
Analysis of free-storage
algorithms-revisited

by G. Bozman
W. Buco
T. P. Daly
W. H. Tetzlaff

Most research in free-storage management has cen-
tered around strategies that search a linked list and
strategies that partition storage into predetermined
sizes. Such algorithms are analyzed in terms of CPU
efficiency and storage efficiency. The subject of this
study is the free-storage management in the Virtual
Machinelsystem Product (VMISP) system control pro-
gram. As a part of this study, simulations were done of
established, and proposed, dynamic storage algo-
rithms for the VMISP operating system. Empirical evi-
dence is given that simplifying statistical assumptions
about the distribution of interarrival times and holding
times has high predictive ability. Algorithms such as
first-fit, modified first-fit, and best-fit are found to be
CPU-inefficient. Buddy systems are found to be very
fast but suffer from a high degree of internal fragmen-
tation. A form of extended subpooling is shown to be
as fast as buddy systems with improved storage effi-
ciency. This algorithm was implemented for VMISP,
and then measured. Results for this algorithm are
given for several production VMISP systems.

A n efficient, dynamic storage allocation algorithm
is essential to the performance of complex soft-

ware systems. These systems require the ability to
reuse areas of memory for such things as control
blocks, buffers, data areas, and state vectors. The
reuse ability is needed in order to keep the total
memory requirement reasonable. Without reuse it
would be necessary to permanently assign enough
storage for each purpose to ensure a very low prob-
ability of exhausting each storage type. Because the
frequency of obtaining storage may happen more
than one thousand times per second, throughput
may be affected by the processing time required.
Unfortunately, storage efficiency and CPU efficiency
are usually tradeoffs in the selection of an algorithm.

Storage inefficiency is a result of fragmentation, both
internal, which is the result of giving out more
storage than requested (e.g., by rounding up to some
boundary), and external, which is the “checker-
board” effect caused by alternating blocks of avail-
able and in-use storage. CPU inefficiency results when
it becomes necessary to search for a block that will
satisfy a request for free storage (or the proper place
to “insert” a released item), and can be measured by
the mean number of blocks inspected per request
(release).

Early work in this area focused on the relative effi-
ciency of various strategies that process requests
against a linked list of available storage blocks. The
algorithm known as “first-fit’’ consists of searching
the available list and accepting the first free area that
is greater than or equal to the required size. When a
suitable block is found, it is split into a block of the
right size that will be used and a fragment that is left
on the free list. The “best-fit’’ strategy consists of
searching the entire free list in order to find a free
block that if split will leave the smallest fragment.
Naturally, if an exact fit is found, the search is
terminated. There are two variations of best-fit that
are distinguished by whether the first or last of equal
best-fitting blocks is used. In “worst-fit’’ the free
block that results in the largest fragment is chosen,
except that an exact fit is taken when found.

Copyright 1984 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

44 BOZMAN ET AL IBM SYSTEMS JOURNAL, VOL 23, NO 1, 1984

Collins' simulates first-fit, best-fit, worst-fit, and ran-
dom-fit, finding first-fit slightly better than best-fit.
Iliffe and Jodeit' describe the use of codeword de-
scriptors to provide mobility of data in a first-fit
environment with garbage collection.

K n ~ w l t o n ~ , ~ and Markowitz et aL5 independently
developed the binary buddy system. Buddy systems
maintain space in separate pools by size (e.g., powers
of two in the binary buddy system). Requests are

Buddy systems maintain space in
separate pools by size.

rounded up to the appropriate size boundary, result-
ing in internal fragmentation. If a block of that size
is not available, an iterative search is made of suc-
cessively larger-sized pools until a block is found.
This block is then iteratively split into "buddies"
until a block exists for the requested size. When
blocks are released, buddies are recombined if pos-
sible.

Ross6 describes the Massachusetts Institute of Tech-
nology AED free-storage package that uses zone par-
titioning as a solution for external fragmentation.
Each zone independently manages its inventory.
Randel17 demonstrated via a simulation study that,
if requests are rounded up in an attempt to reduce
the memory loss due to external fragmentation, the
internal fragmentation loss rapidly predominates.
Knuth' gives an excellent review of previous work,
provides simulation results supporting first-fit over
best-fit, describes a modified first-fit algorithm that
starts each search with the block after the last one
given out (thereby cycling through the linked list of
available blocks), and recommends the investigation
of the Fibonacci buddy system. Campbell' describes
an optimal-fit algorithm, based on the optimal-stop-
ping problem on a fixed-length Markov chain, which
attempts to combine the best property of first-fit
(speed) with the best property of best-fit (reduced
external fragmentation).

Purdom, Stigler, and Cheam'' simulate first-fit, bi-
nary buddy, and segregated storage (variable-sized

IEM SYSTEMS JOURNAL, VOL 23, NO 1. 1984

subpools with splitting and recombination-similar
to the generalized Fibonacci buddy). The binary
buddy is found to be the fastest. Robson" proves
that for any nonrelocating strategy the amount of
storage required is bounded below by a function that
rises logarithmically with the size of the blocks that
are used. Margolin, Parmelee, and Schatzoff'2 de-
scribe a study that led to an improved algorithm for
the computer control system ~ ~ 1 6 7 . Since their work
strongly influenced the algorithm currently used on
the Virtual Machine/System Product (VMISP) and
since our work can in some ways be considered an
extension of theirs, their work is a key antecedent to
this study.

Hir~chberg'~ follows Knuth's suggestion and does a
simulation study of the Fibonacci buddy system vis-
a-vis the binary buddy system, concluding that the
Fibonacci is superior. Fenton and Payne14 simulate
first-fit, Knuth's modified first-fit, best-fit, half-fit,
and worst-fit. Their study concludes that best-fit is
superior; first-fit and half-fit are somewhat better
than modified first-fit; and worst-fit is worst. Shen
and PetersonIS develop a weighted buddy system
that provides more sizes than the binary buddy. They
find that internal fragmentation is decreased often at
the expense of some increase in external fragmenta-
tion and conclude that the weighted buddy system
will give good results if the request distribution is
primarily composed of small sizes.

Russell16 gives mean value bounds for the over-
allocation due to internal fragmentation in a one-
level buddy system. Shore" finds through simulation
that first-fit and best-fit are generally within one to
three percent of each other in terms of memory
utilization. He provides strong evidence that the
relative performance of the two strategies depends
on the frequency of requests that are large compared
with the average request. In terms of the coefficient
of variation, a, of the request distribution, he finds
that first-fit outperforms best-fit when a is greater
than or equal to one. Bays'' confirms Shore's results
and also finds modified first-fit to be inferior when
the mean request size is less than one-sixteenth the
total available memory. Cranston and Thomas" de-
scribe a simple recombination scheme for the Fibon-
acci buddy systems. Ferguson'' defines a generalized
Fibonacci scheme and provides tables that are useful
in the generation of these systems. Peterson and
Norman" study the binary, Fibonacci, and weighted
buddy systems and derive the internal fragmentation
for each for the uniform request distribution. They
also provide simulation results that suggest that,

although the internal fragmentation varies, the total
fragmentation (i.e., internal and external) is about
the same for these three buddy systems.

In this paper a simulation study is discussed that
compares many dynamic storage allocation strate-
gies in medium and large time-sharing environ-
ments. This work resulted in an algorithm that sig-
nificantly improves the performance of large Virtual
Machine/System Product Conversational Monitor
System (VM/SP C M S) ~ ~ [vw, CMSL] systems.

This paper first discusses the environment in which
this work was done. Next, the simulation method-
ology is explained. Then simulation results and per-
formance results for two systems are presented. Fi-
nally, conclusions are drawn from this study.

Background

The impetus for this study was provided by hardware
and software monitor data collected at the Data
Centers of the IBM Thomas J. Watson Research
Laboratory and the former IBM Office Products Di-
vision (OPD) headquarters. These data indicated that
the VM/SP dynamic storage algorithm consumed 11
to 20 percent of the supervisor-state CPU on the OPD
3033 Uni-Processor (UP) and the Research 3033
Multi-Processor (MP). Under peak load the percent-
age was at the high end of this range. The high CPU
time caused high lock holding time for the primitive
lock on the MP that prevents the concurrent execu-
tion of the dynamic storage allocator. The high lock
holding time in turn caused longer lock wait time
for the other processor. The wait time on this lock
was one to one and a half percent of elapsed time
during typical load.

The instruction that referenced the next address in
the linked list of available storage blocks was most
frequently seen in the hardware monitor samples.
This instruction frequently “missed” cache because
of the relatively large area of memory containing the
linked list. It appears that searching linked lists tends
to subvert the cache by (1) yielding a low hit-ratio
during the search and (2) leaving the cache full of
data that are very unlikely to be referenced after the
search.

This study was performed by independent groups
working at each data center. The OPD group was
working on a simulation study, whereas the Research
group was studying the effects of modifications to

46 BOZMAN ET AL

the existing vM1.v algorithm. When the two groups
became aware of their common interest, their shared
discoveries led the way to the final solution.

The fact that there were two independent groups
using different tools and techniques has resulted in
some inconsistencies in the analysis that was done
on the systems that were studied. However, all ap-
plicable results are provided. If a specific result is not
provided for a given system, it is because the analysis
was not performed.

In order to understand the work reported in this
paper, it is necessary to understand the dynamic
storage allocation algorithm that was used in VM/370
at the time of this work. All other algorithms that
were studied were measured against this. It proceeds
as follows.

Ten stacks, each three doublewords wide (one dou-
bleword is eight bytes of eight bits each), are main-
tained for free storage elements less than or equal to
30 doublewords such that the first stack services
requests from one to three doublewords; the second,
four to six doublewords; to the tenth, 28 to 30
doublewords. All requests within this range are
rounded up to the appropriate boundary. These
stacks were called subpools by Margolin et al., and
we will use that term here. Initially all of the subpools
are empty. The purpose of the subpool is to be able
to find a free storage element immediately, thus
eliminating any searching of a linked list at all.

If the request cannot be satisfied by a subpool, either
because the subpool is empty or the request is greater
than 30 doublewords, a search is made of a linked
list of available storage blocks. This list is called the
free list and is maintained in order of increasing
address. The list is ordered by storage address in
order to facilitate the coalescing of a newly freed
block with adjacent free blocks. Initially the free list
consists of one block which represents the storage
dedicated as dynamic storage at system generation
(an integral number of 4096-byte pages). If the free
list is empty or cannot satisfy the request, a page (or
multiple pages if the request exceeds 4096 bytes) is
“borrowed” from the page pool that provides real
memory to users and the operating system itself.
However, if the request that cannot be satisfied is
less than or equal to 27 doublewords, an attempt is
first made to “split” a larger subpool block into
smaller sizes. If the split is not possible, a page is
borrowed from the page pool with the intention of
returning it as soon as possible. The act of borrowing

IBM SYSTEMS JOURNAL, VOL 23, NO 1, 1984

is called “extending,” and the borrowed page is called
an “extended” page. Whenever a release of a block
causes an extended page to be completely contained
in the free list, it is returned to the page pool. Because
the dedicated dynamic storage is initially generated
at the top of memory (i.e., highest addresses), all
available blocks from extended pages will be at the
front of the free list.

