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This technical essay  presents a perspective on the ev- 
olution and  problems of the software development 
craft and how software engineering  techniques  show 
promise to solve  these  problems. It introduces archi- 
tecture prototyping as a program development tech- 
nique  for improving software quality. Experience with 
large software systems  shows that over  half  of the 
defects found after product release  are traceable to 
errors in early product design.  Furthermore,  more than 
half the software life-cycle costs involve detecting and 
correcting design flaws. In this paper,  we explore a 
disciplined approach to software development  based 
on the use of formal specification techniques to ex- 
press software requirements  and  system  design. As a 
consequence,  we can use  techniques like rapid proto- 
typing, static design  analysis,  design simulation, and 
dynamic  behavior  analysis to validate system design 
concepts prior to element design and  implementation. 
We explore how  these  techniques might be  organized 
in a software architecture prototyping facility that 
would  be  similar to the Computer-Aided  Design  and 
Manufacturing (CADAM) tools used in other  engineer- 
ing disciplines. We also examine the process by which 
software engineers might use  these facilities to create 
more reliable systems. 

P ersonal computers, office systems, and profes- 
sional workstations are on the verge  of recruiting 

a large  new  class  of computer users. This user explo- 
sion will accelerate the  demand for reliable  software 
applications and systems. Many applications in med- 
icine, aerospace, and real time process control re- 
quire high  system  reliability and defect-free software. 
Yet  software developers are beginning to reach a 
plateau in  terms of the quality and  quantity of 
systems they can produce. Maturing software  devel- 
opment techniques of the 1970s like the use of 
structured programming constructs and design and 
code  inspection^"^ squeeze  fewer new errors out of 

software and yield  fewer productivity gains from 
programmers. 

The reason for this leveling  is that  the development 
of software  is a complex intellectual task. That task 
involves understanding the user’s  world  (analysis), 
defining needs for improvement  in  that world (re- 
quirements), creating a conceptual solution to satisfy 
those needs (design), and translating that solution 
into  a form executable on a machine (implementa- 
tion). Because few of us can manage this as a single 
task, we attack large  software  design problems in 
teams, using a divide-and-conquer strategy like top- 
down, stepwise At any stage  of  design, 
given a specification that describes what a compo- 
nent of the system should do, we can derive how it 
should do  the “what” by decomposing the  compo- 
nent into smaller, more manageable functions that 
collaborate to perform the component’s task. We 
can then specify what each of the functions should 
do  and pass these more detailed specifications on to 
other designers to elaborate how each function is to 
perform its specified task. Most of software  design 
can be produced using this iterative, hierarchical 
decomposition of complex, abstract specifications 
into simpler, atomic specifications, until those spec- 
ifications can be compiled and run on a machine. 

We begin to realize why programmers struggle to 
produce better software  when we compare the craft 
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they use with the complexity of the task. The soft- 
ware development  techniques widely  used today pro- 
vide aid when the  problem is relatively small, local, 
and concrete. An example might be the implement- 
ing of a SAVE function  in a file editor. These tech- 
niques provide little help, however, when the  prob- 
lem is as large, global, and  abstract as, for example, 
that of describing the  architecture and protocols in 
a  telecommunications system. Widely used natural- 
language-based software methodologies weaken 
when we tackle large, multiperson design projects. 
Without  tools to define design precisely, to partition 
design into  mutually exclusive units of manageable 
complexity, to keep track of the relationships of the 
parts to  the whole, to validate system design ideas 
prior to refinement and implementation,  and to 
facilitate the reuse of previous design solutions, we 
will have difficulty producing zero-defect software. 
We examine  some of these deficiencies and their 
consequences for software quality in later sections of 
this  paper. 

Developments  in software engineering and software 
specification techniques promise to infuse our craft 
with some of the engineering discipline we need to 
improve software quality and productivity. These 
methods offer to software developers some of the 
specification and verification techniques available to 
hardware logic designers, building architects, and 
aircraft and  automotive engineers. We examine how 
these methods  can be  used to improve software 
quality. We explore how these techniques might be 
integrated into  an architecture  prototyping facility 
that software engineers could use to test the feasibil- 
ity of their early software design ideas. 

The  software  development  craft 

Software developers practice their craft using some 
common strategies to  manage complexity. In this 
section, we trace  through  a simplistic overview of 
the  techniques most widely used in  the software 
industry to develop programs, ignoring for the  mo- 
ment software engineering approaches  that have be- 
gun to penetrate  into practice. We point out major 
deficiencies of these techniques  in  this  examination. 
Engineering approaches used in  other disciplines also 
suggest  ways to improve  the software craft. 

Most large software systems developed today are 
produced using a staged approach, which includes 
discrete phases for requirements definition, system 
design (which we call architecture),  internal, detailed 
element design, and  implementation  and verifica- 
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Figure 1 Stages  in  the  software  development  process 
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tion.  This staged approach is illustrated in Figure 1. 
We describe the essence of these operations  in  the 
following sections. 

