Advanced
program-to-program
communication in SNA

Systems Network Architecture (SNA) defines the
behavior of networks of heterogeneous, loosely
coupled processors. This paper describes the de-
velopment of program-to-program communication
services in SNA and introduces Advanced Program-
to-Program Communication (APPC), the culmination
of this development. It also discusses the use of
APPC in the construction of distributed services
and shows that SNA with APPC and other SNA ser-
vices can be thought of as a distributed operating
system.

Systems Network Architecture (SNA) was
announced by IBM in 1974. Since then, the
original set of functions, which supported distribu-
tion of data processing between applications in a
single central processor and multiple distributed
cluster controllers, has been enhanced by the addi-
tion of many new functions and new products. This
paper assumes some familiarity with SNA. (See
References 1-14.)

The first section of this paper reviews growth trends
in networks and distributed processing. The second
section briefly reviews the overall design of SNA.
After distinguishing between the physical network
of nodes connected by data links and the network of
Logical Units (LUs) connected by sessions, this
review emphasizes the properties of LUs, sessions,
and application programs.

The third section reviews applications within net-
works and discusses the requirements for interpro-

298 GRAY ET AL.

by J. P. Gray
P. J. Hansen
P. Homan
M. A. Lerner
M. Pozefsky

gram communication that these applications place
upon the architecture. The last section introduces
Advanced Program-to-Program Communication
(APPC) and shows how APPC meets many of these
requirements.

Growth trends

The rapid improvements in computer and terminal
function together with declining costs suggest con-
tinued large growth in applications during the rest
of the 1980s. The number of installed worksta-
tions—many of them intelligent—may reach
twenty million during the next five years. Because
they are easy to develop, small (independent) appli-
cations for these workstations are expected to be
available in wide variety. Applications that can
exist only in interaction with other applications and
remote data will be more difficult to develop and so
will be available in less variety.

An important growth area is local area net-
works.'*' Relatively inexpensive direct connections
are featured by local area networks, along with low
delay and high bandwidth. The SNA design, which

© Copyright 1983 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM
copyright notice are included on the first page. The title and
abstract, but no other portions, of this paper may be copied or
distributed royalty free without further permission by computer-
based and other information-service systems. Permission to
republish any other portion of this paper must be obtained from
the Editor.

IBM SYSTEMS JOURNAL, VOL 22, NO 4, 1983

keeps the logical network'” of LUs and sessions
independent of physical configurations, allows low
delay, high bandwidth, as well as inexpensive con-
nections and any other physical network properties
to be exploited if they are present. The network
owner can configure the physical network to meet
cost, performance, installability, maintainability,
and security requirements.'®?' In this regard, SNA
is similar to operating systems that are not limited

Lessons from an earlier period of
growth in the computer industry can
be applied to the current rapid
growth in distributed processing.

to a specific machine configuration but which can
operate over a wide range of processor, storage, and
device configurations.

Lessons from an earlier period of growth in the
computer industry can be applied to the current
rapid growth in distributed processing. When
machines became large and reliable enough to
support multiprogrammed operating systems, the
importance of maintaining compatibility between
different applications and different computer instal-
lations quickly became apparent. While some appli-
cations and some data were isolated, many pro-
grams and data were interrelated. Installations
adopted a limited number of languages and put
their data in shared files or data bases. Utility
programs (e.g., sort) and other system services (e.g.,
spooling supervisors) were adopted in preference to
application-specific programs. The savings that
resulted were primarily in the most scarce of
resources: skilled people.

The same forces are still at work; benefits will
accrue from limiting the number of languages used
in a network, from providing shared, secure access
to the data around the network, and from adopting
network utilities and services in preference to appli-
cation-specific programs. The development and

IBM SYSTEMS JOURNAL, VOL 22, NO 4, 1983

wide use of network utilities, the advent of intelli-
gent workstations and small processors dependent
on servers, and distributed applications, in general,
require a set of architecturally defined interpro-
gram communication primitives as a foundation.

Systems Network Architecture (SNA)

LUs and data transport. An SNA network consists of
nodes connected by data links. Path control ele-
ments in each of these nodes route packets® from
resource managers—called Logical Units (LUs)—
along logical connections—called sessions—to
their destination LUs.” The collection of all path
control elements and the data link control elements
that interconnect them constitute a transport net-
work. Nodes can be connected by multiple links and
contain a variable number of LUs.

An LU initiates a session with a partner by providing
the partner’s LU name. This LU name is transformed
into an address placed into a packet header follow-
ing access to a local or remote directory containing
name-to-address translations.”® Actual execution-
time routing uses the addresses carried in the packet
headers. A name that characterizes the mode of
service to be provided by the session (e.g., “fast,”
“bulk,” “secure™) is also specified at session initia-
tion.

