Defining routing tables for
SNA networks

This paper addresses three basic problems asso-
ciated with the definition process for the routing ta-
bles of IBM’s Systems Network Architecture (SNA).
The paper then introduces a program called the
Routing Table Generator (RTG) and describes how
these problems were solved with RTG. Also dis-
cussed are some approaches on how to use RTG in
managing routing tables for growing networks.

Since the first announcement of Systems Net-
work Architecture (SNA) in 1974, many new
functional enhancements and improvements have
been introduced to SNA users in the form of new
versions and releases.’ Prior to the announcement of
Advanced Communication Function (ACF) Release
3 products,” the topological configurations and net-
working functions were rather limited. In the pre-
ACF Release 3 products, the network configuration
could be either a “tree” configuration, as illustrated
in Figure 1, or a “multitree” configuration, as
illustrated in Figure 2, both with the distinction of
“local” and “remote” communications controllers
{or ACF/NCPs, where NCP is the Network Control
Program). ACF Release 3 products were the first
SNA products that eliminated many configurational
and functional limitations by introducing the multi-
ple path routing capability, parallel links, multiple
transmission groups, etc., bringing SNA into the
“true” mesh networking as depicted in Figure 3.
Further functional enhancements, which include
the host intermediate node,’® channel-to-channel
adaptors, and SNA Network Interconnection, were
incorporated into SNA and were announced as ACF
Version 2 products.*

With respect to routing in SNA,” a major change

occurred when the ACF Release 3 products were
introduced in 1979; single path routing advanced to

IBM SYSTEMS JOURNAL, VOL 22, NO 4, 1883

by K. Maruyama

multiple path routing, known as explicit path rout-
ing.% Explicit path routing provides many advan-
tages’ over single path routing, such as added
communication path availability between commu-
nication node pairs, increased throughput by sepa-
rating sessions over multiple paths, improved
response time, and the physical separation of one
type of traffic (e.g., batch) from other types (e.g.,
interactive). However, the implementation of
explicit path routing in SNA created complexities in
the definition, generation, and management of
routes and routing tables.

This paper addresses problems associated with the
definition and generation of the explicit path rout-
ing tables known as transit routing tables."’ It then
describes a program called the Routing Table Gen-
erator® that was introduced in 1981 to aid in the
process of route definition. The paper further
describes the techniques used by this product to
handle the network definition problems.

Routing in ACF R3 networks

In SNA, a logical connection called a “session” is set
up between each pair of network addressable units
that desire to exchange messages. Such a session is
assigned to a single physical route, called an explicit
route, at the time of the session initiation. The
session will stay on the route until either session

©Copyright 1983 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM
copyright notice are included on the first page. The title and
abstract, but no other portions, of this paper may be copied or
distributed royalty free without further permission by computer-
based and other information-service systems. Permission to
republish any other portion of this paper must be obtained from
the Editor.

maruYAMA 435

Figure 1 ‘‘Tree’ configuration

HOST

VIRTUAL TERMINAL
ACCESS METHOD (VTAM)

COMMUNICATIONS

CONTROLLER

NETWORK CONTROL. NETWORK CONTROL
PROGHAM (NCP) FROGRAM {NCP}

Figure 2 ‘‘Multitree’’ configuration

termination or route failure occurs. The mapping of
sessions to explicit routes is determined using a set
of system-generated tables and the availability of
network resources. At the session initiation time, a
control point called SSCP (System Services Control
Point) that assists session establishment uses a
log-on-mode table (in the case of ACF/VTAM) or a
bind-image table (in the case of ACF/TCAM) to
determine the name of a proper Class of Service
(cos) table. A COS table contains a preferential list

436 maruvama

of potential routes called virtual routes (VRs). A
virtual route is a logical route between two end
points and provides among other things the end-
to-end flow control. Each session will be assigned to
the very first operational virtual route in the identi-
fied COS table. In the existing SNA products, each
virtual route is mapped to a unique explicit route
(ER), and up to eight explicit routes can be defined
and activated between each pair of subarea nodes
such as hosts and ACF/NCPs. An explicit route is an
ordered sequence of subarea nodes and of links

In the current SNA products, the
definition of routing tables is a part
of the system definition/generation

process.

called transmission groups (TGs) from the subarea
node of its origin to its destination subarea node. A
transmission group is a grouping of parallel links
between adjacent subarea nodes and is viewed as a
logical link. Each explicit route, which is unidirec-
tional, is identified by a number called an explicit
route number (ERN). It is required that each
explicit route defined in the routing tables must be
accompanied by its reverse explicit route, i.e., the
same physical path in the opposite direction. How-
ever, the ERN assigned to one direction of a route
need not be the same as the number assigned to the
reverse direction. An explicit route accompanied by
its reverse route is called a physically reversible ER.
The use of paired, physically reversible ERs simpli-
fies the failure notification in the network since it
causes both directions of traffic flow to fail simulta-
neously.'

Although an explicit route is defined as an ordered
sequence of subareas and transmission groups from
the subarea of its origin to its destination subarea,
no single subarea node has an understanding of the
complete sequence. Each explicit route is broken
down into one or more route segments that are
stored in a subarea node table called a transit

IBM SYSTEMS JOURNAL, VOL 22, NO 4, 1983

routing table." A transit routing table consists basi-
cally of three fields: destination subarea (DSA) field,
ERN field, and next node/transmission group (NN/
TG) field, which indicates the outgoing transmission
group queue leading to the next node (NN). When a
message called a Path Information Unit (PIU) is
processed for transmission at a subarea routing node,
the node finds a routing entry that corresponds to the
destination subarea number (DSA) and the ERN stored
in the message transmission header (TH). The mes-
sage is then placed in an appropriate outgoing trans-
mission group queue for transmission. This situation is
illustrated in Figure 4.

In the current SNA products, the definition of
routing tables is a part of the system definition/
generation process. Therefore, the system/network
administrator must create input statements, called
PATH macros, to be used for the system generation
of the transit routing tables. The definition of
routing tables, however, is considered to be the most
complex, time-consuming and human-error-prone
process in SNA system generation.” This paper will
discuss those problems associated mainly with the
definition of PATH macros.