The searching of the free list proceeds as follows:

If an exact fit is found with a nonextended block,
the search is terminated and the block is used to
satisfy the request.
If an exact fit is not found and the request size is
less than or equal to 30 doublewords, the low end
of the first larger nonextended block is used. If
there is no nonextended block greater than or
equal to the requested size, the last equal or larger
extended block is used with an equal size taking
precedence. If it is necessary to use a larger block,
the low end of this block is given out.
For requests greater than 30 doublewords a similar
strategy is used, except that the high end of the
last larger block is used in the case where there is
no exact match.

Release of storage to the free list proceeds as follows:

Upon release, blocks less than or equal to 30
doublewords are pushed into the appropriate sub-

Items greater than 30 doublewords are inserted
directly into the free list. Proper placement in the
free list requires a serial search through the ad-
dress-ordered list until the correct place is found.
If they are adjacent to another free block(s), the
blocks are coalesced into a single larger block.

In the periodic emptying of the subpools, whenever
any user leaves the system, or at least once an hour,
all blocks in the ten subpools are removed and
inserted into the free list. This procedure allows for
downward adjustment of the number of blocks after
an unusual requirement for a particular size, and it
allows extended pages to be returned.

The ten-subpool strategy is derived from Margolin
et al., who found that over 99 percent of all requests
in CP/67 were in this size range. This study found
that this percentage has deteriorated with time (e.g.,
from 93.4 to 97.0 percent on the systems that we
studied) and is currently a function of the release
level of VM/SP, local modifications, and local request
distributions.

pool.

IBM SYSTEMS JOURNAL, VOL 23, NO 1 , 1 9 8 4

This linked-list allocation strategy segregates “small”
requests at the low end of the dynamic storage block
and “larger” requests at the high end, except that an
exact match is always taken regardless of where it is
in storage. This is a variation of best-fit that attempts
to control external fragmentation even further. Be-
cause it is an interesting strategy independent of the
subpools, it is included in the simulation study to
see how it compared with the traditional first-fit and
best-fit methods.

Method

It was decided that the only reasonable way to study
the effect of various dynamic storage algorithms on
VM/SP was a simulation study. The alternative of
multiple changes to the real system was rejected as
being inflexible and risking severe performance deg-
radation and system outages.

Next it was necessary to decide how to represent the
VM/SP dynamic storage environment to a simulator.
Margolin et a]. rejected the use of simplifying statis-
tical assumptions in the request and holding distri-
butions and elected instead to modify cP/67 to log
requests to tape. In this way they could rather accu-
rately (some requests were lost because of buffer
overruns) recreate the dynamic storage environment
for a given day. We were concerned that this ap-
proach would not be feasible in our environment
primarily because the high request plus return rates
(over 2000 per second) would force a difficult trade-
off between significant data loss and perturbation of
the system. In addition, we wanted to develop a
technique that would be more flexible in that it
would not require large amounts of data as input.

The successful use of simplifying assumptions, such
as exponentially distributed service times, in queuing
network analysis (see B ~ z e n * ~) encouraged us to use
the following method:

VM/SP was modified to collect, for each size re-
quested, the mean number of blocks outstanding
(i.e., in use) and the total number of requests at
any point in time. The mean number of blocks in
use was computed by incrementing a vector ele-
ment (corresponding to the size) for each request
satisfied and decrementing for each return. At any
instant in time this element is equal to the number
of blocks outstanding for the size. The total num-
ber of requests was computed by incrementing a
vector element for each request.

BOZMAN ET AL. 47

A sampling program was written to compute from
these data the mean interarrival time in seconds,
mean holding time in seconds, and mean number
of blocks outstanding for each size over any time
interval. This was done as follows:

1. Mean interarrival time (in seconds), t =
S A T , - yo)
where
s = sample interval in seconds
ro = total number of requests from system

startup (i.e., IPL) to the start of the sample
interval

Y, = total number of requests from system
startup (i.e., IPL) to the end of the sample
interval

2. Mean holding time (in seconds) = Nt
where
N = mean number of blocks. outstanding

(computed from samples of the vector
element)

The relationship of the mean interarrival time,
the mean holding time, and the mean number
of blocks outstanding is similar to that defined
by Little’s result in queuing theory,24 which
gives the relationship between the mean num-
ber of customers in a queuing system (L), the
mean arrival rate (X), and the mean time (W)
spent in the system as L = X W. Consider a
customer picking up a cart at the entrance of a
supermarket and using the cart as he makes his
way through a number of servers, finally re-
turning it at the entrance as he leaves. We can
make an analogy between the supermarket cus-
tomer and a time-sharing user. The cart then
becomes the dynamic storage required to sup-
port the user’s sojourn through the time-shar-
ing system (i.e., queuing system), and the av-
erage arrival rate and average residency time of
dynamic storage in the system will have a direct
correlation with those statistics for users. A
similar analogy can be made on a micro scale
for the dynamic storage used for events such as
I/O operations.

the system-that are not properly modeled by a
stochastic process. However, similar phenomena oc-
cur in those aspects of computing systems that are
modeled with reasonable accuracy by queuing net-
works, and we were hopeful that we would achieve
results of similar accuracy. The later validation of
the simulation results, by comparison to measure-
ments of real systems, supports the use of these
assumptions (see section on system results).

In order to provide the data structures necessary to
simulate the various algorithms of interest, a discrete
event simulator was written in Pascal. This program
performs the following functions:

1. Reads (from a parameter file) the size of dedicated
dynamic storage, mean interlog-off time (used by
the standard VM/SP and subpooling algorithms),
and, for each size, the mean interarrival time and
the mean holding time.

2. Initializes the simulation by scheduling the stop
event, first sample event, first checkpoint event,
and, for each size, the first request. Also, if appli-
cable, the first user log-off event was scheduled.
A different pseudo random-number generator
was used for the log-off event so that all algo-
rithms would have the same series of storage
requests and releases.

3. Maintains the event list using a time-indexed
method.25

4. Provides checkpoint and restart capability.
5. Provides a sampling and statistics generation fa-

cility.
6. Provides a uniform interface to external routines

to handle storage request, storage release, and user
log-off events.

Each algorithm was written as a separate subprogram
that was called by this main program to service an
event such as a dynamic storage request, dynamic
storage return, or user log-off (if appropriate to the
algorithm).

Results

Simulation results. The following VM/SP systems
were modified to collect parameters for the simula-

Having the mean interarrival time and mean holding
time for each size, we then made the simplifying FRKVMI, a 3033 UP serving an average of 280-340
assumption, in the simulation study, that the inter- logged users at the former Office Products Division
arrival times and hold times were exponentially dis- Headquarters in Franklin Lakes, New Jersey.
tributed. There are allocation phenomena-such as YKTVMV, a 3033 MP serving an average of 450-
the “simultaneous” creation (deletion) of different- 540 logged users at the Thomas J. Watson Re-
sized control blocks when a user logs on (logs off) search Center in Yorktown Heights, New York.

tion study:

48 EOZMAN ET AL. IEM SYSTEMS JOURNAL, VOL 23, NO 1. 1984

CAMBRIDG, a 158 UP serving an average of 40-50
logged users at the IBM Cambridge Scientific Cen-
ter in Cambridge, Massachusetts.

The three tables in the Appendix give the dynamic
storage parameters for each of these systems. The
mean interarrival and holding times are given in
seconds for each doubleword size. Sizes not listed
did not have any activity during the parameter col-
lection period. Ten milliseconds was the minimum
holding time used for the simulation. The minimum
holding time was introduced because there were
some storage sizes that had infrequent requests with
short durations. The accuracy of the sampled holding
time for these sizes was poor, and it sometimes led
to unreasonably short holding times. These requests
were so infrequent that the adjustments are not a
factor in the results. Requests greater than 5 12 dou-
blewords were rare (less than 0.007 percent of all
requests at FRKvMl and less than 0.017 percent at
YKTVMV and CAMBRIDG) and have been combined
with the 5 12-request data.

At Franklin Lakes, samples were taken during a two-
hour period of typical afternoon load. The free-
storage vectors were sampled at 30-second intervals.
In order to see if this sampled distribution would
yield simulation results that were analogous to those
measured on the real system, three of the simulation
metrics were compared with samples from days of
FRKvMl activity that had a user load similar to that
during which the parameters were collected. The
simulation results were found to be typical of those
measured on FRKVM 1 . The three days given in Table
1 are representative and illustrate the range of the
measured data.

At Yorktown Heights and Cambridge, samples were
collected during similar periods of typical load, but
were not correlated to the activity on separate days
as at Franklin Lakes. However, the storage utiliza-
tion and mean free list size were within the ranges
witnessed on the real systems.

Tables 2-4 give the simulation results for each sys-
tem. The metrics used in this study are defined as
follows:

Mean items visited per request: The minimum
possible value is 1 .O. This is the primary measure-
ment of CPU efficiency. In a linked-list strategy,
this is the number of items visited on the list. An
item popped from a subpool that is singly linked
is counted as one visit. An item popped from a

IEM SYSTEMS JOURNAL, VOL 23, NO 1 . 1984

Table 1 'FRKVM1 simulation versus observed values

Source Mean Mean Mean
Subpool Hit Freelist Pages

Ratio Length Used*

sample day 1 0.938 569 613
sample day 2 0.946 695 584
sample day 3 0.933 884 672

simulation 0.943 704 630

*mean pages used = dedicated dynamic storage pages + mean extended pages.

subpool that is doubly linked (e.g., buddy systems)
is counted as two visits if the subpool is not left
empty by its removal, otherwise as one visit.
Mean items visited per release: The minimum
possible value is 1 .O. In a linked-list strategy, this
is the number of items visited on the list in order
to find the proper place to insertthe released item.
An item pushed into a singly linked subpool is
counted as one visit. An item pushed into a non-
empty doubly linked subpool is counted as two
visits.
Subpool hit ratio: The ratio of requests that were
satisfied by a subpool block to the total number
of requests, This is only applicable to algorithms
that use some form of subpooling.
Mean free-list size: The mean number of items on
the linked list of available storage blocks. This size
is an indicator of external fragmentation and, in
many algorithms, directly affects the mean num-
ber of items visited.
Extend rate: The mean number of requests per
minute for an extended page that occurred during
the last hour of simulated time. Higher rates incur
higher CPU overhead.
Extended pages: The mean and maximum num-
ber of extended pages that were required above
the initial dynamic storage allocation. Note that
there is no relationship between the extend rate
and the number of extended pages. For example,
the repeated request and release of one extended
page will result in a high rate but low (less than
one) mean number of extended pages. Some al-
gorithms hold extended pages longer than others
and consequently have a lower extend rate.
Mean storage out: The mean number of pages in
use (given out but not yet returned) during the
simulation.
Storage efficiency: The ratio of the mean requested
(i.e., before any rounding up) storage in use to the
mean storage required by the algorithm. That is,

BOZMAN ET AL 49

able 2 FRKVMl simulation results (3033 UP)

Algorithm Mean Items Mean Items Subpool Mean Extend Rate Extended Pages Mean Storage Storage
Visited per Visited per Hit Freelist (pageslmin) Mean-max Out (pages) Efficiency