Requirements phase. Product  planners, analysts, 
consultants,  and users collaborate to define product 
requirements. Planners use enterprise analysis 
 technique^'.'^ to understand  the existing user system 
and  environment,  to collect user requirements for 
improvements,  and to organize the requirements 
into related problems and opportunities.  Planners 
then identify potential  solutions to satisfy each prob- 
lem, rank  solutions by user demand, cost, and  pro- 
jected revenue, and define a  product description in 
terms of the  functions  the  product  must provide and 
the  constraints ( e g ,  performance and availability) 
the  product  must satisfy. 

An English-language document is typically written 
to  communicate  the requirements to  the develop- 
ment  team.  Planners  and developers validate this 
document. 



Architecture phase. Software architects produce 
from the requirements statement  a system architec- 
ture specification. This specification has two parts: 
(1)  what the system must do  or provide (i.e., the 
external specifications), and (2) how the system must 
operate (i.e., internal specifications). The  internal 
specifications define both a structural framework of 
subsystems that collaborate to perform system func- 

Architecture  is  commonly 
expressed  in  natural  language, 

sometimes  augmented  with 
diagrams. 

tions and system-level dynamic behavior. These 
specifications identify system components, system 
control and  data flow, and how components are 
bound together in the structure. They postpone the 
definition of internal design elements and  their op- 
erations until later stages  of  design. 

To illustrate by analogy, software architecture spec- 
ifications  serve the same function as the architectural 
plans and drawings used  by building architects and 
civil engineers. A blueprint portrays the building 
structure and  the static relationships of parts to the 
whole. Blueprint annotations may describe attributes 
of  facilities  (e.g.,  size and material composition) and 
criteria these facilities must satisfy  (e.g., performance 
under stress conditions). The architectural plan de- 
scribes the workings  of the moving parts and  the 
dynamic operation of the facilities throughout  the 
structure (e.g., electrical, plumbing, and elevator sys- 
tems). The plan may reference design documents 
that describe the internal operations of the building's 
component facilities. 

To summarize, architecture specifications describe, 
at  minimum, three aspects of the system: 

External  functions and interfaces presented by the 

Structuralframework of subsystems and interfaces 
system to  the user. 

that mesh to provide system functions. 
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Dynamic behavior of the system (data  and control 
flow through the structural framework) that results 
when a user requests a system function. Asynchro- 
nous aspects and timing relationships in the sys- 
tem are defined at  the architecture level. 

Architecture is commonly expressed  in natural lan- 
guage, sometimes augmented with diagrams (e.g., 
Hierarchical Input-Process-Output (HIPO) dia- 
grams"). Architecture specifications are described 
at a very  high  level  of abstraction. One statement 
may represent between  twenty-five and one hundred 
statements in the product implementation. They are 
sometimes verified  using structure inspection or sce- 
narioflow techniques.12 

Design phases. Once an architecture framework is 
defined, designers can fill in the details of internal 
elements using iterative refinement techniques. As 
shown in Figure 2, they use Structured Design, Com- 
posite  Design, and  Data Flow  Design principle~l~"~ 
to elaborate operational details for components re- 
ferred to  but not explicitly defined in  the architecture 
framework. They apply the same principles to de- 
compose and elaborate details of functions refer- 
enced in the  components  and modules (segments) 
referenced in the functions, until all system segments 
are designed. 

One statement at  the element design  level  of abstrac- 
tion may be expanded into three to fifteen statements 
in the product. Design at this level is expressed  using 
a wide  variety of notations (e.g., natural language, 
pseudo-code, structured flowcharts, and decision ta- 
bles). Multiple notations often coexist on a project, 
thereby forcing designers to transfer from one nota- 
tion to another as they refine the design.  Defects 
introduced during design are often manually re- 
moved from the product by means of  inspection^"^ 
before the next level of  design  begins.  Defects that 
escape are often not detected until late in  the product 
test  phase. 

Implementation and  verification phases. Program- 
mers implement the design,  using primarily high- 
level programming languages  (e.g., PL/I and Pascal). 
They then collect and test the coded product mod- 
ules. One verification strategy is a  bottom-up testing 
approach, by which simple system elements (mod- 
ules) are tested first, then successively recomposed 
into more complex entities, such as functions, com- 
ponents, and systems, to be tested in more complex 
environments. Once all elements are tested and  in- 
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Figure 2 Top-down  stepwise  refinement  in  the  software  development  process  and  hierarchical  relationships  among  levels  of 
design  abstraction 
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tegrated, the system  is  exercised to verify that it meets 
function, performance, reliability, and ease-of-use 
specifications. 

Thus, the mainstream software production environ- 
ment today relies on top-down development tech- 
niques, specification in natural language, successive 
refinement of design, manual design  verification (us- 
ing inspections), and late life-cycle  verification that 
the product meets requirements and specifications. 
Although this process contributes to good  software 
quality, the lack  of tools and precision at several 
stages hinders us from reaching zero defects. 