Basic problems involved in defining routing
tables

There are three basic processes involved in the
definition of the transit routing tables. These are

1. The route selection process
2. The route numbering process
3. The PATH macro generation process

The route selection process. The route selection
process involves the selection of physically revers-
ible explicit routes between each subarea node pair
where SNA sessions will be created. Each reversible
explicit route must satisfy SNA product constraints.
Depending on the version, release, and physical
environment, a subarea node may or may not sup-
port the message forwarding function known as the
intermediate network node (INN) function and/or
the multiple path routing function. Table 1 summa-
rizes the functional difference among some prod-
ucts. If a subarea node does not support the INN
function, one must not select a route that traverses
that subarea. Such a subarea can only be the end
node of explicit routes. If a subarea node does not
support the multiple path routing function, one
must not select more than one route that traverses
or originates from that node to each destination
node.

IBM SYSTEMS JOURNAL, VOL 22, NO 4, 1983

Figure 3 ‘‘Mesh’’ configuration

Figure 4 Explicit path routing in ACF R3

PIU

4 TO PROPER
i OUTGOING
Pl TG QUEUE

| SA101

Among those routes that satisfy the above product
constraints, one may select some routes for each
node pair by considering some route characteristics
derived from the characteristics of components
(nodes, links) in the network. There are two types of
characteristics: those associated with an individual

maruvama 437

Figure 5 A simple network

Table 1 Functional differences among ACF products

Product INN Muttiple
Paths

ACF/VTAM/VIR1 yes
ACF/VTAM/VIR2

ACF/VTAM/VIR3 yes
ACF/VTAM/V2RI yes yes
ACF/VTAM/V2R2 yes yes
ACF/VTAME yes
ACF/VTAM/V2R1/CA yes yes
ACF/TCAM/V1 yes
ACF/TCAM/V2R1

ACF/TCAM/V2R2

ACF/TCAM/V2R3 yes
ACF/TCAM/V2R4 yes
ACF/NCP/V1R1 yes
ACF/NCP/VIR2 yes
ACF/NCP/V1R2.1 yes
ACF/NCP/VIR3 yes yes
ACF/NCP/VIR4 yes yes
ACF/NCP/V2R1 yes yes
ACF/NCP/V2R2 yes yes

route and those associated with a set of routes
between a node pair.'®"" The characteristics that
may be considered for selecting an individual end-
to-end route are the physical distance of the route,
the route length in terms of the number of transmis-
sion groups along the route, the route capacity or
speed, the route availability/reliability, the route
error rate, the route security level, and the esti-
mated delay on the route. The characteristics that
may be considered for the selection of a set of routes
between a node pair are some sort of averages of
those characteristics considered for the individual
route selection (e.g., the average route length), the

438 MARuYAMA

end-to-end route availability (the probability that at
least one route is available/operational), and the
disjointedness among routes.

It is quite plausible to perform a manual selection of
a set of reversible explicit routes for each node pair
for relatively small networks. It, however, becomes
quite a time-consuming and potentially error-prone
process as the size of the network grows. Unfortu-
nately, this route selection process is further aggra-
vated by its dependence on the route numbering.

The route numbering process. Route numbering is
the most time-consuming and human-error-prone
process in the definition of SNA routing tables. In
order to carry out the route numbering (or the ERN
assignment) process properly, one must pay special
attention to the following characteristics and
restrictions:

a. ACF/R3 routing is “source-independent, destina-
tion/route-number”-based routing.

b. Explicit routes (ERs) must be physically revers-
ible.

c. Only eight ERNs are available for each destina-
tion node. (SNA architecture supports 16 ERNs.)

d. The ERN assigned to an ER can be different from
the ERN assigned to its reverse ER.

e. The migration route'?> must be numbered zero
(or ERO) for both directions.

Characteristic a implies that each routing entry for
a particular destination in a transit routing table
will be used/shared by many routes that originate
from other nodes. This condition can be seen from
Figure 5, which illustrates the transit routing table
used by an SNA subarea node. From this table, one
can observe that the only entries used to route
messages are the destination subarea number (DSA)
and the explicit route number. The source informa-
tion (0SA) of the message is not used for the routing
decision. Therefore, the numbering of one route,
which is in a sense equivalent to creating all routing
entries associated with that route, affects the num-
bering of other routes to the same destination. This
effect requires that the route numbering process
must simultaneously consider all of the routes
selected for the same destination node.

Characteristic b aggravates the process of route
numbering since it requires a successful route num-
ber assignment to a pair of physically reversible
explicit routes. The route numbering can be suc-
cessful all of the time if an unlimited number of

IBM SYSTEMS JOURNAL, VOL 22, NO 4, 1983

route numbers are available. This, however, is not
the case, as restriction c states.

Restriction ¢ implies that when routes are num-
bered, the assignment of more than one route num-
ber to the same physical route should be avoided,
though such avoidance may not be possible in some

The PATH macros are the external
representation of SNA’s transit
routing tables.

cases. The phenomenon that requires more route
numbers than the number of physically different
routes defined in the routing tables for each node
pair is often called “ERN Starvation” or “ERN
Explosion.”® Characteristic d relaxes the number-
ing restrictions and reduces the rate at which a
physical reversible route requires a new route num-
ber for assignment.

In ACF Release 3 (ACF/R3), a route is said to be a
migration route if it traverses one or more pre-
ACF/R3-level nodes. Restriction e states that such a
migration route must be numbered zero for both
directions because the pre-ACF/R3 products did not
use the transit routing table indexed by DSA and the
ERN, but by DSA only. By using ER0, the sending
ACF/R3 node can delete ERO and create a message
header understood by the receiving pre-ACF/R3
node.

