Architecture prototyping
in the software
engineering environment

This technical essay presents a perspective on the ev-
olution and problems of the software development
craft and how software engineering techniques show
promise to solve these problems. It introduces archi-
tecture prototyping as a program development tech-
nique for improving software quality. Experience with
large software systems shows that over half of the
defects found after product release are traceable to
errors in early product design. Furthermore, more than
half the software life-cycle costs involve detecting and
correcting design flaws. In this paper, we explore a
disciplined approach to software development based
on the use of formal specification techniques to ex-
press software requirements and system design. As a
consequence, we can use techniques like rapid proto-
typing, static design analysis, design simulation, and
dynamic behavior analysis to validate system design
concepts prior to element design and implementation,
We explore how these techniques might be organized
in a software architecture prototyping facility that
would be similar to the Computer-Aided Design and
Manufacturing (CADAM) tools used in other engineer-
ing disciplines. We also examine the process by which
software engineers might use these facilities to create
more reliable systems.

Personal computers, office systems, and profes-
sional workstations are on the verge of recruiting
a large new class of computer users. This user explo-
sion will accelerate the demand for reliable software
applications and systems. Many applications in med-
icine, aerospace, and real time process control re-
quire high system reliability and defect-free software.
Yet software developers are beginning to reach a
plateau in terms of the quality and quantity of
systems they can produce. Maturing software devel-
opment techniques of the 1970s like the use of
structured programming constructs and design and
code inspections'~? squeeze fewer new errors out of

4 BEREGH

by W. E. Beregi

software and yield fewer productivity gains from
programmers.

The reason for this leveling is that the development
of software is a complex intellectual task. That task
involves understanding the user’s world (analysis),
defining needs for improvement in that world (re-
quirements), creating a conceptual solution to satisfy
those needs (design), and translating that solution
into a form executable on a machine (implementa-
tion). Because few of us can manage this as a single
task, we attack large software design problems in
teams, using a divide-and-conquer strategy like top-
down, stepwise refinement.*® At any stage of design,
given a specification that describes what a compo-
nent of the system should do, we can derive how it
should do the “what” by decomposing the compo-
nent into smaller, more manageable functions that
collaborate to perform the component’s task. We
can then specify what each of the functions should
do and pass these more detailed specifications on to
other designers to elaborate how each function is to
perform its specified task. Most of software design
can be produced using this iterative, hierarchical
decomposition of complex, abstract specifications
into simpler, atomic specifications, until those spec-
ifications can be compiled and run on a machine.

We begin to realize why programmers struggle to
produce better software when we compare the craft

©Copyright 1984 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 23, NO 1, 1984

they use with the complexity of the task. The soft-
ware development techniques widely used today pro-
vide aid when the problem is relatively small, local,
and concrete. An example might be the implement-
ing of a SAVE function in a file editor. These tech-
niques provide little help, however, when the prob-
lem is as large, global, and abstract as, for example,
that of describing the architecture and protocols in
a telecommunications system. Widely used natural-
language-based software methodologies weaken
when we tackle large, multiperson design projects.
Without tools to define design precisely, to partition
design into mutually exclusive units of manageable
complexity, to keep track of the relationships of the
parts to the whole, to validate system design ideas
prior to refinement and implementation, and to
facilitate the reuse of previous design solutions, we
will have difficulty producing zero-defect software.
We examine some of these deficiencies and their
consequences for software quality in later sections of
this paper.

Developments in software engineering and software
specification techniques promise to infuse our craft
with some of the engineering discipline we need to
improve software quality and productivity. These
methods offer to software developers some of the
specification and verification techniques available to
hardware logic designers, building architects, and
aircraft and automotive engineers. We examine how
these methods can be used to improve software
quality. We explore how these techniques might be
integrated into an architecture prototyping facility
that software engineers could use to test the feasibil-
ity of their early software design ideas.

The software development craft

Software developers practice their craft using some
common strategies to manage complexity. In this
section, we trace through a simplistic overview of
the techniques most widely used in the software
industry to develop programs, ignoring for the mo-
ment software engineering approaches that have be-
gun to penetrate into practice. We point out major
deficiencies of these techniques in this examination.
Engineering approaches used in other disciplines also
suggest ways to improve the software craft.

Most large software systems developed today are
produced using a staged approach, which includes
discrete phases for requirements definition, system
design (which we call architecture), internal, detailed
element design, and implementation and verifica-

IBM SYSTEMS JOURNAL, VOL 23, NO 1, 1984

Figure 1 Stages in the software development process

/ TOP-DOWN DEVELOPMENT BOTTOM-UP TESTING \
MANUAL DESIGN VERIFICATION
GENERAL AVAILABILITY
REQUIREMENTS LIMITED RELEASE
ANALYSIS TO EARLY USERS
b
3 1
& v
a ARCHITECTURE, 25-100:1 SYSTEM
Z SYSTEM STRUC- TEST
5 TURE DEFINITION
52
o STRUCTURE
. REVIEW
COMPONENT 5-10:1 COMPONENT
DESIGN TEST
s DESIGN
S INSPECTIONS
w
E FUNCTION, 3-1011 FUNCTIONAL
z MODULE VERIFICATION
g DESIGN
I
b DESIGN TEST CASE
INSPECTIONS REVIEW
CODE UNIT
GENERATION TEST
CODE TEST PLAN
INSPECTIONS REVIEW

_ Y,

tion. This staged approach is illustrated in Figure 1.
We describe the essence of these operations in the
following sections.

Requirements phase. Product planners, analysts,
consultants, and users collaborate to define product
requirements. Planners use enterprise analysis
techniques®'? to understand the existing user system
and environment, to collect user requirements for
improvements, and to organize the requirements
into related problems and opportunities. Planners
then identify potential solutions to satisfy each prob-
lem, rank solutions by user demand, cost, and pro-
jected revenue, and define a product description in
terms of the functions the product must provide and
the constraints (e.g., performance and availability)
the product must satisfy.

An English-language document is typically written
to communicate the requirements to the develop-
ment team. Planners and developers validate this
document.

