
SNA Distribution Services

by B. C. House1
C. J. Scopinich

This paper describes the ISM SNA Distribution Ser-
vices (SNADS). Heretofore, SNA has focused on
synchronous data distribution. Along with the ad-
vent of oryice systems and other distributed appli-
cations has come the requirement to provide a
common architecture for interchanging data asyn-
chronously among diverse systems and products.
SNA Distribution Services provides a general asyn-
chronous (delayed delivery) data distribution facil-
ity for SNA applications. The initial implementa-
tions are for office systems applications. Dis-
cussed are objectives for an asynchronous data
distribution service, key architectural concepts,
the relationship between SNADS and the SNA syn-
chronous communication architecture, and the in-
terface between the distribution service and appli-
cation transaction programs.

A lthough SNA has previously been directed pri-
marily towards synchronous data communica-

tion, with the advent of office systems and other
distributed applications has come the need for com-
mon architecture for interchanging data asynchro-
nously among diverse systems and products. This
paper describes the IBM SNA Distribution Services
(SNADS),’ which is intended to satisfy this need.

I S N A Distribution Services is provided by a set of
architected transaction programs that run in a
Logical Unit Type 6.2 (LU 6.2) environment using
the SNA Advanced Program-to-Program Communi-
cation (APPC) services.*.’ LU 6.2 is used for the
synchronous transmission of distributions in an
SNADS network. Further details on the use of LU 6.2
in SNADS are given in the section on synchronous
communication between distribution service units
later in this paper.

SNADS is designed to be a general service, usable by
any application. Its development has been moti-
vated by the fact that asynchronous data distribu-
tion is required by many distributed applications
and systems services, including office systems, net-
work management, file transfer, and job network-
ing. The lack of a common, general architecture for
asynchronous data distribution results in applica-
tion-, system-, or product-specific variations of the
same function, This inhibits data interchange,
results in reduced utilization of network resources,
and increases costs due to duplicated design and
implementation. The initial implementations of
S N A Distribution Services are for office systems
applications. The implementing products are DIS-
OSS Version 3.2 and the IBM 5520 Release 5 .

SNA Distribution Services is provided by intercon-
nected distribution transaction programs4 that
cooperate to perform asynchronous data distribu-
tion. The set of distribution transaction programs
and their interconnections form an SNA Distribu-
tion Services network (or more simply a “distribu-
tion network”). As shown in Figure 1, application
transaction programs interface to the distribution
network to make requests to send or receive distri-
b u t i o n ~ ~ from the distribution service. An origin
application transaction program requests the dis-

OCopyright 1983 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM
copyright notice are included on the first page. The title and
abstract, but no other portions, of this paper may be copied or
distributed royalty free without further permission by computer-
based and other information-service systems. Permission to
republish any other portion of this paper must be obtained from
the Editor.

IBM SYSTEMS JOURNAL, VOL 22. NO 4, 1983 HOUSEL AND SCOPINICH 3 19

Figure 1 Application transaction programs connected to
a distribution network

DISTRIBUTION

TRANSACTION

tribution service to send a distribution to one or
more destination application transaction programs.

Asynchronous versus synchronous communication.
To understand the nature of SNA Distribution Ser-
vices, it may be useful to contrast synchronous and
asynchronous communication. Two common sys-
tems that illustrate the difference are the telephone
system and the postal system. The telephone system
provides synchronous communication, and the pos-
tal system provides asynchronous communication.

Synchronous communication requires the sender
and receiver to converse in real time. This means
that the sender, the receiver, and the communica-
tions resources must be active simultaneously. Typi-
cally, in synchronous communication the parties
alternately “talk” to send data and “listen” to
receive data. A message sent by one party solicits an
immediate response from the other party.

With asynchronous communication, the sender may
submit a request (such as a person mailing a letter)
without participation or even knowledge on the part
of the receiver. In SNADS, an origin application
transaction program may request a distribution
without an active destination application transac-
tion program. After the distribution service has
accepted responsibility for the distribution request,
the origin application transaction program may
terminate. With asynchronous communication,
requests are queued (like a letter stored in a mail
box) and processing proceeds as resources become
available. The resources required for a distribution
may be available only a t certain times. Thus,
depending on the route that a distribution travels
and other factors regarding such handling instruc-
tions as priority specified in the request, data may
be delayed at intermediate points along the route.
This means that the time it takes for a distribution
to travel from its origin to a destination may vary
greatly for different requests (i.e., seconds, minutes,
days, etc.). For this reason, an asynchronous data
distribution service is sometimes referred to as a
“delayed delivery service.”

With asynchronous communication, when a distri-
bution arrives at its destination, the communication
service maintains responsibility for the data until
the receiver can be located-as in registered mail,
by analogy-or until it is convenient for the receiver
to take delivery of the distribution, such as the
person who may open his post office box any time he
wishes. In SNA Distribution Services, a distribution
is queued at the destination and is delivered to the
destination application program either upon arrival
or at the convenience of the destination application
program.

As in synchronous communication, asynchronous
communication may require responses to requests
(e.g., confirmation of delivery). Synchronous com-
munication has the property that responses are
synchronized with requests. That is, a response to a
message must be received before another message
can be sent. Asynchronous communication has the
property that responses resulting from one or more
distribution requests from a common origin may be
returned in any order. Thus, some means of corre-
lating responses with the requests must be defined.
Because correlation requirements vary considerably
by application, this function is an application
responsibility and not part of SNADS. The SNADS
architecture, however, defines a unique distribution
identifier that makes correlation possible and pro-

IBM SYSTEMS JOURNAL, VOL 22. NO 4, 1983

vides a means for reporting notification (status)
information. Further details on how responses may
be correlated with requests are given later, in the
section on notification facilities.

General design objectives and requirements

The key design objectives in developing the SNA
Distribution Services architecture have been appli-
cation independence, ease of use, manageability,
efficiency, and extendability.

Application independence. An application-indepen-
dent architecture must satisfy a broad spectrum of
application requirements. A general distribution
service must be insensitive to the type of data being
transported. It should be possible to distribute any
bit stream-documents, files, digitized audio, etc.
Provisions must exist to handle a wide range of
distribution sizes efficiently, from small messages to
voluminous bulk data. Users must be able to name
explicitly the programs that are to store the data
and receive the distributions at the destinations.
Different applications require the distribution ser-
vice to honor different handling instructions for
each type of given request. Some applications
require the ability to distribute information to mul-
tiple destinations (recipients) in a single distribu-
tion. Applications differ in their requirements for
notification regarding the status of distribution
requests.

Ease of use and manageability. It should be possible
to make changes in the distribution network with
minimal disruption to users, applications, and sys-
tem administrators. For example, the addition, dele-
tion, or movement of users or network configuration
changes should be localized to the affected entities
in the network. SNA Distribution Services applica-
tions should be insulated from details of the distri-
bution service to avoid affecting application code
when changes occur in the distribution service.

Efficiency. A key goal in communications architec-
tures is efficiency, because communications
resources are valuable. There are, however, addi-
tional considerations in an asynchronous data distri-
bution service. It is necessary to make efficient use
of storage (e.g., disk space) and to minimize storage
access. For example, in SNA Distribution Services,
data are accessed directly at the origin and destina-
tions of a distribution, in contrast to requiring a
spooling technique. Another objective is to route
distributions efficiently within the distribution

IBM SYSTEMS JOURNAL, VOL 22. NO 4, 1983

network to reduce the amount of data transported
and to provide a satisfactory level of service. Effi-
cient routing is complicated in SNA Distri-

As new requirements arise, SNA
Distribution Services must be

extended.

bution Services because a single distribution request
may contain multiple destinations.

Extendability. As new requirements arise, SNA Dis-
tribution Services must be extended. Mechanisms
to cope with extensions must be built in at the outset
if graceful evolution of the architecture is to occur.
One example of this is the use of self-defining
constructs for enveloping the information distrib-
uted in the network.

The remainder of this paper focuses on the major
concepts of the SNA Distribution Services architec-
ture. The overall structure of the architecture and
the basic terminology are introduced, each major
concept is presented, and various design decisions
are discussed.

Major concepts and terminology

A Distribution Service Unit (DSU) provides the
distribution service to application transaction pro-
grams. A DSU comprises the distribution transac-
tion programs that execute in a logical unit (LU) of
an SNA node. As shown in Figure 2, a distribution
network consists of a collection of interconnected
DSUS. A line connecting two DSUs depicts a distri-
bution connection. A distribution connection means
that there are potential synchronous SNA sessions
that can be used for synchronous communication
between DSUs. A distribution connection exists
regardless of whether there are any active sessions
at any particular time. Also shown in Figure 2 are
the different roles that application transaction pro-
grams and DSUs may assume-origin, interme-
diate, and destination.