Defects in the software craft. To improve software 
quality, we need  software engineering approaches 
that cope with such problems inherent in the devel- 
opment process as the following: 

Requirements. It is  difficult to validate product 
requirements. Developers and customers may 
achieve some consensus (e.g.,  via  user  reviews of 
requirements), but without high confidence be- 
cause their reviews are based on prose specifica- 
tions that  cannot reveal  system aspects like per- 
formance, function, usability, and reliability. We 
cannot  demonstrate for certain that a proposed 
system meets all customer requirements until we 
integrate all implemented functions late in the test 
phase.  At that time, problems are costly to detect 
and correct. The cycle time required to develop 
products exceeds the span over which we can 
accurately forecast customer needs. Require- 
ments, even  if we can validate them at product 
conception, may become obsolete before we ship 
the product. A major reason for the lengthy prod- 
uct cycle time is that,  as  an industry, we reinvent 
most new software and seldom make use  of  design 
solutions that may already exist. 

Architecture. We have commonly defined archi- 
tecture using ambiguous natural language,  did- 
grams, and  other free-form notations. Such expres- 
sion hinders our ability to  communicate accu- 
rately the system's structure and prevents us from 
formally analyzing the  structure  and dynamic be- 
havior of the system. Thus we design and imple- 
ment functions based on structures and protocols 
that are weakly  specified, poorly communicated, 
and  not formally validated during design. We  rely 
on exhaustive testing to correct problems and 
produce high-quality products. 

We are unable to test the feasibility  of our initial 
architecture ideas or compare alternative propos- 
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als. We are unable to examine the architecture 
specification and  determine  the effect that archi- 
tecture tradeoffs and function placement decisions 
have on system performance, usability, and relia- 
bility. To explore these aspects, we must either 
create expensive, throw-away models of the system 
or wait until we integrate the implemented func- 
tions late in the test  cycle. Costs usually dictate 
that few,  if any, alternative designs are considered. 
Poor architecture decisions can propagate through 

We  are  unable to test  the 
feasibility of our initial 

architecture  ideas or compare 
alternative  proposals. 

all  stages of a project and cause  costly  rework to 
undo design and  implementation based on those 
decisions. We have no mechanism to validate that 
a proposed product architecture satisfies  all known 
product requirements. 

Design. We usually custom-design a new system 
without taking maximum advantage of existing 
design solutions. We maintain no library of 
proved, common software subassemblies from 
which to build systems, as  do designers in  other 
disciplines. Subassemblies such as macros and 
subroutines developed on one project are generally 
not designed, preserved, or ported for reuse on 
another project. Although structured design lan- 
guages  have improved software quality, the use of 
multiple design notations  on  the same project 
causes errors when we refine a design from one 
stage and notation to the next. We have no mech- 
anism to detect all  of these errors early in  the 
design  phase,  where they are much less  costly to 
correct. We have no mechanism to prove that a 
design  is correct. We  base our confidence that a 
design works on a visual inspection of a sample 
subset  of  possible  design paths and input-output 
permutations. 

Good design  principle^'^"^ are hard  to enforce 
across  large projects. Attempts to partition design 
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into mutually exclusive, self-contained modules 
are thwarted if we allow the modules to access 
global data, such as control blocks, and  thus hap- 

Aircraft  and  automotive  designers 
use  CAD/CAM  to  graphically 

define  the  architecture of  their 
products. 

hazardly affect  system state variables. This causes 
unpredictable system behavior that we are unable 
to test. 

Implementation and test. As in design, we have 
no mechanism to prove that a program is correct, 
complete, or consistent with the design. We have 
no reliable metrics with which to examine code 
properties and predict system quality, rejecting 
poor code on the basis of  excess complexity or 
poor readability, structure, or maintainability. As 
in design, we base our confidence that  an imple- 
mentation works on tests of a sample subset of 
possible  design paths and  input-output  permuta- 
tions. It is  difficult to prove that  the system  works 
in all  specified situations and system states, so we 
rely on exhaustive testing. 

Although these are not a complete classification  of 
software development problems, they provide ample 
search space for software engineering solutions. The 
most glaring deficiency in  the software craft, from 
our perspective,  is a lack of mechanisms for the 
precise  specification and machine analysis of the 
statement of the problem (requirements) and early 
design solution (architecture), since all further de- 
velopment activity and  communication proceed 
from these statements. It might be instructive to 
consider how other engineering disciplines have ap- 
proached these problems. 

Snapshots from the tasks of designers in other engi- 
neering disciplines provide some strategies that soft- 
ware developers could use to correct defects in their 
craft. Aircraft and automotive designers use com- 
puter-aided design and manufacturing (CAD/CAM) 
facilities to graphically define the architecture of their 
products. Data bases hooked to these facilities cap- 
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ture  the static, hierarchical structure of the product. 
The designers can graphically query these data bases 
to provide visual, static analysis of the relationship 
of  design elements to  the total structure. These de- 
signers build quick, inexpensive prototypes that per- 
form  the same external functions as will the final 
product. They subject these prototypes to logical 
“wind-tunnel’’ testing (i.e., simulation) to analyze a 
product’s dyamic behavior in stress conditions and 
real-life environments. They create multiple designs 
and choose the best alternative, based upon proto- 
type results. 

Hardware logic designers use design  logic simulation 
techniques to test their designs. The designer can 
examine the functional design model for correct logic 
and timing relationships and physical function place- 
ment prior to committing  the design to implemen- 
tation. Hardware designers can  capture  the design 
specifications (Boolean  logic  rules) for logic elements 
in a data base for later reuse. These reusable elements 
can be included in future designs  where appropriate, 
thereby saving specification time. 