Request Release Ratio Length

standard 30.6 17.8 0.943 704 287 130-159

first-fit 949.2 896.8 3157 309 117-145
best-fit-last 245.0 186.0 1108 266 94- 126
best-fit-first 273.5 204.0 1162 264 94- 127
first-fit* 95.8 79.3 1062 30 1 137-166
mod-first-fit* 22.5 835.7 8321 35 601-651
best-fit-first* 84.2 50.3 355 262 120-149
best-fit-last* 11 1.7 95.0 348 256 123- 150

Uniform subpools:
I-wide 6.5 2.1 0.995 1145 23 157-196
2-wide 4.5 1.7 0.996 91 1 21 154-185
3-wide 3.8 1.8 0.995 699 13 166- 196
4-wide 3.1 1.6 0.995 512 22 157-187

2-Level subpools divided at 128 doubleword boundary:
(e& 2/32 = 64 2-doubleword-wide subpools to 128 #en 12 32-doubleword-wide subpools to 512)
1-32 5.6 1.8 0.995 1052 40 136-163
1-32** 2.4 2.1 0.995 I175 28 140- 174
2-16 4.2 1.6 0.995 830 22 139-164
2-32 4.2 1.6 0.996 813 28 140-168
2-64 4.5 1.7 0.995 851 31 147-173
4-64 3.0 1.6 0.995 407 30 156-1 84

59 I .2

564.2
564.2
564.2
592.8
580.2
594.7
595.8

564.2
575.0
592.4
593. I

512.6
572.6
578.0
583.2
594.0
612.0

0.896

0.914
0.947
0.949
0.886
0.5 14
0.909
0.906

0.859
0.862
0.847
0.858

0.886
0.881
0.883
0.882
0.872
0.860

BUDDY SYSTEMS:

Algorithm Mean Items Mean Items Split Join Extend Rate Extended Pages Mean Storage Storage
Visited per Visited per Rate Rate (pages/min) Mean-max Out (pages) Efficiency

Request Release

binary 2.00 3.01 0.0080 0.0074 393 372-403 849.9 0.647
binary (no tags) 1.02 29.28 0.0058 0.0052 339 258-293 737.6 0.744
mod-Fibonacci 2.04 3.04 0.0156 0.0147 15 276-308 651.8 0.727

* = minimum fragment left on free list was 5 doublewords.

dedicated dynamic storage: 500 pages.
** = two free lists with maximum size block maintained for each

mean time between users logging OE 5.1 seconds.

mean requests per second 1048.
mean requested storage in use: 564.2 pages.
mean number of blocks in use: 17 509.

storage efficiency = (mean requested storage in
use)/[(initial storage allocation) + (mean extended
storage)].

In addition, for the buddy systems the following
metrics were used:

Split rate: the mean number of splits caused by a

Join rate: the mean number of joins caused by a
free-storage request

free-storage return

The YKTVMV and CAMBRIDG simulations were al-
lowed to stabilize for two hours of simulated time
and then run for four hours of simulated time. The

FRKvMl simulation was allowed to stabilize for 30
minutes of simulated time and then run for 7.5 hours
of simulated time. The stabilization time of the
simulation was empirically determined by studying
the stabilization of the storage out (i.e., being held).
Most algorithms had stabilized (in terms of speed
and storage efficiency) a considerable time before the
end of the simulation run-a notable exception was
modified-first-fit.

The simulation results will be discussed in sections
by the general algorithm categories.

VM/SP algorithm. The simulation of the standard
VM/SP algorithm confirmed that there was significant

50 BOZMAN ET AL IBM SYSTEMS JOURNAL, VOL 23. NO 1, 1984

Table 3 YKTVMV simulation results (3033 MP)

Algorithm Mean Items Mean Items Subpool Mean Extend Rate Extended Pages Mean Storage Storage
Visited per Visited per Hit Freelist (pageslmin) Mean-max Out (pages) Efficiency
Request Release Ratio Length

standard 69.3 39.4 0.917 1030 282 76-109 802.4 0.887

first-fit 1678.9 1591.1 4574 2 94 4 1-72 748.8 0.926
best-fit-last 287.6 197.7 1376 285 10-38 748.8 0.962
best-fit-first 365.0 260.7 1427 23 1 10-38 748.8 0.963
first-fit* 157.6 124.8 1516 293 67-100 785.8 0.896
mod-first-fit* 80.1 1812.7 1 1886 196 553-601 776.6 0.567
best-fit-first* 100.8 49.4 350 262 36-68 783.7 0.932
best-fit-last* 113.7 83.6 32 1 250 39-74 785.8 0.928

Uniform subpools:
1 -wide 7.0 2.8 0.995 1617 15 107-171 748.8 0.856
2-wide 4.6 2.2 0.995 1337 13 105-152 769.3 0.858
3-wide 4.5 2.1 0.995 1215 13 129-168 807.1 0.834
4-wide 4.5 1.9 0.995 1161 8 148-185 835.4 0.817

2-Level subpools divided at 128 doubleword boundary:
(e.g. 2/32 = 64 2-doubleword-wide subpools to 128 then 12 32-doubleword-wide subpools to 512)
1/32 4.8 2.5 0.995 1626 14 75-103 754.2 0.889
1/32** 2.5 2.2 0.995 1632 12 75-106 754.2 0.888
211 6 3.9 2.0 0.996 1397 7 83-1 13 771.1 0.880
2/32 3.8 2.0 0.996 1405 9 81-1 10 774.5 0.882
2/64 3.6 2.0 0.996 1381 8 83-1 12 781.4 0.880
4/64 4.1 1.8 0.996 1133 6 137-168 847.3 0.827

BUDDY SYSTEMS

Algorithm Mean Items Mean Items Split Join Extend Rate Extended Pages Mean Storage Storage
Visited per Visited per Rate Rate (pages/min) Mean-max Out (pages) Efficiency
Request Release

binary 2.00 3.00 0.0065 0.0054 41 1 400-445 1 140.9 0.64 1
binary (no tags) 1.02 49.42 0.0063 0.0051 343 278-320 1027.8 0.716
mod-Fibonacci 2.13 3.12 0.0590 0.0576 209 181-219 901.2 0.789

Algorithm Mean Items Mean Items Storage
Visited per Visited per Efficiency

Request Release

better-fit 14.5 20.8 0.650
leftmost-fit 35.0 41.0 0.928
best-fit-last 284.0 205.4 0.962

= minimum fragment left on free list was 5 doublewords.
** = two free lists with maximum size block maintamed for each.
dedicated dynamic storage: 768 pages.
mean time between usen logging off: 14.6 seconds.

mean requests per second: 1034.
mean requested storage in use: 748.8 pages.
mean number of blocks in use: 21 344.

search overhead in the FRKVMI and YKTVMV Systems.
In particular, the YKTVMV system had an especially
high overhead. The lower subpool hit ratios vis-a-vis
the cp/67 of the Margolin et al. study are due to the
growth in size of system control blocks and buffers
over the intervening releases of VMISP. The mean
number of items inspected per request is largely a
function of the subpool hit ratio and the mean
number of blocks on the free list.

It was surprising that the CAMBRIDG system was
performing considerably better than FRKVMl and
YKTVMV. The FRKVMl 3033 UP had approximately
4.5 times the CPU power of the CAMBRIDG processor.
However, the total number of blocks searched per
second for requests was 32 070 (1048 requests per
second x 30.6 items inspected per request) for

of 30: 1. This was only partially accounted for by the
FRKVMl and 1070 (198 X 5.4) for CAMBRIDG-a ratio

Table 4 CAMBRIDG simulation results (158 UP)

Algoihhm Mean Items Mean Items Subpool Mean Extend Rate Extended Pages Mean Storage Storage
Visited per Visited per Hit Freelist (pages/min) Mean-max Out (pages) Efficiency

Request Release Ratio Length

standard 5.4 4.3 0.962 140 34 0.6-9
First-fit, best-fit, etc.:
standard-without-
subpooling 54.3 40.2 206 4 0.077-5
first-fit 213.3 212.1 640 16 0.5-8
best-fit-last 84.0 58.4 258 1 0.008-4
best-fit-first 95.9 66.7 263 1 0.008-4
first-fit* 33.3 33.0 246 25 1-10
mod-first-fit* 7.2 200.2 1034 24 44-53
best-fit-first* 35.8 21.7 77 7 0.042-4
best-fit-last* 39.4 29.2 77 16 0.077-5

Uniform subpools:
1 -wide 2.3 1.5 0.994 318 6 33-59
2-wide 1.9 1.3 0.995 259 7 31-52
3-wide 1.7 1.2 0.996 221 7 28-45
4-wide 1.5 1.2 0.996 181 3 27-41

2-Level subpools divided at 128 doubleword boundary:
(e.g. 2/32 = 64 2-doubleword-wide subpools to 128 then 12 32-doubleword-wide subpools to 512)

1-32** 1.4 1.3 0.996 290 1 18-30
1-32 1.6 1.3 0.996 281 1 18-27

2-16 1.5 1.2 0.997 229 2 21-28
2-32 1.4 1.2 0.997 218 1 18-27
2-64 1.4 1.2 0.997 215 1 16-22
4-64 1.2 1.1 0.997 153 1 16-24

78.2

76.4
76.4
76.4
76.4
79.7
78.3
79.2
79.2

76.4
79.1
78.4
82.8

76.9
76.9
79.2
79.5
80.0
83.7

0.843

0.848
0.844
0.849
0.849
0.839
0.570
0.849
0.848

0.620
0.632
0.646
0.653

0.707
0.707
0.69 1
0.707
0.719
0.719

BUDDY SYSTEMS
Algorithm Mean Items Mean Items Split Join Extend Rate Extended Pages Mean Storage Storage

Visited per Visited per Rate Rate (pages/min) Mean-max Out (pages) Efficiency
Resuest Release

binary 2.00 3.01 0.0133 0.0127 47 22-32 103.7 0.683
binary (no tags) I .03 15.28 0.0139 0.0134 45 21-31 102.7 0.688
mod-Fibonacci 2.04 3.04 0.0224 0.0217 28 27-36 92.0 0.655

* = minimum fragment left on free list was 5 doublewords.
** = two free lists with maximum size block maintained for each
dedicated dynamic storage: 90 pages.
mean time between users logging off: 73.5 seconds.

mean requests per second 198.
mean requested storage in use: 16.4 pages
mean number of blocks in use: 2356.

more favorable CAMBRIDG subpool hit ratio (in the
simulation, the subpool hit ratios are 0.962 for CAM-
BRIDG and 0.943 for FRKVMI). The major factor is
that both the request rate and the mean number of
items on the free list are roughly proportional to the
user load (and therefore the CPU capacity), Conse-
quently, even with a constant subpool hit ratio, this
tends to make the overhead (in terms of the number
of items inspected per second) of the strategies that
search a linked list proportional to the square of the
relative system capacity. The fact that supervisor
time for free-storage management is not linear with
system size is known as a “large system effect,” which
is undesirable and to be eliminated.

First-fit, modified first-fit, best-fit, and standard
VM/SP without subpools. Although it was immedi-
ately obvious that none of these algorithms would
be competitive in a VM/sP environment, we were
surprised by some of the results. Best-fit significantly
outperformed first-fit with these distributions. In ad-
dition, best-fit-last (i.e., using the last of several equal
best fits) was superior to best-fit-first, especially with
the larger systems. The standard VM/SP algorithm
without subpooling was simulated with the CAM-
BRIDG distribution and was superior to best-fit.