PATH macro generation process. The PATH macros
are the external representation of SNA’s transit
routing tables. The macros are used in the genera-
tion process by IBM products to generate the transit
routing tables at subarea nodes. The basic format of
a PATH macro is

PATH DESTSA=sal | (sal,sa2, ...),
ERO= (adjsa,tgn),
ER1=(adjsa,tgn),

ER7=(adjsa,tgn)

IBM SYSTEMS JOURNAL, VOL 22, NO 4, 1983

where sa, sal, sa2, and adjsa indicate subarea
addresses and tgn indicates a transmission group
number. The PATH macros for ACF/VTAM, ACF/
TCAM, and some ACF/NCP releases contain addi-
tional information for mapping virtual routes (VRs)
to explicit routes (ERs). The format for such a
mapping function is

VRO=ern,
VR1=ern,
VR7=ern

An example of a PATH macro is

PATH DESTSA=103,
ER0=(101,1),ER1=(101,2),
ER2=(102,1),ER3=(101,1),
VR0=3,VR1=0,VR2=2,VR3=1

The above macro indicates the definition of four
explicit routes and four virtual routes from the point
of view of the subarea node where this macro is
processed to the destination node 103. When mes-
sages are sent to destination node 103 using ERO, for
example, the message will be transmitted to the next
subarea node 101 via transmission group 1. There
are two types of messages that use the explicit route
ERO: the messages originating at the node where the
macro is processed and sent via VR1, and the mes-
sages arriving at the node from other source nodes
and using the node as an intermediate network node
(INN) to get to destination 103. The second type of
messages exist when the node processing the PATH
macro supports the INN function.

Once the route numbering process is completed
successfully, generating PATH macros becomes a
trivial mechanical process. For example, let us
consider the following two routes between subareas
SA1 and SA4 of the network illustrated in Figure 5:

To SA4 To SA1
ERO SAl - TG1 - SA2 - TG - SA4 “ERO
ER1 SAI - TG2 - SA2 - TG1 - SA3 - TG2 - SA4 ER2

The PATH macros for the subarea SA2, for example,
can be generated from the above explicit routes by
looking at SA2 and its adjacent subareas and trans-
mission groups. The PATH macros at SA2 are

PATH DESTSA=4,
ER0=(4,1),ER1=(3,1)

PATH DESTSA=1,
ERO=(1,1),ER2=(1,2)

maruvama 439

/

Table 2 Topological information

Type Parameter Description

Subarea SANAME Name of the subarea node

SANUM Address of the subarea node

PULVL Name of the software product
Link LNAME Name of the link

ADJSAS Adjacent subarea pairs

TGN Transmission group number

MED Link medium

PROTOCOL Full duplex or half duplex

PDLY Propagation delay of the link

ERR Error rate of the link

AVL Availability of the link

SEC Security level of the link

TGC TG classes of the link

VAL Any value assigned to the link

Table 3 Control parameters

Type Parameter Description
Route ER Explicit route
ERN Forward ER number
RERN Backward (reverse) ER num-
ber
VRN Virtual route number

Declare ERDEF Defining ERs between node

pairs

ERUND Not defining ERs between
node pairs

VRNUM Usable VRNs

ERNUM Usable ERNs

ERLEN The maximum ER length

ERSEL Optimal and back-up route se-
lection

SUBNET Defining the third-party-
owned network and /or ne-
gating the INN function
from a node

VTAMPM Controlling the format of
VTAM PATH macros

ERPRINT Printing ERs using names or
addresses of subarea nodes

LISTING Controlling the amount of out-
put information

PMFILE Creating or not creating a
PATH macro file

RSFILE Creating or not creating a
ROUTE statement file

As will be seen later, the proper selection of the data
structure for the explicit routes in a routing table
generation program will further simplify the process
of PATH macro generation.

440 MaRuvaMA

Routing table generator— Assumptions and
requirements

For the generation of PATH macros, a software
product called the Routing Table Generator (RTG)
was developed.® Since RTG was aimed at various
SNA users with varying degrees of constraints and
requirements, certain assumptions were made.

It was assumed that the only information to be
made available to RTG was the network topology
without workload information. There were a few
reasons behind adopting this assumption: RTG was

Three cases of route selection are
handled by RTG.

to be simple to use without requiring a large amount
of input from users; the workload information (ses-
sion types, characteristics, and the number of ses-
sions initiated between each node pair) is not easily
obtainable or known, at times, prior to the installa-
tion of the networks; and the workload changes with
time. It was concluded that it is wise not to perform
optimization based on uncertain and time-depen-
dent information. Another assumption was that no
two network administrators/designers would have
the identical routing requirements even for the same
network topology. Therefore, some ways should be
available to tell RTG the specific user requirements
on the PATH macros that it generates. Some of the
user requirements for which functions are available
in RTG are listed below:

a. The user should be able to tell RTG to include
specific explicit routes (with or without specific
explicit route and virtual route numbers) in the
routing tables.

b. The user should be able to tell RTG to select
routes between certain node pairs.

¢. The user should be able to control the number
and the maximum length (hop count) of selected
routes for each node pair.

d. The user should be able to specify an arbitrarily
defined route selection criterion (or objective

1BM SYSTEMS JOURNAL, VOL 22, NO 4, 1983

function) for the selection of optimal and back-
up routes. (The reason is that different users
generally want the routes with different route
characteristics.)

e. The user should be able to choose not to use the
intermediate network node function from certain
nodes. (One may use this function to avoid the
definition of explicit routes which go through the
nodes.)

f. The user should be able to control the usage of
VRNs and ERNs. (Such control allows the reser-
vation of certain route numbers for later use as
the network topology changes.)

g. The user should be able to control the amount of
the output information from RTG and should be
able to specify the kind of information wanted.

The functions for the above requirements were
made available in RTG in the form of *“control
parameters” to RTG. The overall conceptual view of
RTG and the network topology input and the control
parameters are illustrated in Figure 6. The detailed
information on the network topology, the control
parameters, and RTG outputs is summarized in
Table 2, Table 3, and Table 4, respectively. In the
“type” column of Table 3, requirement a is satisfied
by Route and requirements b through g are satisfied
by Declare.

Route selection processes in RTG

Three cases of route selection are handled by RTG:
the selection of optimal routes with or without

Tabile 4 Output

Type Description

Listing of the input to RTG
Diagnostic messages
Address-name table
Link-characteristic table
TG-characteristic table
VRN-ERN-ER table
VRN-characteristic table
VRN-performance table
TG-usage table

Qutput Report

PATH macros for each subarea
node

PATH Macros

ROUTE Statements Listing of all explicit routes sup-
ported by the generated PATH

macros

IBM SYSTEMS JOURNAL, VOL 22, NO 4, 1983

Figure 6 Conceptual view of RTG

NETWORK
TOPOLOGY

RTG

=1 CONTROL
: PARAMETERS

PATH MACROS
AND OTHER
INFORMATION

back-up routes, the selection of a set of routes for
cach node pair, and the selection of “migration”
routes.