Figure 2 Interconnected DSUs and application
transaction programs

APPLICATION
TRANSACTION

DISTRIBUTION
NETWORK

PPLICRTION
TRANSACTION TRANSACTION
PROGRAM

Figure 3 shows that application transaction pro-
grams serve as agents that operate on behalf of
users of the distribution service. User facilities are
located at a DSU, which corresponds to a set of
resources in the SNA node (e.g., queues, files, access
privileges, etc.). Each user is uniquely identified in a
distribution network.6 The origin application trans-
action program calls the distribution service to
initiate a distribution on behalf of an originator, and
the destination application transaction program
calls the distribution service to receive distributions
that have been queued for recipients.

An SNADS user is usually a person who is using a
distribution network, as in the case of an ofice
system. A user, however, may be such other types of
entities as a device or a subsystem. In the examples
in this article, users are persons, although the

network is unaware of whether the user name refers
to a person, device, or subsystem.

SNA Distribution Services uses the synchronous
SNA services provided by LU 6.2. A DSU consists of
architected transaction programs that run in an LU
6.2 environment. Figure 4 shows the relationships
among an application transaction program and the
distribution service and other SNA layers. SNA
defines a logical interface, termed a protocol boun-
dary,' between application transaction programs
and the services provided by SNA. The protocol
boundary definition is described as a set of verbs.
The LU 6.2 protocol boundary consists of those verbs
defined to use the LU 6.2 service^.^ Similarly, the
distribution protocol boundary consists of the fol-
lowing verbs defined for using distribution services:
DISTRIBUTE-DATA, DISTRIBUTE-STATUS,

Figure 3 Application transaction programs and
distribution users

RPPLICRTION USERS
TRRNSACTIBN ORFGIMRTURS
PROGRAM

REC3PIENTS
"d""

APPLICRTIOM USERS
TRRNSACTIBN BRIOIMRTBRS
PROGRRM

RECIPIENTS """_

IBM SYSTEMS JOURNAL, VOL 22, NO 4, 1983

and RECEIVE-DISTRIBUTION. The later section on
notification facilities illustrates the use of these
verbs by application transaction programs. As
shown in Figure 4, an application transaction pro-
gram may use the distribution services and/or the
LU 6.2 services, depending on its needs. The distribu-
tion transaction programs use the LU 6.2 verbs, as
required for synchronous communication between
adjacent DSUs, for example, to send a distribution.
Another important protocol boundary required by
the distribution service is the server protocol boun-
dary, which is used to access storage in order to
retrieve and store the object of a distribution. Serv-
ers are discussed in greater detail in a separate
section later in this paper.

Message units. An important aspect of a communi-
cations architecture is the definition of the message
units or envelopes that are used to carry informa-
tion from one process to another. In SNADS, these
envelopes are called interchange units. Interchange
units use the general encoding structure defined by
the Document Interchange Architecture (DIA)* ,~ for
its document interchange units. Interchange units
are architected as self-defining data streams. This
allows the architecture to be easily extended with
minimal effect on coding. The design of self-
defining data streams is discussed at length in
Reference 10.

Currently, two interchange units are defined for
distribution. A distribution interchange unit is used
to send a distribution to an adjacent DSU, and an

Figure 4 A layered view of distribution services in SNA

P ,

A P P L I C A T I O N T R R N S R C T I O N PROGRRM

S N A P R E S E N T R T I O N S E R V I C E S

S E R V I C E S

LU 6 . 2 S E R V I C E S

I PRTH CONTROL El I DRTR L I N K CONTROL H

IBM SYSTEMS JOURNAL, VOL 22. NO 4, 1983 HOUSEL AND SCOPINICH 323

acknowledge interchange unit" is used to report
exceptions. When a DSU encounters an error while
receiving a distribution interchange unit, it sends a
negative acknowledge interchange unit to the send-
ing DSU. The major components of the SNADS
interchange units are shown in Figure 5 . The PRE-
FIX and SUFFIX delimit the interchange unit, and
the COMMAND contains the control information
necessary to perform the requested function. The
DISTRIBUTE COMMAND contains such information
as names and addresses of those who are to receive
the distribution and the name of the destination

Figure 5 Distribution interchange units

I D I S T R I B U T I O N I N T E R C H A N G E U N I T 11
...

c . , , , ", ," ., ' , . ,

R C K N O W L E D G E I N T E R C H A N G E U N I T

I1

Figure 6 Structure of a Distribution Service Unit

I PRESENTATION SERVICES

I I I
INPUT
QUEUE (S)

OUTPUT
QUEUE (SI

NEXT
DSU
QUEUE [SI

transaction program. The OBJECT in the distribu-
tion interchange unit envelopes the contents to be
distributed. A distribution interchange unit may
contain zero or more objects. A user may send zero
objects if it is desired simply to invoke a destination
transaction program with a parameter string that is
carried in the COMMAND. As an option, more than
one object may be distributed.

The SNADS model. In order to describe the func-
tions of the SNADS architecture, we define an
SNADS reference model of a Distribution Service
Unit (DSU);'* Figure 6 shows its rl.lajor components.

Presentation services process the distribution proto-
col boundary verbs issued by the application trans-

324 HOUSEL AND SCOPINICH

action program.13 Part of this processing includes
parameter checking and mapping the verb parame-
ters to an internal form. A distribution request
causes an entry to be added to the input queue. A
request to receive a distribution causes an entry to
be dequeued from an output queue if the queue is
not empty. The dequeued entry is mapped into
parameters for the application transaction program,
and control is subsequently returned to the transac-
tion program.

Routing and directing services process each entry
on the input queue. This includes determining the
addresses of the recipients of the distribution, if
necessary, routing the distribution to the appropri-
ate distribution queue(s) for the next phase of
processing, and starting the appropriate transaction
programs to process the distribution queues. Distri-
butions are enqueued on output queues for local
recipients and on next-DSU queues for remote recip-
ients. The analysis by routing and directing services
of an entry retrieved from the input queue may
spawn several entries, each of which is enqueued on
a different distribution queue.

Transport services use the facilities of LU 6.2 to
transfer distributions between adjacent DSUs. To
send a distribution to another DSU, transport ser-
vices process entries from the next DSU queue(s). In
receiving distributions, transport services build a
queue entry and enqueue it on the input queue to
await further processing by routing and directing
services. Transport services use the server protocol
boundary verbs as required to access (read/write)
distribution objects in storage.

Architectural concepts

This section describes the primary concepts in the
SNADS architecture: naming and addressing, the
distribution service level, synchronous communica-
tion between Distribution Service Units, the SNADS
notification facilities, and servers.

User naming and addressing. Naming and address-
ing are the foundation of any communications
architecture. A user name identifies the user, and a
user address identifies user's location. The naming
and addressing design for SNADS is motivated by
the following objectives:

Users and application transaction programs
should be insulated as much as possible from
changes in the distribution network. It should be

IBM SYSTEMS JOURNAL, VOL 22, NO 4. 1983

possible for a user to move from one DSU to
another without having to notify all other users of
the change.
The architecture should allow name management
to be either centralized or distributed.
Because SNADS must satisfy the requirements for
a wide range of products, the architecture should
not require all distribution service units to support
large tables.

These considerations have led to the design of the
user naming and addressing concepts. The naming
of users should not depend on the topology of the
distribution network; thus, separate name spaces
are defined for users and Distribution Service Units.
A user is named using a Distribution User Name
(DUN), and a Distribution Service Unit is named
using a Distribution Service Unit Name (DSUN).
The name of the DSU where a given user is located is
the user’s address. At any instant in time, a user has
only one address. A Distribution Service Unit
Name is generally defined as a two-part, hierarchi-
cal name consisting of a Routing Group Name
(RGN) and a subordinate Routing Element Name
(REN). The routing group name is used to group
Distribution Service Units topologically. This facili-
tates the use of smaller routing tables and decen-
tralized naming of Distribution Service Units. Fig-
ure 7 shows three routing groups named RALEIGH,
AUSTIN, and SANJOSE. Currently, the routing group
name is optional, so that a DSU name may be
defined as either a one-part or a two-part name.14
The remainder of this paper assumes a single-part
Distribution Service Unit name. A distribution user
name is defined as a two-part, hierarchical name
consisting of a Distribution Group Name (DGN) and
a subordinate Distribution Element Name (DEN).
Thus, DGN.DEN comprises a fully qualified, net-
work-unique name of a user. The Distribution
Group Name can be used to define such logical user
groups as departments or divisions. For a given
distribution group name, all distribution element
names must be unique.