All of these algorithms were decidedly inferior to the
standard V M ~ P algorithm. Modified first fit ap-

IBM SYSTEMS JOURNAL, VOL 23. NO 1. 1984

proaches the standard algorithm in terms of speed
but requires over 50 percent additional memory.
The VM/SP dynamic storage distribution with its wide
range of request sizes and preponderance of requests
for smaller-sized blocks presents a difficult environ-
ment for modified first-fit (cf. BaysJ8). This algorithm
cycles around memory, fragmenting the blocks that
are necessary to fill the occasional large request.

In an attempt to reduce the search overhead of these
algorithms, Knuth's suggestion* to eliminate small
fragments (i.e., rounding up the request if the re-
maining fragment is less than some threshold) was
implemented using a threshold of five doublewords.
This threshold was derived empirically from simu-
lation experiments. However, we did not increment
each request by the doubleword that would be re-
quired in VM/SP to keep track of the actual amount
of storage given. Therefore, although these results
overestimate the storage efficiency in VM/SP, they
more closely resemble what might be expected on a
system with smaller free-storage granularity and
demonstrate the storage overhead inherent in using
the threshold.

Using this threshold, best-fit still outperformed first-
fit, although the distance between them was greatly
reduced. It was discovered that, with the threshold,
best-fit-first was superior to best-fit-last.

The mean number of items inspected per release
could be significantly reduced for all of these algo-
rithms by adding tags and a size field to each block
so that a returned block can be immediately inserted
into a doubly linked list. This technique, described
in Knuth,' would require an additional doubleword
in VM/SP and would consequently reduce memory
efficiency. The loss due to this internal fragmentation
would be about 2360, 17 5 10, and 27 340 double-
words (i.e., one doubleword for each of the mean
number Of items being held) for CAMBRIDG, FRKVMl,
and YKTVMV, respectively.

Best-fit and first-fit have two advantages:

1. High storage efficiency.
2. The ability to return a block of storage piecemeal.

In most of the other strategies studied, a block
must be returned as one piece. Although piece-
meal release is not required in VM/SP, it might be
in other environments.

If piecemeal release is not required, the other advan-
tage, high storage efficiency, comes at such a per-

IBM SYSTEMS JOURNAL, VOL 23. NO 1, 1984

formance penalty that we doubt these strategies
would be attractive on any system with high free-
storage activity.

Extended subpooling. Since it was clear that the
mean number of items searched in the standard VM/
SP algorithm would be reduced if the subpool hit
ratio were improved, the next step was to experiment
with variations of extended subpooling. First, the
subpool coverage was increased from the 1-to-30-
doubleword request range of the standard algorithm
to 1 to 5 12 doublewords. The rare request for a block
greater than 5 12 doublewords would cause a search
of the free list. The initial work involved subpools of
uniform width (i.e., for subpools of width n, the 5 12-
doubleword range is divided into 5 12/n subpools
such that the first subpool contains storage of size n
and services requests in the range 1 to n, the second
subpool contains storage of size 2n and services n +
1 to 2n, and the kth subpool contains storage of size
kn and services (k - l)n + 1 to kn). The simulation
results for subpools of widths 1-4 are given in Tables
2-4 for each of the three systems. Storage efficiency
deteriorated with widths greater than four. The uni-
form-4 (i.e., n = 4) algorithm was subsequently run
on FRKVM 1 and YKTVMV. The results are given in the
next section.

Nonuniform subpool widths were tried at Yorktown
Heights, with the sizes selected to match the mea-
sured request frequency, in order to limit internal
fragmentation loss. The performance results were
very good, but they came at a considerable cost in
terms of program complexity. Experience shows that
control block and buffer sizes (which largely deter-
mine the distribution) are quite dynamic in vM/sP,
varying from release to release and also being subject
to local modifications. Any closely matched sub-
pooling arrangement would lack robustness, a qual-
ity that we wanted to preserve. For this reason,
uniform-width subpools were chosen after consider-
ing the alternative of tailoring the subpools.

In order to improve the ability of the system to
return extended pages after a demand surge, we
studied the effect of maintaining extended blocks on
a separate subpool for each interval. These extended
blocks were then used only if the primary subpool
was empty. This approach resulted in better storage
efficiency and was used in all of the extended sub-
pooling simulations.

Experiments were done with less severe methods of
controlling the subpool inventory than purging them

when a user logs off (this occurred about once every
five seconds on FRKVMI). If nothing is done, storage
inefficiency results as the subpool inventory grows
with demand surges and never shrinks. This phe-
nomenon is explained in detail by Margolin et al. It
was found that by time-stamping blocks when they
are pushed onto the subpool stack and only releasing
the “old” blocks, the speed of the algorithm is im-

The two-level approach reduced
the external fragmentation loss.

proved with no significant loss in storage efficiency.
In fact, allowing large blocks to remain in the sub-
pools, if they have been recently used, protects them
from being split and reduces this form of external
fragmentation. The following procedure was used in
all of the extended subpooling simulations:

Whenever a user leaves the system (i.e., logs off)
or at least once an hour, a scan is made of all the
subpools. (This logging-off was assumed to be a
Poisson process; the mean interlog-off time was
derived from vM/h!lonitor data.)
During this scan all blocks are removed from the
subpools dedicated to extended storage and in-
serted into the free list. Extended pages that are
completely contained in the free list are returned
to the page pool.
For the subpools containing nonextended blocks,
the total amount of subpool inventory is com-
puted as the subpool is searched. Until the storage
contained in the subpool exceeds two pages, an
age threshold of 120 seconds is used. After two
pages, the threshold is quartered (i.e., 30 seconds).
These thresholds have been determined empiri-
cally by simulation. Whenever a block is found
that has resided in the subpool for this amount of
time (whichever is appropriate), that and all older
blocks are removed and returned to the free list.
After some of these algorithms were installed in
VM/SP systems, we studied the relationship be-
tween this age threshold and both the subpool hit
ratio and storage efficiency. The results of this
study are discussed in the next section.

54 BOZMAN ET AL

A comparison of the simulation results for uniform-
width subpools between the CAMBRIDG and YKTVMV
systems is informative. External fragmentation loss
in the form of subpool inventory predominates on
the smaller CAMBRIDG system, whereas internal frag-
mentation loss becomes more important on the
larger YKTVMV system. For example, of the uniform-
width subpools, the four-doubleword width yields
the best storage efficiency at CAMBRIDG, and the two-
doubleword width is best at YKTVMV. The fact that
two-doubleword subpools are slightly more efficient
in use of storage than one-doubleword subpools even
at YKTVMV is evidence that external fragmentation is
still significant. That is, although 20 pages (749 ver-
sus 769) less storage were given out with one-double-
word subpools as compared with two-doubleword
subpools, two pages (107 versus 105) of additional
storage were required because of external fragmen-
tation. This external fragmentation loss was primar-
ily due to inventory in the larger-sized subpools.

This situation led to consideration of the feasibility
of a two-width subpooling arrangement that would
tend to reduce both the internal and external frag-
mentation loss and still remain robust. Most of the
large requests were found to have short holding
times. These are typically 110 buffers. A study of the
mean number of items outstanding by size for each
of the distributions disclosed that a division at the
128-doubleword size was attractive in that not much
storage was being held above this size, and, in addi-
tion, it was far enough above the major control block
sizes to allow them considerable growth before this
condition would change. By using larger-sized sub-
pools above this boundary, we found that the sub-
pool inventory was substantially reduced without a
compensatory loss because of internal fragmenta-
tion. In the tables and text these two-width subpool-
ing strategies are referred to in the form “LIH,”
where L equals the width in doublewords of the
subpools below the 128-doubleword boundary and
H equals the width in doublewords of the subpools
above this boundary. On the largest system studied,
YKTVMV, several of these algorithms yielded a storage
efficiency comparable to the standard VM/SP algo-
rithm with significantly reduced search overhead.
The YKTVMV simulation results (see Table 3) show
that 1/32 and 2/32 are 14 and 18 times faster re-
spectively than the standard VMISP algorithm and
within one percent of the storage efficiency-with 1/
32 actually using one page less.

One of the effects of the two-level approach was to
reduce external fragmentation loss to the point where

IBM SYSTEMS JOURNAL, VOL 23. NO 1. 1984

internal fragmentation predominates. Those algo-
rithms that used the minimum-width subpool (i.e.,
one doubleword) below the boundary were superior

In a buddy system, storage is
allocated in subpools of varying

size.

~~

in terms of memory efficiency (within this class of
algorithm) on the two largest systems (FRKVMI and
YKTVMV). The fact that their efficiency increased with
system size is an indication that internal fragmenta-
tion becomes increasingly important as the number
of blocks in use increases.

On systems that extend frequently, the fact that
extended blocks are ordered on the front of the free
list impacts the performance of any algorithm (such
as extended subpooling) that is an extension of the
standard VM/SP algorithm. This is because of the
preference for items within the dedicated free-storage
block (i.e., nonextended) when the free list is
searched (see earlier discussion on background).
Therefore, the simulation of one of the best extended
subpooling algorithms was modified so that two free
lists were maintained: one each for extended and
nonextended blocks. In addition, the size of the
largest block on each free list and the number of
these on the free list was maintained. In this way,
the search of a free list could be completely avoided
if failure was certain. In addition, first-fit was used
on the extended free list. The results indicated sig-
nificant further improvement of the speed of these
algorithms on the larger systems. On YKTVMV the 1/
32 strategy with two free lists had one-half the search
overhead of the “standard” 1/32 with essentially the
same storage efficiency (a difference of less than one
page). On FRKVMl the search overhead was slightly
less than one-half, and four additional pages were
required (an increase of less than one percent).

Finally, the effect of splitting a block from a larger
subpool to satisfy a request for an empty, smaller
subpool if the system would otherwise have to extend
was studied. This was being done in the standard

IEM SYSTEMS JOURNAL, VOL 23, NO 1, 1984

VM/SP algorithm. The simulation results indicated
that this splitting was not worthwhile as it resulted
in slightly less speed and storage efficiency because
of increased external fragmentation. With the I /32
strategy and the YKTVMV parameters, the overhead
increased to 5.5 items inspected per request (from
4.8), and the number of extended pages increased to
77 (from 75). Attempts to improve this outcome by
setting a minimum size on the fragment left by the
split were unsuccessful.

Buddy systems. In a buddy system, storage is allo-
cated in subpools of varying size (e.g., powers-of-two
in the binary buddy system). Initially all storage is
allocated in the largest subpool or in a large contig-
uous block separate from the subpools. All requests
are rounded up to the nearest subpool boundary. If
a requested subpool is empty, the next larger subpool
is checked, and if it is not empty, a block is taken
and split into buddies, one of which is used to satisfy
the initial request. If the next larger subpool is empty,
the search/split logic is applied recursively until the
request is satisfied. Upon release, if the buddy of the
block is available (i.e., not in use), they are joined
and placed in the larger subpool. This joining con-
tinues until the largest size is reached or a buddy is
found to be in use.