These disciplines provide their designers with mech- 
anisms to specify  design  precisely, to prototype the 
external functions of a product, and to statically and 
dynamically analyze the system  design  of the prod- 
uct’s behavior. We  call these capabilities architecture 
prototyping functions and explore how  they can be 
realized in a software engineering environment. 

Facilities  for a  software  engineering 
environment 

In the discussion of the software development craft, 
we have purposely concentrated on  the problems 
that hinder us from producing zero-defect  software. 
Software  research over the past decade has developed 
engineering techniques that have begun to invade 
software practice. Some of these techniques provide 
kernels around which we can construct an improved 
software development scheme. 

Machine-analyzable Very-High-Level  software 
specification Languages (vHLLs)’~-~’ and Entity/ 
Relationship data  models21-22 offer mechanisms for 
the organization of enterprise analysis informa- 
tion, for the precise specification and analysis of 
software requirements and ar~hitecture,~~-’~ and 
for rapid prototyping of product f u n c t i ~ n . ~ ~ ’ ~ ~  
Graphic representations of software system  design 
s t r u c t ~ r e ~ ~ - ~ ~  provide user-oriented interfaces for 
the definition and  manipulation of system design. 
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Rigorous  software  development  ap- 
p r o a ~ h e s , ~ , ’ ~ , ~ ~ - ~ ~  based on abstract data types, on 
algebraic  specification of  design  processes in terms 
of their operations on data abstractions, and on 

Product  descriptions  expressed in 
procedural VHLLs can be 

symbolically  executed  to  verify 
product  behavior. 

proof of  design and programs,  provide a scheme 
in which reusable  software  subassemblies  may  be 
developed and reused. 

In the next  section, we provide an overview of these 
concepts and explore how they can support architec- 
ture prototyping capabilities. 

Very-High-Level software specification Lan- 
guages (VHLLs). High-Level programming Lan- 
guages (HLLS) like ALGOL, PL/I, and Pascal  give  pro- 
grammers the freedom to express algorithms and 
data structures without the bookkeeping of machine 
details.  Pseudo-code notations abstracted from  these 
languages  allow  designers to express  low-level  design 
of procedures without regard  for the implementation 
characteristics of data structures. 

A class of notations called  Very-High-Level  software 
specification  Languages (VHLLS) permits software 
planners and architects to formally  define abstract 
problem statements and early  design solutions. This 
class includes abstract procedural languages  for  ex- 
pressing  design control and data f l ~ w , ’ ” ’ ~ , ~ ~  nonpro- 
cedural  languages  for  representing  system  objects 
and  relationship^,'^'^' and algebraic  design nota- 
t i o n ~ . ~ ~ , ~ ~  

Many of these  languages  share the capability of 
expressing operations on a particular abstract 
representation of  data-the Entity/Relationship 
(E/R) or relational model. 

Product descriptions expressed in procedural VHLLS 
can be symbolically  executed to verify product be- 
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havior.  System definitions captured in a machine- 
processable E/R data base can be statically  analyzed 
for  consistency and completeness. 

We examine two members of the VHLL class, the 
Problem Statement Language/Problem State- 
ment Analyzer (PSL/PSA) and the Functional Speci- 
fication Tools (FST) to explore how they  provide  these 
capabilities. 

Problem Statement Language/Problem Statement 
Analyzer. PSL/PSA, originally  developed at the Uni- 
versity  of  Michigan,I8  is a system that aids in the 
precise  definition of  system  specifications.  These 
specifications  may include problem statements (re- 
quirements) and the framework of  design solutions 
(system structure). PSL/PSA is composed of two com- 
ponents, the Problem Statement Language (PSL) and 
the Problem Statement Analyzer (PSA). PSL is a non- 
procedural language that includes constructs for de- 
scribing  software  systems and facilities  for capturing 
the resultant system  model in an E/R data base. PSA 
operates on this model, and provides report genera- 
tion and data base query capabilities to allow the 
designer to inspect the model and statically  analyze 
model definitions for  consistency and completeness. 

Defining a system  in PSL involves mapping that 
system’s  objects and relationships  (ordered  associa- 
tions of  two or more objects) into the entities (e.g., 
PROCESS, PROCESSOR, EVENT,  SET, INPUT, and OUT- 
PUT) and relationships (e.g., GENERATES, PERFORMS, 
INTERRUPTS, and COLLECTION OF) of a conceptual 
PSL E/R model.  These  objects and relationships are 
captured and stored in the PSL data base in a network 
model that describes the dependency and interaction 
among objects in the target  system. 

Since this network  exists in a machine-analyzable 
data base, the PSA report-generation  facilities  can  be 
used to statically  analyze it for  consistency and com- 
pleteness. We examine later how  E/R-based  specifi- 
cation techniques like PSL/PSA can be  used  for static 
analysis of architecture descriptions. 

