SNA Distribution Services

This paper describes the IBM SNA Distribution Ser-
vices (SNADS). Heretofore, SNA has focused on
synchronous data distribution. Along with the ad-
vent of office systems and other distributed appli-
cations has come the requirement to provide a
common architecture for interchanging data asyn-
chronously among diverse systems and products.
SNA Distribution Services provides a general asyn-
chronous (delayed delivery) data distribution facil-
ity for SNA applications. The initial implementa-
tions are for office systems applications. Dis-
cussed are objectives for an asynchronous data
distribution service, key architectural concepts,
the relationship between SNADS and the SNA syn-
chronous communication architecture, and the in-
terface between the distribution service and appli-
cation transaction programs.

Ithough SNA has previously been directed pri-

marily towards synchronous data communica-
tion, with the advent of office systems and other
distributed applications has come the need for com-
mon architecture for interchanging data asynchro-
nously among diverse systems and products. This
paper describes the 1BM SNA Distribution Services
(SNADS),' which is intended to satisfy this need.

SNA Distribution Services is provided by a set of
architected transaction programs that run in a
Logical Unit Type 6.2 (LU 6.2) environment using
the SNA Advanced Program-to-Program Communi-
cation (APPC) services.>® LU 6.2 is used for the
synchronous transmission of distributions in an
SNADS network. Further details on the use of LU 6.2
in SNADS are given in the section on synchronous
communication between distribution service units
later in this paper.

IBM SYSTEMS JOURNAL, VOL 22, NO 4, 1983

by B. C. Housel
C. J. Scopinich

SNADS is designed to be a general service, usable by
any application. Its development has been moti-
vated by the fact that asynchronous data distribu-
tion is required by many distributed applications
and systems services, including office systems, net-
work management, file transfer, and job network-
ing. The lack of a common, general architecture for
asynchronous data distribution results in applica-
tion-, system-, or product-specific variations of the
same function. This inhibits data interchange,
results in reduced utilization of network resources,
and increases costs due to duplicated design and
implementation. The initial implementations of
SNA Distribution Services are for office systems
applications. The implementing products are DIS-
0SS Version 3.2 and the 1BM 5520 Release 5.

SNA Distribution Services is provided by intercon-
nected distribution transaction programs® that
cooperate to perform asynchronous data distribu-
tion. The set of distribution transaction programs
and their interconnections form an SNA Distribu-
tion Services network (or more simply a “distribu-
tion network™). As shown in Figure 1, application
transaction programs interface to the distribution
network to make requests to send or receive distri-
butions’ from the distribution service. An origin
application transaction program requests the dis-

©Copyright 1983 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM
copyright notice are included on the first page. The title and
abstract, but no other portions, of this paper may be copied or
distributed royalty free without further permission by computer-
based and other information-service systems. Permission to
republish any other portion of this paper must be obtained from
the Editor.

HOUSEL AND scoPinicH 319

Figure 1 Application transaction programs connected to
a distribution network

APPLICATION
TRANSACTION
PROGRAM

DISTRIBUTION
NETWORK

APPLICATION
TRANSACTION
PROGRAM

APPLICATION
TRANSACTION
PROGRAM

tribution service to send a distribution to one or
more destination application transaction programs.

Asynchronous versus synchronous communication.
To understand the nature of SNA Distribution Ser-
vices, it may be useful to contrast synchronous and
asynchronous communication. Two common sys-
tems that illustrate the difference are the telephone
system and the postal system. The telephone system
provides synchronous communication, and the pos-
tal system provides asynchronous communication.

Synchronous communication requires the sender
and receiver to converse in real time. This means
that the sender, the receiver, and the communica-
tions resources must be active simultaneously. Typi-
cally, in synchronous communication the parties
alternately “talk” to send data and “listen” to
receive data. A message sent by one party solicits an
immediate response from the other party.

320 HOUSEL AND SCOPINICH

With asynchronous communication, the sender may
submit a request (such as a person mailing a letter)
without participation or even knowledge on the part
of the receiver. In SNADS, an origin application
transaction program may request a distribution
without an active destination application transac-
tion program. After the distribution service has
accepted responsibility for the distribution request,
the origin application transaction program may
terminate. With asynchronous communication,
requests are queued (like a letter stored in a mail
box) and processing proceeds as resources become
available. The resources required for a distribution
may be available only at certain times. Thus,
depending on the route that a distribution travels
and other factors regarding such handling instruc-
tions as priority specified in the request, data may
be delayed at intermediate points along the route.
This means that the time it takes for a distribution
to travel from its origin to a destination may vary
greatly for different requests (i.e., seconds, minutes,
days, etc.). For this reason, an asynchronous data
distribution service is sometimes referred to as a
“delayed delivery service.”

With asynchronous communication, when a distri-
bution arrives at its destination, the communication
service maintains responsibility for the data until
the receiver can be located—as in registered mail,
by analogy—or until it is convenient for the receiver
to take delivery of the distribution, such as the
person who may open his post office box any time he
wishes. In SNA Distribution Services, a distribution
is queued at the destination and is delivered to the
destination application program either upon arrival
or at the convenience of the destination application
program.

As in synchronous communication, asynchronous
communication may require responses to requests
(e.g., confirmation of delivery). Synchronous com-
munication has the property that responses are
synchronized with requests. That is, a response to a
message must be received before another message
can be sent. Asynchronous communication has the
property that responses resulting from one or more
distribution requests from a common origin may be
returned in any order. Thus, some means of corre-
lating responses with the requests must be defined.
Because correlation requirements vary considerably
by application, this function is an application
responsibility and not part of SNADS. The SNADS
architecture, however, defines a unique distribution
identifier that makes correlation possible and pro-

1BM SYSTEMS JOURNAL, VOL 22, NO 4, 1983

vides a means for reporting notification (status)
information. Further details on how responses may
be correlated with requests are given later, in the
section on notification facilities.

General design objectives and requirements

The key design objectives in developing the SNA
Distribution Services architecture have been appli-
cation independence, ease of use, manageability,
efficiency, and extendability.

Application independence. An application-indepen-
dent architecture must satisfy a broad spectrum of
application requirements. A general distribution
service must be insensitive to the type of data being
transported. It should be possible to distribute any
bit stream—documents, files, digitized audio, etc.
Provisions must exist to handle a wide range of
distribution sizes efliciently, from small messages to
voluminous bulk data. Users must be able to name
explicitly the programs that are to store the data
and receive the distributions at the destinations.
Different applications require the distribution ser-
vice to honor different handling instructions for
each type of given request. Some applications
require the ability to distribute information to mul-
tiple destinations (recipients) in a single distribu-
tion. Applications differ in their requirements for
notification regarding the status of distribution
requests.

Ease of use and manageability. It should be possible
to make changes in the distribution network with
minimal disruption to users, applications, and sys-
tem administrators. For example, the addition, dele-
tion, or movement of users or network configuration
changes should be localized to the affected entities
in the network. SNA Distribution Services applica-
tions should be insulated from details of the distri-
bution service to avoid affecting application code
when changes occur in the distribution service.

Efficiency. A key goal in communications architec-
tures is efficiency, because communications
resources are valuable. There are, however, addi-
tional considerations in an asynchronous data distri-
bution service. It is necessary to make efficient use
of storage (e.g., disk space) and to minimize storage
access. For example, in SNA Distribution Services,
data are accessed directly at the origin and destina-
tions of a distribution, in contrast to requiring a
spooling technique. Another objective is to route
distributions efficiently within the distribution

IBM SYSTEMS JOURNAL, VOL 22, NO 4, 1983

network to reduce the amount of data transported
and to provide a satisfactory level of service. Effi-
cient routing is complicated in SNA Distri-

As new requirements arise, SNA
Distribution Services must be
extended.

bution Services because a single distribution request
may contain multiple destinations.

Extendability. As new requirements arise, SNA Dis-
tribution Services must be extended. Mechanisms
to cope with extensions must be built in at the outset
if graceful evolution of the architecture is to occur.
One example of this is the use of self-defining
constructs for enveloping the information distrib-
uted in the network.

The remainder of this paper focuses on the major
concepts of the SNA Distribution Services architec-
ture. The overall structure of the architecture and
the basic terminology are introduced, each major
concept is presented, and various design decisions
are discussed.

Major concepts and terminology

A Distribution Service Unit (DSU) provides the
distribution service to application transaction pro-
grams. A DSU comprises the distribution transac-
tion programs that execute in a logical unit (LU) of
an SNA node. As shown in Figure 2, a distribution
network consists of a collection of interconnected
DSUs. A line connecting two DSUs depicts a distri-
bution connection. A distribution connection means
that there are potential synchronous SNA sessions
that can be used for synchronous communication
between DSUs. A distribution connection exists
regardless of whether there are any active sessions
at any particular time. Also shown in Figure 2 are
the different roles that application transaction pro-
grams and DSUs may assume—origin, interme-
diate, and destination.

