
Factors affecting
programmer productivity
during application
development

by A. J. Thadhani

The effects of good computer services on programmer
and project productivity during application program
development are examined. Programmers' terminal
activity and the nature of terminal work are analyzed.
The discussion includes the effects of short response
times, programmers' skills, and program complexity on
productivity.

T he demand for new applications far exceeds the
supply capability of the data processing indus-

try,' thus creating a large backlog of application
programs. Technological advances have significantly
reduced the cost of computer hardware. People costs,
such as those associated with programming, how-
ever, have increased and are far greater than hard-
ware costs. Such costs are a major component of
application development today. Current program
development processes are labor-intensive and re-
quire highly skilled programming expertise. Unless
major breakthroughs occur to significantly increase
programmer productivity, the shortage of program-
ming skills in this decade will severely restrict the
implementation of applications.

Programming can be considered to be still in its
infancy, but the industry offers a wide choice of
tools, techniques, and methodologies that can signifi-
cantly affect the productivity of programmers and
programming projects. Moreover, the application
development process itself is in a state of flux. There
is a search for efficient processes to improve the
quality of application programs as well as the pro-
ductivity of programmers.

Research on ways to improve productivity is focused
in two broad areas. The first is to provide tools and

techniques that increase productivity within the
framework of the conventional program develop-
ment process. The conventional process consists of
the requirements or specification phase, the imple-
mentation phase, and the test and installation phase.
Specific tools and techniques address productivity
improvements in each of these phases. Specification
languages, design aids, structured programming tech-
niques, high-level procedural languages, and debug-
ging aids fall into this category.

The second area is to alter the labor-intensive way
of implementing application programs. Research in
this area includes the use of high-level nonprocedural
languages, i.e., the use of application generators,
prototype methodologies, and languages. These
methods focus on allowing the end user to work with
the analyst in creating the application program or a
prototype without first creating the specifications. A
significant advantage of this process over the conven-
tional one is the reduction in the programming skill
level and resources in implementing application pro-
grams.

Although the above approach appears promising for
long-term improvement in productivity, dramatic
and immediate improvement in productivity is pos-
sible under the conventional approach. In this paper

"Copyright 1984 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 23, NO 1, 19%

Figure 1 Productivity measures

T R S K COMPLETION T I M E

INTERRCTIONS P E R U S E R - H O U R \

QPPLICRTION P R O G R R M

P R O G R R M M E R

T R S K SPECIFIC

I V

we provide empirical data gathered from an appli-
cation development project using the conventional
development process. The interactive patterns of
programmers during the design, code, and unit test
phase, abbreviated as DCUT, are analyzed, and the
effects of good computer services on programmer
productivity and project productivity are discussed.

Productivity measures

Programmers interact with a computer by means of
their terminals to accomplish units of work called
tasks. Programming requires the completion of one
to several thousand tasks. The delivered application
program consists of the program code along with
documentation describing its method of use and aids
to assist in the installation and the maintenance of
the program.

In Figure 1 are shown the scope and measures of
productivity that have been used in the past. These
measures form levels on which the cost and quality
of the program are based. A description of each of
these measures follows.

Interactive user productivity. A terminal user’s work
is defined in terms of the number of interactions
between the user and the system. Interactive user
productivity, a measure of productivity during the

time users interact with the system, has been defined
as interactions per user per hour. A prior statistical
study has established a strong correlation between
system response time and interactive user productiv-
ity.2

Task completion time. Terminal users interact with
the system to accomplish specific tasks defined
within a larger project. For example, implementation
of a program module may be considered a program-
ming task. At the task level, the time to complete a
task is a measure of productivity. In a controlled
experiment, task completion time is shown to be
related to system response time. Results from the
statistical study and the controlled experiment are
summarized in a later section.

Lines of code or function points per programmer-
month. Productivity at the project level can be mea-
sured in terms of shorter schedules, lower cost and
development effort, improved quality, or some com-
bination of these factors. Two measures of produc-
tivity have been used for programmer productivity-
the number of lines of code per programmer-month
and function points per programmer-month.3

Innumerable factors at the application program level
affect productivity. Some of these are software tools,
implementation language, modern programming

20 THADHANI IBM SYSTEMS JOURNAL, VOL 23. NO 1, 1984

Figure 2 Interactive user productivity versus computer
response time for human-intensive interactions

intensive and computer-intensive interactions, and
their dependencies on system response times are

f,
P R O D U C T I V I T Y
l I N T E R R C T I O N S / U S E R / H O U R l

GOO 1
”_

P R O D U C T I V I T Y
I N T E R R C T I V E USER

5 0 0

400

3 0 0

200

__ tiUMHN - I N T E N S
COMPONENT

0 M E R S U R E D O A T R

COMPONENT1
[HUMAN - I N T E N

0

0

l o o 1 0

I VE

S I V E

- 1 C O M P U T E R R E S P O N S E T I M E [S I

I I

I I

1 1

0 1 2 3 4 5

practices, complexity, and programmer and team
~apability.~ In this paper we explore some of these
factors. The productivity of six programmers during
DCUT is compared, and productivity differences due
to skill level are examined. The time spent by a
programmer on individual module implementation
is examined and proposed as a measure of complex-
ity relative to other modules implemented by the
same programmer. These data show that the skill
and experience of the development team and the
complexity of the program are significant factors
affecting programmer and project productivity.