Functional  Specification Tools. The Functional 
Specification Tools (FST),” developed at IBM, com- 
prise a system that aids the designer in expressing 
system architecture and dynamic system  design  be- 
havior. FST contains machine-analyzable  languages 
for the following three purposes: (1) for  expressing a 
system’s control structure as a network of asynchro- 
nously communicating state-machine processes; (2) 
for  defining sequential procedures  invoked from 
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processes in this control structure; and (3) for organ- 
izing system data  in a relational model on which the 
procedures operate. FST also allows the designer to 
describe in  the relational model the target environ- 
ment in which the architecture processes will  exe- 
cute. The designer can bind the architecture specifi- 
cation and its execution environment together into 
a functional model that  can be  symbolically executed 
to exhibit the same behavior as the proposed system. 
The designer can  then exercise this model using the 
discrete event driven simulation facilities provided 
by FST to dynamically analyze architecture behavior 
in various test configurations. 

We examine later how VHLLS like FST can be used 
for dynamic behavior analysis of architecture and  to 
accomplish rapid external function prototyping. 

Graphic  representations of system design. Just as 
building architects study blueprints, software design- 
ers need to examine graphics representations of  sys- 
tem design to understand the hierarchical structure 
of their creation and  the relationship of parts of the 
system to  the whole structure. Much of the work 
done  on graphics representations of programming, 
such as GREEN PRINT,^^ has dealt with diagramming 
the internal text of program- and detailed-design 
modules. More appropriate to  the task of system 
design are  the graphics documentation facilities  of 
the Structured Analysis and Design Technique 
(SADT),3' which give a view  of the hierarchical struc- 
ture  and  component interfaces of a system produced 
by means of SADT decomposition techniques. 

Whereas graphic documentation facilities enhance 
the design  process, the design task that would  benefit 
most from graphics techniques is the architecture 
creation and  manipulation task. Analysis  of  design- 
ers' tasks in various disciplines shows that much of 
the early definition of system structure, entities, and 
relationships is done graphically on a blackboard, 
scratchpad, or CAD/CAM facility  when available. 

A very useful  facility for software design  would be 
one  that allows hierarchical decomposition and 
graphics definition of system structure  and control 
flow at  the terminal and captures these definitions in 
an EJR data base and computational network of 
processes for later analysis. A partial example of one 
such facility  used  in IBM connects the TELL system3' 
to PSLIPSA. 

A general-purpose graphics facility for software de- 
sign and development would merge problem state- 
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into an integrated hierarchical view  of the product. 

Data  abstractions and  formal specification  ap- 
proaches. The discussion about defects in the soft- 
ware  design craft identified three major deterrents to 
design productivity and quality. When there is no 
library of reliable software subassemblies available, 
we develop a new  system from the ground up.  Also, 
we have no mechanism to prove that a design  is 
correct. The control-block global data design ap- 

Algebraic  techniques  provide  a 
mechanism  for  specifying  the 

external  behavior  of a module or 
data  object. 

proach produces design functions that are highly 
interdependent and behave unpredictably when 
states in remote corners of the system change. 

These three effects are related in  that  the design 
approach creates defects, produces a haphazardly 
coupled system  whose primitives are difficult to iso- 
late and reuse, and creates a complex network of 
logical relationships that  cannot be  easily reduced to 
provable conditions. 

New  design t e c h n i q ~ e s ~ , ' ~ , ~ ~ - ~ ~  have emerged over 
the past decade that  are based upon data abstrac- 
tions, on formal specification of modules that oper- 
ate on these abstractions, and  on formal mathemat- 
ical proof of the correctness of these modules. In 
brief, these methods provide a mechanism for rig- 
orously specifying the external behavior of a software 
module that encapsulates an abstract data object. 
The object may be any abstract entity-such as a 
queue-in the design universe that we  wish to de- 
scribe. This  data object may be viewed as a state 
machine in  that operations on  the object (e.g., EN- 
QUEUE and DEQUEUE) change the condition (state) of 
the object (e.g., QUEULEMPTY, QUEUE-FULL, 
QUEUE-HAS-ELEMENTS). The module manages this 



object and its states and provides primitives that can 
be invoked by external users to change or observe 
the states of the object (e.g., IS-QUEUE-EMPTY). The 
implementation details of the object are hidden from 
users in  the module, and  the external behavior of 
the module is specified to users in  terms of the 
allowed primitives, so that  the module may be  iso- 
lated and  transported  to  other designs in need of its 
specified behavior. 

The behavior of these abstract objects and their 
primitives may be formally specified. Using first- 
order predicate c a l c ~ l u s , ~ ~ , ~ ~  assertions (or invar- 
iants) can be made  about  the values of variables and 
the truth of conditions at various execution points. 
The operation of the  module may be proved math- 
ematically correct with  respect to these  invariant^.^^ 

We can envision a design environment in which 
these data-abstraction-based design modules are pre- 
served and  made available for inclusion in higher- 
level  designs,  which are in turn defined  as modules 
encapsulating higher-level data abstractions. Such an 
environment would be conducive to  a  bottom-up 
creation of reusable software subassemblies. 

Other researchers’  have proposed merging some of 
the facilities just described into  an integrated soft- 
ware development environment. In the remainder 
of this paper, we examine how to exploit this tech- 
nology to provide architecture prototyping facilities 
in this environment. 