Figure 8 shows the relationships between user
names and DSU names. The dashed-line boxes
depict various distribution groups and distribution
elements within individual distribution groups. For
illustrative purposes, assume that a company has
defined distribution groups for the functional areas
of manufacturing (MAN), payroll (PAY), engineering
(ENG), and personnel (PER). The Distribution Ele-
ment Names (DENS) specify the names of
employees in the respective groups. Examples of

IBM SYSTEMS JOURNAL, VOL 22. NO 4, 1983

Figure 7 Routing groups

, .
I

I
A U S T I N I R A L E I G H

I

SRNJLlSE
I
i ll

Figure 8 Relationships of users and DSUs

“”

O I S T R I B U T I D N
N E T W O R K

I I t

HOUSEL AND SCOPINICH 325

Table 1 Complete distribution dictionary

USER NRME (KEY)

PER. GRRY
PER. HESS
ENG. BRKER
ENG. C O L L I N S
ENG. H R L E

MRN. H R L L
ENG. S M I T H

MAN. HUNT
MRN. J O N E S
MRN. S M I T H
PRY. G I L E S
PRY. P I T T *. #I

P

DSUN

E
E
D
C
D
C

B
B

R
R
B
B
ERROR

I

/

Table 2 Directories with default entries

R T DSU 8 : n
USER NRME (KEY)

PER. x
ENG. #I

MAN. HUNT
MRN. H R L L

MAN. JONES
MAN. S M I T H

PAY. P I T T
PRY. G I L E S

I

#I. *

~:
ERROR

/ -./
AT DSU C :

USER NRME (KEY1 I DSUN t
/

PER. GRAY
PER. HESS
PER. #I

I * * # I

user names are ENG.HALE and MAN.HUNT.I5 The
distribution network in Figure 8 shows five DSus
with DSU names A, B, C , D, and E.

The relationship of a distribution group to a DSU
may be on a one-to-one basis (e.g., PER to E and PAY
to B), or on a one-to-many basis (e.g., ENG to {C, D}
and MAN to {A, B}). Any number of distribution
groups may be defined at a single DSU. (Notice that
both PAY and MAN are defined at DSU 9.) As long as
a user’s name remains the same, a user may be
moved to another DSU (i.e., incur an address

326 HOUSEL AND SCOPINICH

change) with no impact to other distribution users.
The distribution service then routes distributions to
the new address (i.e., the new DSU) transparently to
the users. Further details are described later in this
paper in the section on routing and directing ser-
vices.

The independence of naming of users and DSUs
requires that routing and directing services resolve
user names into destination DSU names. Each DSU
maintains a distribution directory for this purpose.
Table 1 shows a complete directory for Figure 8 that
contains an entry for each user. For each distribu-
tion request, routing and directing services obtain
the DSUN for each respective user name in the
request. The destination DSUNs are used in routing
the distribution.

An important design consideration has been to
devise a means whereby some DSUs may maintain
only a subset of the complete directory. In general,
forcing all DSUs to maintain a complete directory
could result in poor utilization of storage and
increased directory maintenance cost. Moreover,
this overhead might preclude smaller products from
implementing the SNADS architecture. To remedy
this problem, SNADS allows directories to contain
default entries.

Table 2 illustrates how the directories with default
entries might look for DSU E and DSU B in Figure 8.
The character “*” denotes a default entry. This
means that a comparison of any value results in the
value TRUE. The directory for DSU E is simple.
Except for the local recipients, all distributions
designate DSU B as the destination DSU. Note that
the directory contains entries for the local users as
well as for remote users. When a default match is
found for a recipient name, the distribution is
routed to the associated address (destination
DSUN). Upon arriving at the default DSU, another
address may be determined for the recipient, in
which case the distribution will be routed to the new
address. This can occur several times until the
distribution arrives at the recipient’s true address or
until a routing error is detected. For example, using
the directories in Table 2, suppose a distribution
request was made at DSU E to distribute data to the
ENGSMITH. At DSU E, ENGSMITH maps to the
DSUN of B. When the distribution arrives at DSU 9,
ENGSMITH is mapped to a new destination DSUN,
D. Finally, at DSU D, ENGSMITH is resolved to C , the
true address. Using defaults, a distribution may
take a more indirect route than if the real address

IBM SYSTEMS JOURNAL, VOL 22, NO 4. 1983

were known at the OL ttset. The extent to which
defaults are to be used is determined by the distri-
bution network administrator. The design of distri-
bution directories is beyond the scope of this paper.
We simply caution that defaults should be chosen
carefully to avoid looping of distributions in the
network.

The ability of DSUs to redirect traffic, as just
described, enables users to move from one DSU to
another with no disruption of service. Initially, the
directory at the old address is updated to reflect the
new address, and the user is defined as a recipient at

For each capability, a particular level
of service may be specified.

the new location. The other directories in the distri-
bution network may be gradually updated over time
without losing data, because all distributions sent to
the user's old address are redirected to the new
address.

Distribution service level (DSL). The purpose of DSL
is to permit users to specify how a distribution is to
be handled by the distribution service. Its role in a
distribution network is similar to that of class of
service in a synchronous SNA network.I6 DSL is
supplied by the origin application transaction pro-
gram in the distribution request, and specifies a list
of capabilities that the user requires of the distribu-
tion service to meet the requirements of the distri-
bution request. For each capability, a particular
level of service may be specified. Currently, the
following three capabilities have been archi-
t e ~ t e d . ' ~

PRIORITY specifies the urgency with which the
distribution service is to handle a distribution rela-
tive to other distributions in a distribution network.
Currently, for general data distribution, two prior-
ity values (HIGH and LOW) have been defined.
There are also the following two special priorities
for expedited distributions: FAST for data distribu-
tions, and STATUS for status distributions. These
priorities are higher than either of the priorities for

IBM SYSTEMS JOURNAL, VOL 22, NO 4, 1983

general data distribution. Typically, distributions
with a priority level of FAST contain small objects
and, therefore, contain a small capacity level. Sta-
tus distributions are used to return status informa-
tion about distribution requests and are discussed
further in the section on notification facilities.

CAPACITY specifies the level of storage capacity
that all DSUs must provide along a route that a
distribution travels from the origin DSU to the
destination DSU~. This capability is provided to
guard against sending distributions that contain
very large objects to DSUS that have inadequate
storage capacity. One value for this parameter is
INDEFINITE, which means that the object size is not
known at the origin DSU. DSUs that support this
value always attempt to store the object.

PROTECTION specifies the level of storage protec-
tion that all DSUS must provide along a route that a
distribution is to travel from the origin DSU to the
destination DSUS. Currently, the two levels of pro-
tection architected are PROTECTED and NONE. PRO-
TECTED means that a DSU protects a distribution
against communication and system failures (except
for media failures such as a disk head crash). NONE
means that distributions may be lost in the event of
communication or system failures. This option
allows some distributions to bypass the overhead of
storing objects in a protected store, thus improving
the throughput and allowing a greater number of
feasible routes for a distribution, at the expense of
distribution integrity.'*

DSL is used extensively in the following ways by the
distribution service in processing distributions:

Selecting the next DSU of a distribution en route
to a destination DSU.
Selecting the type of session to be assigned to the
LU 6.2 conversation used in sending a distribution
to the next DSU.
Selecting the appropriate next-DSU queue in order
to properly schedule transmission according to the
requested priority.
Selecting the appropriate output queues at the
destination DSUs.

Given a DSL, the task of the distribution service is to
select a route that provides sufficient storage and
communications resources to satisfy the request.
Figure 9 shows the storage capabilities of various
DSUS and communication capabilities to handle
high-priority and low-priority traffic. The lines

HOUSEL AND SCOPINICH 327

Figure 9 DSUs with different capabilities

""

between a pair of DSus denote distribution connec-
tions that are defined to handle high priority (solid
line) and low priority (dotted line) traffic.

Suppose a distribution is requested from ENG.HALE
(at DSU D) to MAN.JONES (at DSU A), with a DSL
that specifies a priority level of LOW, a protection
level of PROTECTED, and a capacity level of INDEFI-
NITE. Although there are two possible routes
between DSU D and DSU A (one through DSU C and
one through DSU B), the only feasible route for this
request is through DSU C. First, DSU B does not
provide adequate object protection or capacity. In
addition, the synchronous communications through
DSU B are not configured to handle low-priority
traffic. Thus DSL pertains to the complete route that
a distribution travels. The use of DSU is constrained
initially to a limited number of combinations of the
above capabilities.

The DSL facility is designed to accommodate large
networks that require sophisticated routing. Some
of the design considerations are presented here.

328 HOUSEL AND SCOPINICH

Each capability in the DSL is carried in a distribu-
tion. This is in contrast to the approach of using a
single field to specify multiple capabilities, as was
done with the SNA class of service. The latter
approach is preferable when the total (combined)
number of capabilities is not excessive. In a large
distribution network, it is expected that the spec-
trum of capabilities may be extensive. For example,
suppose there are ten priority levels, ten capacity
levels, and three protection levels defined for a
distribution network. This leads to the possibility of
300 (i.e., 10 x 10 x 3) routing table entries for a
single destination DSU. The decision to maintain
discrete capabilities enables DSUs to make routing
decisions algorithmically in order to keep routing
tables as small as possible. Using this example, the
number of routing table entries reduces to 23 (i.e.,
10 + 10 + 3) entries when a DSU implementation is
designed to process each capability separately.