The selection of an optimal route with or without
back-ups. Sometimes it is desirable for the RTG
users to be able to select an optimal route' for each
node pair by simply specifying an optimality criteri-
on. Some optimality criteria are additive (such as
distance, length, delay), and some are nonadditive,
requiring minimization, maximization, or multipli-
cation of the weights along a route (such as capac-
ity, reliability, availability, security, and error rate).
Since it is not practical to implement an optimal
route selection algorithm for each route characteris-
tic, generalized versions of the Floyd'* and Dijk-
stra' algorithms were developed'' and used in RTG.
The user specifies in ERSEL (see Table 3) an ordered
list of route characteristics; the characteristics
placed in the second, third, etc., positions are used
for tie-breaking among optimal routes. Those route
characteristics available in RTG are listed in Table
5. For example, the user may specify ERSEL [route
length (RL), route TG capacity (TC)] for the selec-
tion of an optimal route for each node pair. RTG
selects minimum hop routes. When there is more
than one minimum hop route between a node pair,
RTG will use the route capacity information to break
ties among routes and select the one with the
maximum TG capacity.

There is always the possibility that the user’s desir-
able route characteristic is not among those in Table
5. To cope with such a problem, RTG provides a way
to define any new route characteristic, called the
“preferred route” definition. Another possibility is
that the user may want RTG to select optimal routes
based on a certain subset of the network and not on
the entire network. Such a function is also sup-
ported by RTG and is called “restricted route”
selection.

maruvama 441

Table 5 Route characteristics

Route Characteristics Notation
Route length (hop count) RL
Short PIU delay SD
Long PIU delay LD
Short PIU transmission time ST
Long PIU transmission time LT
Propagation time PT
Route TG capacity TC
Route link capacity LC
Route availability RA
Route quality RQ
Route security level RS

In addition to the route characteristics, the user
may specify one or more virtual route numbers
(VRNs). The first VRN will be assigned to the
optimal route between each node pair. When more
than one VRN is specified, which implies the selec-
tion of back-up routes, RTG will select the next
optimal route and assign the next VRN. This process
continues when many VRNs are specified. For
example, ERSEL (VRO, VRI1, VR2, route-length)
instructs RTG to select three minimum-hop routes
and assign them VRO, VR1, and VR2 in the order of
increasing length for each node pair.

The selection of a set of routes for each node pair.
Similar to the selection of optimal routes, one can
consider the “‘average” characteristic such as the
average delay and the average route capacity of a
set of routes to determine the optimal set for each
node pair. The use of this average route characteris-
tic for the selection of a set of routes has a serious
drawback in its tendency to select similar routes.
Another approach is to select disjoint (either node-
disjoint or link-disjoint or a mixture) routes for each
node pair by maximizing the total capacity or by
minimizing the average length, etc.'® Modified ver-
sions of the Min-cut, Max-flow algorithm'® are
often used for the selection of disjoint routes.

Another approach, which has been adopted for RTG,
considers both disjointness and the quality of routes
and is a hybrid of the above two approaches. Instead
of enforcing the selection of disjoint routes, it
enforces the selection of routes that maximize the
end-to-end availability, which is defined as the
probability that at least one route in the set is
operational. This approach of selecting routes by
maximizing the end-to-end availability makes sense

442 MARuYAMA

because (a) some disjoint routes are not always
desirable; (b) the disjoint routes do not necessarily
offer the maximum total capacity; and (c¢) no dis-
joint route may exist between some node pairs.

One can see easily that the brute-force implementa-
tion of this technique is computationally prohibitive
and requires substantially large storage space. In
RTG, up to 128 candidate routes are enumerated for
each node pair, and from them eight routes are
selected by using a technique called “sequential
availability maximization.” This technique begins
with an optimal route and selects the next route
which maximizes the pair-wise availability sum (the
summation of the availabilities computed from all
possible route pairs). Once the second route is
determined, the algorithm looks for the third route,
which again maximizes the pair-wise availability
sum and continues this sequential maximization
process until all eight routes have been selected. The
reasons for using the pair-wise availability sum
instead of computing the exact end-to-end availabil-
ity are that (a) the exact computation is computa-
tionally expensive, and (b) it is not necessary to
compute the exact end-to-end availability but
rather to select routes which maximize availability.

The control parameter available in RTG for instruct-
ing route selection/definition between user-speci-
fied subarea node pairs is ERDEF (see Table 3). For
example, let us consider the selection of up to four
routes of length no more than five between subarea
nodes 101 and 102, and the selection of up to eight
routes of any length between subarea nodes 101 and
103. The complete ERDEF describing such route
selection is ERDEF ((101,102:4:5) (101,103:8)).

The selection of migration routes. In SNA, a route is
called a migration route'? if it traverses at least one
subarea node with the pre-ACF/R3 product. A
migration route is required to be numbered ER0 for
both directions. In RTG, if a network contains one or
more pre-ACF/R3 products, it first selects one route
for each node pair and assigns ERO for both direc-
tions whether or not the route is a true migration
route. Once a migration route (here in the sense that
the route has ER0s for both directions) is supported
for each node pair, it becomes a lot easier to
introduce pre-ACF/R3 products (see Table 1) into
the network at any later time. This is because the
attachment of a pre-ACF/R3 product to a product
that has migration routes to other nodes in the
network requires simple extensions of existing
migration routes. However, the attachment of a

IBM SYSTEMS JOURNAL, VOL 22, NO 4, 1983

pre-ACF/R3 product to a product that does not have
migration routes to other nodes in the network
requires the reassignment of ERNs to explicit routes,
leading to a major system regeneration.