Because of all the factors affecting programmer and
project productivity, it is not possible, in general, to
conduct a controlled experiment with the quality of
computer services being the only difference between
two development projects. To show the effects of
good computer services on programmer productiv-
ity, our methodology focuses instead on the nature
of programmers’ work and programmers’ terminal
session times. The trace of four programmers’ inter-
actions during DCUT is extensively analyzed. Their
activities at the terminal are classified into human-

Interactive user productivity is the
interaction rate between the

terminal user and the system.

~

discussed. But first, we present the results of some
prior studies of the effects of response times on
terminal users’ productivity.

Results of prior studies

Response time and interaction rate. Interactive user
productivity on a terminal was shown to be related
to the system response time, SRT, in an earlier study.*
This relationship is shown in Figure 2. Interactive
user productivity is the interaction rate between the
terminal user and the system and is a measure of
productivity for the period when users are actively
interacting with the system. We found that 95 per-
cent of all user interactions were human-inten-
sive. Human-intensive interactions consume small
amounts of computer resources and complete in
a short period of time. Most edit interactions fall
into this class. Compiles and executes, examples of
computer-intensive interactions, consume larger
amounts of computer resources and complete in a
longer period of time. These data show that interac-
tive users are twice as productive when the computer
response time for human-intensive interactions is
0.25 second instead of 2.0 seconds2

The profound influence that system response time
has on user behavior is observed by Doherty and
Kelisky?

“This phenomenon seems to be related to an
individual’s attention span. The traditional
model of a person thinking after each system
response appears to be inaccurate. Instead, peo-
ple seem to have a sequence of actions in mind,
contained in a short-term mental memory
buffer. Increases in SRT seem to disrupt the

IBM SYSTEMS JOURNAL, VOL 23, NO 1, 1984

Figure 3 Total elapsed time of users versus response time

i T O T A L T A S K T I M E
(M I N U T E S I

175 I/

S Y S T E M S R E S P O N S E T I M E (S E C d N O S I
0

I I I I I
0. 0 0. 5 1 . 0 1 . 5 2 . 0 2.5

thought processes, and this may result in having
to rethink the sequence of actions to be contin-
ued.”

There was a concern about using the count of inter-
actions in a measure of productivity, with no consid-
eration of the complexity or the end results of indi-
vidual interactions. For example, terminal users may
issue few but complex interactions at large response
times and many but simple interactions at short
response times. In both instances, they achieve the
same end result. The study explored computer mea-
sures of complexity, e.g., CPU cycles and the number
of I/O requests per interaction, and found no signifi-
cant change in these within the response time range
of 0.25 second to 3.0 seconds. These data suggested
that the average terminal user did not change the
type of interactions; hence, number of interactions
per user-hour was an appropriate measure of termi-
nal users’ productivity.

Response time and task completion time. These sta-
tistical findings have been confirmed in controlled
experiments with engineers.‘j A common task was

22 THADHANI

defined for several engineers participating in the
study. Their experience level vaned from novice to
expert user. The interaction rates of all users in-
creased dramatically, particularly for response times
under one second. Their elapsed time at the terminal
to complete the task as a function of response time
is shown in Figure 3.

For all the engineers, irrespective of their level of
expertise, it took more than twice as long to complete
the task at a response time of 2.0 seconds than at
0.25 second. The data also show that there was no
significant difference in the number of interactions
to complete the task, and hence, the terminal users
did not change the type of interactions within this
response time range. The conclusion of the study
was that interactions per user-hour and task comple-
tion times are related.

Fast response time is just one component of good
computer services. We define such services to include
24-hour continuous availability, fast response times
to 95 percent of user interactions, response times of
less than one minute to small foreground compiles
and executions, and turnaround times of less than
15 minutes for small batch executions, including the
time to distribute printed output to the user’s bin.

The development environment

The development environment included two com-
puters, one for program development and the other
for testing. The development computer was an IBM
3031 uni-processor running the Virtual Machine/
Conversational Monitor System (VMICMS). All spec-
ification work, design, code, and unit test setup
activity was done on the dedicated development
machine. The utilization of this machine was inten-
tionally kept below 50 percent to ensure good com-
puter services to the developers. Response times to
human-intensive interactions averaged under 0.2
second for more than six months during the period
in which we measured the programmers. Response
times to computer-intensive interactions like com-
piles averaged between 10 seconds and 20 seconds,
varying as a function of program size and system
load.

The test facility was an I B M System/370 Model 158
processor running the Multiple Virtual System op-
erating system with the Time Sharing Option (MVS/
TSO). Unit tests were submitted as batch jobs to the
test facility. The developers shared this computer
and had no preferential treatment over other test

IBM SYSTEMS JOURNAL, VOL 23, NO 1, 1984

groups. A simple interface allowed programmers to
submit jobs from the development machine for ex-
ecution on the test machine. After execution the
results were sent back to the programmer on the
development machine. This turnaround time was
generally less than 15 minutes. The developer either
browsed the results directly at his terminal or re-
quested a hard copy printout for debugging at his
desk. Print turnaround times for hard copy output

The quality of computer services
is one of several factors that

affect programmer and project
productivity.

at the programmer’s bin averaged between 30 min-
utes and one hour. However, all developers had
access to the computer room if they needed faster
access to their printed output.

Project results

The delivered application program has 2 10 000 lines
of pL/I code. We define our measure of lines of code
in a later section. For this discussion it is sufficient
to view a line of code as a unit measure of program-
mer work output. Implementation, from receipt of
the user specifications until shipment of the product,
took 16 months. Development programmer effort
for PL/I and Application Development Facility (ADF)
code was 300 programmer-months. In addition, a
75-person-month effort was spent in test case design
and in the writing and execution of test cases for
function and system test. Function test and system
test were done by the user group. Productivity com-
puted over the entire project, not just during DCUT,
was 700 lines of PL/I code per development program-
mer-month. With the inclusion of the test effort,
productivity was 560 lines of code per person-month.
These achieved productivity rates are significantly
higher than those achieved on similar projects within
IBM.’