In the binary buddy system, buddies are always the
same size. In other buddy systems such as the Fibon-
acci and generalized Fibonacci, this is not the case.
This inequality not only tends to complicate the
algorithm, but, as the simulations demonstrated, it
can also increase the external fragmentation. In non-
binary systems, an active subpool with long hold
times can cause frequent splitting of its neighbor into
its own size and a potentially unpopular size. This
combination will build up large unusable subpool
inventories and reduce the storage efficiency of the
system. We call this the “sawdust phenomenon.”

Buddy systems were among the fastest strategies that
we studied, all of them having close to the minimum
search overhead. The following buddy systems were
simulated.

Binary buddy with tags. Knuth’ recommends a
“tagged” buddy system in which a tag field is kept
with each block of storage. This tag field indicates
whether the block of storage is in use or free. When
a block is returned, one need only check the tag of
the proper adjacent block of storage to decide if the
buddy is free. In V M ~ P the tag requires an additional
doubleword for each block since storage is given out

BOZMAN ET AL. 55

Table 5 Modified Fibonacci buddy characteristics

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

8 1 2 3 4 5 7 10 14 19 26 36 50 69 95 131 181 250 345 476 512

s l * 1 1 1 2 3 4 5 6 7 8 9 1 0 1 1 12 13 14 15 16 1 1
sh * 1 2 3 4 5 6 7 8 9 10 1 1 12 13 14 15 16 17 18 19
j l * 1 1 1 2 3 4 5 6 7 8 9 1 0 1 1 12 13 14 15 1 1 *
jh * 5 6 7 8 9 10 1 1 12 13 14 15 16 17 18 * * * * *

*means that the particular case could not happen.

in doubleword units. The increased storage require-
ments caused by this situation might not be as severe
on other systems with a smaller storage granularity.

Binary buddy without tags. This algorithm was the
same as above except that tags were not used, and
therefore, on release a search had to be made for the
buddy. The increased storage efficiency was notable
on the large systems. However, in our opinion, this
improvement was more than offset by the increased
search overhead on returns.

Modified Fibonacci buddy. The Fibonacci buddy
systems were recommended’ as a possible solution
to the internal fragmentation characteristics of the
binary buddy. We attempted to tailor the Fibonacci
buddy system to our distributions by using a modi-
fied Fibonacci sequencez0 as follows:

F(1) = 1
F(2) = 1
F(3) = 1
F(4) = 1
F(5) = 1
F(n) = F(n - 1) + F(n - 4) (approximately)

Since the first five terms of this sequence are the
same size, they are combined into one subpool.
Some adjustment is necessary to make the subpool
sizes come out so that the largest subpool is one page
(5 12 doublewords). Table 5 was used in determining
how to split and join subpools. In this table “n” is
the subpool number, “s” is the number of double-
words in the subpool, “sl” is the subpool in which to
place the lower buddy at split time, “sh” is the
subpool in which to place the upper buddy at split
time, ‘31’’ is the subpool to search for the lower buddy
at join time, and “jh” is the subpool to search for
the upper buddy at join time.

This modified Fibonacci buddy gave mixed results.
On the largest system, YKTVMV, it was significantly

56 BOZMAN ET AL

superior to both forms of the binary buddy. The
“sawdust phenomenon’’ was evident with the

reason this strategy did not perform as well there as
at YKTVMV. We think that this lack of robustness of
the Fibonacci buddy systems could be a significant
problem in an operating system with control block
structures that change as frequently as those in VMI
SP. On systems with a fixed, well-defined storage
request distribution, it might be possible to “tune”
the modified Fibonacci systems to give good storage
efficiency combined with low CPU overhead. But a
simpler subpooling algorithm will probably give
comparable results with less complexity and more
robustness.

Better-fit and leftmost-fit. After this study was com-
pleted, C . J. Stephenson informed us of two new
algorithms, better-fit and leftmost-fit, that he had
devised using a “Cartesian” tree. A detailed descrip-
tion of Cartesian trees and the storage allocation
strategies based on them is in Stephenson.26 When
used for storage allocation, a Cartesian tree has the
following properties for any node S :

1. Addresses of left descendants (if any) < address

2. Length of left son (if any) 5 length of S 2 length

FRKVMl and CAMBRIDG distributions and was the

of S > address of right descendants (if any)

of right son (if any)

Figure I is an example of a Cartesian tree as it might
appear in a dynamic storage allocation application.
For descriptive purposes, each node contains a tuple
of the form a,s where

a = address of storage block
s = size of storage block

(Stephenson points out that in practice it is often
preferable to have the size of each node contained
in its parent, i.e., in the same place as its address.)
The “anchor” or head of the free-storage list points
to the root (103,14) of this tree.

IBM SYSTEMS JOURNAL, VOL 23, NO 1, 1984

Figure 1 Example of a Cartesian tree used for dynamic storage allocation

R

The better-fit strategy selects a node by descending
the tree, from the root, so that at each decision point
the better-fitting son is chosen. The descent stops
when both sons are too short or nonexistent.

Leftmost-fit selects the leftmost node of sufficient
length. It is identical to first-fit in terms of the storage
that is allocated.

In order to test these strategies in the VM/SP environ-
ment, simulations were run using the YKTVMV pa-
rameters. Stephenson provided the algorithms that
were then adapted to the Pascal simulator. The al-
gorithms were not written specifically for the VM/SP
environment and therefore were given sufficient stor-
age to avoid extending. We also ran best-fit in a
nonextend mode so that the difference between the
extend and nonextend modes would be measured.

Initial simulation results indicated that leftmost-fit
performed well but that better-fit suffered from se-
vere external fragmentation. The three strategies
(best-fit, better-fit, and leftmost-fit) were then modi-
fied so that, after the simulation had stabilized, the

fragment size left after satisfying a request was
counted by size. The results are given in Table 6 . It
is clear that the “winning” node in better-fit causes
more fragmentation than in best-fit or leftmost-fit.
The VM/SP distribution seems to be almost as patho-
logical for this strategy as for modified first-fit. Ste-
phenson has found that better-fit works well with
other distributions, and therefore it is of potential
interest in applications.

The relative speed of leftmost-fit makes this algo-
rithm a good strategy to use “behind” subpooling. If
this were done in VMISP, for example, the extended
subpooling strategies would all have mean-items-
visited values that are less than 2.0. Perhaps more
important for machines with a cache, leftmost-fit
disturbs the cache significantly less than the tradi-
tional linked-list strategies.

System results

Before the simulation study was completed, the uni-
form-4-wide algorithm was run for two months on
FRKVMI and subsequently for a shorter period on

IBM SYSTEMS JOURNAL, VOL 23, NO 1. 1984

Table 6 Fragments left by best-fit, better-fit, and leftmost-fit
(YKNMV distribution)

Size of Cumulative Oh of Total Fragments
Fragment Left

Best-Fit Better-Fit First-Fit and
Leftmost-Fit

0
1
2
3
4
5
6
7
8
9

10
20
30
40
50
60
70
80
90

100
200
300
400
500

88.774
93.735
95.586
96.734
97.590
98.060
98.329
98.562
98.789
98.961
99.069
99.532
99.675
99.750
99.777
99.796
99.810

. 99.819
99.827
99.832
99.900
99.939
99.946
99.954

49.278 65.354
62.687 77.00 1
68.550 82.890
72.310 86.692
75.357 89.595
77.858 91.720
79.676 93.229
8 1.308 94.596
82.769 95.542
84.687 96.350
86.961 96.158
93.026 98.073
95.725 98.51 1
97.224 98.816
98.113 98.980
98.731 99.096
99.090 99.200
99.333 99.272
99.506 99.333
99.628 99.383
99.950 99.647
99.980 99.799
99.986 99.850
99.993 99.886

Table 7 Standard VM/370 versus 2/32 at YKNMV

Base Modified Percent
System System Improvement

System CPU 82.8 78.2
Problem CPU 67.8

5.6 reduction
74.8 10.3 increase

System/prob I .22 1 1.045 14.4 decrease
Free lock spin 1.1 0.1
(percent of elapsed time)
free lock hold 14.8 4.5 69.6 decrease
(percent of elapsed time)

YKTVMV. After the advantages of two-level subpool-
ing became evident, it was replaced with the 2/32
algorithm (i.e., two-doubleword-wide subpools up to
the 128-doubleword boundary and then 32-double-
word-wide subpools for those sizes above this bound-
ary) on both systems. This replacement gave us an
opportunity to test the predictive ability of the sim-
ulator with two algorithms.

Hardware and software monitoring at Franklin
Lakes and Yorktown Heights indicated a reduction
in the supervisor state CPU utilization to 4-5 percent
from the previous 15-20 percent for both of these

58 BOZMAN ET AL.

algorithms. At F R K v M l the subpool hit ratios were
monitored from 8:30 AM to 4:30 PM (the period of
heaviest daily activity) and found to be consistently
within +/- 0.00 1 of the predicted values on a daily
basis.

The simulation results indicated that on F R K v M i the
2/32 algorithm would require 0.974 of the storage
needed by uniform-4 wide. The observed value was
0.973. This comparison was not made on YKTVMV
because the uniform-4 algorithm was run with a free-
storage “trap” (a method of “trapping” dynamic
storage release violations by appending extra storage
containing size and requestor information to each
request) which was not used with 2/32.

At YKTVMV a comparison was made of the standard
VM/SP algorithm with 2/32. Evaluation was done by
comparing software monitor data from the same
hour of the same day of the week for the base and
modified systems. The results are shown in Table 7.

The most valid measure of the overall value is the
10.3 percent increase in virtual time. The 5.6 percent
reduction in supervisor time understates the value of
the change. The decreased supervisor time allows
more virtual time, which in turn increases supervisor
time because of services required.

The 2/32 strategy results in free-storage management
being reduced from 14.8 percent to 4.5 percent of
elapsed time. This in turn allows about ten percent
more virtual time to be given to the users of the
system.

The System/Prob ratio shows the supervisor time
needed to support one unit of virtual time. Thus,
the supervisor time per unit of useful work has been
reduced by 14.4 percent.

During the study a model was created to relate lock
holding probability to lock spin probability. The
model was useful because the vM/Monitor is able to
report lock spin time, but not lock holding time.
Lock holding is another way to measure the time
spent doing free-storage management, because that
is the only use of the lock.

The simulator predicted that the 2/32 strategy would
require 0.6 percent more storage than standard VM/
SP on YKTVMV. During the period of the test at
YKTVMV, the 2/32 strategy used an average of 0.6
percent less storage than standard VM/SP. This result
(combined with the F R K v M l results) is evidence that

IBM SYSTEMS JOURNAL, VOL 23, NO 1, 1984

Figure 2 Subpool hit ratio as a function of subpool release time threshold at FRKVMl

f

0.995 1

X
X

X x x x x x
x x x x

X X X X
X X x x X

X x x x x x
X X X

X x x X X
x x X

X X

0 .994 - X X

X

X X X

X

0 .993 ~ X
X

0. 992 ~

X

0 .991 -

T H R E S H O L D I N S E C O N D S

this method of simulation can predict the relative
storage efficiency of allocation strategies with reason-
able accuracy.