HOUSEL AND scopinicH 321

Figure 2 Interconnected DSUs and application
transaction programs

ORIGIN
APPLICATION

TRANSACTION
PROGRAM

DISTRIBUTION

» ORIGIN NETWORK

osu

INTERMEDIATE
osu

DESTINATION |
psu

DESTINATION
INTERMEDIRTE
Dsu

ans

DESTINATION | DESTINARTION
APPLICATION [APPLICATION
TRANSACTION TRANSACTION
PROGRAM PROGRAM

Figure 3 shows that application transaction pro-
grams serve as agents that operate on behalf of
users of the distribution service. User facilities are
located at a DSU, which corresponds to a set of
resources in the SNA node (e.g., queues, files, access
privileges, etc.). Each user is uniquely identified in a
distribution network.’ The origin application trans-
action program calls the distribution service to
initiate a distribution on behalf of an originator, and
the destination application transaction program
calls the distribution service to receive distributions
that have been queued for recipients.

An SNADS user is usually a person who is using a
distribution network, as in the case of an office
system. A user, however, may be such other types of
entities as a device or a subsystem. In the examples
in this article, users are persons, although the

322 HOUSEL AND SCOPINICH

network is unaware of whether the user name refers
to a person, device, or subsystem.

SNA Distribution Services uses the synchronous
SNA services provided by LU 6.2. A DSU consists of
architected transaction programs that run in an LU
6.2 environment. Figure 4 shows the relationships
among an application transaction program and the
distribution service and other SNA layers. SNA
defines a logical interface, termed a protocol boun-
dary,” between application transaction programs
and the services provided by SNA. The protocol
boundary definition is described as a set of verbs.
The LU 6.2 protocol boundary consists of those verbs
defined to use the LU 6.2 services.* Similarly, the
distribution protocol boundary consists of the fol-
lowing verbs defined for using distribution services:
DISTRIBUTE_DATA, DISTRIBUTE_STATUS,

Figure 3 Application transaction programs and
distribution users

APPLICATION USERS " .

TRANSACTION BAIGINATORS
PROGRAM CAND
RECIPIENTS .

e i el i S L e

DISTRIBUTION NETWORK:

APPLICATION USERS

TRANSACTION ORIGINATORS
PROGRAM S AND
BECIPIENTS

IBM SYSTEMS JOURNAL, VOL 22, NO 4, 1983

and RECEIVE_DISTRIBUTION. The later section on
notification facilities illustrates the use of these
verbs by application transaction programs. As
shown in Figure 4, an application transaction pro-
gram may use the distribution services and/or the
LU 6.2 services, depending on its needs. The distribu-
tion transaction programs use the LU 6.2 verbs, as
required for synchronous communication between
adjacent DSUs, for example, to send a distribution.
Another important protocol boundary required by
the distribution service is the server protocol boun-
dary, which is used to access storage in order to
retrieve and store the object of a distribution. Serv-
ers are discussed in greater detail in a separate
section later in this paper.

Message units. An important aspect of a communi-
cations architecture is the definition of the message
units or envelopes that are used to carry informa-
tion from one process to another. In SNADS, these
envelopes are called interchange units. Interchange
units use the general encoding structure defined by
the Document Interchange Architecture (DIA)®® for
its document interchange units. Interchange units
are architected as self-defining data streams. This
allows the architecture to be easily extended with
minimal effect on coding. The design of self-
defining data streams is discussed at length in
Reference 10.

Currently, two interchange units are defined for
distribution. A distribution interchange unit is used
to send a distribution to an adjacent DSU, and an

Figure 4 A layered view of distribution services in SNA

APPLICATION TRANSACTICN PROGRAM

SNA PRESENTATION SERVICES

DISTRIBUTION

SERVICES OTHER SNR SERVICES

LU 6.2 SERVICES

PATH CONTROL

DATA LINK CONTROL

acknowledge interchange unit'' is used to report
exceptions. When a DSU encounters an error while
receiving a distribution interchange unit, it sends a
negative acknowledge interchange unit to the send-
ing DSU. The major components of the SNADS
interchange units are shown in Figure 5. The PRE-
FIX and SUFFIX delimit the interchange unit, and
the COMMAND contains the control information
necessary to perform the requested function. The
DISTRIBUTE COMMAND contains such information
as names and addresses of those who are to receive
the distribution and the name of the destination

Figure 5 Distribution interchange units

ODISTRIBUTION INTERCHANGE UNIT

PREFIX

DISTRIBUTE COMMAND

O

0BJECT

T

ACKNOWLEDGE INTERCHANGE UNIT

ACKNOWLEDGE COMMAND

IBM SYSTEMS JOURNAL, VOL 22, NO 4, 1983

HOUSEL AND SCOPINICH 323

Figure 6 Structure of a Distribution Service Unit

APPLICATIGN TRANSACTION PROGRAM

DISTRIBUTION SERVICE|UNIT (DSU)

PRESENTATION SERVICES|

INPUT
QUEUE (S}

oUTPUT |
QUEUE (S) |

L

ROUTIN

TRANSPORT
SERVICES

transaction program. The OBJECT in the distribu-
tion interchange unit envelopes the contents to be
distributed. A distribution interchange unit may
contain zero or more objects. A user may send zero
objects if it is desired simply to invoke a destination
transaction program with a parameter string that is
carried in the COMMAND. As an option, more than
one object may be distributed.

The SNADS model. In order to describe the func-
tions of the SNADS architecture, we define an
SNADS reference model of a Distribution Service
Unit (DSU);"? Figure 6 shows its thajor components.

Presentation services process the distribution proto-
col boundary verbs issued by the application trans-

324 HOUSEL AND SCOPINICH

action program.'® Part of this processing includes
parameter checking and mapping the verb parame-
ters to an internal form. A distribution request
causes an entry to be added to the input queue. A
request to receive a distribution causes an entry to
be dequeued from an output queue if the queue is
not empty. The dequeued entry is mapped into
parameters for the application transaction program,
and control is subsequently returned to the transac-
tion program.

Routing and directing services process each entry
on the input queue. This includes determining the
addresses of the recipients of the distribution, if
necessary, routing the distribution to the appropri-
ate distribution queue(s) for the next phase of
processing, and starting the appropriate transaction
programs to process the distribution queues. Distri-
butions are enqueued on output queues for local
recipients and on next-DSU queues for remote recip-
ients. The analysis by routing and directing services
of an entry retrieved from the input queue may
spawn several entries, each of which is enqueued on
a different distribution queue.

Transport services use the facilities of LU 6.2 to
transfer distributions between adjacent DSUs. To
send a distribution to another DSU, transport ser-
vices process entries from the next DSU queue(s). In
receiving distributions, transport services build a
queue entry and enqueue it on the input queue to
await further processing by routing and directing
services. Transport services use the server protocol
boundary verbs as required to access (read/write)
distribution objects in storage.

Architectural concepts

This section describes the primary concepts in the
SNADS architecture: naming and addressing, the
distribution service level, synchronous communica-
tion between Distribution Service Units, the SNADS
notification facilities, and servers.

User naming and addressing. Naming and address-
ing are the foundation of any communications
architecture. A user name identifies the user, and a
user address identifies user’s location. The naming
and addressing design for SNADS is motivated by
the following objectives:

e Users and application transaction programs

should be insulated as much as possible from
changes in the distribution network. It should be

IBM SYSTEMS JOURNAL, VOL 22, NO 4, 1983

possible for a user to move from one DSU to
another without having to notify all other users of
the change.

¢ The architecture should allow name management
to be either centralized or distributed. RUSTIN RALEIGH

» Because SNADS must satisfy the requirements for
a wide range of products, the architecture should
not require all distribution service units to support
large tables.