Architecture  prototyping  in  the  software 
engineering  environment 

Architecture prototyping can be viewed as the phase 
of software development at which, having stated the 
user’s problem and  the idea for a product solution 
(requirements), we  seek to define that system’s  global 
structure  and behavior and quickly test whether that 
idea is  feasible. 

In the large, complex software systems typically pro- 
duced in industrial software environments, the ar- 
chitecture “idea” must be described at  a level  of 
abstraction far removed from any detailed knowl- 
edge  of  design elements. Architects must describe 
the behavior and relationships among things like 
network nodes, or operating system components, 
rather than  among modules. Approaches that rely 
on semantic description and interconnection of de- 
sign  element^^^,^^,^' will not provide the economy 
and expression  set required for system  design.  Ar- 

chitecture prototyping requires a system-level de- 
scription of a product’s behavior. 

The testing of architecture feasibility  is crucial to 
developing quality software. Without testing, ambig- 
uous requirements, faulty design decisions, and dif- 
ficult-to-use interfaces may propagate through the 
rest of a design until expensive design iterations, 
implementation,  and verification  finally uncover the 
problems they create. 

We have seen that  other engineering disciplines pro- 
vide  designers  with facilities for architecture proto- 
typing. Until recently, software architects had no 
facilities for testing architecture ideas. Very-High- 

Structural  aspects of an 
architecture  can be verified  using 

static  analysis  techniques. 

Level Languages and Entity-Relationship-based for- 
mal  specification techniques exist today and provide 
software designers  with the tools and  environments 
necessary to support software architecture prototyp- 
ing.  Software can be  designed from new  perspectives 
using  such techniques. 

Specification. Instead of  expressing  system  design in 
natural language, the architect can begin  design by 
describing the static structure of a system in terms 
of the entities and relationships in that structure. 
Graphics terminal facilities, as in Reference 30, can 
be  useful for decomposing the initial system structure 
into substructures and for disconnecting, moving, 
and reconnecting components until the structure 
matches the designer’s mental image. Entity and 
relationship data can be parsed from this graphics 
input  and can be captured on  an E/R data base like 
PSL. This information network can be  replayed 
graphically to  the architect at later design  sessions 
during which the architect can decompose structures 
further, can  annotate elements of the framework 
with  design attributes, and  can build successively 
more detailed descriptions of the static structure  and 
process relationships. 
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When satisfied  with the system structure, the archi- 
tect can then define the dynamic execution behavior 
of this structure. Using the graphics replay of the 
design network model, the designer could pick  re- 
gions in the network and define the interprocess 
control logic, state transitions, and behavior rules 
using a VHLL notation. If the  notation used  is  well- 
defined and executable (e.g., the state-machine proc- 
ess model of FST), the cumulative static structure 
information, process relationships, and embedded 
process descriptions can be compiled into  the VHLL 
environment to create a symbolically executable 
functional model. Two related representations (E/R 
and  VHLL) of the architecture are then available for 
static and dynamic analysis, respectively. 

Static  analysis of system structure. Once defined 
and visually inspected, structural aspects of an ar- 
chitecture can be verified  using static analysis tech- 
niques. Static analysis can be  used for the following 
purposes: (1)  to verify the completeness of a descrip- 
tion, by testing whether all entities, relationships, 
and  attributes  in  an architecture have  been described, 
and (2) to verify the consistency of entities in a 
description to the total structure of an architecture, 
for example, by testing whether related components 
describe their interface as complementary, that is, as 
mirror images. 

PSLIPSA provides for both completeness and consist- 
ency  checking. PSA provides report generation facil- 
ities such as structure reports (process hierarchy), 
process chain reports (procedure invocation se- 
quences through the system), and data/activity re- 
ports (cross  reference  of data used  by  processes). 
Each of these reports alerts the designer to undefined 
or inconsistently specified entities or relationships. 

To maximize the usability of architecture prototyp- 
ing functions, the architect should be capable of 
probing regions of the architecture graphically and 
receiving pictorial notification of  PsA-generated in- 
consistencies and incompleteness. 

Dynamic analysis of system behavior. The architect 
can dynamically analyze the  run-time behavior of 
an architecture by binding together into  a functional 
model the static structure data, process relationships, 
and imbedded process  design descriptions with in- 
formation on the execution environment,  and  then 
by symbolically executing this model of the design. 

There are several approaches to  the symbolic exe- 
cution of functional models. In our scheme, the FST 
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state-machine process descriptions that make up  the 
design specification are compiled to define the exe- 
cutable model of the system. General-purpose sim- 

The  architect  can  exercise  the 
functional  model  using  discrete 

event  driven  simulation 
techniques. 

ulation languages  (e.g., SIMULA and GPSS) provide a 
similar scheme for modeling systems. References 26 
and 38 explore other variations of this approach. 
Other approaches to dynamic analysis, which we do 
not explore here, include symbolically executing al- 
gebraic ~pec i f ica t ions~~,~~ and analyzing graph-like 
models of  design behavior.23 

Once the functional model is established in  its test 
configuration and  environment,  the architect can 
exercise it using discrete event driven simulation 
techniques. The architecture can send an event to 
activate a process in  the architecture and  then  mon- 
itor a simulation trace to follow  design rules that are 
traversed, interprocess communication,  and inter- 
leaving that occurs when a process  is interrupted in 
favor of a higher-priority process. Functional simu- 
lation allows the architect to examine architecture 
control and  data flow, and  to detect deadlock, re- 
source contention, timing, and interface problems. 
The architect can examine the performance of the 
system under stress conditions. Aspects of the envi- 
ronment can be modified around  the functional 
model to examine system behavior under adverse 
conditions. 