Two conditions must be satisfied by the migration
routes in the network: (1) each route must be
physically reversible (as any other explicit route)
and (2) for each destination node, the union of all
migration routes going toward the destination nodes
must form a “tree” rooted at the node (i.e., the
union of these routes is a graph characterized by the
property that every node except the root node has
exactly one outgoing link). For example, let us
consider the following three routes going toward the
destination node SA4:

a. SAl - TG1 - SA2 - TG1 - SA4
b. SAS5 - TG1 - SA2 - TG1 - SA4
C. SA2- TGl - SA3 - TG1 - SA4

The union of routes a and b does form a tree rooted
at SA4. However, the union of routes a and ¢ does
not form a tree rooted at SA4 since the graph formed
by the union of these routes has two outgoing links
(or transmission groups) at node SA2 going toward
the destination node SA4. Condition 2 makes it
possible to assign a single explicit route number,
ERO, to all of the migration routes. The question
here is how to select optimal routes which meet
these conditions.

As one can seg, it is trivial to select optimal routes
that satisfy either the reversibility requirement or
the tree-forming requirement. It is, however, not so
trivial to satisfy these two requirements simulta-
neously. A simple application of an optimal route
selection algorithm, such as the Floyd'* and
Dijkstra'® algorithms, does not guarantee the selec-
tion of routes that satisfy those requirements simul-
taneously. This situation results because an optimal
route for a node pair is not necessarily unique."’

Two approaches exist for selecting optimal routes
that meet these two conditions. The first is to
introduce a special tie-breaking rule into an optimal
route selection algorithm so that the algorithm will
guarantee a unique optimal route selection. There
are two ways to break ties among optimal routes:
(1) by lexicographical comparison which assigns a
unique label to each transmission group or (2) by
introducing an infinitesimally small perturbation
into the weights of the transmission groups.'' The
second approach is to explicitly enforce the reversi-

IBM SYSTEMS JOURNAL, VOL 22, NO 4, 1983

Figure 7 Imbedding hand-picked route

bility and tree-forming properties among selected
routes.

After a careful study of implementation alterna-
tives, the second approach was adopted for RTG.
This approach first selects optimal reversible routes
for all node pairs and then modifies them to form a
tree for each destination without losing the reversi-
bility property.'®

There are cases in which the RTG users want to
hand-pick some migration routes. The problem in
such a case is to select optimal migration routes for
the remaining node pairs without destroying the
hand-picked routes. A simple technique used in RTG
is to force the route selection algorithm to choose
the hand-picked routes by giving it no other choice.
This technique imbeds hand-picked routes into the
network from which migration routes will be select-
ed."' One might think that an even simpler approach
would be to assign the most favorable weights to
those links in the network that are contained in the
hand-picked routes, and then to select routes from
the resulting network. However, such an approach
sometimes fails on certain optimality criteria since
some other links in the network happened to carry
the most favorable weights from the beginning.
Figure 7 shows the route imbedding process. Part a
shows a simple five-node network, and Part b shows
the corresponding directed graph. Let us consider
the destination node E and one hand-picked route

maruvama 443

Figure 8 A simple network

from node A to node E, A-D-C-E. Part ¢ shows the
graph resulting from imbedding the hand-picked
route and removing all of the outgoing edges from
nodes A, D, C, and E except those edges contained in
the hand-picked route. This way, when a route
selection algorithm is applied on the graph of Part c,
the algorithm will be forced to select only one route
from A to E, which is the hand-picked one.

The route numbering process in RTG

Whenever one decides to define one or more explicit
routes between subarea node pairs, one faces the
problem of properly assigning route identification
numbers (ERNs) to explicit routes. In order to fully
understand the route numbering (or ERN assign-
ment) problem, we consider the network illustrated

Table 6 Explicit route number assignment

ERN toward A Routes ERN
from A
Arbitrary By

Assignment Resolving
Conflicts

1 1 B—A 1

2* 2 B—C—A (p) 2

1 1 C—A 1

2* 3 C—B—A(p) 2

1 1 D—A 1

2% 2 D—C—A (p) 2

1 1 E—B—A (p) 1

2% 3 E—D—A (p) 2

*indicates numbering conflict.
(p) indicates prime routes going toward destination A.

444 wmaruvama

in Figure 8. We assume two routes for each node
pair as shown in Table 6. Here, to simplify the
description, the transmission group (TG) numbers
are omitted from the expression of each explicit
route because all are TG1. Since there are only two
routes defined from Host A to each of the NCP nodes
B,C, D, and E, and since route numbering depends on
the destination, two ERNs are sufficient to distin-
guish these routes as shown in the fourth column of
Table 6.

Since there are two routes from each NCP node to
Host A, at least two ERNs are required to distin-
guish these eight routes. Let us number those routes
from the NCP nodes to Host A as one, two, one, two,
and so forth, as shown in the first column of Table 6.
This route numbering is the simplest scheme; how-
ever, it causes route numbering conflicts between
the following pairs of routes:

B-C-A and C-B-A
C-B-A and D-C-A
D-C-A and E-D-A

Any route numbering scheme that considers only a
subset of routes for the numbering conflict resolu-
tion fails.”® As a matter of fact, when a number is
assigned to a route going toward a destination, one
must verify such assignment against all those routes
whose ERNs have already been assigned and which
have the same destination. The second column in
Table 6 indicates the ERN assignment obtained
from resolving the numbering conflicts by assigning
the next higher number and by not changing any
prior ERN assignments. This sequential route num-
bering algorithm does not yield in general an opti-
mal ERN assignment, optimal in the sense of requir-
ing the minimum number of ERNs. The problem of
determining the minimum number of ERNSs required
for the definition of explicit routes is NP-complete.’
Let us next investigate and compare two distinct
ways of performing the route numbering—the
graph coloring and routing tree decomposition
approaches.

Graph coloring approach. In this approach,’ the
route numbering problem is converted into a graph
coloring problem that can be solved by any graph
coloring algorithm available in the literature.*” To
convert the route numbering problem into a graph
coloring problem, one must first derive graphs that
describe routes and their numbering conflicts. For
each destination node, first determine “prime”
routes. An explicit route contained in any other
explicit route is not a prime route. Next construct a

IBM SYSTEMS JOURNAL, VOL 22, NO 4, 1983

graph (known as a “contention” graph) of the prime
routes by making each prime route a node in the
graph and by inserting an edge between a node pair
whenever the routes represented by the pair cannot
assume the same route number.” Only the prime
routes in the contention graph are considered, for no
other reason than to reduce computation time by
reducing the size of the graph. Notice that there will
be as many contention graphs as the number of
destinations in the network.