BEREGI §

Architecture phase. Software architects produce
from the requirements statement a system architec-
ture specification. This specification has two parts:
(1) what the system must do or provide (i.e., the
external specifications), and (2) how the system must
operate (i.e., internal specifications). The internal
specifications define both a structural framework of
subsystems that collaborate to perform system func-

Architecture is commonly
expressed in natural language,
sometimes augmented with
diagrams.

tions and system-level dynamic behavior. These
specifications identify system components, system
control and data flow, and how components are
bound together in the structure. They postpone the
definition of internal design elements and their op-
erations until later stages of design.

To illustrate by analogy, software architecture spec-
ifications serve the same function as the architectural
plans and drawings used by building architects and
civil engineers. A blueprint portrays the building
structure and the static relationships of parts to the
whole. Blueprint annotations may describe attributes
of facilities (e.g., size and material composition) and
criteria these facilities must satisfy (e.g., performance
under stress conditions). The architectural plan de-
scribes the workings of the moving parts and the
dynamic operation of the facilities throughout the
structure (e.g., electrical, plumbing, and elevator sys-
tems). The plan may reference design documents
that describe the internal operations of the building’s
component facilities.

To summarize, architecture specifications describe,
at minimum, three aspects of the system:

~ External functions and interfaces presented by the
system to the user.

&~ Structural framework of subsystems and interfaces
that mesh to provide system functions.

6 BEREGI

~ Dynamic behavior of the system (data and control
flow through the structural framework) that results
when a user requests a system function. Asynchro-
nous aspects and timing relationships in the sys-
tem are defined at the architecture level.

Architecture is commonly expressed in natural lan-
guage, sometimes augmented with diagrams (e.g.,
Hierarchical Input-Process-Output (HIPO) dia-
grams''), Architecture specifications are described
at a very high level of abstraction. One statement
may represent between twenty-five and one hundred
statements in the product implementation. They are
sometimes verified using structure inspection or sce-
nario flow techniques.'?

Design phases. Once an architecture framework is
defined, designers can fill in the details of internal
clements using iterative refinement techniques. As
shown in Figure 2, they use Structured Design, Com-
posite Design, and Data Flow Design principles'*~'
to elaborate operational details for components re-
ferred to but not explicitly defined in the architecture
framework. They apply the same principles to de-
compose and elaborate details of functions refer-
enced in the components and modules {segments)
referenced in the functions, until all system segments
are designed.

One statement at the element design level of abstrac-
tion may be expanded into three to fifteen statements
in the product. Design at this level is expressed using
a wide variety of notations (e.g., natural language,
pseudo-code, structured flowcharts, and decision ta-
bles). Multiple notations often coexist on a project,
thereby forcing designers to transfer from one nota-
tion to another as they refine the design. Defects
introduced during design are often manually re-
moved from the product by means of inspections'~
before the next level of design begins. Defects that
escape are often not detected until late in the product
test phase.

Implementation and verification phases. Program-
mers implement the design, using primarily high-
level programming languages (e.g., PL/I and Pascal).
They then collect and test the coded product mod-
ules. One verification strategy is a bottom-up testing
approach, by which simple system elements (mod-
ules) are tested first, then successively recomposed
into more complex entities, such as functions, com-
ponents, and systems, to be tested in more complex
environments, Once all elements are tested and in-

IBM SYSTEMS JOURNAL, VOL 23, NO 1, 1984

design abstraction

Figure 2 Top-down stepwise refinement in the software development process and hierarchical relationships among levels of

-

HIERARCHICAL VERIFICATION
{EVEL TECHNIQUE
1 SYSTEM DEFINITION STATEMENT
REQUIREMENTS | WITH REQUIRED FUNCTIONS AND CONSTRAINTS
DEFINITION D
ARCHITgCTURE SUBSYSTEM [:::] sNTSRUCTugES o
AND SYSTEM INSPECTIONS AN
STRUCTURE @ SCENARIOS
- :l
_ REFINE SYSTEMTO| | COMPONENT DESIGN -
a y I
COMPONENT COMPONENTS :l
DESIGN a w w DESIGN
@ w 0 (NSPECTIONS OR
§ § 5 WALK-THROUGHS
— P vokee s
INVOKE SUB C z z INVOKEE (> z
1 v v v
SUBGC D E F
INVOKE F SUBCOMPONENT
INVOKE G
INVOKE J- INVOKEJ INVOKEK
—+ INVOKE H
INVOKE |
"y v v y v v A4 \
4 G F H I J K
FUNCTION FUNCTION f o » * DESIGN
AND MODULE INSPECTIONS OR
DESIGN WALK-THROUGHS
TRANSLATE
7O CODE
\J
IMPLEMENTATION .o MODULE Je s e CODE
INSPECTIONS
AND STAGED
BOTTOM-UP
TESTING

PROTOCOL OR
ASYNCHRONOUS INTERFACE

IBM SYSTEMS JOURNAL, VOL 23, NO 1, 1984

BEREG [

tegrated, the system is exercised to verify that it meets
function, performance, reliability, and ease-of-use
specifications.

Thus, the mainstream software production environ-
ment today relies on top-down development tech-
niques, specification in natural language, successive
refinement of design, manual design verification (us-
ing inspections), and late life-cycle verification that
the product meets requirements and specifications.
Although this process contributes to good software
quality, the lack of tools and precision at several
stages hinders us from reaching zero defects.

Defects in the software craft. To improve software
quality, we need software engineering approaches
that cope with such problems inherent in the devel-
opment process as the following:

¢ Requirements. 1t is difficult to validate product
requirements. Developers and customers may
achieve some consensus (e.g., via user reviews of
requirements), but without high confidence be-
cause their reviews are based on prose specifica-
tions that cannot reveal system aspects like per-
formance, function, usability, and reliability. We
cannot demonstrate for certain that a proposed
system meets all customer requirements until we
integrate all implemented functions late in the test
phase. At that time, problems are costly to detect
and correct. The cycle time required to develop
products exceeds the span over which we can
accurately forecast customer needs. Require-
ments, even if we can validate them at product
conception, may become obsolete before we ship
the product. A major reason for the lengthy prod-
uct cycle time is that, as an industry, we reinvent
most new software and seldom make use of design
solutions that may already exist.

e Architecture. We have commonly defined archi-
tecture using ambiguous natural language, dia-
grams, and other free-form notations. Such expres-
sion hinders our ability to communicate accu-
rately the system’s structure and prevents us from
formally analyzing the structure and dynamic be-
havior of the system. Thus we design and imple-
ment functions based on structures and protocols
that are weakly specified, poorly communicated,
and not formally validated during design. We rely
on exhaustive testing to correct problems and
produce high-quality products.