Figure 7 Routing groups

These considerations have led to the design of the
user naming and addressing concepts. The naming
of users should not depend on the topology of the
distribution network; thus, separate name spaces
are defined for users and Distribution Service Units.
A user is named using a Distribution User Name
(DUN), and a Distribution Service Unit is named
using a Distribution Service Unit Name (DSUN).
The name of the DSU where a given user is located is
the user’s address. At any instant in time, a user has
only one address. A Distribution Service Unit SANJOSE
Name is generally defined as a two-part, hierarchi-
cal name consisting of a Routing Group Name
(RGN) and a subordinate Routing Element Name
(REN). The routing group name is used to group
Distribution Service Units topologically. This facili-
tates the use of smaller routing tables and decen-
tralized naming of Distribution Service Units. Fig-
ure 7 shows three routing groups named RALEIGH,
AUSTIN, and SANJOSE. Currently, the routing group
name is optional, so that a DSU name may be
defined as either a one-part or a two-part name."
The remainder of this paper assumes a single-part
Distribution Service Unit name. A distribution user
name is defined as a two-part, hierarchical name
consisting of a Distribution Group Name (DGN) and
a subordinate Distribution Element Name (DEN).
Thus, DGN.DEN comprises a fully qualified, net-
work-unique name of a user. The Distribution
Group Name can be used to define such logical user
groups as departments or divisions. For a given
distribution group name, all distribution element OISTRIBUTION
names must be unique. NE TRORK

Figure 8 Relationships of users and DSUs

Figure 8 shows the relationships between user
names and DSU names. The dashed-line boxes
depict various distribution groups and distribution
elements within individual distribution groups. For
illustrative purposes, assume that a company has
defined distribution groups for the functional areas
of manufacturing (MAN), payroll (PAY), engineering |
(ENG), and personnel (PER). The Distribution Ele- | COLLINS

ment Names (DENs) specify the names of o — o ——
employees in the respective groups. Examples of L

IBM SYSTEMS JOURNAL, VOL 22, NO 4, 1983 HOUSEL AND SCOPINICH 325

Table 1 Complete distribution dictionary

USER NAME (KEY) DSUN

PER. GRAY
PER. HESS
ENG. BRKER
ENG. COLLINS
ENG. HALE
ENG. SMITH
MAN. HALL
MAN. HUNT
MAN. JONES
MAN. SMITH
PAY. GILES
PRY.PITT

*, %

MOODDOTOOOOMM

RROR

Table 2 Directories with default entries

AT DSU B:
USER NAME (KEY) DSUN

PER. = E
ENG. x D
MAN. HAL L 8
MAN. HUNT B
MAN. JANES A
MAN. SMITH A
PAY. GILES B
PRAY.PITT B

E

x, %

RROR

AT DSY C:
USER NRAME (KEY) DSUN

PER. GAAY E

PER. HESS E

PER. % ERROR
B

user names are ENG.HALE and MAN.HUNT." The
distribution network in Figure 8 shows five DSUs
with DSU names A, B, C, D, and E.

The relationship of a distribution group to a DSU
may be on a one-to-one basis (e.g., PER to E and PAY
to B), or on a one-to-many basis (e.g., ENG to {C, D}
and MAN to {A, B}). Any number of distribution
groups may be defined at a single DSU. (Notice that
both PAY and MAN are defined at DSU B.) As long as
a user’s name remains the same, a user may be
moved to another DSU (i.e., incur an address

326 HOUSEL AND SCOPINICH

change) with no impact to other distribution users.
The distribution service then routes distributions to
the new address (i.e., the new DSU) transparently to
the users. Further details are described later in this
paper in the section on routing and directing ser-
vices.

The independence of naming of users and DSUs
requires that routing and directing services resolve
user names into destination DSU names. Each DSU
maintains a distribution directory for this purpose.
Table 1 shows a complete directory for Figure 8 that
contains an entry for each user. For each distribu-
tion request, routing and directing services obtain
the DSUN for each respective user name in the
request. The destination DSUNSs are used in routing
the distribution.

An important design consideration has been to
devise a means whereby some DSUs may maintain
only a subset of the complete directory. In general,
forcing all DSUs to maintain a complete directory
could result in poor utilization of storage and
increased directory maintenance cost. Moreover,
this overhead might preclude smaller products from
implementing the SNADS architecture. To remedy
this problem, SNADS allows directories to contain
default entries.

Table 2 illustrates how the directories with default
entries might look for DSU E and DSU B in Figure 8.
The character “*” denotes a default entry. This
means that a comparison of any value results in the
value TRUE. The directory for DSU E is simple.
Except for the local recipients, all distributions
designate DSU B as the destination DSU. Note that
the directory contains entries for the local users as
well as for remote users. When a default match is
found for a recipient name, the distribution is
routed to the associated address (destination
DSUN). Upon arriving at the default DSU, another
address may be determined for the recipient, in
which case the distribution will be routed to the new
address. This can occur several times until the
distribution arrives at the recipient’s true address or
until a routing error is detected. For example, using
the directories in Table 2, suppose a distribution
request was made at DSU E to distribute data to the
ENG.SMITH. At DSU E, ENG.SMITH maps to the
DSUN of B. When the distribution arrives at DSU B,
ENG.SMITH is mapped to a new destination DSUN,
D. Finally, at DSU D, ENG.SMITH is resolved to C, the
true address. Using defaults, a distribution may
take a more indirect route than if the real address

IBM SYSTEMS JOURNAL, VOL 22, NO 4, 1983

were known at the outset. The extent to which
defaults are to be used is determined by the distri-
bution network administrator. The design of distri-
bution directories is beyond the scope of this paper.
We simply caution that defaults should be chosen
carefully to avoid looping of distributions in the
network.

The ability of DSUs to redirect traffic, as just
described, enables users to move from one DSU to
another with no disruption of service. Initially, the
directory at the old address is updated to reflect the
new address, and the user is defined as a recipient at

For each capability, a particular level
of service may be specified.

the new location. The other directories in the distri-
bution network may be gradually updated over time
without losing data, because all distributions sent to
the user’s old address are redirected to the new
address.

Distribution service level (DSL). The purpose of DSL
is to permit users to specify how a distribution is to
be handled by the distribution service. Its role in a
distribution network is similar to that of class of
service in a synchronous SNA network.'® DSL is
supplied by the origin application transaction pro-
gram in the distribution request, and specifies a list
of capabilities that the user requires of the distribu-
tion service to meet the requirements of the distri-
bution request. For each capability, a particular
level of service may be specified. Currently, the
following three capabilities have been archi-
tected."”

PRIORITY specifies the urgency with which the
distribution service is to handle a distribution rela-
tive to other distributions in a distribution network.
Currently, for general data distribution, two prior-
ity values (HIGH and LOW) have been defined.
There are also the following two special priorities
for expedited distributions: FAST for data distribu-
tions, and STATUS for status distributions. These
priorities are higher than either of the priorities for

IBM SYSTEMS JOURNAL, VOL 22, NO 4, 1983

general data distribution. Typically, distributions
with a priority level of FAST contain small objects
and, therefore, contain a small capacity level. Sta-
tus distributions are used to return status informa-
tion about distribution requests and are discussed
further in the section on notification facilities.

CAPACITY specifies the level of storage capacity
that all DSUs must provide along a route that a
distribution travels from the origin DSU to the
destination DSUs. This capability is provided to
guard against sending distributions that contain
very large objects to DSUs that have inadequate
storage capacity. One value for this parameter is
INDEFINITE, which means that the object size is not
known at the origin DSU. DSUs that support this
value always attempt to store the object.

PROTECTION specifies the level of storage protec-
tion that all DSUs must provide along a route that a
distribution is to travel from the origin DSU to the
destination DSUs. Currently, the two levels of pro-
tection architected are PROTECTED and NONE. PRO-
TECTED means that a DSU protects a distribution
against communication and system failures (except
for media failures such as a disk head crash). NONE
means that distributions may be lost in the event of
communication or system failures. This option
allows some distributions to bypass the overhead of
storing objects in a protected store, thus improving
the throughput and allowing a greater number of
feasible routes for a distribution, at the expense of
distribution integrity."®

DSL is used extensively in the following ways by the
distribution service in processing distributions:

¢ Selecting the next DSU of a distribution en route
to a destination DSU.

e Selecting the type of session to be assigned to the
LU 6.2 conversation used in sending a distribution
to the next DSU.

e Selecting the appropriate next-DSU queue in order
to properly schedule transmission according to the
requested priority.

o Selecting the appropriate output queues at the
destination DSUs.

Given a DSL, the task of the distribution service is to
select a route that provides sufficient storage and
communications resources to satisfy the request.
Figure 9 shows the storage capabilities of various
DSUs and communication capabilities to handle
high-priority and low-priority traffic. The lines

HOUSEL AND scoPinicH 327

Figure 9 DSUs with different capabilities

' PROT=NONE {]

|

| ‘cAP=INDEF
PROT=PT"D |

between a pair of DSUs denote distribution connec-
tions that are defined to handle high priority (solid
line) and low priority (dotted line) traffic.