In Table 6, for example, route B-A is not a prime

route since it is contained in routes C-B-A and E-B-A.
The prime routes going toward destination A are

A routing tree is a rooted tree
containing all routes to a particular
destination node which is the root of
the tree.

indicated by (p) in the third column of the table.
The contention graph for destination node A cover-
ing those prime explicit routes is illustrated in
Figure 9. In this graph, for example, the node BCA
and the node CBA have numbering conflicts because
the route BCA and the route BA which is contained in
CBA must be given different route numbers.

Once the contention graph is obtained for each
destination node, the next step is to execute the
graph coloring process. This process assigns a color
(or ERN) to each node in the graph such that no
adjacent node pair, the node pair with a direct edge
between them, has the same color. The objective is
to minimize the total number of different colors
used.

Although the route numbering problem can be
treated as a graph coloring problem, the real ERN
assignment problem in SNA is not quite as simple as
that since the total number of ERNs is limited to
eight. There are cases where a given contention
graph requires more than eight colors (a color here
is the same as an ERN) and thus requires the

IBM SYSTEMS JOURNAL, VOL 22, NO 4, 1983

Figure 9 A contention graph—requires three colors
(1,2,3)

decision of which nodes to color and which nodes not
to color. This decision process is equivalent to the
determination of which routes are to be supported
and which routes are not to be supported by the
routing tables. In general, the graph coloring
approach for solving the ERN assignment problem
does not offer a flexible route “design” process,
though it offers a good analysis capability (the
capability to determine the total number of ERNs
needed to support all routes in the routing tables).

Routing tree decompesition approach. This ap-
proach’ takes advantage of some intrinsic properties
involved in routing rather than treating the route
numbering problem as an abstract one like a graph
coloring problem. For each destination node, a
routing tree is constructed. A routing tree is a rooted
tree containing all routes to a particular destination
node, which is the root of the tree. In such a routing
tree, any route from a leaf node to the root node
represents a prime route. The routing tree for
destination node A of those routes in Table 6 is
illustrated in Figure 10.

The next step, which is equivalent to the route
numbering process, is to decompose the routing tree
into the minimum number of routing subtrees such
that each subtree contains the root node and other
nodes, each of which appears at most once in the
subtree. Once the routing tree is decomposed into
subtrees, a unique ERN can be assigned to each
subtree. All routes contained in a subtree assume
the ERN assigned to that subtree. Figure 11 shows a
possible decomposition of the routing tree of Figure
10 into three routing subtrees. Since each subtree
can be represented by a vector, which will be
described next, it becomes extremely simple to
implement the above decomposition scheme.

Consider a vector called a “routing bin,” which is
illustrated in Figure 12. Such a bin® corresponds to
a collection of routing entries at different nodes to

maruYAMA 445

Figure 10 A routing tree for destination A

one particular destination node. Here, N, through
N, denote the names (or addresses) of nodes in the
network, and each entry in the bin will indicate the
routing segment. The ith entry indicates that the
route from node N; visits the next node NN; via the
transmission group TG, to eventually reach the
destination node N. Each such routing bin is going
to store one routing subtree when the routing tree
decomposition is performed successfully. The tree
decomposition process thus can be called a form of
bin packing.”’ Let us next describe this process,
which forms a base for the ERN assignment solution
of the RTG.

Routing-bin packing process. This process has two
steps:

1. For each destination node, provide one bin for
each different ERN. Arrange them in the order of
increasing numbers.

2. Proceeding with the prime routes having the
same destination in some sequence, place each
prime route in the smallest-numbered bin by not
overwriting (i.e., avoiding numbering conflicts
with) those routes that have been imbedded
already.

The placement of a route in a routing bin is success-
ful only when every route segment from its node of
origin to its destination node can be placed in the
same routing bin. The placement of a route segment
into an entry of a routing bin is successful if the
entry is vacant or if it is occupied by the same route
segment that is being placed there.

It is well known that the efficiency of bin packing is
greatly influenced by the order in which elements
are imbedded (or packed) into bins.”*> Among

446 wmaRuYAMA

those routes that are of equal importance, the best
packing can be achieved by imbedding them in
lexicographically decreasing order. This makes
sense from the route availability point of view since
it imbeds the longer routes first. It is also well
known that bin packing efficiency is greatly in-
fluenced by the order in which bins are tried for
packing. In Step 2 the smallest-numbered bin is
tried first for packing. This method is often called
“first-fit” packing. Any other packing strategy such
as “best-fit” packing may be used by defining a
goodness of packing. A significant improvement in
packing efficiency has been observed by first trying
the bin into which the previous route was imbedded
and then trying the first-fit packing method. Figure
13 shows the bin-packing results of those routes in
Table 6 obtained by first-fit packing. By comparing
the routing subtrees of Figure 11 and the routing
bins of Figure 13, one can observe that a routing bin
is an equivalent representation of a routing subtree.

The routing tree decomposition (or routing-bin
packing) approach has several advantages over the
graph coloring approach:

» The route numbering conflict is checked automat-
ically at the time of route imbedding, thus avoid-
ing the expensive preprocessing of generating
contention graphs.

e The routing bin representation offers a very natu-
ral means for creating PATH macros.”

e The routing bin provides a simple means for
determining which routes are to be dropped when
not all routes can be numbered using available
ERNS.

The ERN assignment algorithm used in RTG per-
forms both analysis and synthesis. It uses two types
of routing-bin packing algorithms: bidirectional and

Figure 11 Routing subtrees

IBM SYSTEMS JOURNAL, VOL 22, NO 4, 1983

unidirectional. The strategy of the bidirectional
packing algorithm is to pack both the forward and
backward explicit routes of a route at the same time
(but not necessarily packing them into bins with the
same ERN). The unidirectional packing algorithm
packs explicit routes into bins without concern for
the packing of their reverse routes. In RTG, the
bidirectional packing algorithm is first used to
determine roughly which routes can be defined into
the routing table using the available ERNs. Once
such routes are identified, better route numbering
on those identified routes is obtained by applying
the unidirectional packing algorithm. Finally, the
bidirectional packing algorithm is once again
applied on the remaining unpacked routes to
increase the total number of routes to be defined in
the routing tables.