Advanced architecture prototyping facilities should 
allow the architect to select  regions of the architec- 
ture graphically and watch their run-time behavior 
by  way  of animation techniques. 

Rapid prototyping. Rapid p r o t ~ t y p i n g ~ ~ - ~ * , ~ ~ , ~ ~  is the 
process  of building a quick, inexpensive model that 
exhibits the same behavior as will the final  system. 
The purpose of rapid prototyping is to provide feed- 



back to planners and designers on the suitability of 
system functions. Rapid prototyping can be  used to 
analyze a variety  of  system attributes, including us- 
ability and performance. Prototypes can be imple- 

We  envision  a  future  software 
engineering  environment  in  which 

design  and  code  reuse  is  a 
regular  procedure. 

mented in a wide  variety  of techniques, ranging from 
symbolic execution of algebraic design  specifica- 
t i o n ~ ~ ~ , ~ ~  to direct execution of disposable interim 
versions  of a product implementation. 

A rapid prototype in the architecture prototyping 
environment we are discussing deals only with the 
usability of the externals of the product. Other attri- 
butes like  system performance and control flow are 
examined using functional modeling and dynamic 
analysis techniques. In fact, an externals prototype 
in this environment would be implemented as an 
extension of the functional model. With the facilities 
already described, the designer would bind to each 
functional process in  the architecture a description 
of the external interface of that  component. Such a 
description can be  expressed as a sequence of  screens 
or menus defined in a screen-programming lan- 
g ~ a g e . ~ ' , ~ '  When exercised within the VHLL symbolic 
execution environment,  the prototype behaves exter- 
nally like the final product.  The prototype also per- 
mits potential users of the product to invoke and 
interact with  facsimiles  of product functions, allow- 
ing them  to provide feedback on  the usability of 
product interfaces. It could also be  used to clarify 
ambiguities about customer requirements. 

When implemented as an extension of the functional 
model, the protoype need not be discarded. The 
external interfaces can be preserved  with the archi- 
tecture and used iteratively as the design is expanded 
within the architecture framework to validate that 
the element design does not  corrupt user interfaces 
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or introduce delays in response times. The screen 
definitions from stabilized interfaces can be  pre- 
served and later coupled with code translated from 
the functional design to produce the final product 
implementation. 

Fitting  software  subassemblies  into  the  framework. 
A simplified view  of software development is that it 
involves the two problem-solving phases of require- 
ments  and architecture to create a solution frame- 
work. That is  followed by tedious iterative refine- 
ment  and verification to fill in  the details and pro- 
duce a translation that  runs  on a machine. 

During design refinement, programmers sometimes 
find  existing implementation routines that fit in  their 
design structure  and solve a particular design task. 
They take advantage of these routines and modify 
and reuse them rather than writing  new ones. Thus 
they avoid some of the refinement and detailed 
specification  process. In general, reuse occurs hap- 
hazardly; we do not facilitate the reuse of primitives 
in the design  of  systems, nor  do we broadcast their 
availability in design environments. The U n i ~ ~ ~  en- 
vironment is a notable exception. 

We can envision a future software engineering en- 
vironment in which  design and code reuse is a reg- 
ular procedure. Such an  environment would include 
teams of designers building bottom-up layers of re- 
liable, reusable primitives. These primitives could be 
algebraically  specified and their reliability formally 
proved. Packages of these primitives could conceiv- 
ably  be  reused by designers  seeking a subassembly to 
fit in  an architecture framework previously decom- 
posed in a top-down manner. An architecture pro- 
totyping facility  might become the workbench at 
which these elements would be bound together for 
feasibility testing. 

Research  is  necessary to identify frequently used 
primitives and  data abstractions and  to provide 
mechanisms to select and fit appropriate subassem- 
bly solutions into  the validated architecture frame- 
work at  the point where the need for a solution has 
been identified but  not elaborated. Such solutions 
could include a reusable unit of code, a complex 
hierarchy of  design primitives, or  an incomplete 
design stub  that itself invokes design functions whose 
description will  be elaborated in later design  stages. 
An architecture prototyping facility should support 
the binding of framework and solution and  the eval- 
uation of the cumulative result  using static and 
dynamic analysis techniques. 
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Maintenance  and  enhancement. Developers of soft- 
ware  have frequently ignored what may be the largest 
group of software users: those who debug, maintain, 
and  enhance existing  systems. Current software de- 
velopment documentation hampers maintenance 
and  enhancement in that it provides neither com- 
prehensive views  of the system structure nor mech- 
anisms to descend hierarchically through the frame- 

Architecture  prototyping  facilities 
would  provide  an  integrated 

development  repository. 

work to view a function where a problem may  exist 
or where an  enhancement must fit. Architecture 
prototyping facilities  would  ease this problem by 
providing an integrated development repository 
from which the specification captured graphically 
and lexically during design could be  replayed for 
those who  would maintain and enhance the product. 
The ability to view the relationships of parts of the 
product to  the whole and  to design and test changes 
to the product quickly, using the abstract notations 
and dynamic analysis facilities, could greatly im- 
prove maintenance and  enhancement productivity 
and quality. 