Routing and directing services. The distribution
service is responsible for routing a distribution from
the input queue at the origin DSU to the output
queues at the appropriate destination DSUs. The
examples illustrated in Figure 10 (derived from
Figure 8) show that the output queues may be
variously located at the origin DSU, at an adjacent
DSU, or at a DSU separated by an intermediate DSU.
The processing of routing and directing services
shown in Figure 6 for a given distribution begins by
accessing an entry from the input queue and ends
with the enqueuing of one or more entries either on
output queues (if the recipients are local) or on next
DSU queues (if the recipients are remote). Discussed
next are several cases in which are considered
different execution flows of the SNADS model shown
in Figure 6 .

Forwarding a distribution to another DSU, As
shown in Figures 11 and 12, routing a distribution
to another DSU may result from a distribution
request at an origin DSU or from a distribution that
is received from another DSU. In the former case,
the routing and directing service first determines
the addresses (i.e., destination DSUNS) for the recip-
ients specified in the request. In the latter case-as
discussed earlier in this paper in the section on user
naming and addressing-routing and directing ser-
vices may have to replace a destination DSUN in
order to redirect the distribution. The subsequent
discussion assumes that all destination DSUNs have
been successfully determined and reflect the true
addresses of the respective recipients.

IEM SYSTEMS JOURNAL, VOL 22. NO 4, 1983

For each destination DSUN that identifies a remote
DSU, routing and directing services must determine
the next-DSU queue, the LU name of the next DSU,
and the MODE name required for transport ser-
v i c e ~ . ’ ~ These parameters are determined by using
the destination DSUN and the distribution service
level, as shown in Figure 13.

Once an entry is made on a next-DSU queue, the
transport service is responsible for transporting the
distribution to the next DSU (as discussed later in
this paper in the section on synchronous communi-
cation between distribution service units). In some
cases, a distribution may be routed to the same next
DSU for more than one destination DSUN. In these
cases, only one copy is sent to the next DSU. That is,
only one entry is enqueued to the next-DSU queue,
and only one distribution interchange unit is sent to
the next DSU. This technique reduces the volume of
data being transported in a distribution network. It
has been shown” that this simple technique is often
close to optimal in many typical configurations.

Alternatively, multiple destinations contained in a
distribution may result in splitting the original

Destination processing may occur as
a result of local or remote

distributions.

distribution into several distributions to be sent to
different DSUS. Figure 14 illustrates both of these
cases.

Destinationprocessing. When a distribution arrives
at a destination DSU, where one or more recipients