Managing routes for an expanding network
using RTG

In ACF Release 3 networks, when changes occur in
the network topology (such as the insertion of new
TGs and the addition of new communication nodes
into the network), the generation of new PATH
macros and the loading of them at each subarea
node are required if the network administrator
wants to provide the best communication paths for
the new network. Unfortunately, the best use of the
network for communication requires some changes
in almost all routing tables in the network. This
requirement implies a substantial amount of work
for generating routing tables and some nontrivial
network downtime. It is impossible to require the
update of all routing tables simultaneously, espe-
cially when a large number of subareas are involved.
When all routing tables cannot be updated simulta-
neously, one must update one (or some) routing
table(s) at a time. This approach may not provide
adequate communications while routing tables are
updated unless the new routing tables support some
explicit routes that were supported by the old rou-
ting tables.

There are several methods for dealing with the
above problem.® Below, some interesting ap-
proaches of using RTG for generating routing tables
for an expanding network are discussed.

Approach 1
1. Provide all ERNs and VRNs to RTG.

2. Run RTG for the original network and save the
routes generated by RTG.

IBM SYSTEMS JOURNAL, VOL 22, NO 4, 1983

Figure 12 A routing bin

DESTSA-N
ERN = &

Figure 13 Routing-bin packing

ERN=1

E|B1

3. When the network is changed, tell RTG to
include all those routes selected from the original
network in Step 2, run RTG for the new network,
and save the newly generated routes.

The advantage of this approach is simplicity. The
major disadvantage is that it is possible that all
ERNs will have been used for the definition of routes
in the original network; thus it may not be possible
to define an adequate number of additional routes
that reflect the topological changes in the new
network. It is quite possible in some cases that no
new additional route may be defined.

Approach 2

1. Reserve some ERNs and/or VRNs.

2. Run RTG for the original network and save the
routes generated by RTG.

3. When the network is changed, tell RTG to
include all those routes selected from the original
network in Step 2, allocate some or all of the
reserved ERNs and/or VRNs, run RTG for the new
network, and save the generated routes.

maruvama 447

The advantages of this approach are simplicity and
the possibility of delaying the total system genera-
tion requirement until all of the reserved ERNs and
VRNs are used up. This approach has a similar
disadvantage to the first approach in that eventually
all ERNs may be used up and no new routes may be
defined. Since some ERNs are reserved for future
system generation, a proper set of routes may not be
supported by the limited ERNs in the early stage of
the network.

Approach 3

1. Provide all ERNs and VRNs for RTG.

2. Run RTG for the original network and save the
generated routes.

3. Reduce the number of routes for each node pair
to two or three (e.g., save the first two or three
routes for each node pair and discard the rest).

4. Tell RTG to include the reduced set of routes, run
RTG for the new network, and save the generated
routes.

The advantages of this approach are simplicity and
the ability to provide both old and new routes. The
disadvantage is that unless new subareas are added,
the reduced set of routes tends to become “satu-
rated” (not able to reflect other types of topological
changes such as the addition of new TGs) unless
some meaningful reduction method is used in Step
3.

Approach 4

1. Run RTG for the original network using only half
of the ERNs (say, ERNs O, 1, 2, and 3) and save
the generated routes.

2. Run RTG for the new network using only the
other half of the ERNs (say, ERNs 4, 5, 6, and 7)
and save the generated routes.

3. Merge the two sets of routes.

4. Use the merged routes as part of the RTG input,
run RTG for the new network, and generate PATH
macros.

5. Update routing tables one node at a time.

6. After all routing tables are updated, change the
VRN-to-ERN mapping table from VRN — (0, 1,
2,3)to VRN — (4, 5,6, 7).

7. Eventually, every VR uses an ER with ERN 4 or 5
or 6 or 7. Thus, ERN 0, 1, 2, and 3 become
available again for new ER definition.

8. Repeat the process with reverse use of ERNs if
the network topology changes.

448 wmaruvAMA

In this method, if a network contains one or more
pre-ACF/R3 subarea nodes, ERNO should be reserved
for the support of the migration routes and the
remaining ERNs for the above method. The major
advantages of this approach are that it is almost
nondisruptive to the ongoing communications, it
can cope with any topological changes, and the
routing tables can be updated node by node. The
major disadvantage is that only half of the available
ERNs are used at any time, so that an adequate
number of alternate explicit routes may not be
defined.

Summary

The multiple explicit path routing of SNA that has
been used since the announcement of the ACF
Release 3 products provides many advantages over
other routing techniques.? Unfortunately, however,
the way this routing algorithm was implemented
(i.e., the origin-independent, nonswap routing) and
the way the routing tables are defined (i.e., creating
routing tables by system generation rather than
creating them dynamically) expose the complexity
of managing the routing tables for SNA networks to
the network administrators/designers. It is ex-
pected, however, that the future implementation of
the SNA routing functions® will either reduce this
complexity close to zero or hide it from the network
administrators/designers.

In this paper we addressed three basic problems
associated with the definition process of the SNA
routing tables: the route selection problem, the
route numbering problem, and the PATH macro
generation problem. We then discussed a program
called the Routing Table Generator (RTG) and
how these three problems were solved with RTG.
We also discussed some approaches on how to
use RTG in managing routing tables for growing
networks.

Although we did limit our discussion to those prob-
lems strictly associated with the definition of the
transit routing tables, there are other networking
problems which must be solved for the SNA net-
works. These problems are related to the definition
of a session to class of service (COS) mapping tables
and the definition of COS tables.”” At this point, RTG
does not provide explicit solutions to these problems,
though it does provide some output information that
can be used by the RTG users for the definition of
these tables. RTG was announced as an extended
Field Developed Program (FDP) in July 1981, and it

IBM SYSTEMS JOURNAL, VOL 22, NO 4, 1983

has been enhanced since then. It is expected that
both functional and usability enhancements to RTG
will continue as the SNA routing mechanism
evolves.