We are unable to test the feasibility of our initial
architecture ideas or compare alternative propos-

8 BEREG!

als. We are unable to examine the architecture
specification and determine the effect that archi-
tecture tradeoffs and function placement decisions
have on system performance, usability, and relia-
bility. To explore these aspects, we must either
create expensive, throw-away models of the system
or wait until we integrate the implemented func-
tions late in the test cycle. Costs usually dictate
that few, if any, alternative designs are considered.
Poor architecture decisions can propagate through

We are unable to test the
feasibility of our initial
architecture ideas or compare
alternative proposals.

all stages of a project and cause costly rework to
undo design and implementation based on those
decisions. We have no mechanism to validate that
a proposed product architecture satisfies all known
product requirements.

¢ Design. We usually custom-design a new system
without taking maximum advantage of existing
design solutions. We maintain no library of
proved, common software subassemblies from
which to build systems, as do designers in other
disciplines. Subassemblies such as macros and
subroutines developed on one project are generally
not designed, preserved, or ported for reuse on
another project. Although structured design lan-
guages have improved software quality, the use of
multiple design notations on the same project
causes errors when we refine a design from one
stage and notation to the next. We have no mech-
anism to detect all of these errors early in the
design phase, where they are much less costly to
correct. We have no mechanism to prove that a
design is correct. We base our confidence that a
design works on a visual inspection of a sample
subset of possible design paths and input-output
permutations.

Good design principles!>'® are hard to enforce
across large projects. Attempts to partition design

IBM SYSTEMS JOURNAL, VOL 23, NO 1, 1984

into mutually exclusive, self-contained modules
are thwarted if we allow the modules to access
global data, such as control blocks, and thus hap-

Aircraft and automotive designers
use CAD/CAM to graphically
define the architecture of their
products.

hazardly affect system state variables. This causes
unpredictable system behavior that we are unable
to test.

Implementation and test. As in design, we have
no mechanism to prove that a program is correct,
complete, or consistent with the design. We have
no reliable metrics with which to examine code
properties and predict system quality, rejecting
poor code on the basis of excess complexity or
poor readability, structure, or maintainability. As
in design, we base our confidence that an imple-
mentation works on tests of a sample subset of
possible design paths and input-output permuta-
tions. It is difficult to prove that the system works
in all specified situations and system states, so we
rely on exhaustive testing.

Although these are not a complete classification of
software development problems, they provide ample
search space for software engineering solutions. The
most glaring deficiency in the software craft, from
our perspective, is a lack of mechanisms for the
precise specification and machine analysis of the
statement of the problem (requirements) and early
design solution (architecture), since all further de-
velopment activity and communication proceed
from these statements. It might be instructive to
consider how other engineering disciplines have ap-
proached these problems.

Snapshots from the tasks of designers in other engi-
neering disciplines provide some strategies that soft-
ware developers could use to correct defects in their
craft. Aircraft and automotive designers use com-
puter-aided design and manufacturing (CAD/CAM)
facilities to graphically define the architecture of their
products. Data bases hooked to these facilities cap-

IBM SYSTEMS JOURNAL, VOL 23, NO 1, 1984

ture the static, hierarchical structure of the product.
The designers can graphically query these data bases
to provide visual, static analysis of the relationship
of design elements to the total structure. These de-
signers build quick, inexpensive prototypes that per-
form the same external functions as will the final
product. They subject these prototypes to logical
“wind-tunnel” testing (i.e., simulation) to analyze a
product’s dyamic behavior in stress conditions and
real-life environments. They create multiple designs
and choose the best alternative, based upon proto-
type results.

Hardware logic designers use design logic simulation
techniques to test their designs. The designer can
examine the functional design model for correct logic
and timing relationships and physical function place-
ment prior to committing the design to implemen-
tation. Hardware designers can capture the design
specifications (Boolean logic rules) for logic elements
in a data base for later reuse. These reusable elements
can be included in future designs where appropriate,
thereby saving specification time.

These disciplines provide their designers with mech-
anisms to specify design precisely, to prototype the
external functions of a product, and to statically and
dynamically analyze the system design of the prod-
uct’s behavior. We call these capabilities architecture
prototyping functions and explore how they can be
realized in a software engineering environment.

Facilities for a software engineering
environment

In the discussion of the software development craft,
we have purposely concentrated on the problems
that hinder us from producing zero-defect software.
Software research over the past decade has developed
engineering techniques that have begun to invade
software practice. Some of these techniques provide
kernels around which we can construct an improved
software development scheme.

e Machine-analyzable Very-High-Level software
specification Languages (VHLLS)'"-?° and Entity/
Relationship data models®'*? offer mechanisms for
the organization of enterprise analysis informa-
tion, for the precise specification and analysis of
software requirements and architecture, 26 and
for rapid prototyping of product function.

 Graphic representations of software system design
structure®*-*? provide user-oriented interfaces for
the definition and manipulation of system design.

27,28

BEREG §

e Rigorous software development ap-
proaches,*!¢3-35 based on abstract data types, on
algebraic specification of design processes in terms
of their operations on data abstractions, and on

Product descriptions expressed in
procedural VHLLs can be
symbolically executed to verify
product behavior.

proof of design and programs, provide a scheme
in which reusable software subassemblies may be
developed and reused.

In the next section, we provide an overview of these
concepts and explore how they can support architec-
ture prototyping capabilities.

Very-High-Level software specification Lan-
guages (VHLLs). High-Level programming Lan-
guages (HLLS) like ALGOL, PL/1, and Pascal give pro-
grammers the freedom to express algorithms and
data structures without the bookkeeping of machine
details. Pseudo-code notations abstracted from these
languages allow designers to express low-level design
of procedures without regard for the implementation
characteristics of data structures.

A class of notations called Very-High-Level software
specification Languages (VHLLS) permits software
planners and architects to formally define abstract
problem statements and early design solutions. This
class includes abstract procedural languages for ex-
pressing design control and data flow,'”!>* nonpro-
cedural languages for representing system objects
and relationships,'®*' and algebraic design nota-
tions.>3

Many of these languages share the capability of
expressing operations on a particular abstract
representation of data—the Entity/Relationship
(E/R) or relational model.