ADF code was not included in the count of lines of
code. There were 130 000 lines of ADF code. In

IBM SYSTEMS JOURNAL, VOL 23, NO 1, 1984

addition, there were 160 000 comment lines. Adding
these lines to the PL/I code resulted in half a million
newly developed program statements. If we include
the analysts’ and managers’ time, the project pro-
ductivity was 1050 program statements per project
person-month. The product, when integrated with
prior functions, had approximately three quarters of
a million source statements.

Readers are cautioned against using these absolute
numbers for comparison with their own or other
projects. There are many pitfalls when such compar-
isons are made. We use the absolute values only to
provide the reader with an insight into the project
size.

Costs-dedicated versus central services. The differ-
ences in costs of hardware and associated items
between the dedicated development computer and
central site services were marginal. But the overhead
costs for running the dedicated computer facility
were significantly lower. The lower overhead resulted
because the user population was small and their
requirements on the computer facility were not as
diverse as those at the central site. For example, since
processor utilizations were below 50 percent, no full-
time staff was maintained to tune the performance
of the system. The data processing staff was small,
and third-shift and weekend service was provided
with no operator coverage.

Effect of computer services on programmer produc-
tivity. As stated earlier, the quality of computer
services is one of several factors that affect program-
mer and project prod~ctivity.~ To isolate and under-
stand the effects of computer services on program-
mer productivity, the terminal activity of program-
mers is extensively analyzed. Their terminal work-
load is characterized in terms of human-intensive
and computer-intensive activity. Also, the time they
spend at their terminals during DCUT is measured
and compared with their other activities.

Classification of programmer active times. The work
done at a terminal during DCUT by a programmer
called A is classified into seven groups in each of the
columns shown in Figure 4. Invocations of any
editor such as ESPF, XEDIT, EDGAR, etc. were all
classified as edit commands. Invocation of any editor
to operate on compiler output listings was classified
separately under the category of listing. All system
commands and utilities were grouped under miscel-
laneous. The other classifications are self-explana-
tory.

THADHANI 23

Figure 4 Programmer A’s active time on terminal and processor cycles consumed

500

450

400

350

3 0 0

250

200

1 5 0

100

50

0

R C T I V E T I M E I N H O U R S I

1

l o o 0 i
f MISC 3. 0%

1 . 0 %
- C O M P I L E 4. 0%
“-6RCiWSE 3. 0%

E X E C U T E 2. 5% 900

G P R I N T

“-LISTING 2 . 5 % 700
r E 0 I T 84. 0%

G o o I 500

E O I T RNO BROWSE 400
I S 9 0 % OF T I M E

300

200 1
lo: i R C T I V E T I M E

On the one hand, human-intensive work was defined
earlier as activities requiring large amounts of human
time relative to a small consumption of computer
time. Over 90 percent of programmer A’s time at
the terminal is in the human-intensive functions of
edit and browse. Yet the consumption of processor
cycles is relatively small. On the other hand, com-
puter-intensive work like compile and print accounts
for 55 percent of the processor usage, and these occur
during less than five percent of programmer A’s time
at the terminal.

These characterizations, however, mask the dynam-
ics of user interactions. Examining individual pro-
grammer traces, we discovered that compiles were
followed immediately by browsing the compiler list-
ing, browsing related modules, editing the source,
and recompiling. This process was iterated until
success was achieved. The quick compile response
time allowed programmers to remain focused on a
small set of related program modules without having
to fill large response-time gaps with unrelated activ-
ities. It has been argued that programmers operating
in this mode make fewer mistakes, resulting in su-
perior program quality.

P R O C E S S O R C Y C L E S I N M I N U T E S

P R I N T 10. 0%

C O M P I L E 4 4 . 0%

BROWSE 2. 0%
L I S T I N G 3. 0 %

-EO IT 3 0 . 0 %

P R O C E S S O R C Y C L E S

Programmer A spent 430 hours at the terminal. Over
half this time was spent on the program modules.
The rest of the time was spent in generating test
cases, documentation, and other overhead activity.
Both types of work are dominated by human-inten-
sive activity.

Three other programmers were extensively analyzed.
Their work patterns were similar. Irrespective of the
experience level of the programmers as well as the
complexity of the functions they implemented, they
all spent between 90 and 95 percent of their time at
the terminal on human-intensive activities.

Programmer time at the terminal. Each programmer
had a terminal which remained connected to the
computer for most of the day. Connect time contains
many periods of inactivity when the programmer is
not interacting with the computer. Thus, it is not an
accurate reflection of the time a programmer is
actively using the computer. Active time is defined
to exclude these inactive periods. A minute of active
time excludes all inactive periods greater than one
minute and represents time when the programmer
is intensely interacting with the computer.

24 THADHANI IBM SYSTEMS JOURNAL, VOL 23, NO 1, 1984

70

G O

50

40

30

2 0

1 0

0

Programmer A’s one minute of active time, project
overhead time, and nonproject overhead time are
shown in Figure 5. Programmers’ active times on
the VM system were accumulated based on program-
mer activity. The active times on the TSO system are
estimates based on system-accumulated connect
times, whereas project and nonproject overhead
times are estimates provided by programmers each
week.