Suppose a distribution is requested from ENG.HALE
(at DSU D) to MAN.JONES (at DSU A), with a DSL
that specifies a priority level of LOW, a protection
level of PROTECTED, and a capacity level of INDEFI-
NITE. Although there are two possible routes
between DSU D and DSU A (one through DSU C and
one through DSU B), the only feasible route for this
request is through DSU C. First, DSU B does not
provide adequate object protection or capacity. In
addition, the synchronous communications through
DSU B are not configured to handle low-priority
traffic. Thus DSL pertains to the complete route that
a distribution travels. The use of DSU is constrained
initially to a limited number of combinations of the
above capabilities.

The DsL facility is designed to accommodate large
networks that require sophisticated routing. Some
of the design considerations are presented here.

328 HOUSEL AND SCOPINICH

Each capability in the DSL is carried in a distribu-
tion. This is in contrast to the approach of using a
single field to specify multiple capabilities, as was
done with the SNA class of service. The latter
approach is preferable when the total (combined)
number of capabilities is not excessive. In a large
distribution network, it is expected that the spec-
trum of capabilities may be extensive. For example,
suppose there are ten priority levels, ten capacity
levels, and three protection levels defined for a
distribution network. This leads to the possibility of
300 (i.e., 10 x 10 x 3) routing table entries for a
single destination DSU. The decision to maintain
discrete capabilities enables DSUs to make routing
decisions algorithmically in order to keep routing
tables as small as possible. Using this example, the
number of routing table entries reduces to 23 (i.e.,
10 + 10 + 3) entries when a DSU implementation is
designed to process each capability separately.

Routing and directing services. The distribution
service is responsible for routing a distribution from
the input queue at the origin DSU to the output
queues at the appropriate destination DSUs. The
examples illustrated in Figure 10 (derived from
Figure 8) show that the output queues may be
variously located at the origin DSU, at an adjacent
DSU, or at a DSU separated by an intermediate DSU.
The processing of routing and directing services
shown in Figure 6 for a given distribution begins by
accessing an entry from the input queue and ends
with the enqueuing of one or more entries either on
output queues (if the recipients are local) or on next
DSU queues (if the recipients are remote). Discussed
next are several cases in which are considered
different execution flows of the SNADS model shown
in Figure 6.

Forwarding a distribution to another DSU. As
shown in Figures 11 and 12, routing a distribution
to another DSU may result from a distribution
request at an origin DSU or from a distribution that
is received from another DSU. In the former case,
the routing and directing service first determines
the addresses (i.e., destination DSUNSs) for the recip-
ients specified in the request. In the latter case—as
discussed earlier in this paper in the section on user
naming and addressing—routing and directing ser-
vices may have to replace a destination DSUN in
order to redirect the distribution. The subsequent
discussion assumes that all destination DSUNs have
been successfully determined and reflect the true
addresses of the respective recipients.

IBM SYSTEMS JOURNAL, VOL 22, NO 4, 1983

For each destination DSUN that identifies a remote
DSU, routing and directing services must determine
the next-DSU queue, the LU name of the next DSU,
and the MODE name required for transport ser-
vices.'"” These parameters are determined by using
the destination DSUN and the distribution service
level, as shown in Figure 13.

Once an entry is made on a next-DSU queue, the
transport service is responsible for transporting the
distribution to the next DSU (as discussed later in
this paper in the section on synchronous communi-
cation between distribution service units). In some
cases, a distribution may be routed to the same next
DSU for more than one destination DSUN. In these
cases, only one copy is sent to the next DSU. That is,
only one entry is enqueued to the next-DSU queue,
and only one distribution interchange unit is sent to
the next DSU. This technique reduces the volume of
data being transported in a distribution network. It
has been shown® that this simple technique is often
close to optimal in many typical configurations.

Alternatively, multiple destinations contained in a
distribution may result in splitting the original

Destination processing may occur as
aresult of local or remote
distributions.

distribution into several distributions to be sent to
different DSUs. Figure 14 illustrates both of these
cases.

Destination processing. When a distribution arrives
at a destination DSU, where one or more recipients

Figure 10 Basic routing cases

BRIGINRTOR

ORIGINATOR AND RECIPIENT AT SAME BSU

RECIPIENT

ORIGINATOR

RECIPIENT
S

REMOTE DISTRIBUTION: NO INTERMEDIRTE ROUTING

CRIGINATOR

REMOTE DISTRIBUTION THROUGH AN INTERMEDIATE DSU

RECIPIENT

1BM SYSTEMS JOURNAL, VOL 22, NO 4, 1983

HOUSEL AND scoPmicH 329

Figure 11 Origin DSU: Routing distribution to remote
DS

ICATION
ANSACT 10N PROGRAN

" TRANSPORT SERVICES

are located, routing and directing services enqueue
the distribution on the appropriate output queues
and (optionally) invoke the destination transaction
program to process the request. Destination pro-
cessing may occur as a result of local or remote
distributions.

With local distribution, as shown in Figure 15,
destination processing occurs at the origin DSU
because the recipients of the distribution request are
located at the origin DSU. In this case, the origin and
destination DSUs are the same, and the functions of
transport services are not required.

Remote distributions occur when the originator and
recipients are located at different DSUs. In this case,
as illustrated in Figure 16, destination processing
results from receiving a distribution from an adja-
cent DSU.

Regardless of whether a distribution request results
in local or remote distribution, the distribution

330 HousEL AND SCOPINICH

function appears the same to users (and to the
application transaction programs). This property is
sometimes referred to as “local/remote transparen-
Cy,”

The functions of routing and directing services in
destination processing are to select the proper out-
put queue and start the proper destination transac-
tion program. The parameters in the distribution
used to perform these functions are the destination
Transaction Program Name (TPN), the distribution
service level, and the recipient names. The destina-
tion TPN gives originators the ability to select dif-
ferent processing for different distributions ad-
dressed to the same recipient(s). The destination
DSUs have the responsibility to validate the above
parameters (e.g., that a given destination TPN is
supported). However, the algorithm and tables that
a destination DSU uses to map these parameters to
local queues and transaction programs are largely
product-specific and may differ among the DSUs in
the network. This is because the destination process-
ing is concerned with how distributions are passed
to local transactions; it does not affect other DSUs.
At one extreme, there may be a separate output
queue for each unique combination of destination
TPN, DSL, and recipient name. In this case, an entry
(containing only one recipient name) is enqueued

Figure 12 Intermediate DSU processing

INTERMEDIATE BOSU

ROUTING AND. -~
DIRECTING SERVICES

. TRANSPOR
SERVICES

1BM SYSTEMS JOURNAL, VOL 22, NO 4, 1983

for each local recipient. At the other extreme, there
may be a single queue for each destination TPN,
regardless of the DSL or the number of local recip-
ients in the distribution. This, for example, could be
a transaction dispatching queue. In this case, a
single entry is enqueued that contains all the names
of all the local recipients in the distribution. It is the
task of the application transaction program to
receive the distribution and process each recipient
name in the request (e.g., updating mail logs).

Synchronous communication between distribution
service units. This section focuses on how two adja-
cent DSUs communicate synchronously using trans-
port services. Transport services consist of a pair of
LU 6.2 transaction programs defined for the synchro-
nous transmission of distributions between DSUs.
We discuss first the relationship of SNADS and the
facilities provided by LU 6.2 services and synchro-
nous SNA in general. We then describe high-level
protocols that have been designed for sending and
receiving distributions from one DSU to another.
Specifically discussed are instances of starting the
sending and receiving transactions, processing next-
DSU queues, classes of exceptions that can occur,
and the distribution flow-control mechanism.

SNADS and Logical Unit Type 6.2. SNADS was
designed assuming LU 6.2 services for interprogram
communication. An alternative choice would have
been to design a protocol specifically tailored to
SNADS requirements. A number of products®"*

Figure 13 Determining parameters for routing to next
DSU

DEST_DSUN, DSL

ROUTING TABLE

R

LU NAME
MODE NAME,
QUEUE NAME
OF NEXT DSU

have defined their own interprogram protocols in
SNA using Logical Unit Type 0.2

LU 6.2 was chosen because it is the IBM SNA interpro-
gram communication protocol and meets the func-
tional requirements of SNADS. It is expected to
become widely used for many distributed applica-

Figure 14 Distribution fanout

1 COPY

ORIGINATOR

RECIPIENT

1 COPY

RECIPIENTS

IBM SYSTEMS JOURNAL, VOL 22, NO 4, 1983

HOUSEL AND scoPincH 331

tions. This common synchronous interprogram pro-
tocol provides a basis for implementing SNADS on a
wide variety of computers—from intelligent work
stations to large processors. SNADS is designed to be
able to operate using the minimal LU 6.2 subset (i.e.,
the LU 6.2 base) that is required in all LU 6.2
impiementations.