Figure 10 Basic routing cases

c n 1 O R I G I N R T O R R E C I P I E N T

I l - - - - -J

I “ ” ” l

I O R I G I N R T O R R N D R E C I P I E N T A T S R M E D S U IJ

f 51
O R I G I N R T O R R E C I P I E N T

R E M O T E D I S T R I B U T I O N : N O I N T E R M E D I A T E R O U T I N G

I V

I 3

ORIGINFITOR RECIPIENT

R E M O T E D I S T R I B U T I O N T H R O U G H R N I N T E R M E D I R T E D S U

~~~ ~ ~ ~ ~ 

IBM SYSTEMS JOURNAL, VOL 22, NO 4. 1983 HOUSEL AND SCOPINICH 329 



Figure 11 Origin  DSU:  Routing distribution to  remote 
DSU 

INPUT 
Q U E U E  

are located, routing  and  directing services enqueue 
the distribution on the  appropriate  output  queues 
and (optionally) invoke the destination  transaction 
program to process the request. Destination pro- 
cessing may occur as a result of local or remote 
distributions. 

With local distribution, as shown  in Figure 15, 
destination processing occurs at  the origin DSU 
because the recipients of the  distribution request are 
located at  the origin DSU. In this case, the origin and 
destination D S u s  are  the same,  and the functions of 
transport services are not required. 

Remote  distributions occur when the  originator  and 
recipients are located at  different DSUs. In  this case, 
as illustrated in Figure 16, destination processing 
results from receiving a  distribution from an  adja- 
cent DSU. 

Regardless of whether  a  distribution request results 
in local or remote  distribution.  the  distribution 

function appears  the  same  to users (and  to  the 
application transaction  programs).  This property is 
sometimes referred to  as  "local/remote  transparen- 
cy." 

The functions of routing and  directing services in 
destination processing are to select the proper out- 
put queue  and start  the proper destination  transac- 
tion program. The  parameters in the distribution 
used to perform these functions are  the destination 
Transaction Program Name (TPN), the distribution 
service level, and  the recipient names. The destina- 
tion TPN gives originators  the  ability  to select dif- 
ferent processing for different distributions  ad- 
dressed to  the  same  recipient(s). The destination 
DSUS have the responsibility to  validate  the above 
parameters (e.g., that a given destination TPN is 
supported). However, the  algorithm  and tables that 
a  destination DSU uses to  map these parameters  to 
local queues and  transaction  programs are largely 
product-specific and  may differ among the DSUS in 
the network. This is because the destination process- 
ing  is concerned with how distributions are passed 
to local transactions;  it does not affect other DSUs. 
At one extreme,  there may be a  separate  output 
queue for each unique combination of destination 
TPN, DSL, and recipient name. In this case, an entry 
(containing only one recipient name) is enqueued 

Figure 12 Intermediate DSU processing 

,.,,, , , ? .' , , ' " '  I , , , , ~ : , , " , '  ' .. ' ', , ' " ~  ' , '  i 

I N T E R M E D I A T E  OSU 

Q U E U E  
INPUT 

NEXT 

Q U E U E  
DSU 

330 HOUSEL AND SCOPINICH IBM SYSTEMS JOURNAL, VOL 22. NO 4,  1983 



for each local recipient. At the  other  extreme,  there 
may be a single queue for each destination TPN, 
regardless of the DSL or the  number of local recip- 
ients in the  distribution.  This, for example, could be 
a  transaction  dispatching  queue. In this  case,  a 
single entry is enqueued that contains  all the names 
of all  the local recipients in the  distribution. It is the 
task of the application transaction  program to 
receive the  distribution  and process each recipient 
name in the request (e.g., updating mail logs). 

Synchronous communication between distribution 
service units. This section focuses on how two adja- 
cent DSUs communicate synchronously using trans- 
port services. Transport services consist of a  pair of 
LU 6.2 transaction programs defined for the synchro- 
nous transmission of distributions between DSUs. 
We discuss first the  relationship of SNADS and  the 
facilities provided by LU 6.2 services and synchro- 
nous SNA in general.  We  then describe high-level 
protocols that have been designed for sending and 
receiving distributions from one DSU to  another. 
Specifically discussed are instances of starting  the 
sending and receiving transactions, processing next- 
DSU queues, classes of exceptions that  can occur, 
and  the  distribution flow-control mechanism. 

SNADS and Logical Unit Type 6.2. SNADS was 
designed assuming LU 6.2 services for interprogram 
communication. An alternative choice would have 
been to design a protocol specifically tailored  to 
SNADS requirements.  A  number of 

Figure 13 Determining parameters for routing to next 
DSU 

I RUUTING  TRBLE 

L U  NRME 
MODE NAME. 
QUEUE NRME 
OF NEXT OSU 

have defined their own interprogram protocols in 
SNA using Logical Unit  Type 0.23 

Lu 6.2 was chosen because it is the IBM SNA interpro- 
gram communication protocol and meets the func- 
tional requirements of SNADS. It is expected to 
become widely  used for many distributed applica- 

Figure 14 Distribution  fanout 

1 COPY ""_ 
I I 

I I 
I I R E C I P I E N T S  

1 COPY 

IEM SYSTEMS JOURNAL,  VOL 22. NO 4,  1983 HOUSEL AND SCOPINICH 33 1 



tions. This common synchronous interprogram pro- 
tocol  provides a basis for implementing SNADS on a 
wide variety of computers-from intelligent work 
stations  to  large processors. SNADS is designed to be 
able  to  operate using the minimal L u  6.2 subset  (i.e., 
the LU 6.2 base) that is required in all LU 6.2 
implementations. 

As discussed in Reference 2, the collective services 
provided by the community of interconnected logi- 
cal units  can be viewed as  a  distributed  operating 
system. (See Figure 17.) The activity of exchanging 
application data (messages) between two LU 6.2 
transaction programs is called a conversation. The 
basic functions required by the  distribution  transac- 
tion programs of SNADS are provided by the follow- 
ing LU 6.2 verbs: 

ALLOCATE is issued by a  transaction  program  to 
establish a conversation with another  (partner) 
transaction  program. 
SEND-DATA is used to send application data to  a 
partner  transaction  program. 
RECEIVE-AND-WAIT is used to receive applica- 
tion data from a  partner  transaction  program. 
Control is returned  to  the  transaction when the 
data  are available. 

Figure 15 Origin and destination DSU with recipients 
located  at origin DSU 

RPPLICRTIBN 
TRRNSRCTIBN 

OESTINRTIBN 
RPPLICRTION 
TRRNSRCTIBN 

I " '  "' ' . "  ' II 
PRESENTRTION  SERVICES 

QUEUE 
1 NPUT  OUTPUT 

QUEUE 

ROUTING  RND  DIRECTING  SERVICES 

~~ 

332 HOUSEL AND SCOPINICH 

Figure 16 Destination DSU with receiving distribution 
from a remote DSU 

OESTINRTION  RPPLICRTION 
TRRNSRCTION  PRBGRRH 

OESTINRTIBN  DSU 

PRESENTRTIBN  SERVICES 

t 
I I 

INPUT 
QUEUE 

OUTPUT 
QUEUE 

TRRNSPBRT 
SERVICES 

SEND-ERROR is issued by one transaction pro- 
gram  to signal an error condition to  a  partner 
transaction  program. 
DEALLOCATE is used to  terminate  a conversation 
with a  partner  transaction  program. 
CONFIRM ends a message and  asks the  partner 
transaction  program for assurance that it  has 
taken responsibility for the  data.  The receiving 
transaction  program may reply with CONFIRMED 
if it  has not detected  any  errors, or it can issue 
SEND-ERROR to  report exception conditions to 
the sending transaction  program. 

Transport services consist of two transaction pro- 
grams (DISTRIBUTION-SEND, DISTRIBUTION-RE- 
CEIVE) that  participate in an Lu 6.2 conversation to 
synchronously transfer  distributions from one DSU 
to another. From the perspective of LU 6.2 services, 
distribution  transaction programs are LU 6.2 appli- 
cations like any  other LU 6.2 transaction  program. 
That is, they use the L u  6.2 verbs3 to  allocate 
conversations, send and receive data,  and report 

IBM SYSTEMS JOURNAL, VOL 22, NO 4, 1983 



Figure 17 LU 6.2 transaction programs in conversation 

D I S T R I B U T E D  
O P E R R T I N G   S Y S T E M  

I C O N V E R S R T I O N  1 

errors.  Figure 18 shows synchronous communica- 
tion between two DSUs using LU 6.2  conversation^.^^ 
The pipes illustrate sessions between L u x  and L u  Y .  
The dashed lines depict conversations between dis- 
tribution  transaction  programs in the respective 
DSUs (i.e., DSU A and DSU B). 

To allocate  a conversation with another  distribution 
transaction  program,  a  distribution  transaction pro- 
gram must  select the  name of the LU that contains 

the  partner DSU, the MODE name  to  be used for 
selecting the type of SNA session desired,  and the 
name of the distribution  transaction  program  to 
participate in the conversation. The determination 
of the LU name  and MODE name is described in the 
previous section on routing  and  directing services. 
Distribution  transaction  program  names are  archi- 
tected values and are implicitly known by all DSUS. 

In one sense, because SNADS is designed to use the 
LU 6.2 protocol boundary,  distribution networks are 
intimately linked to synchronous SNA networks. In 
another sense, however, distribution networks are 
independent of synchronous SNA networks. 

The MODE name  insulates DSUs from the details of 
the synchronous SNA resources. The logic of distri- 
bution transaction  programs  remains  unchanged, 
regardless of the underlying SNA session resources. 
The MODE name is used by L u  6.2 to  determine  the 
SNA session resources and  characteristic^.'^ It is 
used to select the SNA class of service and such other 
session-level attributes  as encryption. The class of 
service, in turn, is used to select an SNA virtual  route 
and  the SNA transmission priority. MODE name is 
also used to determine  the number of available 
parallel sessions (if any).26 

It should be mentioned that, even though MODE 
names  insulate  distribution  transaction  programs 
from the details of the LU 6.2 services, the MODE 
names defined for use by the distribution service are 
an  important distribution network design consider- 
ation. If the SNA resources related  to  a given MODE 

Figure 18 Conversation connecting two DSUs 

.,,, ~ , 

IBM SYSTEMS JOURNAL, VOL 22. NO 4,  1983 HOUSEL AND SCOPlNlCH 333 



Figure 19 Conversation between DISTRIBUTION-SEND and DISTRIBUTION-RECEIVE 

L 

LU x II 

I 
I 

LU Y 

I 
I M 

LU 6. 2 SERVICES I1 

name  are mismatched  to the associated distribution 
service levels, unsatisfactory  performance  results. 

SNA Network  Interconnection is transparent  to 
SNADS. As described in Reference 21, SNA has  a 
facility for interconnecting two or more SNA net- 
works. With  this  feature,  a session may  be  estab- 
lished between LUS in different SNA networks. An 
SNA network interconnection  gateway  constructs  a 
qualified network name (i.e., NETWORK-ID.LU- 
NAME) and may translate LU names (if aliasing is 
necessary).  Such  translations, however, are trans- 
parent at  the distribution services layer.  Thus,  adja- 
cent DSUs may in fact be in separate SNA networks. 

DSUs are named  independently  from Lus. As shown 
in Figure 18, the DSU names  and the respective LU 
names are different  and are selected from different 
name  spaces. LU names are used to establish conver- 
sations with an  adjacent DSU, but  they are never 
carried in distribution  interchange  units.  This pro- 

I LU 6 . 2  SERVICES I 1  

vides additional  independence  from the synchro- 
nous SNA services over and above that provided by 
LU 6.2.  For example, SNADS distributions are not 
affected by LU name  translations that may occur in 
SNA network interconnections.  In  addition,  this 
independent  naming  enables DSUS to be grouped 
(using  routing  groups)  to  satisfy  distribution 
requirements apart from the synchronous SNA topo- 
logy. The disadvantage of this naming  indepen- 
dence is the cost of an additional level of name 
management. 

Initiating  data  transfer  and  next-DSU  queue pro- 
cessing. Under  normal  circumstances,  routing  and 
directing services at  the sending DSU cause  an 
instance of DISTRIBUTION-SEND to be initiated. 
This  may occur for several reasons. The simplest 
condition is when an a new entry is enqueued to a 
next-DSU queue.  Optionally, some DSUS may ini- 
tiate DISTRIBUTION-SEND when a  certain  time of 
day is reached or when the number of entries in a 
queue exceed a  certain  maximum. 

334 HOUSEL AND SCOPlNlCH IEM SYSTEMS JOURNAL, VOL 22, NO 4, 1983 



Figure 20 Normal operation 

D I S T R I B U T I O N - S E N D  

RLLOCATE 

SEND-DATA ___, 
SEND-DATA ___+ 

SEND-ORTA ___, 
SEND-DATA ___+ 

CONF I RM ___.+ 

( P R E F I X )  

(0  I ST COMMAND 1 

(OBJECT)  

( S U F F I X )  

( G E T   N E X T   D I S T R I B U T I O N  
FROM NEXT  DSU 611 ... 

D I S T R I B U T I O N - R E C E I V E  

IRTTACHED) 

RECEIVE-AND-WAIT 

RECEIVE-RND-WAIT 
(PREF I X )  

RECEIVE-AND-WRIT 
( D I S T  COMMAND1 

RECEIVE-AND-WRIT 
[OBJECT)  

RECEIVE-AND-WAIT  
( S U F F I X )  

CONFIRMED 
(CONFIRM) 

... 

As  shown  in Figure 13, routing and  directing  ser- 
vices determine  the LU name, the MODE name,  and 
the next-DSU queue for a  distribution, using the 
destination DSUN and  the  distribution service level. 
It is expected that different MODE names can be 
used  for distributions  requiring different distribu- 
tion service levels. This could be the  case, for 
example, for distributions that vary greatly in 
capacity or object-size requirements.  This would 
guarantee, for example, that such  short messages as 
notification messages are not serialized behind the 
transmission of large  documents. It may be, how- 
ever, that  the same MODE name is selected for 
different distribution service levels. For example, 
two distributions may specify the  same  capacity  and 
protection levels but differ in their specified priority 
levels.  In this  case,  the respective distributions may 
be enqueued on different next-DSU queues that can 
be serviced on a single conversation, as illustrated in 
Figure 19. Each next-DSU queue is associated with a 
unique LU/MODE name.  There may be, however, 
multiple next-DSU queues assigned per LU/MODE 
name.  When  an  instance of the DISTRIBU- 
TION-SEND is started,  the LU/MODE name of the 
target DSU is passed to  it, along with the list of 
queues that may be serviced once the L u  6.2 conver- 
sation has thus been allocated.  Priority scheduling is 
achieved by an ordering of these queues.** In the 
example in Figure 19, Q1 is ordered ahead of Q2. 

Thus DISTRIBUTION-SEND empties Q1 before pro- 
ceeding to  the next entry in Q2. 

To increase throughput, multiple instances of DIS- 
TRIBUTION-SEND and DISTRIBUTION-RECEIVE 
may be started for the  same or different LU/MODE 
names. The precise number depends on such config- 
uration options as  the number of parallel sessions 
allowed for a given LU/MODE name  and  the maxi- 
mum number of active transactions allowed within 
the  LU. 

Normal  distribution processing. Once DISTRIBU- 
TION-SEND is in conversation with DISTRIBU- 
TION-RECEIVE, each  distribution is processed as  a 
single unit of work using the Lu 6.2 protocol boun- 
dary verbs. As  shown  in Figure 20, DISTRIBU- 
TION-SEND constructs  the respective pieces of the 
distribution  interchange  unit  and sends them  to 