Product descriptions expressed in procedural VHLLs
can be symbolically executed to verify product be-

10 BEREGI

havior. System definitions captured in a machine-
processable E/R data base can be statically analyzed
for consistency and completeness.

We examine two members of the vHLL class, the
Problem Statement Language/Problem State-
ment Analyzer (pSL/PSA) and the Functional Speci-
fication Tools (FsT) to explore how they provide these
capabilities.

Problem Statement Language/Problem Statement
Analyzer. PSL/PSA, originally developed at the Uni-
versity of Michigan,'® is a system that aids in the
precise definition of system specifications. These
specifications may include problem statements (re-
quirements) and the framework of design solutions
(system structure). PSL/PSA is composed of two com-
ponents, the Problem Statement Language (pSL) and
the Problem Statement Analyzer (PSA). PSL is a non-
procedural language that includes constructs for de-
scribing software systems and facilities for capturing
the resultant system model in an E/R data base. psa
operates on this model, and provides report genera-
tion and data base query capabilities to allow the
designer to inspect the model and statically analyze
model definitions for consistency and completeness.

Defining a system in PSL involves mapping that
system’s objects and relationships (ordered associa-
tions of two or more objects) into the entities (e.g.,
PROCESS, PROCESSOR, EVENT, SET, INPUT, and OUT-
PUT) and relationships (e.g., GENERATES, PERFORMS,
INTERRUPTS, and COLLECTION OF) of a conceptual
psL E/R model. These objects and relationships are
captured and stored in the pSL data base in a network
model] that describes the dependency and interaction
among objects in the target system.

Since this network exists in a machine-analyzable
data base, the PsA report-generation facilities can be
used to statically analyze it for consistency and com-
pleteness. We examine later how E/R-based specifi-
cation techniques like PSL/PSA can be used for static
analysis of architecture descriptions.

Functional Specification Tools. The Functional
Specification Tools (rstT),'” developed at 1BM, com-
prise a system that aids the designer in expressing
system architecture and dynamic system design be-
havior. ST contains machine-analyzable languages
for the following three purposes: (1) for expressing a
system’s control structure as a network of asynchro-
nously communicating state-machine processes; (2)
for defining sequential procedures invoked from

IBM SYSTEMS JOURNAL, VOL 23, NO 1, 1984

processes in this control structure; and (3) for organ-
izing system data in a relational model on which the
procedures operate. ST also allows the designer to
describe in the relational model the target environ-
ment in which the architecture processes will exe-
cute. The designer can bind the architecture specifi-
cation and its execution environment together into
a functional model that can be symbolically executed
to exhibit the same behavior as the proposed system.
The designer can then exercise this model using the
discrete event driven simulation facilities provided
by FsT to dynamically analyze architecture behavior
in various test configurations.

We examine later how VHLLS like FST can be used
for dynamic behavior analysis of architecture and to
accomplish rapid external function prototyping.

Graphic representations of system design. Just as
building architects study blueprints, software design-
ers need to examine graphics representations of sys-
tem design to understand the hierarchical structure
of their creation and the relationship of parts of the
system to the whole structure. Much of the work
done on graphics representations of programming,
such as GREENPRINT,* has dealt with diagramming
the internal text of program- and detailed-design
modules. More appropriate to the task of system
design are the graphics documentation facilities of
the Structured Analysis and Design Technique
(saDT),’! which give a view of the hierarchical struc-
ture and component interfaces of a system produced
by means of SADT decomposition techniques.

Whereas graphic documentation facilities enhance
the design process, the design task that would benefit
most from graphics techniques is the architecture
creation and manipulation task. Analysis of design-
ers’ tasks in various disciplines shows that much of
the early definition of system structure, entities, and
relationships is done graphically on a blackboard,
scratchpad, or CAD/caM facility when available.

A very useful facility for software design would be
one that allows hierarchical decomposition and
graphics definition of system structure and control
flow at the terminal and captures these definitions in
an E/R data base and computational network of
processes for later analysis. A partial example of one
such facility used in 1BM connects the TELL system®!
t0 PSL/PSA.

A general-purpose graphics facility for software de-
sign and development would merge problem state-

IBM SYSTEMS JOURNAL, VOL 23, NO 1, 1984

ment, system design, element design, and program
representations with their associated text and data
into an integrated hierarchical view of the product.

Data abstractions and formal specification ap-
proaches. The discussion about defects in the soft-
ware design craft identified three major deterrents to
design productivity and quality. When there is no
library of reliable software subassemblies available,
we develop a new system from the ground up. Also,
we have no mechanism to prove that a design is
correct. The control-block global data design ap-

Algebraic techniques provide a
mechanism for specifying the
external behavior of a module or
data object.

proach produces design functions that are highly
interdependent and behave unpredictably when
states in remote corners of the system change.

These three effects are related in that the design
approach creates defects, produces a haphazardly
coupled system whose primitives are difficult to iso-
lJate and reuse, and creates a complex network of
logical relationships that cannot be easily reduced to
provable conditions.

New design techniques®'*-3* have emerged over
the past decade that are based upon data abstrac-
tions, on formal specification of modules that oper-
ate on these abstractions, and on formal mathemat-
ical proof of the correctness of these modules. In
brief, these methods provide a mechanism for rig-
orously specifying the external behavior of a software
module that encapsulates an abstract data object.
The object may be any abstract entity—such as a
queue—in the design universe that we wish to de-
scribe. This data object may be viewed as a state
machine in that operations on the object (e.g., EN-
QUEUE and DEQUEUE) change the condition (state) of
the object (e.g., QUEUE_EMPTY, QUEUE_FULL,
QUEUE_HAS_ELEMENTS). The module manages this

Berea 11

object and its states and provides primitives that can
be invoked by external users to change or observe
the states of the object (e.g., IS_QUEUE_EMPTY). The
implementation details of the object are hidden from
users in the module, and the external behavior of
the module is specified to users in terms of the
allowed primitives, so that the module may be iso-
lated and transported to other designs in need of its
specified behavior.