Finally, the speed-storage tradeoff involved in the
subpool release time threshold was studied. This time
was used as the age criterion for removing blocks
from the subpools whenever a user logged off (except
that all extended blocks were always removed). After
the 2/32 algorithm was installed on FRKvM1, the
time threshold was varied and plotted to show the
relationship to the subpool hit ratio and the mean
number of pages required per user [= (dedicated
pages + mean extended pages)/(mean number of
logged-on users)]. The results are shown in Figures
2 and 3. Each point on the graph is one day’s
observation. Note that although the range of subpool
hit ratios is narrow, the simulation study indicated
that very small changes in the hit ratio adversely
affected the mean search overhead due to the size of

the free list. It is apparent that the subpool hit ratio
is affected by the release threshold. The correlation
coefficient is 0.76. However, storage efficiency does
not appear to have any relationship to this threshold
over the time range studied: the correlation coeffi-
cient is -0.08.

The simulation study indicated that large threshold
values will result in serious external fragmentation
in the form of large subpool inventories. Also, it was
observed that hardware and load anomalies occa-
sionally cause a transient demand surge for a specific
storage size (e.g., the storage associated with an I/O
event), and large threshold values hinder the ability
of the system to reuse this storage. This observation
suggests that the threshold should be set at the point
where the subpool hit ratio starts to flatten out. Such
a setting results in very low search overhead and still
allows the system to recover from demand surges in
a reasonable amount of time.

IBM SYSTEMS JOURNAL, VOL 23, NO 1 , 1984 EOZMAN ET AL 59

Figure 3 Mean storage per logged user as a function of subpool release time threshold at FRKVMl

2. 9

2 . 8

2. 7

2. G

2. 5

2. 4

M E R N P A G E S PER U S E R

0

0
0

0
0 0

0

0 0 0
0

I I I I I I
10 2 0 30 40 5 0 G O

m
70 80

Conclusions

Empirical results indicate that simplifying distribu-
tion assumptions about interarrival and holding
times based on estimated means can be used with
high predictive ability in the simulation of dynamic
storage systems. The traditional best-fit and first-fit
strategies, which are based on the searching of a
linked list of available blocks, are too slow for large
systems with the dynamic storage characteristics of
VMISP. The standard VM/SP algorithm was found to
have high search overhead on the larger systems.
Indeed, there is evidence that this search overhead
increases approximately in relation to the square of
the relative system capacity. The buddy systems,
which have been popular in the recent literature,
were among the fastest strategies studied, though
severely handicapped by storage inefficiency. An ex-
tended subpooling strategy was described that is as

0

0 0
0

0 0 0 0

0 0 0
0 0

0

0
0

THRESHOLD I N S E C O N D S
/

1 I I I 1 I

0

0

-

9 0 1 0 0 1 1 0 1 2 0 1 3 0 1 4 0 1 5 0 1 6 0

fast as the buddy systems with superior storage effi-
ciency.

As a result of this study, a generalized two-level
subpooling algorithm (nominally 2/32) was incor-
porated in Release 2 of the HPO (High Performance
Option) for VM/SP.

Acknowledgment

The authors thank C. J. Stephenson for many helpful
discussions and several key contributions in the
study of the traditional (first-fit and best-fit) free-
storage algorithms. We thank Joe Reardon of the
IBM Cambridge Scientific Center for his assistance in
getting parameters from their system. Lastly, we are
indebted to the anonymous referees whose sugges-
tions have improved the paper.

60 BOZMAN ET AL IBM SYSTEMS JOURNAL, VOL 23. NO 1. 1984

Appendix: System dynamic storage parameters
Table 8 FRKVM1 parameters (Interarrival and holding times in seconds)

1
Size

1
2

4
3

6
5

8
7

9
I O
I 1
12
13
14

16
15

17
18
19
20

22
21

23
24
25
26
27
28
29
30

32
31

33
34
35
36
37
38

40
39

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

60
59

61
62

64
63

65
66

~

IAT
0.320
0.0655

0.305
0.307

0.625
0.208
0.0326
1.127

0.00282
0.003 12

0.00631
0.0165
0.698
0.253
0.491
0.225
0.387
0.0475
0.198
0.278
6.459

10.305
5.047

0. I87

20.000
1.346

67.500
1.422
0.579

12.108
0.554

23.894
51.923
87.097
24.545

81.818
0.232

21.774
0.294

0.319
28.723

28.421
39. I30

34.6 I5
33.750
103.846
3.121
41.538
34.6 I5
30.000
27.835
31.765

65.854
30.337

26.471

41.538
2.970

67.500
0.320

27.551
32.530

35.526
19.853

33.750
3.277
61.364

HT
258.425

920.525
125.260

320.293
277.229
165.560
14.890
144.338
0.343
0.158
0.395
1.678
0.877
1.877
35.754
671.280
4.986
4.480
8.426
77.406
6.459
0.0 I O
12.706
743.065
125.637

0.010
0.010
0.047
0.058
45.978
540.8 I I

0.010
0.010

532.096
0.010

0.010
2.110

1000.655
0.082

2.660

161.726
0.316

0.010

241.515
0.010

530.186
0.010

0.010
0.381

543.330
1.225
1.398
0.334

40.871
2.173

0.457
0.131

0.010
0.743
7 I ,027
0.010

0.010
0.437

19.552
0.371

0.010

Size IAT
67 29.671
68 38.029
69 36.000
70 45.000
71 45.763
72 49.091
73 27.836
74 4.259
75 22.500
76 36.487
77 23.077
78 48.215

80 4.624
79 22.500

81 31.765
82 43.549
83 3.431
84 5.745

86 39.706
85 41.539

87 36.987
88 21.600

90 45.000
89 25.715

91 44.263
92 0.616
93 30.000

95 61.364
94 25.472

96 36.987
97 29.348
98 48.215
99 1.193

1 0 0 36.987
101 8.971
102 36.987
103 33.750
104 15.607
105 23.077
106 14.063
107 27.552
108 34.178
109 40.299
110 5.649
I l l 43.549
I12 31.035
113 31.035
114 45.763
I15 36.987
116 33.334
117 16.266
118 39.706

120 25.000
119 9.061

121 54.000
122 24.546
123 40.299
124 48.215
125 24.771
126 22.500

128 4.937
127 18.494

129 44.263
130 12.386
131 20.770
132 56.250

HT Size IAT KT Size IAT HT

0.837
0.653

435.015
0.396

0.504
0.540
0.919

233.505
0.094

0.010
0.254
0.010

25.738
0.743

0.010
0.480

1632.512
0.151

60.937

0.814
1.311

0.010

103.995
0.283

0.055
0.010

0.330
0.28 I
10.248

0.323
1.221

0.010

75.194
0.027

0.297
0.407

65.550
0.372

0.508
0.155
0.304
0.010

0.379
0.010

1.438
0.010
0.683
0.504

0.010
0.407

465.360
0.874
0.299
0.550
1.188
0.810
0.887

0.545
1.592

0.990

0.109
0.814

374.310
0.010

1.392
1.857

133
134
135
I36
I37
138
139
I40
141
I42
143

145
I44

I46
147
I48
149
150
151
I52
153
I54
155

157
156

158
159
I 60
161
162
163
164
165
166
167

I69
168

170
171
I72
173

175
I74

176
177
178
I79

181
I80

182
183
I84
185

187
I86

188
I89
I90
191

193
192

194
195
I96
197
198

42.858
42.858
35.065
42.858

48.215
0.565

41.539

49.091
34.178

35.527

25.715
18.000

40.910
38.029
38.029
40.910
32.927

71.053
36.000

84.375
31.396
29.671
40.910

45.000
22.1 32

44.263
41.539

20.931
50.944

61.364
52.942

44.263
50.000

57.447
77.143
84.375
21.775
41.539
60.000
36.487

42.858
54.000

93.104
57.447

158.824
87.097

84.375
75.000
62.791
33.750

64.286
39.706

71.053
84.375
112.500
50.000
56.250
64.286
96.429
42.858
58.696
61.364
33.750

135.000
142.106

108.000

0.943
1.415

343.25 I
1.415
0. IO7
0.531
0.914
1.128

24 1.086
1.990

637.992
0.566
1.350
0.837
0.837

0.725
1.800

2.412
0.782
1.857
0.691
1.306

4 17.040
1.800

1.485
1.948
0.914
54.357
0.231
1.748
2.025
0.550
1.948

2.546
3.218

1.857
518.226
0.457

36.487
0.660

1.188
0.010
0.010
2.528
1.917
0.010
5.654
3.300

605.239
1.382

0.437

0.782
1.415

0.010

0.010
3.7 13

1.238
0.708
1 . 0 6 1
0.472
0.646
0.010

446.614
4.690

0.010
1.485

200 61.364
199 122.728

201 64.286

203 50.000
202 51.924

204 25.472
205 I 0 0 . o W
206 96.429
207 207.693

209 150.000
208 41.539

210 36.487
21 I 207.693
212 36.987
213 7.827

215 42.188
214 4.252

216 103.847
217 128.572
218 48.215
219 22.690

221 9.061
220 2.594

222 60.000
223 65.854
224 45.763
225 108.000
226 38.029
227 7.606
228 2.306
229 158.824
230 15.607
231 270.000
232 22.132
233 57.447
234 49.091
235 72.973
236 51.924
237 29.033
238 300.000
239 3.948
240 8.518
241 90.000
242 5.379
243 9.408

245 42.858
244 150.000

246 50.944
247 2.971
248 45.000
249 57.447
250 4.405
251 14.674
252 52.942
253 21.952
254 96.429
255 2.622
256 12.108
257 7.989
258 192.858
259 93.104
260 65.854
261 72.973
262 8.360
263 2.316
264 67.500

0.010
1.350
0.010
1.143
0.010
0.010

100.000
3.183
2.285

745.367

1.205
1.650

0.010
0.010
0.087
0.047
0.010
0.010

0.010
0.010

0.500
1.326

140.138
0.010
0.010
0.010
0.010
0.010
0.010
0.077

0.344
0.010

0.010
0.487

544.369
0.010

0.803
0.572
0.010
0.010
0.569
1.610
0.990
0.237
0.207
0.010
0.0 IO
0.010
25.281
0.010
0.010

0.646
1.128

0.010

0.010
0.242

1.340
0.010
0.176
0.010

337.303
0.010

0.010
0.010
0.05 I
0.743

Size IAT
265 270.000
266 16.072
267 385.715
268 31.396
269 207.693
270 450.000
271 142.106
272 122.728

274 2700.000
273 60.000

276 4.012
277 8.710
278 158.824
279 6.068
280 50.944
281 540.000
282 450.000
283 207.693

285 675.000
284 300.000

286 81.819
287 2700.000
288 4.531
289 540.000
290 675.000
291 540.000
292 540.000
293 2700.000
294 192.858
295 2700.000
296 1350.000
297 2700.000
298 2700.000
299 117.392

301 45.000
300 900.000

302 2700.000
303 2700.000
304 207.693
312 128.572
314 1.790
325 135.000
329 2700.000
333 2700.000
338 142.106
351 135.000
364 135.000
376 29.671
377 135.000
390 142.106
401 7.737
403 142.106
416 150.000
429 207.693
431 4.116
442 245.455
451 0.292
455 300.000
468 337.500
481 10.113
494 900.000
501 2700.000
507 2700.000
509 1 1.490
512 900.000