Project overhead consists of the time during which
a programmer participates in meetings, walk-
throughs, education, travel, and other project-related
activities. Other activities might include reviewing
another programmer’s design, documenting and
communicating an idea for review by other program-
mers, etc. Project overhead should not imply that
the activity is not useful. It is classified as overhead
only because the programmer cannot be actively
generating code, our measure of work output, during

this time. Meetings and other project-related activity
are the major components of project overhead for
programmer A.

Nonproject overhead consists of absence, vacation,
and time spent on activities not related to the project.
The major component of nonproject overhead for
programmer A is vacation and holidays.

Total hours worked per week are shown only for the
first two months for programmer A. Accurate over-
time estimates were not kept for the remaining weeks
for this programmer. During this remaining time,
the programmer performs a host of activities, some
of which may be design work at his desk, checking
output listings, interacting with other programmers,
etc.

The 23-week time profile shown in Figure 5 repre-
sents the period from when programmer A began

Figure 5 Time spent by Programmer A on terminal and nonterminal activity each week

T I M E I N HOURS

0 NONPROJECT OVERHERO

PROJECT OVERHERD

0 R C T I V E T S O

a R C T I V E VM

r

I I
R V E R R G E R C T I V E IS
5 HOURS PER ORY
FOR 2 2 WEEKS

WEEK

1 2 3 4 5 6 7 8 9

IBM SYSTEMS JOURNAL, VOL 23, NO 1. 1984

1 0 1 1 1 2 1 3 1 4 1 5 1G 1 7 1 8 1 9 2 0 2 1 2 2 2 3

clude

Functional partitioning
Detailed design and pseudo code
Coding in
Successful compilation of individual modules
Creation of unit test cases for individual modules
and for the combination of several modules into
functions
Execution of unit test cases and program modifi-
cation until achievement of success

Specifically not included are function integration
and system test. These were done by the user group
responsible for test case generation and execution.

The activities of other programmers during the DCUT
phase were similar. On average, programmers spent
between 20 and 25 hours per week intensely inter-
acting with the computer for extended periods of
time.

, Programmer perception. Eight programmers were
interviewed soon after they completed their design,
code, and unit test cycle. Most felt they were signifi-

because of good computer services. They estimated
that it would have taken them 60 to 100 percent
longer to complete the same work had computer
services been poor. One commented, “I am operating
at my maximum efficiency”; another, “computer

improvements.”

I cantly more productive in their present environment

I

I services are so good I cannot recommend any further

I Findings

Programmer productivity and computer services. As
mentioned previously, in an earlier study interactive
user productivity at a terminal was observed to be
two times greater at a response time of 0.25 second
than at 2.0 seconds.2 These statistical findings were
confirmed later in controlled experiments in which

spent over twice as long at a terminal to complete
the same task when response times were 2.0 seconds
instead of 0.25 second.6

Our study analyzed programmer workload and time
spent at a terminal during the DCUT phase of pro-
gram implementation for four programmers. Re-
sponse times for human-intensive interactions were

I engineers, irrespective of their level of expertise,

26 THADHANI

20 and 25 hours per week intensely interacting with
the computer for extended periods of time. Further-
more, between 90 and 95 percent of their time at
the terminal was in the human-intensive activities of
editing and browsing programs and other files. This
implies that editor enhancements to provide more

Project and nonproject overheads
are a function of project

elapsed time.

efficient user interfaces may significantly improve
productivity and should be further investigated.

If all other factors remained unchanged and the
results of prior studies were applied to the four
programmers analyzed, it would have taken them
twice as long to complete the same task if the re-
sponse time were two seconds. For programmer A,
this might mean that he would take one year instead
of six months to do the same work. The program-
mers perceived that this was in fact the case. Project
and nonproject overheads are a function of project
elapsed time and do not depend on the progress
made by programmers in implementation. The
longer the elapsed time to project completion, the
larger the project and nonproject overhead.

Note, however, that with the sample of programmers
analyzed being small, these conclusions cannot be
generalized for all programmers in all phases of
program development. Additional analysis of pro-
grammer work patterns during DCUT and during the
other phases of development such as specifications,
function, and system test are areas for further inves-
tigation.

Though our quantification was based on response
times, the other factors played an important role.
We believe that factors contributing to high produc-
tivity were system availability, reliability, accessibil-
ity, response times, and batch and print turnaround
times. During the six months that the system was
measured, it was operational 24 hours a day, seven

IBM SYSTEMS JOURNAL, VOL 23, NO 1, 1984

days a week. On two occasions during prime shift, a
system crash occurred because of a power outage,
but even then, the system was brought on line in less
than two hours. The flexibility of accessing the reli-
able system at any time, including the weekends,
and receiving fast response times and 15-minute
batch turnaround times at all times of the day, were
all factors affecting programmer productivity.

Project productivity

The evidence provided in prior sections showed that
good computer services can improve programmer
productivity. However, improving programmer pro-
ductivity may not improve project productivity if
computer services are not the constraining factor in
the project. A project is defined as being computer-
constrained if on removal of the constraint, that is,
by providing good computer services, improved pro-
grammer productivity leads to improved project pro-
ductivity. In the case where computer services is the
only constraint, increasing programmer productivity
by a factor of two would result in a similar increase
in project productivity. That is, the project would
complete in one-half the elapsed time.

A noncomputer-constrained project, on the other
hand, is one in which project schedules remain un-
affected irrespective of the speed at which program-
mers complete their tasks. Projects with dependen-
cies on external factors, for instance, may not im-
prove project schedules by improving programmer
productivity. Depending on the severity of these
noncomputer constraints, project schedule reduc-
tions would span a range from no improvement to
reducing project completion times by one half.