The behavior of these abstract objects and their
primitives may be formally specified. Using first-
order predicate calculus,>* assertions (or invar-
iants) can be made about the values of variables and
the truth of conditions at various execution points.
The operation of the module may be proved math-
ematically correct with respect to these invariants.*

We can envision a design environment in which
these data-abstraction-based design modules are pre-
served and made available for inclusion in higher-
level designs, which are in turn defined as modules
encapsulating higher-level data abstractions. Such an
environment would be conducive to a bottom-up
creation of reusable software subassemblies.

Other researchers® have proposed merging some of
the facilities just described into an integrated soft-
ware development environment. In the remainder
of this paper, we examine how to exploit this tech-
nology to provide architecture prototyping facilities
in this environment.

Architecture prototyping in the software
engineering environment

Architecture prototyping can be viewed as the phase
of software development at which, having stated the
user’s problem and the idea for a product solution
(requirements), we seek to define that system’s global
structure and behavior and quickly test whether that
idea is feasible.

In the large, complex software systems typically pro-
duced in industrial software environments, the ar-
chitecture “idea” must be described at a level of
abstraction far removed from any detailed knowl-
edge of design elements. Architects must describe
the behavior and relationships among things like
network nodes, or operating system components,
rather than among modules. Approaches that rely
on semantic description and interconnection of de-
sign elements?®3%*” will not provide the economy
and expression set required for system design. Ar-

12 BEREGI

chitecture prototyping requires a system-level de-
scription of a product’s behavior.

The testing of architecture feasibility is crucial to
developing quality software. Without testing, ambig-
uous requirements, faulty design decisions, and dif-
ficult-to-use interfaces may propagate through the
rest of a design until expensive design iterations,
implementation, and verification finally uncover the
problems they create.

We have seen that other engineering disciplines pro-
vide designers with facilities for architecture proto-
typing. Until recently, software architects had no
facilities for testing architecture ideas. Very-High-

Structural aspects of an
architecture can be verified using
static analysis techniques.

Level Languages and Entity-Relationship-based for-
mal specification techniques exist today and provide
software designers with the tools and environments
necessary to support software architecture prototyp-
ing. Software can be designed from new perspectives
using such techniques.

Specification. Instead of expressing system design in
natural language, the architect can begin design by
describing the static structure of a system in terms
of the entities and relationships in that structure.
Graphics terminal facilities, as in Reference 30, can
be useful for decomposing the initial system structure
into substructures and for disconnecting, moving,
and reconnecting components until the structure
matches the designer’s mental image. Entity and
relationship data can be parsed from this graphics
input and can be captured on an E/R data base like
psL. This information network can be replayed
graphically to the architect at later design sessions
during which the architect can decompose structures
further, can annotate elements of the framework
with design attributes, and can build successively
more detailed descriptions of the static structure and
process relationships.

IBM SYSTEMS JOURNAL, VOL 23, NO 1, 1984

When satisfied with the system structure, the archi-
tect can then define the dynamic execution behavior
of this structure. Using the graphics replay of the
design network model, the designer could pick re-
gions in the network and define the interprocess
control logic, state transitions, and behavior rules
using a VHLL notation. If the notation used is well-
defined and executable (e.g., the state-machine proc-
ess model of FsT), the cumulative static structure
information, process relationships, and embedded
process descriptions can be compiled into the VHLL
environment to create a symbolically executable
functional model. Two related representations (E/R
and vHLL) of the architecture are then available for
static and dynamic analysis, respectively.

Static analysis of system structure. Once defined
and visually inspected, structural aspects of an ar-
chitecture can be verified using static analysis tech-
niques. Static analysis can be used for the following
purposes: (1) to verify the completeness of a descrip-
tion, by testing whether all entities, relationships,
and attributes in an architecture have been described,
and (2) to verify the consistency of entities in a
description to the total structure of an architecture,
for example, by testing whether related components
describe their interface as complementary, that is, as
mirror images.

PSL/PSA provides for both completeness and consist-
ency checking. psA provides report generation facil-
ities such as structure reports (process hierarchy),
process chain reports (procedure invocation se-
quences through the system), and data/activity re-
ports (cross reference of data used by processes).
Each of these reports alerts the designer to undefined
or inconsistently specified entities or relationships.

To maximize the usability of architecture prototyp-
ing functions, the architect should be capable of
probing regions of the architecture graphically and
receiving pictorial notification of psa-generated in-
consistencies and incompleteness.

Dynamic analysis of system behavior. The architect
can dynamically analyze the run-time behavior of
an architecture by binding together into a functional
model the static structure data, process relationships,
and imbedded process design descriptions with in-
formation on the execution environment, and then
by symbolically executing this model of the design.

There are several approaches to the symbolic exe-
cution of functional models. In our scheme, the FST

IBM SYSTEMS JOURNAL, VOL 23, NO 1, 1984

state-machine process descriptions that make up the
design specification are compiled to define the exe-
cutable model of the system. General-purpose sim-

The architect can exercise the
functional model using discrete
event driven simulation
techniques.

ulation languages (e.g., SIMULA and GPss) provide a
similar scheme for modeling systems. References 26
and 38 explore other variations of this approach.
Other approaches to dynamic analysis, which we do
not explore here, include symbolically executing al-
gebraic specifications®>* and analyzing graph-like
models of design behavior.”

Once the functional model is established in its test
configuration and environment, the architect can
exercise it using discrete event driven simulation
techniques. The architecture can send an event to
activate a process in the architecture and then mon-
itor a simulation trace to follow design rules that are
traversed, interprocess communication, and inter-
leaving that occurs when a process is interrupted in
favor of a higher-priority process. Functional simu-
lation allows the architect to examine architecture
control and data flow, and to detect deadlock, re-
source contention, timing, and interface problems.
The architect can examine the performance of the
system under stress conditions. Aspects of the envi-
ronment can be modified around the functional
model to examine system behavior under adverse
conditions.

Advanced architecture prototyping facilities should
allow the architect to select regions of the architec-
ture graphically and watch their run-time behavior
by way of animation techniques.

Rapid prototyping. Rapid prototyping®-2834¢ is the
process of building a quick, inexpensive model that
exhibits the same behavior as will the final system.
The purpose of rapid prototyping is to provide feed-

BereG 13

back to planners and designers on the suitability of
system functions. Rapid prototyping can be used to
analyze a variety of system attributes, including us-
ability and performance. Prototypes can be imple-

We envision a future software
engineering environment in which
design and code reuse is a
regular procedure.

mented in a wide variety of techniques, ranging from
symbolic execution of algebraic design specifica-
tions®>*° to direct execution of disposable interim
versions of a product implementation.