DISTRIBUTION-RECEIVE. The sending of the  distri- 
bution is complete when an LU 6.2 CONFIRMED is 
received from DISTRIBUTION-RECEIVE. At  this 
point, the receiving DSU has responsibility for the 
distribution,  and  the sending DSU may discard it. 

Exception handling and control pow. During the 
transmission of a  distribution,  errors may occur. 
There  are two basic classes of errors-recoverable 
errors and nonrecoverable errors. Nonrecoverable 

IBM SYSTEMS JOURNAL, VOL 22, NO 4, 1983 HOUSEL  AND SCOPlNlCH 335 



errors occur when the receiving DSU determines, for 
example, that  the distribution  interchange  unit con- 
tains  an encoding (syntax)  error or that  the function 
requested  cannot be performed,  for  example, 
because the receiving DSU lacks the capabilities 
specified  in the  distribution.  Alternatively, DISTRI- 
BUTION-SEND may  encounter  a  permanent 1/0 
error. The number of errors  detected  during the 

For most  applications, there is a 
requirement to notify users  about the 
state of their  distribution  requests. 

synchronous transfer of a  distribution depends on 
the  amount of checking that is done as  the distribu- 
tion interchange  unit is being received. For exam- 
ple, routing errors may be detected on-the-fly if the 
addresses are validated by DISTRIBUTION-RE- 
CEIVE. Alternatively,  a product may choose to 
receive the  entire  distribution  and perform the 
validation in routing  and  directing services.29 In any 
case, when a nonrecoverable error is encountered, 
the DSU that has responsibility for the distribution 
discards it  and sends a notification message (if 
requested) to the  appropriate user (usually the 
originator).  (This is discussed further in the follow- 
ing section on notification facilities.) 

Recoverable errors occur when the resources needed 
to complete the distribution  transfer are tempo- 
rarily unavailable. The typical example of this is 
when the receiving DSU runs  out of space while 
storing the distribution  object. At a  later  time, when 
the  space is reclaimed (e.g., due  to  distributions 
being forwarded)  this  distribution may be success- 
fully transferred.  To cope with recoverable errors, 
SNADS provides a  hold/release protocol. When  a 
receiving DSU detects  a recoverable error,  it  sets  a 
hold condition, indicating that no more traffic is 
permitted for the  current LU/MODE name. The 
receiving DSU also sends a negative acknowledge 
interchange  unit (NACK) to DISTRIBUTION-SEND. 
On receiving the NACK,  DISTRIBUTION-SEND 
holds all  the queues (e.g., Q1 and 4 2  in Figure 19) 
that can be serviced on the  current LU/MODE name. 
The releasing of the hold condition can occur in 

336 HOUSEL AND SCOPINICH 

several ways. When the receiving DSU determines 
that  the hold condition has  cleared, it may release 
its hold condition and  allocate  a conversation with 
DISTRIBUTION-SEND to release the hold condition 
at  the sending DSU and  resume traffic. Alterna- 
tively, when some event (e.g., a specified time of 
day) is reached,  the receiving DSU may  trigger  the 
sending DSU to  try  again. That is, the hold condition 
is reset,  a new conversation is established with the 
next DSU, and transmission is attempted.  This may, 
of course, result in another NACK, if the resources 
are still unavailable at  the receiving DSU. Depend- 
ing on an algorithm,  a sending DSU-after a  certain 
number of retries-may treat  the  error  as nonre- 
coverable and proceed as described previously. Fig- 
ures 21 and 22 illustrate the hold-release protocols. 

Notification facilities 

For most applications, there is a  requirement to 
notify users about  the  state of their  distribution 
requests. For example, if the  distribution service 
encounters a nonrecoverable error in processing a 
distribution,  the  originator (or some user acting on 
behalf of the  originator) should be notified. Similar- 
ly, some applications are required to send notifica- 
tions when certain actions are performed on the 
received distributions. In office systems, confirma- 
tion of delivery is returned (if requested) to  the 
originator when a recipient takes delivery of a 
distribution. 

SNADS provides common facilities for user notifica- 
tion. This facility is  used  by the  distribution service 
and is also available  to  any application for reporting 
status.  The decision to provide a common notifica- 
tion facility was motivated by two factors.  One is 
that much of the information necessary for status 
reporting is the  same, regardless of the  type of 
status being reported. All notification messages 
must contain common correlation information to 
correlate  a notification with the  original  distribu- 
tion request. In addition,  all notifications must 
contain the names of the recipients for which the 
status is being reported. For example, in Figure 14, 
suppose DSU  B encounters a  routing  error in 
attempting  to  route  the  distribution  to DSU  A but is 
successful in routing the distribution  to DSU D. The 
error  notification  returned  to  the  originator 
(PER.HESS) must contain  the recipient name- 
MAN.JONES"t0 identify the recipient affected by 
the  error.  The second motivating factor is that 
having a common notification facility reduces prod- 
uct cost. Application transaction programs must 

IBM SYSTEMS JOURNAL, VOL 22, NO 4, 1983 



Figure 21 Recoverable error with HOLD 

D I S T R I B U T I O N - S E N D  

A L L O C R T E  

SEND-DATA 

SEND-DRTR 

SEND-DRTR 

[ P R E F  I X 1 

( D I S T  COMMRNDI 

( O B J E C T 1  

R E C E I V E - R N D - W R I T  
(ERROR  DETECTED1 

I N R C K I  

(HOLD  QUEUES)  

C O N V E R S R T I O N   D E R L L O C R T E D  

D I S T R I B U T I O N - R E C E I V E  

( R T T R C H E D I  

R E C E I V E - A N D - W R I T  

R E C E I V E - A N D - W R I T  

R E C E I V E - R N D - W R I T  

I P R E F  I X )  

( D I S T  COMMRNDI 

( O B J E C T )  

I I E X C E P T I O N   F O U N D  I I 

G E T - R T T R I B U T E S  
(DETERMINE  LU/M(?DE  NRME 

SEND-ERROR 
SEND-DRTR 

I N R C K )  

Figure 22 Receiver side release 

D I S T R I B U T I O N - S E N D   D I S T R I B U T I O N - R E C E I V E  

I R E L E R S E   H O L D )  
I R T T R C H E O I  t" - R L L O C R T E  

G E T - R T T R I B U T E S  
( D E T E R M I N E   L U / M O D E   N R M E I  

R E C E I V E - R N D - W R I T  
( R E L E A S E   H O L D  ON QUEUES)  

SEND-DRTR 
( S E N D )  

( P R E F I X 1   ( P R E F I X 1  
SEND-DRTR ___+ R E C E I V E - R N D - W R I T  

I D I S T  COMMRND) ( D I S T  COMMAND1 

- 
___, R E C E I V E - R N D - W R I T  

... ... 

( P R O C E E D   T O   P R O C E S S   S E N D   D I S T R I B U T I O N S 1  

IBM SYSTEMS JOURNAL, VOL 22. NO 4, 1983 HOUSEL AND SCOPlNlCH 337 



receive status distributions.  Thus, having a  general 
architecture for notifications means that  a common 
implementation  can be  used to handle notifications 
of many different types. For example, the  status 
distributions  generated by SNADS and DIA office 
applications can be processed in a uniform way. 

For each  distribution  request, the origin DSU 
returns  (to  the origin application  transaction pro- 
gram)  a Unique  Distribution Identifier (UDI). The 
U D I  is carried in all  distribution  interchange  units 
that result from a  distribution  request  and  may be 
used by applications to correlate notifications with 
requests. 

Optionally,  application  transaction  programs  may 
request notification for distribution  requests. If 
notification  is  requested  (via  the DISTRI- 
BUTE-DATA verb),  an  application  transaction pro- 
gram may specify the  name of the transaction 
program  and  the user to receive notifications for the 
request. By default, notifications are  returned to the 
originator. 

When  destination  application  transaction  programs 
receive distributions (via the RECEIVELDISTRIBU- 
TION verb),  all  parameters necessary for notifica- 
tion are  returned.  The destination  application  trans- 
action program may then issue (perhaps much later 
in time)  the verb DISTRIBUTE-STATUS to  return 
status. A DISTRIBUTE-STATUS request  causes  a 
status distribution to be sent  to the specified user 
and  transaction  program. Status distributions flow 
in a  distribution  interchange unit with extra oper- 
ands in the  distribute command  to  carry the UDI of 
the  original  request, the names of the recipients 
being reported  on,  and status information. Status 
may be reported on behalf of multiple recipients in a 
single status distribution. Moreover, a different 
status may be reported for each recipient if desired. 
Status is specified with a  status element that con- 
sists of the two fields, status type  and  status data. 
The status  type specifies the  category of status (e.g., 
SNADS or DIA), and the status  data specify status 
information with respect to  the  status type. Each 
application  architecture is assigned one or more 
status-type values. The application  architectures 

Figure 23 DIA using SNADS to report confirmation of delivery 

RECEIVE-DISTRIBUTION 1 1 I L 

DISTRIBUTE-DRTR  RECEIVE-DISTRIBUTION 

IORIGINI 

[DESTINATION1 

-DISTRIBUTE-STATUS 
UPDATE  CORRELATION 
TABLE FOR PER.  GRAY, 
DISTRIBUTION 123. 

I F O R  DISTRIBUTION 123, 
STATUS IDIR. COD1 FOR 
RECIPIENT  MRN.  JONES1 

SET  STATUS  TO  DIA.  COD 
FOR MAN.  JONES. 

338 HOUSEL AND SCOPINICH IBM SYSTEMS JOURNAL, VOL 22, NO 4, 1983 



Figure 24 SNADS reports routing error to DIA transaction program 

are then free  to define the  contents of their  status 
data. Figure 23 shows how the SNADS notification 
facility can be used by a DIA application transaction 
program  to  report confirmation of delivery. The 
number 123 denotes a  unique identifier assigned by 
the  distribution service (i.e., the origin DSU) for the 
distribution. The number 123, coupled with the 
originator’s name  (PER.GRAY)  forms  a network- 
unique identifier for the  distribution. 

Figure 24 illustrates an SNADS-detected error being 
reported to  the  originator.  This  example is similar  to 
Figure 23, except that a DSU in the  distribution 
network has encountered a  routing  error while 
processing the distribution. The DSU builds a  status 
distribution with a  status type of SNADS and sets a 
condition code (in the  status  data) indicating  a 
routing error.  To assist in problem determination, 
the  detecting DSU logs all  errors  and related control 
information and includes the DSUN of the  detecting 
DSU in status  distribution. 

Servers 

Servers are used by a DSU to retrieve and  store the 
distribution objects. The server protocol boundary 
consists of a set of verbs for server initiation  and 
termination, for reading  and writing the object byte 
stream,  and for controlling shared access to  the 
stored object(s). 

As previously stated, SNADS must be able to  handle 
efficiently a wide range of object sizes. In the  past, 
most asynchronous  distribution  systems  have 
required that  the distribution object be  moved from 
the user’s space  to  a  temporary  store  such  as  a spool 
file. The requiring of a  temporary  store is attractive 
from the  standpoint of simplicity in that a DSU can 
use a common server for all object accesses. This 
avoids problems associated with direct access to the 
user’s space, as in the  sharing of access between 
applications and  the DSU and in the mapping of the 
object byte stream  to  the form required by the 

HOUSEL AND SCOPlNlCH 339 IBM SYSTEMS JOURNAL, VOL 22. NO 4. 1983 



Figure 25 Components of an OBJECT 

OBJECT 

application.  Unfortunately, for very large objects it 
is undesirable and sometimes infeasible to require 
that the object be moved between the user’s storage 
(e.g., a data set or document library)  and  a tempo- 
rary  store at  the origin and destination DSUs.  

S N A D S  requires direct access to  objects.  At the 
origin DSU,  it  must be  possible to retrieve the object 
byte  stream directly from the user’s (application’s) 
space. Similarly, at the destination DSU, it must be 
possible to write  the object byte stream  directly  into 
the user’s (application’s) space. 

Of course, different applications may  distribute  a 
variety of different object types (e.g., documents or 
facsimile) and  may  require different data manage- 
ment routines for retrieving and  storing data.  Thus, 
users must be able  to  name  the server to be  used to 
access objects at the origin and  destination DSus. 
Parameters  are defined on the  distribution verbs for 
specifying the origin and destination server names. 
As illustrated in Figure 25, the OBJECT depicted in 
Figure 5 consists of an object  prefix and  the object 
byte  stream. 

The object prefix contains  the  name of the server 
(and optionally a  parameter  string)  to be used to 
store  the object at the  destination DSU.  The object 
byte stream is the  byte  stream that is delivered to 
the origin DSU by the origin server and delivered to 
the  destination server by the  destination DSU.  The 
object byte stream may be segmented3’ and  can be 
any  length,  subject  to  storage  capacity limitations. 

The relationships of servers, DSus, and application 
transaction  programs are illustrated in Figure 26. 
Here  the server processes are defined as being 
outside  the  distribution service. A set of verbs that 
make  up  the server protocol boundary is defined by 
the S N A D S  architecture  to describe the functions 

340 HOUSEL AND SCOPINICH 

server being used. 

Figure 26  shows that there are two classes of 
application-specific programs defined in the S N A  
Distribution Services architecture: (1) origin and 
destination transaction programs that send and 
receive distributions,  and (2) servers that access the 
distribution objects. Servers are invoked by a DSU 
(on-the-fly) as an object is being sent or received on 
an LU 6 .2  conversation. From the viewpoint of 
SNADS,  servers act as a source or sink for the object 
byte stream. S N A D S  uses the server name to deter- 
mine which server to call, but otherwise S N A D S  

Any  server  may serve as a  general 
server if it can store and retrieve a 

byte-perfect copy of the object. 

has no information on the semantics of the object 
byte stream or any associated server-specific pro- 
cessing. There  are two classes of servers defined in 
SNADS-specific servers and general servers. 

The function of a specific server is to provide the 
... mapping between the object byte stream  and  the 

appropriate application-specific form. Specific serv- 
ers typically have information regarding  the mean- 
ing of the byte stream.  The potential functions of a 
specific server include the following: 

8 Encoding and decoding the  data  contents. Many 
byte streams  carried by S N A D S  are architected 
data streams.  The server must encode and decode 
the  application data  stream (e.g., DIA document 
units). 

8 Server-speci’c profile  processing. Profiles such 
as the DIA Interchange Document Profile ( I D P )  
must be handled by D I A  servers. The distribution 
service has no information on such  entities.  This 
means that servers may have to  read or write 
catalogue  entries  maintained for different data 
sets and  libraries. 

IBM SYSTEMS JOURNAL, VOL 22, NO 4, 1983 



~~ 

Figure 26 Distribution network and file servers 
~~~ ~ 