As discussed in Reference 2, the collective services
provided by the community of interconnected logi-
cal units can be viewed as a distributed operating
system. (See Figure 17.) The activity of exchanging
application data (messages) between two LU 6.2
transaction programs is called a conversation. The
basic functions required by the distribution transac-
tion programs of SNADS are provided by the follow-
ing LU 6.2 verbs:

s ALLOCATE is issued by a transaction program to
establish a conversation with another (partner)
transaction program.

& SEND_DATA is used to send application data to a
partner transaction program.

s RECEIVE_AND_WAIT is used to receive applica-
tion data from a partner transaction program.
Control is returned to the transaction when the
data are available.

Figure 15 Origin and destination DSU with recipients
located at origin DSU

BDESTINATION
RPPLICATION

BRIGIN
APPLICATION

 TRANSACTION
PROGRAM PROGRAM

PRESENTATION SERVICES

TRANSACTION

INPUT QUTPUT

QUEUE

ROUTING AND DIRECTING SERVICES

332 HousEL AND sCOPINICH

Figure 16 Destination DSU with receiving distribution
from a remote DSU

DESTINRTION APPLICATIO
TRANSACTION PROGRAM

DESTINARTION DSU

PRESENTATION SERVICES

QUTPUT
QUEUE

ROUTING AND
DIRECTING SERVICES

TRANSPOGART
SERVICES

« SEND_ERROR is issued by one transaction pro-
gram to signal an error condition to a partner
transaction program.

s DEALLOCATE is used to terminate a conversation
with a partner transaction program.

« CONFIRM ends a message and asks the partner
transaction program for assurance that it has
taken responsibility for the data. The receiving
transaction program may reply with CONFIRMED
if it has not detected any errors, or it can issue
SEND__ERROR to report exception conditions to
the sending transaction program.

Transport services consist of two transaction pro-
grams (DISTRIBUTION_SEND, DISTRIBUTION_RE-
CEIVE) that participate in an LU 6.2 conversation to
synchronously transfer distributions from one DSU
to another. From the perspective of LU 6.2 services,
distribution transaction programs are LU 6.2 appli-
cations like any other LU 6.2 transaction program.
That is, they use the LU 6.2 verbs® to allocate
conversations, send and receive data, and report

IBM SYSTEMS JOURNAL, VOL 22, NO 4, 1983

Figure 17 LU 6.2 transaction programs in conversation

DISTRIBUTED
CPERATING SYSTEM

CONVERSATION

TRANSACTIBN

PROGRAM B

errors. Figure 18 shows synchronous communica-
tion between two DSUs using LU 6.2 conversations.”*
The pipes illustrate sessions between LUX and LU Y.
The dashed lines depict conversations between dis-
tribution transaction programs in the respective
DSUs (i.e., DSU A and DSU B).

To allocate a conversation with another distribution
transaction program, a distribution transaction pro-
gram must select the name of the LU that contains

the partner DSU, the MODE name to be used for
selecting the type of SNA session desired, and the
name of the distribution transaction program to
participate in the conversation. The determination
of the LU name and MODE name is described in the
previous section on routing and directing services.
Distribution transaction program names are archi-
tected values and are implicitly known by all DSUs.

In one sense, because SNADS is designed to use the
LU 6.2 protocol boundary, distribution networks are
intimately linked to synchronous SNA networks. In
another sense, however, distribution networks are
independent of synchronous SNA networks.

The MODE name insulates DSUs from the details of
the synchronous SNA resources. The logic of distri-
bution transaction programs remains unchanged,
regardless of the underlying SNA session resources.
The MODE name is used by LU 6.2 to determine the
SNA session resources and characteristics.”® It is
used to select the SNA class of service and such other
session-level attributes as encryption. The class of
service, in turn, is used to select an SNA virtual route
and the SNA transmission priority. MODE name is
also used to determine the number of available
parallel sessions (if any).?

It should be mentioned that, even though MODE
names insulate distribution transaction programs
from the details of the LU 6.2 services, the MODE
names defined for use by the distribution service are
an important distribution network design consider-
ation. If the SNA resources related to a given MODE

Figure 18 Conversation connecting two DSUs

DSUN=R

MODE=FAST
v

LUNRME=X

LUNAME=Y

MODE=BULK

HOUSEL AND scoPiNicH 333

IBM SYSTEMS JOURNAL, VOL 22, NO 4, 1983

Figure 19 Conversation between DISTRIBUTION_SEND and DISTRIBUTION_RECEIVE

LU C MBDE | QUEUES

Y FAST

SESSION
MBDE=FAST

LU v

INPUT
QUEUE

o

_RECE! vs

LU 6.2 SERVICES

name are mismatched to the associated distribution
service levels, unsatisfactory performance results.

SNA Network Interconnection is transparent to
SNADS. As described in Reference 27, SNA has a
facility for interconnecting two or more SNA net-
works. With this feature, a session may be estab-
lished between LUs in different SNA networks. An
SNA network interconnection gateway constructs a
qualified network name (i.e., NETWORK-ID.LU-
NAME) and may translate LU names (if aliasing is
necessary). Such translations, however, are trans-
parent at the distribution services layer. Thus, adja-
cent DSUs may in fact be in separate SNA networks.

DSUs are named independently from LUs. As shown
in Figure 18, the DSU names and the respective LU
names are different and are selected from different
name spaces. LU names are used to establish conver-
sations with an adjacent DSU, but they are never
carried in distribution interchange units. This pro-

334 +ouseL aND scoPiCH

LU 6.2 SERVICES

vides additional independence from the synchro-
nous SNA services over and above that provided by
LU 6.2. For example, SNADS distributions are not
affected by LU name translations that may occur in
SNA network interconnections. In addition, this
independent naming enables DSUs to be grouped
(using routing groups) to satisfy distribution
requirements apart from the synchronous SNA topo-
logy. The disadvantage of this naming indepen-
dence is the cost of an additional level of name
management.

Initiating data transfer and next-DSU queue pro-
cessing. Under normal circumstances, routing and
directing services at the sending DSU cause an
instance of DISTRIBUTION_SEND to be initiated.
This may occur for several reasons. The simplest
condition is when an a new entry is enqueued to a
next-DSU queue. Optionally, some DSUs may ini-
tiate DISTRIBUTION_SEND when a certain time of
day is reached or when the number of entries in a
queue exceed a certain maximum.

IBM SYSTEMS JOURNAL, VOL 22, NO 4, 1983

Figure 20 Normal operation

DISTRIBUTIOGN_SEND

c
ALLOCATE —_— 0
SEND_DATA —_— N
(PREFIX) v
SEND_DATA —»
(DIST COMMAND) E
SEND_DATA — A
(0BJECT)
SEND_DATA —_— 5
(SUFFIX) q
CONF IRM —_— :
T
I
(GET NEXT DISTRIBUTION o
FROM NEXT DSU Q) \

DISTRIBUTION_RECEIVE

(RTTACHED)

Ee— RECEIVE_RAND_WRIT
(PREFIX)
— RECEIVE_AND_WAIT
(DIST COMMAND)
_> RECEIVE_AND_WAIT
(BBJECT)
_—> RECEIVE_AND_WAIT
(SUFFIX)
- RECEIVE_AND_WAIT
(CONF IRM)
— CONFIRMED

As shown in Figure 13, routing and directing ser-
vices determine the LU name, the MODE name, and
the next-DSU queue for a distribution, using the
destination DSUN and the distribution service level.
It is expected that different MODE names can be
used for distributions requiring different distribu-
tion service levels. This could be the case, for
example, for distributions that vary greatly in
capacity or object-size requirements. This would
guarantee, for example, that such short messages as
notification messages are not serialized behind the
transmission of large documents. It may be, how-
ever, that the same MODE name is selected for
different distribution service levels. For example,
two distributions may specify the same capacity and
protection levels but differ in their specified priority
levels. In this case, the respective distributions may
be enqueued on different next-DSU queues that can
be serviced on a single conversation, as illustrated in
Figure 19. Each next-DSU queue is associated with a
unique LU/MODE name. There may be, however,
multiple next-DSU quecues assigned per LU/MODE
name. When an instance of the DISTRIBU-
TION_SEND is started, the LU/MODE name of the
target DSU is passed to it, along with the list of
queues that may be serviced once the LU 6.2 conver-
sation has thus been allocated. Priority scheduling is
achieved by an ordering of these queues.”® In the
example in Figure 19, Q1 is ordered ahead of Q2.

IBM SYSTEMS JOURNAL, VOL 22, NO 4, 1983

Thus DISTRIBUTION_SEND empties Q! before pro-
ceeding to the next entry in Q2.

To increase throughput, multiple instances of DIS-
TRIBUTION_SEND and DISTRIBUTION_RECEIVE
may be started for the same or different LU/MODE
names. The precise number depends on such config-
uration options as the number of parallel sessions
allowed for a given LU/MODE name and the maxi-
mum number of active transactions allowed within
the LU.