A rapid prototype in the architecture prototyping
environment we are discussing deals only with the
usability of the externals of the product. Other attri-
butes like system performance and control flow are
examined using functional modeling and dynamic
analysis techniques. In fact, an externals prototype
in this environment would be implemented as an
extension of the functional model. With the facilities
already described, the designer would bind to each
functional process in the architecture a description
of the external interface of that component. Such a
description can be expressed as a sequence of screens
or menus defined in a screen-programming lan-
guage.*'*? When exercised within the VHLL symbolic
execution environment, the prototype behaves exter-
nally like the final product. The prototype also per-
mits potential users of the product to invoke and
interact with facsimiles of product functions, allow-
ing them to provide feedback on the usability of
product interfaces. It could also be used to clarify
ambiguities about customer requirements.

When implemented as an extension of the functional
model, the protoype need not be discarded. The
external interfaces can be preserved with the archi-
tecture and used iteratively as the design is expanded
within the architecture framework to validate that
the element design does not corrupt user interfaces

14 BEREGI

or introduce delays in response times. The screen
definitions from stabilized interfaces can be pre-
served and later coupled with code translated from
the functional design to produce the final product
implementation.

Fitting software subassemblies into the framework.
A simplified view of software development is that it
involves the two problem-solving phases of require-
ments and architecture to create a solution frame-
work. That is followed by tedious iterative refine-
ment and verification to fill in the details and pro-
duce a translation that runs on a machine.

During design refinement, programmers sometimes
find existing implementation routines that fit in their
design structure and solve a particular design task.
They take advantage of these routines and modify
and reuse them rather than writing new ones. Thus
they avoid some of the refinement and detailed
specification process. In general, reuse occurs hap-
hazardly; we do not facilitate the reuse of primitives
in the design of systems, nor do we broadcast their
availability in design environments. The Unix** en-
vironment is a notable exception.

We can envision a future software engineering en-
vironment in which design and code reuse is a reg-
ular procedure. Such an environment would include
teams of designers building bottom-up layers of re-
liable, reusable primitives. These primitives could be
algebraically specified and their reliability formally
proved. Packages of these primitives could conceiv-
ably be reused by designers seeking a subassembly to
fit in an architecture framework previously decom-
posed in a top-down manner. An architecture pro-
totyping facility might become the workbench at
which these elements would be bound together for
feasibility testing.

Research is necessary to identify frequently used
primitives and data abstractions and to provide
mechanisms to select and fit appropriate subassem-
bly solutions into the validated architecture frame-
work at the point where the need for a solution has
been identified but not elaborated. Such solutions
could include a reusable unit of code, a complex
hierarchy of design primitives, or an incomplete
design stub that itself invokes design functions whose
description will be elaborated in later design stages.
An architecture prototyping facility should support
the binding of framework and solution and the eval-
vation of the cumulative result using static and
dynamic analysis techniques.

IBM SYSTEMS JOURNAL, VOL 23, NO 1, 1984

Maintenance and enhancement. Developers of soft-
ware have frequently ignored what may be the largest
group of software users: those who debug, maintain,
and enhance existing systems. Current software de-
velopment documentation hampers maintenance
and enhancement in that it provides neither com-
prehensive views of the system structure nor mech-
anisms to descend hierarchically through the frame-

Architecture prototyping facilities
would provide an integrated
development repository.

work to view a function where a problem may exist
or where an enhancement must fit. Architecture
prototyping facilities would ease this problem by
providing an integrated development repository
from which the specification captured graphically
and lexically during design could be replayed for
those who would maintain and enhance the product.
The ability to view the relationships of parts of the
product to the whole and to design and test changes
to the product quickly, using the abstract notations
and dynamic analysis facilities, could greatly im-
prove maintenance and enhancement productivity
and quality.

Toward a process for reliable software
development

The methods discussed in this paper can be inte-
grated into a top-down verification approach to de-
veloping software. A top-down verification method-
ology is illustrated in Figure 3 and features the
following new tasks:

e Formal specification of user requirements, system
structure, and dynamic system behavior using
VHLLS.

e Rapid prototyping of external functions and user

interfaces.

Static analysis of user-system relationships and

system structure for consistency and complete-

ness.

IBM SYSTEMS JOURNAL, VOL 23. NO 1, 1984

¢ Dynamic analysis of system control and data flow
to verify dynamic system design behavior and to
model system performance and reliability.

* Selection and insertion of existing software
subassemblies into the system design framework.

e Algebraic specification, proof, and insertion of
new design as needed.

e Static and dynamic analysis of the cumulative
product description at each stage.

e Potential automated code generation from the
verified product description.*

e Optimization of generated code for the target en-
vironment.

A top-down verification approach would improve
software development in several ways. First, it would
allow the analysis of early product descriptions for
feasibility as soon as they are produced, rather than
waiting until the product has been designed, imple-
mented, integrated, and has become available for
testing.

Major interfaces, which are created first, would be
tested first. Potential interface errors would be de-
tected, resolved, and reworked before any further
development that depends on these interfaces begins.
Error rework cost would be reduced.

Design feasibility would be demonstrated early, be-
fore costly implementation, through static and dy-
namic analysis of the system structure. The conse-
quences of design decisions for system performance,
reliability, and usability could be explored and veri-
fied.

Design analysis would be automated and would be
reproducible. It would not be subject to human
variability, as are design and code inspections. For-
mal design verification could be accomplished by
correctness proof.

Errors could most often be prevented, or at least
detected when produced, if the formal specification
methods used constantly enforced coherence check-
ing and allowed symbolic execution.

Productivity would be improved through the reuse
of existing reliable design and implementation solu-
tions.