HT
0.010

0.010
0.354

0.0 IO
0.010
0.010
1.564

60.000
0.010

0.010
0.490
1.647
0.010
0.067

0.010
1.121

0.010
0.010
0.010
0.010

115.446
0.010
1.160
5.940
0.010
0.010
0.010
0.010
0.010
0.010
14.850

0.010
0.010

146.035
0.010
0.010
0.010
0.010
2.285

132.815

48.060
0.120

0.010
0.010
96.348

0.010
2.970

0.327

0.010
1.485

108.995
0.086

1305.000
990.070
0.23 I

1161.737
0.163

1019.925
563.400

1479.600
22.925

9871.200
0.010

5799.600
0.253

IBM SYSTEMS JOURNAL, VOL 23, NO 1. 1984 BOZMAN ET AL 61

Table 9 YKTVMV parameters

Size
I
2

4
3

5
6
7
8
9

10
I I
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

40
39

41
42
43
44
45
46
47
48
49
50
5 1
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

~

IAT HT ~ _ _ _ _ _
0.111 235.1 14
0.07 I
0.146
0.160
0.257
0.089
0.029
0.369
0.08 I
0.001 57
0.00655
0.041
0.296
0.423
0.080
0.420
0.153
0.299
0.109

11.321
0. 194

16.438
8.824

0.284

6.883
5.136

6.486

0.406
5.070

1.479
0.038

22.086
34.61 5

45.000
0.372

20. I12
1.468
0.582

64.286
16.514

48.649
61.017

63.158
50.000

55.385
52.174

17.648
0.956

27.693
29.033
38.298
67.925
80.000

133.334
42.353

60.000
1.930

22.642
45.570
40.450
24. I62

5 1.429
0.149

67.925
1.311

58.065
92.308
94.737
29.269
27.907
85.715
26.667
9.891

273.841
162.205

869.713
36.054

199.510
2 1.422

186.698
36.310
4.742
0.089

16.623
I .230

13.527
4.119

1240.163
11.882
63.398
4.506

3 1.643
51.317

69.32 I
17.938

3044.506
583.533

0.010
0.538
0.0 I O
0.034

162.055
16.163
2.873
0.729

81.556
0.010

100.901
1.639
0.029

3397.707
1842.879

0.0 10

50.000
2.014

1.074
1047.711

0.010
245.050

12862.935
384.453
167.429

0.65 I
3.397
1.360

58.575
0.010

0.033
1.020
0.010
0.010

161.798
0.010
0.325

409.789
55.697

0.010
1.442

0.010
1.570

1.464
29.777

162.214
1.458

5212.751

Size
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

100
99

101
I02
103
I04
105
I06
107
108
109
1 IO
I l l
112
113
1 I4
115
I I6
I I7
I18
I I9
I20
121
122
123
124
125
126
127
128
I29
I30
131
I32
I33
134
135
136
137
138
I39
I40
141
142
143
I44
I45
I46

~

IAT
~

1.521

109.091
56.250

65.455
65.455
50.705
45.570
30.253
59.017

1.209

40.450
5 1.429

44.445

120.000
94.737

48.000
23.842
85.715
0.880

I20.000

78.261
52.942

50.705
31.579

24. I62
87.805

42.353

53.732
2.488

53.732
41.861
69.23 I
92.308
48.649
33.645
52.942
6.197

102.858
63.158
64.286
80.000

100.000
40.000
40.000
33.963

29.509
5.599

67.925

64.286
59.017

52.174
81.819
45.570
31.859

2 I .053
2.4 I8

44.445
6.991

80.000

116.129
63.158

76.596
81.819
0. I92

60.000
36.735

27.273
46.154
41.861

102.858
90.000

73.470
0.680

HT
0.077
0.010
0.010
0.010
0.010

204.49 1
94.922

992.784
0.010
0.122
0.010
2.023
3.689
3.127
2.040

2175.902
0.816

0.010
0.044

0.900
2.040

0.010
5.244

0.010
2.622

1793.163
43.073
0.207
0.914
0.914
0.712

0.010
3.462

1635.712
0.828

0.900
0.106
1.749
1.074
1.093

100.000
1.360

0.010
2264.680

0.578
0.185
0.502
2.242
1.948
1.093
0.010

2425.079
1.391

0.201
1.052

0.010
0.469

0.010
1.467

I .074

3658.749
0.010

0.010
0.058
0.625
0.010
0.900
0.785
0.010

2 l69.W
1.749

0.012
0.010

~

-

e
147
I48
I49
I50
151
I52
153
I54
155
156
157
158
159
160
161
162
163
I64
165
I66
167
168
169
170
171
172
173
I74
175
I76
177
178
179
180
181
182
183
184
185
I86
I87
I88
I89
I90
191
192
193
I94
195
196
197
198
199
200
20 1
202
203
204
205
206
207
208
209
210
21 1
212
213
214
215
216
217
218
219

IAT HT Size
36.000
43.374
25.532
35.644
35.644
25.532

31.579
8.675

70.589

43.903
92.308

92.308
67.925

37.114
1.117

43.903
62.069
72.000
29.269
92.308

120.000
105.883
133.334
50.705

102.858
5 1.429

5 1.429
45.000
29.509
54.546
48.649
61.017

105.883
73.470

163.637
76.596

144.000
62.069

156.522
87.805
73.470
35.644

144.000
102.858
80.000
87.805

133.334
150.000
87.805

45.570
19.673

94.737
54.546
55.385

225.000
50.000

171.429
120.000

257.143
150.000

156.522
65.455

25.900
39.561
62.069
76.596

1.995

276.923
36.735

90.000
138.462
37.1 14
4.206

0.010
0.010
0.010
0.606
0.010
0.010

155.278
0.010
I .200
0.010
0.747
0.010
1.155
1.136

395.869
0.010

0.010
0.010
0.498

92.308
0.010
0.010
0.010
1.674

612.875
0.010
0.010
0.010
0.010
0.928
0.010
0.010

383.290
0.010

0.010
0.010
0.010

0.010
1.056

1.493
1.249
0.010

1000.800
0.010
1.360
0.010
0.010
0.010
0.010
0.010

552.600
0.010

0.010
0.010
0.010
0.010
0.010
0.010

300.000
0.010

363.273
0.010
0.010
0.010
0.010
0.010
0.234
0.010

361.530
0.010

0.010
0.010
0.072

220
22 I
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
24 I
242
243
244
245
246
247
248
249
250
25 I
252
253
254
255
256
257
258
259
260
26 I
262
263
264
265
266
267
268
269
270
27 1
272
273
274
275
276
277
278
279
280
28 I
282
283
284
285
286
287
288
289
290
29 I
292

IAT

0.583
3.282

2.215

2 1 1.765
76.596

21 1.765
73.470
36.000
6.041
9.231

30.000
50.000

124.138
25.532

90.000
55.385

49.3 16
75.000
16.290
3.472

15.063
47.369
21.053
64.286
70.589
54.546
47.369

1.822

60.000
26.667

8.552
102.858
45.000
37.1 14

0.788
3.766

0.85 I
7.469

83.721

21 1.765
72.000

67.925
83.721

171.429
13.954

11.689
32.143
50.705

257.143
29.509

163.637
240.000

80.000

128.572
53.732

16.745

15.190
3.374

257.143
327.273
63.158

360.000
100.000
133.334
109.091
36.735
28.800

102.858
87.805
4.187

211.765
180.000

120.000

~

HT
5.579
0.156
0.149
0.010
0.010

21 1.765
0.010
0.010
0.200
0.157
0.510
0.010
0.010
0.010
0.010
0.010
0.839
0.010
0.277
0.289
0.498
0.010
0.010

64.286
0.010
0.010
2.369
0.214
0.454
0.010
3.139
0.010

45.000
0.010
3.326
0.289
0.228
0.010
0.010
0.010
0.010

118.868
0.010
0.010
5.658
0.386
0.547
0.010
0.010

204.546
0.010

0.010
0.010

0.010
1.774

0.285
0.281
0.502
0.010
0.010
0.010
0.010
0.0 IO
0.010
1.855
0.010
0.490
0.010
0.010

0.010
1.466

0.010
0.010

~

Size IAT HT
293
294
295
296
297
298
299
300
30 I
302
303
304
305
306
307
308
309
310
311
312
314
315
316
317
318
319
320
321
322
323
327
328
329
330
331
332
333
334
335
336
337
338
339
340
342
345
346
347
348
350
352
353
355
356
360
36 I
362
364
365
366
367
370
377
382
4 0 1
431
45 I
48 I
483
50 I
512

I7 I .429

514.286
124.138

211.765
240.000
112.500
360.000
I7 1.429

240.000
26.278

720.000
257.143

276.923
81.819

300.000
163.637

257.143
327.273
257.143
514.286

1800.000
3.232

1800.000
600.000

600.000
240.000

3600.000
900.000

1200.000
100.000

3600.000
600.000
600.000
600.000
450.000
900.000

1200.000
276.923

900.000
720.000

3600.000
360.000

3600.000
1200.000

3600.000
3600.000
240.000

52.942
3600.000

94.737
1800.000
900.000

3600.000
720.000

3600.000
1800.000

3600.000
3600.000
3600.000
360.000

1800.000
105.883
720.000
900.000

5 14.286
52.174

2.755

18.368
0.38 I

2.757
5.715

0.010
0.010
0.010
0.010

240.000
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010

1800.000
0.055

0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.0 I O
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010

I800.000
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.138
0.032
0.607
0.010

22.955

62 EOZMAN ET AL IBM SYSTEMS JOURNAL, VOL 23. NO 1, 1984

able 10 CAMBRIDG parameters

Sire IAT HT Size IAT HT Size IAT
I
2
3
4
5
6
7
8
9

I I
IO

12
13
14
15
16
17
18

20
19

21
22
23

25
24

26
27
28
29

31
30

32
33

35
34

36
37
38

40
39

41

43
42

45
46
47
48
49
50
5 1
52
53
54
55

0.471
1.031

2.200
2.007
3.830
1.297
0.203
4.640
0.500
0.00673
0.053
0.124
0.998
4.450
3.258
1.685
2.162
7.332
5.547
2.218

225.000
31.579

62.069

16.438
1.905

211.765
59.017
14.575
6.040
9.575
0.806

360.000
189.474

257.143

189.474
11.356

5.210
2.824
90.000
156.522
450.000
124.138

720.000
163.636

138.462
6. I54

I7 1.429

200.000
17 1.429

128.572
I50.000
450.000
5 14.286
156.522

33.633
52.478
208.516
42.608

1505.938
255.006
12.464
41.442
19.587
0.29 I
0.35 I
8.233
1.231

1862.388
20.617

42.703
7.889

35.040
5.499

8.937
1.923

0.010
1438.944
830.666
189.863
0.010
0.010
0.48 I
0.405

242.876
14.278
0.010
0.010

283.344
0.010

2542.168
0.089
0.048

988.748
340.470

0.010
0.010

2543.760
0.010

0.010
0.010

5 14.286
0.010

60.000
0.0 IO
0.010
0.010
0.010
0.010

57
58
59
60
61

65
62

66
68
69
70
71
72
73
14

78
76

79
80
83
84
85
86
87
88

90
89

92
95
96
97
98

100
99

101
I04
105
106
107
108
I09

I l l
I IO

I12
I I5
I I7
I18
I I9
I20
121
I26
128
129
I30

600.000
189.474

276.924
128.572

276.924

13.044
2.581

400.000
257.143
83.721
400.000
400.000
300.000
225.000
14.635

400.000
900.000

257.143
150.000
7.244

300.000
720.000
327.273

276.924
600.000

189.474
163.637
10.170
600.000
180.000

720.000
150.000

5 14.286
189.474

360.000
21.687

400.000
300.000
I7 1.429
18O.Ooo
900.000
13.900
450.000
900.000
600.000
514.286
360.000
34.952
900.000
600.000
276.924
12.414
450.000