Normal distribution processing. Once DISTRIBU-
TION_SEND is in conversation with DISTRIBU-
TION_RECEIVE, each distribution is processed as a
single unit of work using the LU 6.2 protocol boun-
dary verbs. As shown in Figure 20, DISTRIBU-
TION_SEND constructs the respective pieces of the
distribution interchange unit and sends them to
DISTRIBUTION_RECEIVE. The sending of the distri-
bution is complete when an LU 6.2 CONFIRMED is
received from DISTRIBUTION_RECEIVE. At this
point, the receiving DSU has responsibility for the
distribution, and the sending DSU may discard it.

Exception handling and control flow. During the
transmission of a distribution, errors may occur.
There are two basic classes of errors—recoverable
errors and nonrecoverable errors. Nonrecoverable

HOUSEL AND scopinicH 335

errors occur when the receiving DSU determines, for
example, that the distribution interchange unit con-
tains an encoding (syntax) error or that the function
requested cannot be performed, for example,
because the receiving DSU lacks the capabilities
specified in the distribution. Alternatively, DISTRI-
BUTION_SEND may encounter a permanent 1/0
error. The number of errors detected during the

For most applications, there is a
requirement to notify users about the
state of their distribution requests.

synchronous transfer of a distribution depends on
the amount of checking that is done as the distribu-
tion interchange unit is being received. For exam-
ple, routing errors may be detected on-the-fly if the
addresses are validated by DISTRIBUTION_RE-
CEIVE. Alternatively, a product may choose to
receive the entire distribution and perform the
validation in routing and directing services.”” In any
case, when a nonrecoverable error is encountered,
the DSU that has responsibility for the distribution
discards it and sends a notification message (if
requested) to the appropriate user (usually the
originator). (This is discussed further in the follow-
ing section on notification facilities.)

Recoverable errors occur when the resources needed
to complete the distribution transfer are tempo-
rarily unavailable. The typical example of this is
when the receiving DSU runs out of space while
storing the distribution object. At a later time, when
the space is reclaimed (e.g., due to distributions
being forwarded) this distribution may be success-
fully transferred. To cope with recoverable errors,
SNADS provides a hold/release protocol. When a
receiving DSU detects a recoverable error, it sets a
hold condition, indicating that no more traffic is
permitted for the current LU/MODE name. The
receiving DSU also sends a negative acknowledge
interchange unit (NACK) to DISTRIBUTION_SEND.
On receiving the NACK, DISTRIBUTION_SEND
holds all the queues (e.g., Q1 and Q2 in Figure 19)
that can be serviced on the current LU/MODE name.
The releasing of the hold condition can occur in

336 HouseL anp scopinicH

several ways. When the receiving DSU determines
that the hold condition has cleared, it may release
its hold condition and allocate a conversation with
DISTRIBUTION_SEND to release the hold condition
at the sending DSU and resume traffic. Alterna-
tively, when some event (e.g., a specified time of
day) is reached, the receiving DSU may trigger the
sending DSU to try again. That is, the hold condition
is reset, a new conversation is established with the
next DSU, and transmission is attempted. This may,
of course, result in another NACK, if the resources
are still unavailable at the receiving DSU. Depend-
ing on an algorithm, a sending DSU—after a certain
number of retries—may treat the error as nonre-
coverable and proceed as described previously. Fig-
ures 21 and 22 illustrate the hold-release protocols.

Notification facilities

For most applications, there is a requirement to
notify users about the state of their distribution
requests. For example, if the distribution service
encounters a nonrecoverable error in processing a
distribution, the originator (or some user acting on
behalf of the originator) should be notified. Similar-
ly, some applications are required to send notifica-
tions when certain actions are performed on the
received distributions. In office systems, confirma-
tion of delivery is returned (if requested) to the
originator when a recipient takes delivery of a
distribution.

SNADS provides common facilities for user notifica-
tion. This facility is used by the distribution service
and is also available to any application for reporting
status. The decision to provide a common notifica-
tion facility was motivated by two factors. One is
that much of the information necessary for status
reporting is the same, regardless of the type of
status being reported. All notification messages
must contain common correlation information to
correlate a notification with the original distribu-
tion request. In addition, all notifications must
contain the names of the recipients for which the
status is being reported. For example, in Figure 14,
suppose DSU B encounters a routing error in
attempting to route the distribution to DSU A but is
successful in routing the distribution to DSU D. The
error notification returned to the originator
(PER.HESS) must contain the recipient name—
MAN.JONES—to identify the recipient affected by
the error. The second motivating factor is that
having a common notification facility reduces prod-
uct cost. Application transaction programs must

IBM SYSTEMS JOURNAL, VOL 22, NO 4, 1983

Figure 21

Recoverable error with HOLD

DISTRIBUTION_SEND

DISTRIBUTION_RECEIVE

ALLOCATE —_ ; (ATTACHED)
SEND_DATA _— N RECEIVE_AND_WAIT
(PREF IX) (PREF 1X)
SEND_DATA —_ v RECEIVE_AND_WALT
(DIST COMMAND) (D1ST COMMAND)
SEND_DATA —_— E RECEIVE.AND_WAIT
(OBJECT) A (OBJECT)
5 LIEXCEPTION FOUND!I J
A GET_ATTRIBUTES
T (GETERMINE LU/MGDE NAME)
(ERROR DETECTED) «— I SEND_ERRORA
RECEIVE_AND_WAIT «— o SEND_DRTA
(NACK) N (NACK)

(HOLD QUEUES)

hAAAASY

CONVERSATION DEHLiUCﬂTED

22

Figure 22 Receiver side release

BISTRIBUTION_SEND DISTRIBUTION_RECEIVE
¢
o
N (RELEASE HBLD)
(ATTACHED) — v ALLOCATE
GET_ATTRIBUTES £
(DETERMINE LU/MOGDE NAME) .
(RELEASE HOLD ON QUEUES) 5
RECEIVE_AND_WAIT +—
{SEND) A
SEND_DATA . RECEIVE_AND_WAIT
(PREF IX) T (PREFIX]
SEND_DATA —_— 1 RECEIVE_AND_WAIT
TDIST COMMAND) o (DIST CBMMAND)
N
(PROCEED T® PROCESS QUEUES AND SEND DISTRIBUTIONS)

HOUSEL AND scopicH 337

IBM SYSTEMS JOURNAL, VOL 22, NO 4, 1983

receive status distributions. Thus, having a general
architecture for notifications means that a common
implementation can be used to handle notifications
of many different types. For example, the status
distributions generated by SNADS and DIA office
applications can be processed in a uniform way.

For each distribution request, the origin DSU
returns (to the origin application transaction pro-
gram) a Unique Distribution Identifier (UDI1). The
UDI is carried in all distribution interchange units
that result from a distribution request and may be
used by applications to correlate notifications with
requests.

Optionally, application transaction programs may
request notification for distribution requests. If
notification is requested (via the DISTRI-
BUTE_DATA verb), an application transaction pro-
gram may specify the name of the transaction
program and the user to receive notifications for the
request. By default, notifications are returned to the
originator.

When destination application transaction programs
receive distributions (via the RECEIVE_DISTRIBU-
TION verb), all parameters necessary for notifica-
tion are returned. The destination application trans-
action program may then issue (perhaps much later
in time) the verb DISTRIBUTE_STATUS to return
status. A DISTRIBUTE_STATUS request causes a
status distribution to be sent to the specified user
and transaction program. Status distributions flow
in a distribution interchange unit with extra oper-
ands in the distribute command to carry the UDI of
the original request, the names of the recipients
being reported on, and status information. Status
may be reported on behalf of multiple recipients ina
single status distribution. Moreover, a different
status may be reported for each recipient if desired.
Status is specified with a status element that con-
sists of the two fields, status type and status data.
The status type specifies the category of status (e.g.,
SNADS or DiA), and the status data specify status
information with respect to the status type. Each
application architecture is assigned one or more
status-type values. The application architectures

Figure 23 DIA using SNADS to report confirmation of delivery

DISTRIBUTE_DATA

(BRIGIN)

(SECONDS, MINUTES,...)

RECEIVE_DISTRIBUTION

« UPDATE CORRELATION
TABLE FOR PER. GRAY,
DISTRIBUTION 123.

e SET STATUS TG DIA.CED
FOR MAN. JONES.