A top-down verification software engineering ap-
proach would create new tasks and roles. Planners
would reveal prototypes to customers to validate
requirements. Architects would statically and dy-

BereGl 15

Figure 3 Top-down verification in the software development process

HIERARCHICAL TOP-DOWN
LEVEL VERIFICATION
TECHNIQUE
1 SYSTEM DEFINITION STATEMENT 1 AND
REQUIREMENTS | WITH REQUIRED FUNCTIONS AND CONSTRAINTS PROTOTVAING
DEFINITION
ARCHITECTURE SUBSYSTEM : ANALYSIS,
AND SYSTEM STATIC ANALYSIS,
STRUCTURE E; AND
DESIGN L 2 PROTOTYPING
_ REFINE SYSTEMTO| | COMPONENT DESIGN J
= L CUMULATIVE
COMPONENT COMPONENTS w DYNAMIC AND
DESIGN a w - r STATIC
w u £ 2 ANALYSIS AND
SELECT 3 Q. PROOF OF
SUBASSEMBLY g s P vokee T D29 FORMAL DESIGN
SUBC £ £ INVOKE F HH< SPECIFICATIONS
. suaAss%r\laJ%mC/ ! ! { SUBASSEMBLYF |
susc D E F
INVOKE F SUBCOMPONENT
INVOKE G
INVOKE J- INVOKE J INVOKE K
—FINVOKEHT
INVOKE |
|
\ | %
(v v v v Jv v v
4 G F H) 4 K
FUNCTION FUNCTION f o » ¢ CUMULATIVE
AND MODULE DYNAMIC AND
DESIGN STATIC
o= ANALYSIS AND
<5 _ | Jautomaten PROOF OF
' faEa JCobE FORMAL DESIGN
9 L WLEG| | GENERATION | SPECIFICATIONS)
4 U \
5 PROOEOF
IMPLEMENTA
IMPLEMENTATION oo MODULE Je oo V\STH M EATIC
h| “
SPECIFICATIONS
AND TEST IN
DESIGN
FRAMEWORK

N J

PROTOCOL OR
ASYNCHRONOUS INTERFACE

16 BEREGH

IBM SYSTEMS JOURNAL, VOL 23, NO 1, 1984

namically analyze their system designs prior to com-
mitting the system to production. Implementers
would optimize subassemblies. Such an approach
shows promise for solving some of the problems
inherent in the software craft and in the engineering
of reliable software.

Concluding remarks

We have explored the software craft and found that,
although it is capable of producing high-quality prod-
ucts, more precision and automation are needed to
produce zero-defect products with reasonable cost.

We have also considered more rigorous software
development approaches based on the use of emerg-
ing software engineering methods like formal and
algebraic specification techniques, Very-High-Level
Languages, data abstractions, and static and dynamic
design analysis. These tools give us more precision
and control in describing and communicating de-
sign, and they permit early machine analysis of
specifications.

We have discussed the idea that the development of
quality software requires a phase of architecture pro-
totyping in which initial design ideas are “wind-
tunnel tested” for feasibility. We propose that the
task requires an automated facility that has the fol-
lowing features:

* A graphics facility for the creation and analysis of
system design.

¢ A common machine-analyzable abstract notation
for defining structure attributes, for expressing
dynamic architecture behavior, and for defining
design refinement within the architecture frame-
work.

¢ An Entity-Relationship data base on which to
capture structure information for static analysis
and design communication.

e A vHLL design computational model and symbolic
execution environment in which to capture inter-
process control and data flow specifications for
dynamic analysis.

 Static analysis tools to test structural completeness
and consistency.

e Dynamic analysis tools that allow symbolic exe-
cution of architecture to facilitate the prototyping
of external interfaces and behavioral analysis of
internal system control and data flow.

e The capability to fit further design refinement or
common design and code subassemblies into the
architecture framework and to evaluate the cu-

IBM SYSTEMS JOURNAL, VOL 23, NO 1, 1984

mulative result, using static and dynamic analysis
techniques.

¢ The use of the product data base and symbolically
executable specification to aid in maintenance and
enhancement.

Many of these facilities exist and have begun to be
used independently today. We propose that these
facilities belong in any future integrated software
development environment. Further work should ex-
plore the issues of making these tools usable as
partners in the design process by way of design
knowledge bases and expert system interfaces. Once
ready for software production, these facilities will
support a top-down verification approach to software
development, which shows promise for producing
highly reliable software.

Acknowledgments

I thank Dr. Lip Lim, Ron Radice, Kent McCaulley,
Harvey Haliman, Bill Brown, Michel Berthaud,
Michel Frenkiel, Jim Miller, Gary Deen, Carol
Greenstreet, Judi Powers, Jean-Pierre Augias, Phi-
lippe Potin, Dick Phillips, Bill Ciarfella, Robert
Mays, Gene Hoffnagle, Mike Fagan, Linda Mason,
Al O’Hara, Tim McMurray, Don Daria, and Dr.
Louise Neilsen, all co-workers in 1BM who have
shared their ideas on architecture and software en-
gineering practice.

Cited references

1. M. E. Fagan, “Design and code inspections to reduce errors
in program development,” IBM Systems Journal 15, No. 3,
182-211 (1976).

2. O. R. Kohli, High-Level Design Inspection Specification,
Technical Report 21.601, IBM Corporation, Kingston, NY
12401 (1975).

3. O. R. Kohli and R. A. Radice, Low-Level Design Inspection
Specification, Technical Report 21.629, IBM Corporation,
Kingston, NY 12401 (1976).

4. H. D. Mills, D. O'Neill, R. C. Linger, M. Dyer, and R. E.
Quinnan, “The management of software engineering,” /BM
Systems Journal 19, No. 4, 414-477 (1980).

5. N. Wirth, “Program development by stepwise refinement,”
Communications of the ACM 14, No. 4, 221-227 (1971).

6. O. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, Structured
Programming, Academic Press, Inc., London (1972).

7. H. D. Mills, “Top down programming in large systems,”
Debugging Techniques in Large Systems, Prentice-Hall, Inc.,
Englewood Cliffs, NJ (1971).

8. R.C. Linger, H. D. Mills, and B. L. Witt, Structured Program-
ming: Theory and Practice, Addison-Wesley Publishing Co.,
Reading, MA (1979).

9. P. 8. Newman, “Towards an integrated development environ-
ment,” IBM Systems Journal 21, No. 1, 81-107 (1982).

10. G. B. Davis, “Strategies for information requirements defini-
tion,” IBM Systems Journal 21, No. 1, 4-30 (1982).

sereal 17

11.

12.

15.

16.

17.

18.

20.

21.

22.

23.

24,

25.

26.
27.

28.

29.

30.

3L

32.

33.

34.