Acknowledgments

The author has consulted with many people in IBM
and has received many valuable comments and
suggestions during the implementation of the
Routing Table Generator program from the follow-
ing individuals: V. Ahuja, J. H. Benjamin, G. M.
Benson, L. D. Bower, L. Colle, P. DeBacker, S. L.
Dilly, F. D. George, J. P. Gray, B. J. Heldke, G.
Huff, J. Jackson, G. W. Krens, J. Link, B. Maney,
T. B. McNeill, E. Miller, C. Pulley, D. A. Stamper,
and R. A. Weingarten of the Communication Prod-
ucts Division; D. N. Crockett, R. H. Gleaton, J. J.
Lucas, D. Shorter, and C. Van Winkle of the
Information Systems Group; I. McGregor, A.
Meijer, and P. Peeters of World Trade; and G.
Markowsky and K. S. Natrajan of the Research
Division. H. Colle and W. Kooij of World Trade,
and K. Milliken and D. T. Tang of the Research
Division contributed to the development of algo-
rithms used in RTG. The author wants to express a
special acknowledgment to R. M. Sackowitz of the
Information Systems Group, who provided his con-
stant support and many valuable suggestions and
criticisms during the RTG development. Without his
support it would have been difficult to bring RTG
into existence.

Cited references and notes

1. J. P. Gray and T. B. McNeill, “SNA muitiple-system
networking,” IBM Systems Journal 18, No. 2, 263-297
(1979).

2. Some of the ACF Release 3 products are ACF/VTAM/
V1IR3, ACF/TCAM/V2R3, and ACF/NCP/VIR3.

3. The host intermediate network node (INN) function was not
available in the ACF Release 2 and 3 products, though the
function was once available in the ACF Release 1 host access
methods.

4. Examples of the ACF Version 2 products are ACF/VTAM/
V2R1 and V2R2 for MVS/VS1, ACF/VTAM/V2R1 for
DOS/VSE, and ACF/NCP/V2R1 and V2R2.

5. J. M. Jaffe, F. H. Moss, and R. A. Weingarten, “SNA
routing: Past, present and possible future,” IBM Systems
Journal 22, No. 4, 417-434 (1983, this issue).

6. R.R. Juenemman and G. S. Kerr, “Explicit path routing in
communications networks,” Proceedings of the 3rd ICCC,
Toronto (August 1976), pp. 340—-342.

7. V. Ahuja, “Routing and flow control in Systems Network
Architecture,” IBM Systems Journal 18, No. 2, 298-314
(1979).

8. Routing Table Generator— Program Description/Opera-
tions Manual, SB21-2806-1, IBM Corporation; available
through IBM branch offices.

IBM SYSTEMS JOURNAL, VOL 22, NO 4, 1983

9. K. Maruyama and G. Markowsky, “On the generation of
explicit routing tables,” Proceedings of the 5th ICCC,
Atlanta (October 1980), pp. 90-95.

10. K. S. Natrajan, D. T. Tang, and K. Maruyama, “On the
selection of communication paths in computer networks,”
Computer and Networking Symposium, Gaithersburg, MD
(December 1979), pp. 65-72.

11. D. T. Tang and K. Maruyama, On Criteria and Generation
of Optimal Paths, Research Report RC 8411, IBM Thomas
J. Watson Research Center, Yorktown Heights, NY 10598
(1980).

12. In ACF Release 3, a route is said to be a migration route if it
traverses one or more pre-ACF Release 3 nodes. It is
required that each migration route be numbered zero
because the products do not support multiple ERs nor the
virtual route concept.

13. What or which route is optimal is dependent on one’s
definition of optimality. If the optimality criterion is dis-
tance, for example, the shortest route is an optimal route.

14. R. Floyd, “Algorithm 97, shortest path,” Communications
of the ACM 5, No. 6, 345 (June 1962).

15. E. W. Dijkstra, “A note on two problems in connection with
graphs,” Numerische Mathematik 1,269-271 (1959).

16. L. R. Ford and D. R. Fulkerson, Flows in Networks,
Princeton University Press, Princeton, NJ (1962).

17. When an optimality criterion such as the minimum hop
count or the maximum capacity is used, there tends to be
more than one optimal route between many node pairs,
especially when the network is highly connected.

18. M. A. Bonuccelli and K. Maruyama, 4n Algorithm to
Enforce Treeness in a Set of Optimal Paths, Research.
Report RC 8998, IBM Thomas J. Watson Research Center,
Yorktown Heights, NY 10598 (1981).

19. A pair of explicit routes to the same destination node is said
to be in conflict with respect to SNA route numbering if the
assignment of the same route number to these two routes
leads to the assignment of the same route number to two
physically different routes going to that destination node.

20. R. D. Dutton and R. C. Brigham, “A new graph coloring
algorithm,” The Computer Journal 24, No. 1, 85-86
(1981). .

21. A. R. Brown, Optimum Packing and Depletion, MacDon-
ald, London, and American Elsevier, New York (1971).

22. K. Maruyama, S. K. Chang, and D. T. Tang, “A general
packing algorithm for multidimensional resource require-
ments,” International Journal of Computer and Informa-
tion Science 6, No. 2, 131-149 (1977).

23. The collection of the ith entries from the routing bins for the
same destination node forms the PATH macro for the ith
node.

24. TYMNET routing, ARPANET routing, and DECNET
routing are some examples.

25. A COS table contains an ordered list of virtual routes that
provide a certain level of service to sessions. A virtual route is
defined by a pair of subarea nodes, a virtual route number,
and a transmission priority.

Reprint Order No. G321-5204.

Kiyoshi Maruyama IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598. Dr. Maruyama joined the Research Center as a Research
Staff Member in 1972. His research areas have included combi-
natorial algorithms, parallel processing, data bases, communica-

maruvama 449

tions network architecture, communications network design, and
communications network management. He is currently manager
of the communications and systems management group in the
Computer Sciences Department at the Research Center. He has
received two Qutstanding Contribution Awards for his work
related to communications networking. Dr. Maruyama received
his B.S.E.E. degree from Nihon University, Tokyo, in 1968, and
his Ph.D. in computer science from the University of Illinois,
Champaign-Urbana, in 1972.

450 mAruYAMA IBM SYSTEMS JOURNAL, VOL 22, NO 4, 1983