——RECEIVE_DISTRIBUTION

(DESTINATION)

ke

*« DISTRIBUTION QUEUED
FOR MAN. JONES

« DISTRIBUTION DELIVERED
TG MAN. JONES

——QISTRIBUTE_STATUS
(FOR DISTRIBUTION 123,
STATUS (DIA. COD) FOR
RECIPIENT MAN. JONES)

338 HousEL AND scoPINICH

IBM SYSTEMS JOURNAL, VOL 22, NO 4, 1983

Figure 24 SNADS reports routing error to DIA transaction program

DISTRIBUTE_DATA

(BRIGIN)

PER. GRAY

|

DIR TP

(SECONDS, MINUTES,...)

Dsu

ROUTING ERROR
DETECTED FOR
DISTRIBUTION
123 ‘

RECEIVE_DISTRIBUTION

« UPDATE CORRELATION
TABLE FOR PER. GRAY,
DISTRIBUTION 123

« SET STATUS 1O
ROUTING_ERROR
FOR MAN. JONES

are then free to define the contents of their status
data. Figure 23 shows how the SNADS notification
facility can be used by a DIA application transaction
program to report confirmation of delivery. The
number 123 denotes a unique identifier assigned by
the distribution service (i.e., the origin DSU) for the
distribution. The number 123, coupled with the
originator’s name (PER.GRAY) forms a network-
unique identifier for the distribution.

Figure 24 illustrates an SNADS-detected error being
reported to the originator. This example is similar to
Figure 23, except that a DSU in the distribution
network has encountered a routing error while
processing the distribution. The DSU builds a status
distribution with a status type of SNADS and sets a
condition code (in the status data) indicating a
routing error. To assist in problem determination,
the detecting DSU logs all errors and related control
information and includes the DSUN of the detecting
DSU in status distribution.

IBM SYSTEMS JOURNAL, VOL 22, NO 4, 1983

Servers

Servers are used by a DSU to retrieve and store the
distribution objects. The server protocol boundary
consists of a set of verbs for server initiation and
termination, for reading and writing the object byte
stream, and for controlling shared access to the
stored object(s).

As previously stated, SNADS must be able to handle
efficiently a wide range of object sizes. In the past,
most asynchronous distribution systems have
required that the distribution object be moved from
the user’s space to a temporary store such as a spool
file. The requiring of a temporary store is attractive
from the standpoint of simplicity in that a DSU can
use a common server for all object accesses. This
avoids problems associated with direct access to the
user’s space, as in the sharing of access between
applications and the DSU and in the mapping of the
object byte stream to the form required by the

HOUSEL AND scoPmicH 339

Figure 25 Components of an OBJECT

OBJECT

@BUECT
BYTE ...
STREAM

gBJECT
“PREFIX

application. Unfortunately, for very large objects it
is undesirable and sometimes infeasible to require
that the object be moved between the user’s storage
(e.g., a data set or document library) and a tempo-
rary store at the origin and destination DSUs.

SNADS requires direct access to objects. At the
origin DSU, it must be possible to retrieve the object
byte stream directly from the user’s (application’s)
space. Similarly, at the destination DSU, it must be
possible to write the object byte stream directly into
the user’s (application’s) space.

Of course, different applications may distribute a
variety of different object types (e.g., documents or
facsimile) and may require different data manage-
ment routines for retrieving and storing data. Thus,
users must be able to name the server to be used to
access objects at the origin and destination DSUs.
Parameters are defined on the distribution verbs for
specifying the origin and destination server names.
As illustrated in Figure 25, the OBJECT depicted in
Figure 5 consists of an object prefix and the object
byte stream.

The object prefix contains the name of the server
(and optionally a parameter string) to be used to
store the object at the destination DSU. The object
byte stream is the byte stream that is delivered to
the origin DSU by the origin server and delivered to
the destination server by the destination DSU. The
object byte stream may be segmented® and can be
any length, subject to storage capacity limitations.

The relationships of servers, DSUs, and application
transaction programs are illustrated in Figure 26.
Here the server processes are defined as being
outside the distribution service. A set of verbs that
make up the server protocol boundary is defined by
the SNADS architecture to describe the functions

340 rouUSEL AND SCOPINICH

required by DSUs in accessing objects. These func-
tions are general and apply regardless of the type of
server being used.

Figure 26 shows that there are two classes of
application-specific programs defined in the SNA
Distribution Services architecture: (1) origin and
destination transaction programs that send and
receive distributions, and (2) servers that access the
distribution objects. Servers are invoked by a DSU
(on-the-fly) as an object is being sent or received on
an LU 6.2 conversation. From the viewpoint of
SNADS, servers act as a source or sink for the object
byte stream. SNADS uses the server name to deter-
mine which server to call, but otherwise SNADS

Any server may serve as a general
server if it can store and retrieve a
byte-perfect copy of the object.

has no information on the semantics of the object
byte stream or any associated server-specific pro-
cessing. There are two classes of servers defined in
SNADS—specific servers and general servers.

" The function of a specific server is to provide the
~mapping between the object byte stream and the

appropriate application-specific form. Specific serv-
ers typically have information regarding the mean-
ing of the byte stream. The potential functions of a
specific server include the following:

¢ Encoding and decoding the data contents. Many
byte streams carried by SNADS are architected
data streams. The server must encode and decode
the application data stream (e.g., DIA document
units).

s Server-specific profile processing. Profiles such
as the DIA Interchange Document Profile (IDP)
must be handied by DIA servers. The distribution
service has no information on such entities. This
means that servers may have to read or write
catalogue entries maintained for different data
sets and libraries.

IBM SYSTEMS JOURNAL, VOL 22, NO 4, 1983

Figure 26 Distribution network and file servers

ORIGIN. '

DISTRIBUTION NETHORK

DESTINATION
<> APPLICATION
TP

psu

Z Q= -4 D wWwMa<Z GO

SERVER
a

v

Z O~ -1 DI M<Z oo

CONVERSATION
A

Osu.

SERVER
(GENERAL)

~ Server-specific transformations. Some servers
may, based on information passed in the object
prefix or in application-specific profiles, choose to
transform the data stream (e.g., compression/
decompression) as part of the mapping to and
from the data store.

~ Interfacing with local data management compo-
nents. The server must determine—using the
server name, server parameters, and server profile
information—which local access method or
library service to invoke to read and write the data
stream.

General servers are required by intermediate DSUs.
The function of general servers is to write and read
(when the distribution is forwarded) a byte-perfect
copy of the distribution object(s). A general server
is not sensitive to the semantics of the distribution
object (object prefix or object byte stream). Thus
the inherent difference between specific and general

1BM SYSTEMS JOURNAL, VOL 22, NO 4, 1983

servers is the extent to which information on the
byte stream is required. Any server may serve as a
general server if it can store and retrieve a byte-
perfect copy of the object. As illustrated in Figure
26, the general server is considered to be part of the
distribution service because it is required by all
intermediate DSUS.

A number of complexities arise when the function of
direct access to objects is provided. One such exam-
ple is the synchronization required between applica-
tions and a DSU. When an application submits a
distribution request, it must be possible to guaran-
tee integrity to ensure that the object has not been
modified before the DSU has relinquished responsi-
bility for the distribution. When more than one copy
of an object must be forwarded, the object cannot be
deleted until all copies have been transmitted. The
server verbs specify locking protocols to handle
object synchronization requirements.

HOUSEL AND scoPinicH 341

Concluding remarks

This paper has presented the SNA Distribution
Services (SNADS) architecture, that is designed for
asynchronous data distribution for SNA applications
running in an LU 6.2 environment. The requirement
for a general distribution facility in today’s rapidly
expanding computer communications technology is
evidenced by recent standards activities.*

The general design objectives and requirements
have been briefly discussed, the basic terminology
introduced, and a technical overview of the IBM SNA
Distribution Services has been presented. The
remainder of the paper has focused, in some depth,
on the primary concepts of naming and addressing,
distribution service levels, distribution routing, syn-
chronous communication among distribution ser-
vice units, user notification facilities, and object
servers.

Although the generality of the architecture has
been emphasized, it should be stressed that the
predominate application of SNADS at the present
time is that of office systems. Toward that end,
SNADS has been designed to be compatible with the
Documentation Interchange Architecture. The ini-
tial implementations of SNADS are provided by
DISOSS Version 3 Release 2 and the IBM 5520
Release 5.

Acknowledgments

The development of the SNA Distribution Services
architecture has been a joint effort. Many architects
and product representatives have contributed to the
requirements and technical design. We are indebted
to E. H. Sussenguth and J. P. Gray for their vision
regarding the need for a general asynchronous data
distribution facility for SNA applications. Among
the architects who have contributed to SNA Distri-
bution Services, we wish to acknowledge J. C.
Ashfield, J. M. Baker, P. F. Chimento, J. P. Gray,
J. C. Knott, L. T. O’Connor, S. Shukuya, and P. N.
Turcu. We also thank L. E. Area and K. Knight
from the IBM 5520, S. D. Hale, J. R. Hind, and L. F.
Morrison of the IBM Distributed Office Systems
Support (DISOSS) product, and R. F. Brockish of
the Document Interchange Architecture. Finally,
we thank the management team, including R. F.
Steen, J. C. Broughton, T. B. McNeill, M. L. Hess,
D. A. Haile, E. W. Cornish, E. R. Roth, and P. B.
Hill.