18 BEREGI

J. F. Stay, “HIPO and integrated program design,” IBM
Systems Journal 15, No. 2, 143-154 (1976).

R. J. Pearsall, “Technique for assessing external design of
software,” IBM Systems Journal 21, No. 2, 211-219 (1982).

. W.P.Stevens, G. J. Myers, and L. L. Constantine, “Structured

design,” IBM Systems Journal 13, No. 2, 115-139 (1974).

. G. J. Myers, Reliable Software Through Composite Design,

Petrocelli/Charter, New York (1975).

M. Jackson, Principles of Program Design, Academic Press,
Inc., New York (1975).

D. L. Parnas, “On the criteria to be used in decomposing
systems into modules,” Communications of the ACM 15, No.
12, 10531058 (1972).

M. Berthaud, “Towards a formal language for functional
specifications,” Proceedings of the IFIP Working Conference
on Constructing Quality Sofiware, North-Holland Publishing
Co., New York (1977), pp. 379-396.

D. Teicherow and E. A. Hershey, “PSL/PSA: A computer-
aided technique for structured documentation and analysis of
computer-based information systems,” IEEE Transactions on
Software Engineering 3, No. 1, 41-48 (1977).

. R. B. K. Dewar, “The NYU ADA translator and interpretor,”

Proceedings of the IEEE’s Fourth International Computer
Software and Applications Conference, CH1607-1 (1980), pp.
59-65.

P. Wegner, “The Vienna definition language,” ACM Comput-
ing Surveys 4, No. 1, 5-63 (1972).

P. P.-S. Chen, “The Entity-Relationship model—Toward a
unified view of data,” ACM Transactions on Database Systems
1, No. 1, 9-36 (1976).

E. F. Codd, “A relational model of data for large shared data
banks,” Comununications of the ACM 13, No. 6, 377-397
(1970).

G. Estrin, “A methodology for design on digital systems
supported by SARA at the age of one,” AFIPS Conference
Proceedings, National Computer Conference 47, 313-321
(1978).

E. McCoy, An ADA Language Model of the AN/SPY-14
Component of the AEGIS Weapon System, Report NPS52-
80-011, Naval Postgraduate School, Monterey, CA (1981).

D. Cohen, W. Swartout, and R. Balzer, “Using symbolic
execution to characterize behavior,” ACM SIGSOFT Software
Engineering Notes 7, No. 5, 25-32 (1982).

A. M. Stavely, “Models as executable designs,” ACM SIG-
SOFT Sofiware Engineering Notes 7, No. 5, 167-168 (1982).
A. G. Duncan, “Prototyping in ADA: A case study,” ACM
SIGSOFT Software Engineering Notes 7, No. 5, 54-60 (1982).
R. T. Mittermeir, “HIBOL: A language for fast prototyping in
data processing environments,” 4ACM SIGSOFT Software En-
gineering Notes T, No. 5,133-140 (1982).

S. N. Zilles and P. G. Hebalkar, “Graphic representation and
analysis of information systems design,” Data Base 11, No. 3,
93-98 (1980).

P. Hebalkar and S. N. Zilles, TELL: A System for Graphically
Representing Sofiware Designs, Research Report RJ-2351,
IBM Research Laboratory, San Jose, CA 95193 (1978).

D. T. Ross and K. E. Schoman, “Structured analysis for
requirements definition,” IEEE Transactions on Software En-
gineering 3, No. 1, 6-15 (1977).

L. A. Belady, C. J. Evangelisti, and L. R. Power, “GREEN-
PRINT: A graphic representation of structured programs,”
IBM Systems Journal 9, No. 4, 542-553 (1980).

C. B. Jones, Sofiware Development: A Rigorous Approach,
Prentice-Hall International, Inc., London (1980).

B. Liskov and S. N. Zilles, “An introduction to formal speci-
fications of data abstractions,” Current Trends in Program-

36.

37.

38.

39.

40.

41.

42.

43,

ming Methodology 1, Prentice-Hall, Inc., Englewood Cliffs,
NJ (1977).

. D. L. Parnas, “A technique for software module specification

with examples,” Communications of the ACM 15, No. 5, 330~
336 (1972).

J. L. Archibald, B. M. Leavenworth, and L. R. Power, “Ab-
stract design and program transiator: New tools for software
design,” IBM Systems Journal 22, No. 3, 170-187 (1983).

J. Archibald, The External Structure: Experience with an
Automated Module Interconnection Language, Research Re-
port RC-8652, IBM Thomas J. Watson Research Center,
Yorktown Heights, NY 10598 (1981).

R. M. Bryant, “Discrete system simulation in ADA,” Simu-
lation 39, No. 4, 111-122 (1982).

J. K. Dixon, J. McLean, and D. L. Parnas, “Rapid prototyping
by means of abstract module specifications written as trace
axioms,” ACM SIGSOFT Sofiware Engineering Notes 7, No.
5, 45-49 (1982).

M. Zelkowitz and M. Branstad, editors, “Working papers from
the ACM SIGSOFT Rapid Prototyping Workshop,” ACM
SIGSOFT Software Engineering Notes 7, No. 3, 14-15 (1982).
M. E. Maurer, “Full screen testing of interactive applications,”
IBM Systems Journal 22, No. 3, 246-261 (1983).

Display Input/Output Facility (1053270) User’s Guide, IFP
5785-HAA, IBM Corporation; available through IBM branch
offices.

J. Mashey, “Unix and the programmer’s workbench,” Pro-
ceedings of the IBM Worldwide Machine Usable Programming
Productivity Tools Symposium, IBM Corporation, San Jose,
CA 95193 (1982).

William E. Beregi /BM Data Systems Division, Kingston, New
York 12401. Afier graduating from Carnegie-Mellon University
with a B.S. in mathematics in 1974, Mr. Beregi joined IBM at
Kingston, New York. He now works there as a development
programmer in data systems assurance, managing the Software
Engineering Process Technology group. The group’s mission is to
study and recommend changes to IBM sofiware products and
development processes to improve system quality. This group is
investigating design languages, tools, and software engineering
methodologies that may eventually be used to automate software
development. Mr. Beregi also holds an M.S. in computer and
information science from Syracuse University, and he is pursuing
a Ph.D. there.

Reprint Order No. G321-5206.

IBM SYSTEMS JOURNAL, VOL 23, NO 1, 1984