Toward a process  for reliable  software 
development 

The methods discussed in this paper can be inte- 
grated into  a top-down verijication approach to de- 
veloping software. A top-down verification method- 
ology  is illustrated in Figure 3 and features the 
following new tasks: 

Formal specification  of  user requirements, system 
structure, and dynamic system behavior using 

Rapid prototyping of external functions and user 
interfaces. 
Static analysis of user-system relationships and 
system structure for consistency and complete- 
ness. 

VHLLS. 
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Dynamic analysis of  system control and  data flow 
to verify dynamic system  design behavior and  to 
model  system performance and reliability. 
Selection and insertion of existing  software 
subassemblies into  the system  design framework. 
Algebraic specification, proof, and insertion of 
new design as needed. 
Static and  dynamic analysis of the cumulative 
product description at each stage. 
Potential automated code generation from the 
verified product de~cr ip t ion .~~ 
Optimization of generated code for the target en- 
vironment. 

A top-down verification approach would improve 
software development in several  ways. First, it would 
allow the analysis of early product descriptions for 
feasibility as soon as they are produced, rather than 
waiting until the product has been designed, imple- 
mented, integrated, and has become available for 
testing. 

Major interfaces, which are created first, would be 
tested first. Potential interface errors would be de- 
tected, resolved, and reworked before any further 
development that depends on these interfaces begins. 
Error rework  cost would be reduced. 

Design  feasibility would be demonstrated early, be- 
fore  costly implementation, through static and dy- 
namic analysis of the system structure. The conse- 
quences of design decisions for system performance, 
reliability, and usability could be explored and veri- 
fied. 

Design analysis would be automated  and would be 
reproducible. It would not be subject to  human 
variability, as  are design and code inspections. For- 
mal design  verification could be accomplished by 
correctness proof. 

Errors could most often be prevented, or at least 
detected when produced, if the formal specification 
methods used constantly enforced coherence check- 
ing and allowed symbolic execution. 

Productivity would be improved through the reuse 
of existing  reliable  design and  implementation solu- 
tions. 

A top-down verification software engineering ap- 
proach would create new tasks and roles. Planners 
would  reveal prototypes to customers to validate 
requirements. Architects would statically and dy- 
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Figure 3 Top-down  verification  in  the  software  development  process 
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namically analyze their system  designs prior to  com- 
mitting the system to production. Implementers 
would optimize subassemblies. Such an approach 
shows promise for solving some of the problems 
inherent in the software craft and  in  the engineering 
of reliable software. 

Concluding  remarks 

We have explored the software craft and found that, 
although it is capable of producing high-quality prod- 
ucts, more precision and  automation  are needed to 
produce zero-defect products with reasonable cost. 

We  have also considered more rigorous software 
development approaches based on  the use  of emerg- 
ing software engineering methods like formal and 
algebraic specification techniques, Very-High-Level 
Languages, data abstractions, and static and dynamic 
design analysis. These tools give us more precision 
and control in describing and  communicating de- 
sign, and they permit early machine analysis of 
specifications. 

We have  discussed the idea that the development of 
quality software requires a phase of architecture pro- 
totyping in which initial design ideas are “wind- 
tunnel tested” for feasibility.  We propose that  the 
task requires an automated facility that has the fol- 
lowing features: 

A graphics facility for the creation and analysis of 
system design. 
A common machine-analyzable abstract notation 
for defining structure attributes, for expressing 
dynamic architecture behavior, and for defining 
design refinement within the architecture frame- 
work. 
An Entity-Relationship data base on which to 
capture structure information for static analysis 
and design communication. 
A VHLL design computational model and symbolic 
execution environment in  which to capture  inter- 
process control and  data flow specifications for 
dynamic analysis. 
Static analysis tools to test structural completeness 
and consistency. 
Dynamic analysis tools that allow symbolic exe- 
cution of architecture to facilitate the prototyping 
of external interfaces and behavioral analysis of 
internal system control and  data flow. 
The capability to fit further design refinement or 
common design and code subassemblies into  the 
architecture framework and  to evaluate the  cu- 
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mulative result, using static and dynamic analysis 
techniques. 
The use  of the product data base and symbolically 
executable specification to aid in maintenance and 
enhanccrnent. 

Many of these facilities  exist and have  begun to be 
used independently today. We propose that these 
facilities belong in any future integrated software 
development environment.  Further work should ex- 
plore the issues of making these tools usable as 
partners in the design  process by  way of  design 
knowledge  bases and expert system interfaces. Once 
ready  for software production, these facilities will 
support a top-down verification approach to software 
development, which  shows promise for producing 
highly  reliable software. 
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