In a recent study, most other factors affecting project
productivity were held invariant.’ The same team of
six programmers, completing implementation of the
first release of the program, were provided good
computer services for the second release. Project
effort was in the 20- to 30-person-month range, and
implementation took between three and four
months. Project productivity was reported to be
directly related to response times. Response times
were reduced from 2.2 seconds to 0.8 second. Pro-
grammer terminal interaction rate increased by 60
percent. Programmer work output, measured in
function points per programmer-month, increased
linearly by 58 percent. Code quality, measured in
trouble reports per function point, improved by over
a factor of two at the shorter response time.

IBM SYSTEMS JOURNAL, VOL 23, NO 1 , 1 9 8 4

In their environment of good computer services,
programmers did not have to switch between unre-
lated tasks. They were able to begin a set of related

Programmers’ work assignments
and their work outputs change
during the life of the project.

activities and see it through completion before begin-
ning other activities. Their ability to concentrate on
a small set of related activities enhanced their pro-
ductivity, and they made fewer mistakes.

We did not do a comparative study for reasons cited
earlier. The project we report on took 16 months in
implementation, with normal turnover of program-
mers on the team. Moreover, the “experience level”
of the team would be significantly different 16
months later for the second release. Instead, we
examined how programmer skill and program com-
plexity might affect project productivity.

Productivity index

The number of lines of code, LOC, written by a
programmer was selected as the measure of work
output. Programmer productivity was computed as
LOC per person-month. There has been considerable
debate on the usefulness of lines of code as a measure
of programmer work output. Function points, a
measure of the functions provided by the program,
have been proposed as an alternati~e.~ Lines of code
were used strictly to be compatible with existing
records and allow a comparison with other similar
projects that have been tracked at the development
laboratory.

Two commonly used measures for LOC are

The executable lines of code, ELOC
ELOC plus declarative statements plus commas
within declares, CLOC

Figure 6 shows a simple example. Notice that com-
ments are not counted in either measure.

Figure 6 Example of lines of code as measure of work output

/ x 0 E C L R R A T I d N FOR I N P U T x /

D E C L R R E

RECORD CHRR 1 1 1 6 1 ,

I N P U T F I L E I N P U T R E C O R D :

D E C L R R E R E C - C O U N T F I X E D B I N I N I T 1 0 1 :

D E C L R R E E R R - C O U N T F I X E D B I N :

/ x H R N O L E E R R O R C O N D I T I O N x /

ON E R R O R B E G I N :

E R R - C O U N T E R R - C O U N T + 1 ;

C O M M E N T S S E M I C O L O N COMMR

1

1

1

1

1

1

L

Normalized time in design, code, and unit test. Pro-
grammers’ work assignments and their work outputs
change during the life of a project. For example,
some programmers may be responsible for the spec-
ifications only, others for high-level design. Specifi-
cation documents, design documents, and effective
communications with programmers doing coding,
not lines of code, are the work output of these
programmers. Furthermore, the type of work a pro-
grammer does during the project changes. For ex-
ample, a programmer may initially review specifi-
cations, then learn about the tools used on the proj-
ect, may even develop some new ones, code some
modules, and assist the test group to set up function
integration and system test.

The productivity over different time periods of a
programmer labeled D is shown in Figure 7. Pro-
grammer D’s assignments included the development
of user specifications as well as the design and imple-
mentation of common tools for the development
project. None of these activities are represented in
the 3250 CLOCS of shippable code written by D.
Although specifications for D s code were complete
in October 198 1, D continued to work on the com-
mon tools for the project. After spending approxi-
mately one month on the design, he began coding
in February 1982. In all, he spent 13 weeks exclu-
sively in design, code, and unit test, and his produc-
tivity was 1083 CLOCS per month.

28 THADHANI

T A C C U M U L A T E D C O U N T S 1
CL13C E L O C

Counting the lines of code completed over the proj-
ect life, which was 16 months, is not very appropriate
in comparing productivity rates of individual pro-
grammers. Instead, to make productivity compari-
sons, we select the design, code, and unit test phase,
DCUT, during which programmers are doing similar
work.

Normalized time is defined as that needed to over-
come differences in overtime and nonproject over-
head among programmers. Normalized time is com-
puted by taking the total hours worked including
overtime, subtracting the nonproject overhead, and
then normalizing the amount to a 40-hour week.
This results in D spending 15.5 normalized weeks
and a productivity of 908 CLOCS per normalized
month.

Productivity comparison. Productivity computed us-
ing normalized time for six programmers and using
both measures for the count of the lines of code is
shown in Figure 8. Using two measures provides a
broader base from which to make comparisons of
programmer productivity. No claim is made about
which measure is “best.”

The classification of programmers as more “skilled
and experienced” is subjective. Some factors such as
the number of years as a programmer and prior
experience in developing large programs are shown
in Figure 8.

IEM SYSTEMS JOURNAL, VOL 23. NO 1. 1984

Except for programmer D, none of the other pro-
grammers wrote their own specifications. Program-
mer D felt that this was an advantage and had a
positive effect on his productivity. In his words,
“there is so much underlying the specifications that
is not documented, that if I had to implement from
a specification written by someone else, my produc-
tivity would certainly have been lower.”

Programmer B employed labor-saving techniques.
Rather than replicate message generation data struc-
tures and program code in many modules, B wrote
two macros to accomplish this function. We cannot
quantify how this affected his productivity. However,
the technique does make code easier to modify.
Programmer D also made use of these macros in his
modules. However, none of the other programmers
in this comparison made use of these macros. In
fact, after programmer A had completed unit test of
his modules, the lead programmer recommended
that A’s messages, not being in a format consistent
with the rest of the group, should be modified-a
minor change, in A’s words, not a logic problem.
However, it required changes to all 40 of A’S mod-
ules.