5 1.429

600.000
0.010
0.010
0.010
4.708

24.783
0.044

0.010

3692.091
0.010

233.200
0.010
0.010
0.010

3615.300
0.010

0.010
0.010

4.950
0.124
0.010
0.010
0.010
0.010
4.708
3.222

1270.964
0.010
0.010
0.010
2.550

997.958
0.010

514.286
0.369
0.010
0.010
5.100
2.9 I5

909.000
0.010
0.010
0.010
0.010
10.200

1996.972
0.010
0.010
0.010
0.010

1998.554
0.212
0.010
0.010

132 360.000
135 900.000
137 1.177
139 92.308
I40 156.522

143 720.000
141 257.143

146 300.000
147 514.286

IS0 600.000
149 900.000

151 900.000
153 50.000
154 450.000
155 900.000
158 450.000
160 3.013

164 97.298
161 720.000

165 150.000
170 720.000
171 120.000
172 900.000
176 600.000
177 900.000
181 450.000
182 900.000
184 450.000
185 450.000
186 180.000
187 514.286
188 360.000
192 720.000
193 900.000

200 300.000
199 300.000

202 720.000
204 600.000
211 400.000
212 240.000
214 327.273
216 720.000
217 189.474

219 200.000
218 360.000

220 40.910
221 78.261

223 514.286
222 13.187

225 600.000
227 600.000

230 900.000
228 900.000

231 80.000

KT
0.010

3480.300
0.039
0.010
0.010
0.010
0.010
0.010
0.0 IO
0.010
0.010
15.300
0.010
0.010
0.010
0.010
3.013
0.010
0.010
0.010
0.010

240.000
0.010
0.0 IO
0.010
0.010
0.010
0.0 IO
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010

0.010
3.396

0.010
0.010
0.010
0.010
0.010
0.010
1.360

Cited references

1. G. 0. Collins, “Experience in automatic storage allocation,’’
Communications of the ACM 4, No. 10, 436-440 (October
196 1).

2. J. K. Iliffe and J. G. Jodeit, “A dynamic storage allocation
scheme,” Computer Journal 5,200-209 (1962).

3. K. C. Knowlton, “A fast storage allocator,” Communications
of theACM8, No. 10, 623-625 (October 1965).

4. K. C. Knowlton, “A programmer’s description of L6,” Com-
munications of the ACM 9, No. 8, 616-625 (August 1966).

5 . H. M. Markowitz, B. Hausner, and H. W. Karr, SIM-
SCRIPT-A Simulation Programming Language, Prentice-
Hall, Inc., Englewood Cliffs, NJ (1 963).

6. D. T. Ross, “The AED free storage package,” Communications
of the ACM 10, No. 8,48 1-492 (August 1967).

7 . B. Randell, “A note on storage fragmentation and program
segmentation,” Communications of the ACM 12, No. 7, 365-
372 (1969).

Size

236
234

237
238

242
239

243
244
246
247
248
249
250
25 I

253
252

254
255

257
256

259
260

264
263

266
267

272
268

273
274

276
275

279
280

285
28 1

286
287
288
293
294
30 1
304
314

338
315

349

412
383

416
43 1
435

442
438

-

-

IAT HT Sire IAT HT
514.286 531.258 470 600.000 0.010
720.000
300.000
400.000
144.000
240.000
600.000

327.273
24.000

49.316

900.000
5 14.286

450.000
124.138
600.000
450.000
9.091
40.910
12.245
189.474
900.000
600.000
400.000
900.000
900.000
92.308
900.000
900.000
720.000
450.000
400.000

211.765
144.000

600.000
24.490

900.000
51.429

900.000
400.000
720.000

720.000
720.000

514.286
24.000
720.000

600.000
720.000

600.000
514.286
43.374
65.455

600.000
156.522

109.091

0.010
0.0 IO
0.010
0.010

49.800
0.010

0.010
0.010
0.839
0.010
0.010
0.010
0.010
0.010

14.091
0.0 IO

0.010
3.396

0.010
0.010
0.010
0.010
0.010
0.010

0.010
1.570

0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.875
0.010
0.010
0.010
23.760

0.0 IO
0.010

0.010
0.010

0.010
0.010

0.0 IO
0.010

0.010
0.010

0.010
0.010

0.010
0.010

475 44.445 0.010
481 4.134 0.207
497 156.522 0.010

502 38.710 0.010
501 163.637 0.010

504 109.091 0.010
509 12.766 0.010
512 30.770 0.010

8. D. E. Knuth, The Art of Computer Programming, Volume I:
Fundamental Algorithms, Addison-Wesley Publishing Co.,
Reading, MA (1968), pp. 435-455.

9. J. A. Campbell, “A note on optimal-fit method . . . ,” Com-
puter Journal 14, No. 1 , 7-9 (January 1971).

10. P. W. Purdom, S. M. Stigler, and Tat-ong Cheam, “Statistical
investigation of three storage allocation algorithms,” BIT 11,
187-195 (1971).

11. J. M. Robson, “An estimate of the store size necessary for
dynamic storage allocation,” Journal of the ACM 18, No. 3,
4 16-423 (July 197 1).

12. B. H. Margolin, R. P. Parmelee, and M. Schatzoff, “Analysis
of free-storage algorithms,” IBM Systems Journal 10, No. 4,

13. D. S. Hirschberg, “A class of dynamic memory allocation
algorithms,” Communications of the ACM 16, No. 10, 615-
618 (October 1973).

14. J. S. Fenton and D. W. Payne, “Dynamic storage allocation
of arbitrary sized segments,” Proceedings of IFIP 74, North-
Holland Publishing Co., Amsterdam (1974).

283-304 (1971).

IEM SYSTEMS JOURNAL. VOL 23, NO 1, 1984 BOZMAN ET AL 63

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

K. K. Shen and J. L. Peterson, “A weighted buddy method
for dynamic storage allocation,” Communications of the ACM
17, No. 10, 558-562 (October 1974).
D. L. Russell, “Internal fragmentation in a class of buddy
systems,” Technical Note 54, Digital Systems Lab, Stanford
University (January 1975).
J. E. Shore, “On the external storage-fragmentation produced
by first-fit and best-fit allocation strategies,” Communications
of the ACM 18, No. 8,433-440 (August 1975).
C. Bays, “A comparison of next-fit, first-fit, and best-fit,’’
Communications of the ACM 20, No. 3, 191-192 (March
1977).
B. Cranston and R. Thomas, “A simplified recombination
scheme for the Fibonacci buddy system,” Communications of
the ACM 18, No. 6, 331-332 (June 1975).
H. R. P. Ferguson, “On a generalization of the Fibonacci
numbers useful in memory allocation schema . . . ,” The Fi-
bonacci Quarterly, 233-243 (October 1976).
J. L. Peterson and T. A. Norman, “Buddy systems,” Com-
munications of the ACM20, No. 6,421-431 (June 1977).
IBM Virtual Machine Facility/370 Introduction, GC20-1800,
IBM Corporation; available through IBM branch offices.
J. P. Buzen and P. J. Denning, “Measuring and calculating
queue length distributions,” Computer 13, No. 4, 33-44 (April
1980).
J. D. C. Little, “A proof of the queueing formula L = XW,”
Operations Research 9, 383-387 (196 1).
P. F. Wyman, “Improved event-scanning mechanisms for
discrete event simulations,” Communications of the ACM 18,
No. 6, 350-353 (June 1975).
C. J. Stephenson, “Fast fits-New methods for dynamic stor-
age allocation,” to be published in ACM Transactions on
Computer Systems.

General references

M. J. Bailey, M. P. Barnett, and P. B. Burleson, “Symbol manip-
ulation in FORTRAN-SASP I subroutines,” Communications of
the ACM 7, No. 6,339-346 (June 1964).
A. T. Berztiss, “A note on the storage of strings,” Communications
oftheACM8, No. 8, 512-513 (August 1965).
CMS User’s Guide, GC20-18 19, IBM Corporation; available
through IBM branch offices.

Gerald Bozman IBM Research Division, Thomas J. Watson Re-
search Center, P.O. Box 218, Yorktown Heights, New York 10598.
Mr. Bozman initially joined IBM in 196 1 as a systems engineer in
the White Plains branch office. After leaving IBM in 1965, he
worked on the development of communication and time-sharing
systems. He returned to IBM in 1977 as a systems programmer
with the former Office Products Division in Franklin Lakes, New
Jersey. He is currently a member of the Computer Sciences De-
partment at the Research Center. Mr. Bozman received a B.S. in
English from Columbia University and an MS. in computer and
information science from the New Jersey Institute of Technology.

William Buco IBM Research Division, Thomas J. Watson Re-
search Center, P.O. Box 218, Yorktown Heights, New York 10598.
Mr. Buco is manager of the VM/370 Systems Programming project
at the Research Center. From 1970 to 1974 he worked at the IBM

Cambridge Scientific Center on prototype versions of Discontig-
uous Shared Segments add scheduler extensions for VM/370.
From 1974 to 1977 he worked at the Research Center as a systems
programmer improving the performance and reliability of VM/
370. He has been in his present position since 1977. In 1974 Mr.
Buco received a B.A. in mathematics from Northeastern Univer-
sity and in 1977 an M.A. in computer science from Columbia
University.

Timothy P. Daly IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598. Mr. Daly worked for Unimation, Inc. from 1976 through
1978 as a computer specialist in the field of industrial robots. He
joined IBM in 1978 to work on improving the performance of
VM/370. Currently he is working at the Research Center enhanc-
ing the AML Robot Language. Mr. Daly received his B.S. in
mathematics from Montclair State College and his MS. in com-
puter science from Fairleigh Dickinson University.

William H. Tetzlaff IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598. Mr. Tetzlaff joined the Service Bureau Corporation in
1966. He joined the Research Division of IBM in 1969 and has
done research in the areas of information retrieval and system
performance. He published several papers on that research, and
received an IBM Outstanding Contribution Award for his work
on system performance. He recently completed a temporary as-
signment as a member of the Technical Planning Staff of the
Research Division. Mr. Tetzlaff studied engineering sciences at
Northwestern University and is a graduate of the IBM Systems
Research Institute. He is currently manager of VM Analysis and
Restructure in the Computer Sciences Department of the Research
Division.

Reprint Order No. G321-5209.

64 BOZMAN ET AL IBM SYSTEMS JOURNAL, VOC 23, NO 1. 1984