I D ISTRIBUTION NETWORK

I
-
C
0
N
V
E
R
S
fl
T
I
D
N -

CoNkER5AT ION

oou I

fGENERFlL 1

Server-specijic transformations. Some servers
may, based on information passed in the object
prefix or in application-specific profiles, choose to
transform the data stream (e.g., compression/
decompression) as part of the mapping to and
from the data store.
Interfacing with local data management compo-
nents. The server must determine-using the
server name, server parameters, and server profile
information-which local access method or
library service to invoke to read and write the data
stream.

General servers are required by intermediate DSUs.
The function of general servers is to write and read
(when the distribution is forwarded) a byte-perfect
copy of the distribution object(s). A general server
is not sensitive to the semantics of the distribution
object (object prefix or object byte stream). Thus
the inherent difference between specific and general

servers is the extent to which information on the
byte stream is required. Any server may serve as a
general server if it can store and retrieve a byte-
perfect copy of the object. As illustrated in Figure
26, the general server is considered to be part of the
distribution service because it is required by all
intermediate DSUs.

A number of complexities arise when the function of
direct access to objects is provided. One such exam-
ple is the synchronization required between applica-
tions and a DSU. When an application submits a
distribution request, it must be possible to guaran-
tee integrity to ensure that the object has not been
modified before the DSU has relinquished responsi-
bility for the distribution. When more than one copy
of an object must be forwarded, the object cannot be
deleted until all copies have been transmitted. The
server verbs specify locking protocols to handle
object synchronization requirements.

HOUSEL AND SCOPINICH 34 1 IEM SYSTEMS JOURNAL, VOL 22, NO 4, 1983

Concluding remarks

This paper has presented the SNA Distribution
Services (SNADS) architecture, that is designed for
asynchronous data distribution for SNA applications
running in an LU 6.2 environment. The requirement
for a general distribution facility in today’s rapidly
expanding computer communications technology is
evidenced by recent standards a ~ t i v i t i e s . ~ ” ~ ~

The general design objectives and requirements
have been briefly discussed, the basic terminology
introduced, and a technical overview of the IBM SNA
Distribution Services has been presented. The
remainder of the paper has focused, in some depth,
on the primary concepts of naming and addressing,
distribution service levels, distribution routing, syn-
chronous communication among distribution ser-
vice units, user notification facilities, and object
servers.

Although the generality of the architecture has
been emphasized, it should be stressed that the
predominate application of SNADS at the present
time is that of office systems. Toward that end,
SNADS has been designed to be compatible with the
Documentation Interchange Architecture. The ini-
tial implementations of SNADS are provided by
DISOSS Version 3 Release 2 and the JBM 5520
Release 5.