The complexity of function and code is yet another
factor that can significantly affect programmer pro-
ductivity.’ Complexity is discussed in more detail in

a later section. For this comparison, a subjective
measure of complexity is included. Three categories,
complex, C, moderate, M, and simple, S, for the
functions assigned to the six programmers are shown
in Figure 8. These categories represent the consensus
of opinion of three senior project people knowledge-
able in the functions being implemented.

The less-experienced programmers are in the 200-
ELOC to 600-CLOC per person-month range, whereas
the more-experienced are in the ~ ~ O - E L O C to 1 150-
CLOC range. The experienced programmers are two
to four times more productive than the less-experi-
enced, depending on whether the CLOC or the ELOC
measure is used for comparison. These differences
would be even greater if the comparison were re-
stricted to functions of equivalent complexity.

Programmer effort and processor resources per
CLOC. Four programmers’ trace of commands were
extensively analyzed. Data for the two less-experi-
enced programmers were averaged together and
compared with the average for the two more-skilled
and experienced programmers in Figure 9. These
comparisons show that to create equivalent amounts
of code, the less-experienced programmers spent
twice as much time at the terminal and submitted
three times more compile and print jobs than the
more-experienced programmers. In the process, the

Figure 7 Productivity over different time periods

P R O J E C T TOOLS D C U T F U N C T I O N T E S T S Y S T E M T E S T

1 0 / 8 1 2/82 4/82 11/82 1/83

WORK O U T P U T = 3250 C L O C

S P E C I F I C A T I O N T H R U S Y S T E M T E S T

S P E C I F I C R T I O N T H R U U N I T T E S T

E L A P S E D T I M E I N D C U T

N O R M A L I Z E D T I M E IN D C U T

WEEKS P I

x G9 204

x 3 0 466

= 1 3 1 0 6 3

= 15. 5 906

P R O D U C T I V I T Y I N D E X PI = L I N E 5 O F C O D E / P E R S O N . M U N T H

IBM SYSTEMS JOURNAL, VOL 23, NO 1, 1984 THADHANl 29

1 2 0 0

1000

8 0 0

6 0 0

400

200

0

Figure 8 Productivity as lines of code for a normalized month

L O C / N O R M R L I Z E D M O N T H

l o C L L l C I

E X P E R I E N C E D

0

o
X

X

L E S S E X P E R I E N C E D

0

X

0

X

0

0
X

X

I I I I I I
PROGRAMMER B D R E F C

Y E R R S R S 1 4 2 0 3 3 7 3
PROGRAMMER

E X P E R I E N C E D O N Y E S Y E S N O N O Y E S N O
L R R G E P R O G R R M S

COMPLEXITY’ C C S M C C

’ C - C O M P L E X , M - M O D E R R T E . S - S I M P L E

Figure 9 Resource consumption per thousand lines of code for four programmers

C L O C

A C T I V E H O U R S

C O M P I L E

E X E C U T E

P R I N T

U N I T T E S T

C P U M I N U T E S

L E S S
E X P E R I E N C E D

3 0 0 0

115

5 8 0

1 5G

3 7 0

155

512

E X P E R I E N C E D

3 3 0 0

G O

1 7 3

15

1 0 8

5 4

1 8 0

L E S S E X P E R I E N C E D
- E X P E R I E N C E 0

1

2

3. 5

10

3 . 5

3

3

30 THADHANI IBM SYSTEMS JOURNAL, VOL 23, NO 1, 1984

40

35

3 0

2 5

2 0

Figure 10 Module statistics for Programmer D active time in hours and CPU minutes

/ , ~-

RCTIVE H O U R S RND C P U MINUTE

2 5 % OF CODE TRKES
50% OF RCTIVE TIME
70% OF CPU

C P U MIN

ACTIVE

1 3 5 7 9 1 1 1 3 1 5 17 19

less-experienced programmers consumed three times
as many processor cycles. Moreover, each module
was individually tested for correctness by the less-
experienced programmers before being tested to-
gether during unit test. The experienced program-
mers did not do an individual module test. Instead,
they went directly to unit test. This accounts for the
difference of a factor of ten in the number of exe-
cutes. If this extensive testing of individual modules
resulted in fewer unit test jobs, it may have been
worthwhile to expend the additional effort. But it
did not. The less-experienced programmers submit-
ted three times more batch test jobs before achieving
success compared to the experienced programmers.
Furthermore, there was no discernible difference in
code quality measured in trouble reports per line of
code between the two groups.

Discussion

Programmer techniques and processes. Experienced
programmers were two to four times more produc-
tive than the less-experienced. Furthermore, they
consumed only one-third of the computer cycles to
generate an equivalent number of lines of code. The

21 2 3 2 5 2 7 2 9 3 1 3 3 35

extensive use of computer resources by the less-
experienced programmers may be partly due to the
different implementation techniques and processes
adopted. For instance, the more-experienced pro-
grammers, being confident of the solution, may have
completed module implementation before beginning
the iterative process of compile and program correc-
tion. They stated that this was in fact the case. They
may have also employed extensive desk-checking to
minimize iterations with the computer. Yet the ex-
tensive use of computer resources by the less-expe-
rienced programmers may be explained by their use
of incremental compile techniques-to let the com-
puter find the bugs, instead of resorting to labor-
intensive checking that reduces computer iterations.
A study of the differences between these techniques
and methods would be useful in understanding the
implications for productivity. Furthermore, educa-
tion to improve programming skills and techniques
may have a significant payback in improved produc-
tivity of the less-skilled programmers.

