0.010
57 60.000 1.020 130 6.991 0.469 203 171.429 0.010 276 3.374 0.281 362 3600.000 0.010
58 22,642 0.010 131 44.445 1.467 204 120.000 0.010 277 15.190 0.502 364 3600.000 0.010
59 45.570 0.010 132 80.000 0.010 205 150.000 300.000 278  257.143 0.010 365 3600.000 0.010
60 40.450 161.798 133 63.158 1.074 206 257.143 0.010 279 327.273 0.010 366 360.000 0.010
61 24.162 0.010 134 116.129 0.010 207 65.455 363.273 280 63.158 0.010 367 1800.000 0.010
62 0.149 0.325 135 76.596  3658.749 208 156.522 0.010 281 360.000 0.010 370 105.883 0.010
63 51.429 55.697 136 81.819 0.010 209 25.900 0.010 282 100.000 0.010 377 720.000 0.010
64 67.925 409.789 137 0.192 0.058 210 39.561 0.010 283 133.334 0.010 382 900.000 0.010
65 1.311 1.442 138 36.735 0.625 211 62,069 0.010 284 109.091 1.855 401 52,174 0.010
66 58.065 0.010 139 60.000 0.010 212 76.596 0.010 285 36.735 0.010 431 514.286 0.010
67 92.308 1.570 140 27.273 0.900 213 1.995 0.234 286 28.800 0.490 451 2755 0.138
68 94.737 0.010 141 46.154 0.785 214 36.735 0.010 287 102.858 0.010 481 0.381 0.032
69 29.269 1.464 142 41.861 0.010 215 276.923 0.010 288 87.805 0.010 483 18.368 0.607
70 27.907 29.777 143 102.858 1.749 216 90.000 361.530 289 4.187 1.466 501 2.757 0.010
71 85715 1.458 144 90.000  2169.000 217 138.462 0.010 290 180.000 0.010 512 5.715 22.955
2 26.667 162.214 145 0.680 0.012 218 37.114 0.010 291 211.765 0.010
73 9.891 5212.751 146 73.470 0.010 219 4.206 0.072 292 120.000 0.010
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Table 10 CAMBRIDG parameters

segmentation,” Communications of the ACM 12, No. 7, 365-
372 (1969).
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Size IAT HT size IAT HT Size AT HT Size IAT HT Size IAT HT
1 1.031 33.633 57 600.000 600.000 132 360.000 0010 234 514286 531258 470  600.000 0010
2 0.471 52478 58 189.474 0010 135  900.000 3480300 236  720.000 0010 475 44.445 0010
3 2.200 208.516 59 128.572 0010 137 1177 0039 237 300.000 0010 481 4134 0207
4 2,007 42,608 60  276.924 0.010 139 92.308 0010 238 400.000 0010 497 156522  0.010
5 3.830 1505.938 61 276924 4708 140 156522 0010 239 144.000 0.010 501 163637 0010
6 1.297 255.006 62 2,581 0.044 141  257.143 0010 242 240.000 0010 502 38710 0010
7 0.203 12.464 65 13.044 24783 143 720.000 0010 243 600.000 49.800 504  109.091 0010
8 4.640 41.442 66 400.000 0010 146  300.000 0010 244 24,000 0010 509 12.766  0.010
9 0.500 19.587 68  257.143 0010 147 514286 0.010 246 327273 0010 512 30.770  0.010

10 0.00673 0.291 69 83721  3692.091 149 900.000 0010 247 49.316 0.839
1 0.053 0.351 70 400.000 233200 150 600.000 0010 248 514.286 0.010
12 0.124 8.233 71 400.000 0.010 151 900.000 15300 249 900.000 0.010
13 0.998 1.231 72 300.000 0010 153 50.000 0010 250  450.000 0.010
14 4.450 20617 73 225.000 0010 154  450.000 0010 251 124138 0.010
15 3.258 1862.388 74 14.635 0.010 155 900.000 0010 252 600.000 0.010
16 1.685 7.889 76 900000 3615300 158  450.000 0010 253  450.000 0.010
17 2.162 42.703 78 400.000 0010 160 3013 3013 254 9.091 14,091
18 7.332 5.499 79 257.143 0010 161  720.000 0010 255 40910 3.396
19 5.547 35.040 80  150.000 4950 164 97.298 0010 256 12.245 0.010
20 2218 1923 83 7.244 0.124 165  150.000 0010 257  189.474 0.010
21 31579 8.937 84 300.000 0010 170 720.000 0.010 259  900.000 0.010
22 225000 0010 85 720000 0010 171 120000 240000 260 600.000 0.010
23 62.069 1438.944 86  327.273 0010 172 900.000 0010 263  400.000 0.010
24 1.905 830.666 87 600.000 0010 176  600.000 0.010 264  900.000 0.010
25 16.438 189.863 88 276924 4708 177 900.000 0010 266  900.000 0.010
26 211765 0.010 89  189.474 3222 181 450.000 0010 267 92.308 1.570
27 59.017 0.010 90 163637 1270964 182  900.000 0.010 268  900.000 0.010
28 14.575 0.481 92 10.170 0010 184  450.000 0010 272 900.000 0.010
29 6.040 0.405 95 600.000 0010 185  450.000 0010 273 720000 0010
30 9.575 242.876 96  180.000 0.010 186  180.000 0010 274 450.000 0.010
31 0.806 14.278 97 150.000 2550 187  514.286 0010 275 400.000 0.010
32 189.474 0.010 98 720.000 0010 188  360.000 0.010 276 144000 0.010
33 360.000 0.010 99 189.474 997.958 192 720.000 0010 279 211765 0.010
34 257.143 0010 100 514.286 514286 193 900.000 0010 280  600.000 0.010
35 11.356 283344 101 21.687 0369 199  300.000 0.010 281 24.490 0.010
36 189.474 2542.168 104  360.000 0010 200  300.000 0010 285 51.429 0.875
37 5.210 0.089 105  400.000 0010 202 720.000 0010 286  900.000 0.010
38 2.824 0048 106  300.000 5100 204  600.000 0010 287  900.000 0.010
39 90.000 340470 107 171429 2915 211 400.000 0.010 288  400.000 0.010
40 156522 988.748 108  180.000 909.000 212 240.000 0010 293 720.000 23.760
41 450.000 0010 109  900.000 0010 214 327273 0010 294  720.000 0.010
42 124138 0010 110 13.900 0010 216  720.000 0010 301  720.000 0.010
43 163.636 0010 111 450.000 0010 217  189.474 0010 304 514286 0.010
45 720.000 2543760 112 900.000 0010 218 360.000 0010 314 24,000 0.010
46 138.462 0010 115 600.000 10200 219 200.000 0010 315 720.000 0.010
47 6.154 0010 117 514286 1996972 220 40910 3396 338 720.000 0.010
48 171429 0010 118 360.000 0010 221 78.261 0.010 349  600.000 0.010
49 171.429 514286 119 34.952 0010 222 13.187 0010 383 600.000 0.010
50 200.000 60000 120 900.000 0.010 223 514286 0010 412 514.286 0.010
51 128572 0010 121 600.000 0010 225  600.000 0010 416 43.374 0.010
52 150.000 0010 126 276924  1998.554 227  600.000 0010 431 65.455 0.010
53 450.000 0010 128 12.414 0212 228 900.000 0010 435 156522 0.010
54 514.286 0010 129  450.000 0010 230 900.000 0010 438  600.000 0.010
55 156.522 0010 130 51.429 0010 231 80.000 1360 442 109.091 0.010
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