Acknowledgments

The development of the SNA Distribution Services
architecture has been a joint effort. Many architects
and product representatives have contributed to the
requirements and technical design. We are indebted
to E. H. Sussenguth and J. P. Gray for their vision
regarding the need for a general asynchronous data
distribution facility for SNA applications. Among
the architects who have contributed to SNA Distri-
bution Services, we wish to acknowledge J. C.
Ashfield, J . M. Baker, P. F. Chimento, J. P. Gray,
J. C. Knott, L. T. O’Connor, S. Shukuya, and P. N.
Turcu. We also thank L. E. Area and K. Knight
from the IBM 5520, S. D. Hale, J. R. Hind, and L. F.
Morrison of the IBM Distributed Office Systems
Support (DISOSS) product, and R. F. Brockish of
the Document Interchange Architecture. Finally,
we thank the management team, including R. F.
Steen, J. C. Broughton, T. B. McNeill, M. L. Hess,
D. A. Haile, E. W. Cornish, E. R. Roth, and P. B.
Hill.

342 HOUSEL AND SCOPINICH

Cited references and notes

1. Implementations of SNADS will be announced on a prod-
uct-by-product basis.

2. J. P. Gray, P. J. Hansen, P. Homan, M. A. Lerner, and M.
Pozefsky, “Advanced program-to-program communication
in SNA,”IBMSystems Journal22, No. 4,298-318 (1983,
this issue).

3. Systems Network Architecture: Transaction Programmer’s
Reference Manual for LU Type 6.2, GC30-3084, IBM
Corporation; available through IBM branch offices.

4. A distribution transaction program is any transaction pro-
gram that is defined as part of the SNADS architecture to
provide required functions of the distribution service.

5 . The term distribution refers to an entity resulting from a
distribution request that is transported by SNADS from an
origin to one or more destinations.

6. The formal term Distribution User Name (DUN) is defined
in the SNADS architecture to designate a distribution user.
For convenience in this paper, the simple terms “SAF user”
or “user” are used unless formality is required.

7. The term protocol boundary refers to the architectural
definition only. Products implementing the architecture may
not define their interfaces in the same way or support all the
functions described.

8. M. R. DeSousa, “Electronic information interchange in an
office environment,” IBM Systems Journal 20, No. 1,4-22
(1981).

9. T. Schick and R. F. Brockish, “The Document Interchange
Architecture: A member of a family of architectures in the
SNA environment,” IBM Systems Journal 21, No. 2,

10. B. C . Housel, “On the design and formal description of
messages in distributed architectures,” Proceedings of the
International Conference on Computer Communications
(ICCC), London (September 1982), pp. 627-633.

11. The acknowledge interchange unit is synonymous with the
Document Interchange Architecture (DIA) acknowledge
document interchange unit, as defined by DIA. SNADS
uses this interchange unit for reporting exceptions to the
sending DSU only. In SNADS, positive acknowledgment is
done using the LU 6.2 verb CONFIRMED.

12. This model is defined for the purpose of architectural
description; other models may be equally valid. Products
may structure their implementations differently.

13. The presentation services defined for SNADS may be
viewed as a procedure of SNA presentation services depicted
in Figure 4. Upon recognizing a distribution services verb,
SNA presentation services calls distribution presentation
services and passes to it the verb and its operands.

14. In a mixed network where some DSUs support RGN and
other DSUs do not, certain naming restrictions are neces-
sary. These alternatives are not discussed here.

15. In this paper, the period is used to depict levels of qualifica-
tion in naming (for example, a.b). Periods are not required to
encode names in the SNADS architecture, because each
part is encoded using self-defining constructs.

16. J. P. Gray and T. B. McNeill, “SNA multiple-system
networking,” IBM Systems Journal 18, No. 2, 263-297
(1 979).

17. The architecture is an open-ended one in that additional
capabilities may be added as required.

18. By integrity we mean the ability of SNADS to verify the
delivery of a distribution. The degree of integrity required
may vary among different applications. At one extreme, the

220-244 (1982).

IBM SYSTEMS JOURNAL, VOL 22, NO 4. 1983

distribution of sensitive material requires extremely high
integrity. On the other hand, the distribution of general
announcements for a meeting may not require any integrity.
Also, the value of some distributions depreciates over time.

19. In some systems (e.g., IMS, TCAM), the session resource
can be implicitly associated with a specific (transaction)
queue. In the SNADS model, these are treated separately to
show clearly the mappings between the SNADS names and
the resources needed for LU 6.2.

20. K. Bharath-Kumar and J . M. Jaffe, “Routing to multiple
destinations in computer networks,” IEEE Transactions on
Communications COM-31, No. 3,343-351 (1983).

21. Customer Information Control SystemlVirtual Storage
(CICS/VS). Version 1 Release 6: General Information,
GC33-0155, IBM Corporation; available through IBM
branch offces.

22. Network Job Entryfor JES2, GC23-0100, IBM Corpora-
tion; available through IBM branch offices.

23. Logical unit type 0 (LU 0) permits applications to use the
basic SNA functions in a product-specific manner. The use
of brackets, the choice of half-duplex or full-duplex trans-
mission, protocols for backout and recovery, and many other
functions are left to product choice.

24. Henceforth, the term conversation is used to imply an LU
6.2 conversation. In contrasting conversations with sessions,
a CONVERSATION provides a communication path
between two transaction programs, whereas a SESSION
defines a path between two LUs. A conversation requires a
session. A session, however, may be serially allocated to
many conversations over time.

25. See References 16 and 26 for detailed discussions regarding
SNA virtual routes, class of service, and other SNA concepts
and facilities of synchronism.

26. Systems Network Architecture: Concepts and Products,
GC30-3072-0, IBM Corporation; available through IBM
branch offices.

27. J . H. Benjamin, M. L. Hess, R. A. Weingarten, and W. R.
Wheeler, “Interconnecting SNA networks,” IBM Systems
Journal 22, No. 4, 344-366 (1 983, this issue).

28. The SNADS model shows multiple ordered queues. An
implementation might have one queue in which entries are
enqueued/dequeued in priority order.

29. Routing and directing services run asynchronously with
respect to DISTRIBUTION-RECEIVE and, therefore,
with the conversation. There are design tradeoffs to be
considered in determining where error checking and address
validation are to be performed. Extensive processing in
DISTRIBUTION-RECEIVE may underutilize the ses-
sion. On the other hand, if errors can be detected as the
distribution is being received on the conversation, the wasted
cost of storing large objects is avoided.

30. Distribution objects are segmented using the segmentation
technique defined for DIA Document Units.

31. There has been increasing interest in asynchronous data
distribution technology. Recent standards work’*.” has
resulted in a proposed standard-called Message Handling
Facility (MHF)-for Computer-Based Message Systems
(CBMS). At a high level, there are obvious similarities
between the SNADS model and the MHF model. For
example, the MHF User Agents are analogous to applica-
tion transaction programs, and the MHF Message Transfer
Agents are similar to the DSUs.

32. T. H. Myer, “Global messaging-issues and approaches,”
Journal of Telecommunications Networks 1, NO. 2, 173-
187 (1 982).

IBM SYSTEMS JOURNAL, VOL 22, NO 4, 1983

33. CCITT Study Group VII, Message Handling Systems
Recommendations, International Telephone and Telegraph
Consultative Committee, March 1983. (This work consists
of a number of recommendations, X.MHS 0 through
X.MHS 7, that address the various aspects of message
handling.)

Reprint Order No. (3321-5198.

Barron C. Housel IBM Communication Products Division,
P.O. Box 12275, Research Triangle Park, North Carolina
27709. Dr. Housel attended the University of Oklahoma, Nor-
man, Oklahoma, where he received a B.S. degree in mechanical
engineering in 1963 and an MS. degree in engineering science in
1965. He joined the IBM Corporation in 1965. Dr. Housel
received an M S . degree in computer science from Stanford
University, Stanford, California, in 1968 and a Ph.D. in com-
puter science from Purdue University, Lafayette, Indiana, in
1973. From 1973 to 1979, Dr. Housel was a member of the IBM
Research Division, where he did research in data base technolo-
gy. During that period he was a visiting professor in computer
science at Purdue University. Since 1979, Dr. Housel has been a
senior engineer in the architecture and telecommunications
department at the IBM laboratory in Raleigh, North Carolina.

Carol J. Scopinich IBM Communication Products Division,
P.O. Box 12275, Research Triangle Park, North Carolina
27709. Ms. Scopinich joined IBM in the Federal Systems
Division in 1968 in Owego, New York. There she was involved in
the design and development of software to support on-board
military flight systems. In 1970, she moved to Morris Plains,
New Jersey, to work on research and development for the
Safeguard project. After moving to Raleigh, North Carolina, in
1974, she did design and development for the control program of
the IBM 3650 Retail Store System. From 1976 to 1978, she was
responsible for designing portions of the Network Control Pro-
gram. During the past three years Ms. Scopinich has partici-
pated in the design of Systems Network Architecture. She has
been on brief assignments to England and Italy. Ms. Scopinich
received a B.A. from Mansfield State College, Mansfield, Penn-
sylvania, in 1967 and an M S . in mathematics from Clarkson
College of Technology, Potsdam, New York, in 1968.

HOUSEL AND SCOPlNlCH 343