Module statistics and programmer effort. The rela-
tion between a programmer’s effort and computer
resources expended in the development of modules

IBM SYSTEMS JOURNAL, VOL 23, NO 1, 1984

Figure 11 Module statistics for Programmer D time and module size

40

3 5

3 0

2 5

2 0

1 5

1 0

A C T I V E H O U R S R N D C L O C S I N T E N S

A C T I V E

CLOC

1 3 5 7 9 1 1 13 15 17 1 9

is shown in Figure 10. The relationship is intuitively
obvious-the longer the programmer spends on a
module, the greater the computer resources con-
sumed. However, no linear relation between module
size in CLOC and programmer time is observed in
Figure 11. In fact, the relationship is quite skewed.
Fifty percent of the programmer’s time and 70 per-
cent of the processor cycles were expended on four
modules, numbers 32 through 35. The four modules
comprise 25 percent of the code. In the program-
mer’s words, these modules represent the “heart” of
the functions. These modules initialized parameters
and invoked submodules in the right sequence for
functional correctness and hence were more com-
plex.

Complexity. There are at least two aspects of com-
plexity. The first is intrinsic complexity, which may
be defined in terms of the number of parts and the
relations and connections between parts. A problem
may be more complex if it has more parts, more
relations, more interconnections, etc. Software sci-
ence metrics9 defines complexity of a program in
just such terms, i.e., in terms of the number of
operators, operands, and their repetitive use in a
program. Moreover, programmer effort is defined to

32 THADHANI

2 1 23 2 5 2 7 2 9 31 33 35

be related to program complexity. The larger the
difficulty factor, the longer it takes a programmer to
write the program. Furthermore, it is reported that
the number of errors in a program is statistically
related to program complexity.

There is, however, another aspect of complexity
which we call perceived complexity. That is, irre-
spective of the intrinsic complexity of a problem,
different people will perceive the same problem to
be either less complex or more complex, depending
on their expertise and past experiences. Consider as
an example a mathematical problem. A mathema-
tician may perceive the problem to be simple and
provide a solution in a short period of time. A person
with little background in mathematics may perceive
the problem to be difficult and may spend a signifi-
cantly longer period of time to arrive at a solution.
Thus, the same problem requires different amounts
of effort and time, depending on the perceived com-
plexity.

One probable explanation for the data shown in
Figures 10 and 11 is that the modules that take
significantly longer to develop are the ones found to

IBM SYSTEMS JOURNAL, VOL 23, NO 1, 1984

be more complex by the developer, i.e., greater per-
ceived complexity. Furthermore, errors discovered
during function test tended to cluster around these
modules.

Although the data are limited, we can conclude that
the time spent by a programmer developing a mod-
ule may indicate a level of difficulty experienced by
the programmer relative to his other modules and
may be a useful indicator of perceived complexity.
This measure may be more useful in estimating
programmer and project completion time than lines
of code. These measures could serve as early warn-
ings for management in tracking the progress of a
project. Furthermore, a useful testing strategy would
be to test extensively those modules on which a
programmer has spent significantly larger amounts
of time in their development.

Project time. Weekly data on project and nonproject
overheads were collected via an on-line activity col-
lection mechanism. Programmers provided data on
their activities and overheads each week. Weekly
data on computer active times were collected auto-
matically by the computer system based on actual

programmer usage. These data, summarized in Fig-
ure 12, show that 40 percent of total time is in
project and nonproject overheads. The effective uti-

Twenty percent of project time is
spent interacting with the

computer.

lization of people on the project is 60 percent.
Twenty percent of project time is spent interacting
with the computer. These are averages for all project
personnel excluding managers on the project. In
earlier sections, it was seen that programmers who
were doing design, code, and unit test spent between
50 and 60 percent of their time active at the terminal.
This activity is in contrast to others on the project

~~ ~

Figure 12 Summarization of project time during design code and unit test for Six months

: 8 % M E E T I N G

2 % WALK-THROUGH
1% P R E S E N T A T I O N

6 % E D U C A T I O N

7 % OTHER

1 6 % N U N P R O J E C T

IBM SYSTEMS JOURNAL, VOL 23, NO 1. 1984 THADHANI 33

whose usage of and hence dependence on computer
services were significantly smaller. Many of the more
skilled and experienced programmers were not writ-
ing any code. They were responsible for developing
project tools, user specifications, high-level design,
and consulting with and assisting the less-experi-
enced programmers. Their computer usage was rnin-
imal.

These data show that the process employed for soft-
ware development is quite labor-intensive. Only 20
percent of total project time is spent interacting with
the computer. Furthermore, approximately 80 per-
cent of project cost is people-related, and 20 percent
is for computer services. With programmer costs
escalating and computer costs decreasing, providing
on-line computer solutions for many of the current
labor-intensive processes should lead to higher de-
velopment productivity.

Summary

A dedicated computer facility was installed to help
in understanding the effects of good computer ser-
vices on programmer and project productivity. Pro-
grammers were provided less than 0.2 second re-
sponse time to human-intensive interactions like edit
commands, between 10 and 20 seconds response
time for compiles, and less than 15 minutes of batch
turnaround time for unit test jobs, including the
time to print the results. System availability was
exceptional, and 24-hour continuous service was
provided. The hardware and data processing center
costs to provide these services were not significantly
different from central service charges, since over-
heads were significantly lower. Project productivity
was significantly higher than that achieved on com-
parable projects in IBM in the past.