342 HOUSEL AND SCOPINICH

Cited references and notes

16.

17.

. Implementations of SNADS will be announced on a prod-

uct-by-product basis.

. J.P. Gray, P. J. Hansen, P. Homan, M. A. Lerner, and M.

Pozefsky, “Advanced program-to-program communication
in SNA,” IBM Systems Journal 22, No. 4,298-318 (1983,
this issue).

. Systems Network Architecture: Transaction Programmer’s

Reference Manual for LU Type 6.2, GC30-3084, IBM
Corporation; available through IBM branch offices.

. A distribution transaction program is any transaction pro-

gram that is defined as part of the SNADS architecture to
provide required functions of the distribution service,

. The term distribution refers to an entity resulting from a

distribution request that is transported by SNADS from an
origin to one or more destinations.

. The formal term Distribution User Name (DUN) is defined

in the SNADS architecture to designate a distribution user.
For convenience in this paper, the simple terms “SAF user”
or “user” are used unless formality is required.

. The term protocol boundary refers to the architectural

definition only. Products implementing the architecture may
not define their interfaces in the same way or support all the
functions described.

. M. R. DeSousa, “Electronic information interchange in an

office environment,” 1BM Systems Journal 20, No. 1, 4-22
(1981).

. T. Schick and R. F. Brockish, “The Document Interchange

Architecture: A member of a family of architectures in the
SNA environment,” IBM Systems Journal 21, No. 2,
220-244 (1982).

. B. C. Housel, “On the design and formal description of

messages in distributed architectures,” Proceedings of the
International Conference on Computer Communications
(ICCC), London (September 1982), pp. 627—633.

. The acknowledge interchange unit is synonymous with the

Document Interchange Architecture (DIA) acknowledge
document interchange unit, as defined by DIA. SNADS
uses this interchange unit for reporting exceptions to the
sending DSU only. In SNADS, positive acknowledgment is
done using the LU 6.2 verb CONFIRMED.

. This model is defined for the purpose of architectural

description; other models may be equally valid. Products
may structure their implementations differently.

. The presentation services defined for SNADS may be

viewed as a procedure of SNA presentation services depicted
in Figure 4. Upon recognizing a distribution services verb,
SNA presentation services calls distribution presentation
services and passes to it the verb and its operands.

. In a mixed network where some DSUs support RGN and

other DSUs do not, certain naming restrictions are neces-
sary. These alternatives are not discussed here.

. In this paper, the period is used to depict levels of qualifica-

tion in naming (for example, a.b). Periods are not required to
encode names in the SNADS architecture, because each
part is encoded using self-defining constructs.

J. P. Gray and T. B. McNeill, “SNA multiple-system
networking,” IBM Systems Journal 18, No. 2, 263-297
(1979).

The architecture is an open-ended one in that additional
capabilities may be added as required.

. By integrity we mean the ability of SNADS to verify the

delivery of a distribution. The degree of integrity required
may vary among different applications. At one extreme, the

IBM SYSTEMS JOURNAL, VOL 22, NO 4, 1983

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

distribution of sensitive material requires extremely high
integrity. On the other hand, the distribution of general
announcements for a meeting may not require any integrity.
Also, the value of some distributions depreciates over time.
In some systems (e.g., IMS, TCAM), the session resource
can be implicitly associated with a specific (transaction)
queue. In the SNADS model, these are treated separately to
show clearly the mappings between the SNADS names and
the resources needed for LU 6.2.

K. Bharath-Kumar and J. M. Jaffe, “Routing to multiple
destinations in computer networks,” IEEE Transactions on
Communications COM-31, No. 3, 343-351 (1983).
Customer [nformation Control System/Virtual Storage
(CICS/VS), Version ! Release 6: General Information,
GC33-0155, IBM Corporation; available through IBM
branch offices.

Nerwork Job Entry for JES2, GC23-0100, IBM Corpora-
tion; available through IBM branch offices.

Logical unit type 0 (LU 0) permits applications to use the
basic SNA functions in a product-specific manner. The use
of brackets, the choice of half-duplex or full-duplex trans-
mission, protocols for backout and recovery, and many other
functions are left to product choice.

Henceforth, the term conversation is used to imply an LU
6.2 conversation. In contrasting conversations with sessions,
a CONVERSATION provides a communication path
between two transaction programs, whereas a SESSION
defines a path between two LUs. A conversation requires a
session. A session, however, may be serially allocated to
many conversations over time.

See References 16 and 26 for detailed discussions regarding
SNA virtual routes, class of service, and other SNA concepts
and facilities of synchronism.

Systems Network Architecture: Concepts and Products,
GC30-3072-0, IBM Corporation; available through 1BM
branch offices.

J. H. Benjamin, M. L. Hess, R. A. Weingarten, and W. R.
Wheeler, “Interconnecting SNA networks,” IBM Systems
Journal 22, No. 4, 344-366 (1983, this issue).

The SNADS model shows multiple ordered queues. An
implementation might have one queue in which entries are
enqueued /dequeued in priority order,

Routing and directing services run asynchronously with
respect to DISTRIBUTION_RECEIVE and, therefore,
with the conversation. There are design tradeoffs to be
considered in determining where error checking and address
validation are to be performed. Extensive processing in
DISTRIBUTION__RECEIVE may underutilize the ses-
sion. On the other hand, if errors can be detected as the
distribution is being received on the conversation, the wasted
cost of storing large objects is avoided.

Distribution objects are segmented using the segmentation
technique defined for DIA Document Units.

There has been increasing interest in asynchronous data
distribution technology. Recent standards work’?* has
resulted in a proposed standard —called Message Handling
Facility (MHF)—for Computer-Based Message Systems
(CBMS). At a high level, there are obvious similarities
between the SNADS model and the MHF model. For
example, the MHF User Agents are analogous to applica-
tion transaction programs, and the MHF Message Transfer
Agents are similar to the DSUs.

T. H. Myer, “Global messaging—issues and approaches,”
Journal of Telecommunications Networks 1, No. 2, 173—
187 (1982).

IBM SYSTEMS JOURNAL, VOL 22, NO 4, 1983

33. CCITT Study Group VII, Message Handling Systems
Recommendations, International Telephone and Telegraph
Consultative Committee, March 1983. (This work consists
of a number of recommendations, X.MHS 0 through
X.MHS 7, that address the various aspects of message
handling.)

Reprint Order No. G321-5198.

Barron C. Housel [BM Communication Products Division,
P.O. Box 12275, Research Triangle Park, North Carolina
27709. Dr. Housel attended the University of Oklahoma, Nor-
man, Oklahoma, where he received a B.S. degree in mechanical
engineering in 1963 and an M..S. degree in engineering science in
1965. He joined the IBM Corporation in 1965. Dr. Housel
received an M.S. degree in computer science from Stanford
University, Stanford, California, in 1968 and a Ph.D. in com-
puter science from Purdue University, Lafayette, Indiana, in
1973. From 1973 to 1979, Dr. Housel was a member of the IBM
Research Division, where he did research in data base technolo-
gy. During that period he was a visiting professor in computer
science at Purdue University. Since 1979, Dr. Housel has been a
senior engineer in the architecture and telecommunications
department at the IBM laboratory in Raleigh, North Carolina.

Carol J. Scopinich IBM Communication Products Division,
P.O. Box 12275, Research Triangle Park, North Carolina
27709. Ms. Scopinich joined IBM in the Federal Systems
Division in 1968 in Owego, New York. There she was involved in
the design and development of software to support on-board
military flight systems. In 1970, she moved to Morris Plains,
New Jersey, to work on research and development for the
Safeguard project. After moving to Raleigh, North Carolina, in
1974, she did design and development for the control program of
the IBM 3650 Retail Store System. From 1976 to 1978, she was
responsible for designing portions of the Network Control Pro-
gram. During the past three years Ms. Scopinich has partici-
pated in the design of Systems Network Architecture. She has
been on brief assignments to England and Italy. Ms. Scopinich
received a B.A. from Mansfield State College, Mansfield, Penn-
sylvania, in 1967 and an M.S. in mathematics from Clarkson
College of Technology, Potsdam, New York, in 1968.

HOUSEL AND sCoPiNicH 343