Programmers’ work patterns and their use of inter-
active facilities during the design, code, and unit test
phase, DCUT, of program development were exam-
ined. Programmers spent a significant part of their
workday at their terminals, between four and five
hours, with no evidence of fatigue. Moreover, their
interactive work was dominated by human-intensive
work like file edit and browse. During DCUT, 90 to
95 percent of programmer terminal time was hu-
man-intensive, with productivity dependent on short
response times2 Furthermore, 80 to 90 percent of a
programmer’s terminal time was spent in some edi-
tor. Editor enhancements that provide a more effi-
cient interface and significantly improve productiv-

34 THADHANI

ity, as well as additional analysis of programmers’
work patterns during DCUT and the other phases of
development, are areas for further investigation.

Computer services is one of several factors that affect
programmer and project productivity. Because of
the innumerable other factors affecting this produc-
tivity, it is not possible, in general, to conduct a
controlled experiment with the quality of computer
services being the only difference between two de-
velopment projects. Instead, we examined how pro-
grammer skill and experience and program complex-
ity might affect productivity.

Experienced programmers were two to four times
more productive than the less-experienced. Further-
more, they consumed one-third as many computer
cycles to generate an equivalent number of lines of
code. The extensive use of computer resources by
the less-experienced programmers may be partly due
to different implementation techniques and proc-
esses adopted, i.e., the use of incremental compile
techniques to let the computer find the bugs, instead
of labor-intensive checking that reduces computer
iterations. A study of the differences between these
techniques and methods would be useful in under-
standing the implications for productivity. Further-
more, education to improve programming skills and
techniques may have a significant payback in im-
proved productivity of the less-skilled programmers.

Our limited data suggest that the time spent by a
programmer in developing a module may indicate a
level of difficulty experienced by the programmer
relative to his other modules and may be a useful
indicator of perceived complexity. This measure may
be more useful in estimating programmer and proj-
ect completion time than lines of code. These mea-
sures could serve as early warnings for management
in the tracking of project progress. Furthermore, a
useful testing strategy would be to extensively test
those modules on which the programmer has spent
significantly larger amounts of time.

Finally, we examined how developers spent time on a
project. Less than 20 percent of the time was spent
interacting with the system. This finding leads us to
conclude that there is significant room for further au-
tomation of the software development process. With
programmer costs escalating and computer costs de-
creasing, providing on-line computer solutions for
many of the current labor-intensive processes should
lead to higher development productivity.

IBM SYSTEMS JOURNAL, VOL 23, NO 1. 1984

Acknowledgments

1 am deeply grateful to Norm Pass, the function
manager for the project, and Donald Edwards, the
project manager, for ideas they contributed during
the project and for their support and encouragement
throughout the project. I wish to thank several people
who have made significant contributions to this proj-
ect. Matt Korn provided invaluable assistance in the
debugging of the system instrumentation package
and wrote and maintained several of the data collec-
tion and data reduction programs. John Godwin
installed and maintained the system instrumentation
package on the development system and wrote and
maintained programs to collect programmer over-
head times. Dave Smith modified the system instru-
mentation package to run on our system. Roger
Wolfe and George Greene wrote several of the anal-
ysis programs. Bucky Pope contributed ideas during
the project and the writing of this paper. John Ben-
nett reviewed and provided comments on this paper.
My thanks also go to R. Parady and J. Orsley for
their support and review of this paper, to the pro-
grammers who participated in the experiment, and
to their managers, K. Shintani and H. Morkner.

Cited references

I .

2.

3.

4.

5.

6.

7.

8.

9.

J. Martin, Application Development Without Programmers,
Prentice-Hall, Inc., Englewood Cliffs, NJ (1982).
A. J. Thadhani, “Interactive user productivity,” ZBMSystems
Journal 20, No. 4, 407-423 (I98 I).
A. J. Albrecht, “Measuring application development produc-
tivity,” SHARE-GUIDE (1979), pp. 83-92.
B. W. Boehm, Software Engineering Economics, Prentice-
Hall, Inc., Englewood Cliffs, NJ (1981).
W. J. Doherty and R. P. Kelisky, “Managing VM/CMS sys-
tems for user effectiveness,” ZBM Systems Journal 18, No. I ,
143-163 (1979).
The Economic Value ofRapid Response Time, GE20-0752-0,
IBM Corporation; available through IBM branch offices.
C. E. Walston and C. P. Felix, “A method of programming
measurement and estimation,” IBM Systems Journal 16, No.

G. N. Lambert, “A comparative study of system response time
on program developer productivity,” IBM Systems Journal
23, No. 1, 36-43 (1984, this issue).
M. H. Halstead, Elements of Software Science, Elsevier, New
York (1977).

1, 54-73 (1977).

Awind J. Thadhani IBMGeneral Products Division, Santa Teresa
Laboratory, P.O. Box 50020, San Jose, California 95150. Mr.
Thadhani is senior programmer manager, responsible for infor-
mation systems strategies at the Santa Teresa Laboratory. He
joined IBM in 1968 as a junior engineer in Poughkeepsie, where
he was involved in the development of the System/360 Model
155. He then held system design, system analysis, and technical
planning positions for large systems. In 1976, he was assigned to

the San Jose Research Laboratory, where he was involved in the
investigation of storage system architecture. Since 1978, he has
been with the General Products Division, working in technical
planning, and recently in productivity. Mr. Thadhani received a
B.S. in electrical engineering from the Indian Institute of Tech-
nology, Bombay, in 1966. He received an M.S. in electrical engi-
neering from Cornell University in 1968 and an M.S. in computer
science from the University of Wisconsin in 1972.

Reprint Order No. G321-5207.

IBM SYSTEMS JOURNAL, VOL 23, NO I , 1984 THADHANI 35