A distributed operating system. An SNA network can
be viewed from many perspectives. One of the more
fruitful ones is to view it as a distributed operating
system,”~** where the network is decomposed into
programs or processes’ running on a shared (dis-
tributed) operating system and connected by suit-
able interprogram communication. Of course, each
program actually runs on a local operating system.
Figure 1 illustrates two programs using their shared
operating system to help them communicate.

Figure 2 illustrates two programs using SNA as their
shared, distributed operating system to commu-
nicate. When the operating system is distributed,
interprogram communication has to use message
exchanges rather than shared storage.*> Inasmuch
as remote program communication is restricted to
message exchange mechanisms, they should be used
with local program partners to provide local/remote
transparency. This means that, in most cases, com-
munication between programs has the flavor of
access to such 1/0 objects as files, rather than the
flavor of access to data structures mapped into local
memory.

GRAY ET AL. 200

Figure 1 Programs communicate with the aid of an operating system

OPERATING SYSTEM

Figure 2 Distributed programs are served by local operating systems

DISTRIBUTED OPERATING SYSTEM

The effects of inhomogeneity. We often conceive of
an operating system as a designed structure, similar
to a car or a painting. This conception, however,
becomes less and less true as the size of the
computer system being managed by the operating
system increases. Most large systems are in a con-
tinual state of change, with repairs, hardware

300 oRaY ET AL

upgrades, and software upgrades all being inter-
leaved with application processing. They are less
designed than evolved. A distributed operating sys-
tem, being larger, is yet more organic, with many
elements at different (but compatible) levels of
function. Even in the simplest case of a network of
identical nodes with identical software, repair of

iBM SYSTEMS JOURNAL, VOL 22, NO 4, 1983

Figure 3 A network of sessions between LUs

software errors introduces inhomogeneity. This is
the case because the network cannot (realistically)
be changed instantaneously. Nor can a typical large
network be shut down enough to change every node
at the same time. It follows that network protocols
must be capable of tolerating growth and change.

Similarly, network applications must also be capa-
ble of tolerating growth and anticipating change.
Whereas the two halves of a distributed application
may at first run on nodes known to the initial
designers, one or the other half is likely to run on a
different type of node in the future. Further, ser-
vices (e.g., file access) that were local may be
distributed later. All of this creates a requirement
for a common set of remote services for application
programs. This can be met in either of two ways: (1)
all the nodes over which applications are to be
distributed can be within the same product family
(e.g., all might be CICS/VS, although not all at the
same release and maintenance levels), or (2) the
services can be provided by common, architectur-
ally defined protocols. These two solutions are not
mutually exclusive. A network can contain applica-
tions that are designed to take advantage of either
or both of these types of distributed services.

The ability to distribute applications brings with it

many design problems (e.g., how to divide a given
function, how to divide data, how to recover from

IBM SYSTEMS JOURNAL, VOL 22, NO 4, 1983

SESSION N
SESSION K
SESSION 1

DISTRIBUTED OPERATING SYSTEM

partial failures), but this ability also brings new
opportunities. The partitioning that is required to
distribute functions creates new and durable inter-
faces at which growth and evolution can occur.
When functions are divided along correct lines, the
pieces become building blocks to be used in future
applications.

The development of distributed applications is
expensive, a fact that creates a demand for trans-
parently distributed services (e.g., file access) and
for network utilities (e.g., file transfer). SNA prod-
ucts have answered this demand with a variety of
distributed services and utilities. For examples, see
References 36—46.

LUs as local operating systems. We now hide the
transport network and concentrate on the network
of LUs and sessions shown in Figure 3.* Just as
adjacent nodes can be connected by multiple links,
LUs can be connected by multiple sessions, called
parallel sessions. The LUs are more than merely
ports for message traffic: each LU provides operat-
ing system services (including interprogram com-
munication) to one or more local programs. That is,
each program sees an LU as being the local operat-
ing system on which it runs. The result is that each
program sees the network of loosely coupled LUs
connected by sessions as a distributed operating
system.

aray ET AL 301

Figure 4 The mapping of products into LUs

Figure 4 illustrates the relationship of LUs to prod-
ucts. In this example, the LUs are both CICS/VS, one
running on MVS and the other on VSE. In both cases,
VTAM implements the local portion of the transport
network.”® Other portions of the physical network,
such as IBM 3725 multiplexors and modems, are
lumped in with LINE(s) in the figure. Notice that
there are multiple levels of interpretation in this
example: the hardware interprets the microcode,
which interprets MVS (or VSE), which interprets
VTAM, which interprets CICS, which interprets the
application program. Sometimes one interpreter
completely hides a lower one. MVS does not see the
hardware; it sees only the System/370 instruction
set (ignoring diagnostic instructions). On the other
hand, VTAM sees both MVS services and the Sys-
tem/370 instruction set. CICS might be described as
running on MVS and using VTAM services, thinking
of VTAM as an extension of MVS (which, as a
privileged subsystem, it is). Not only alternative
descriptions but also many varied implementations
are possible. For example, the System/38 system
structure includes the equivalent of VTAM under the
machine interface. These variations, although inter-
esting and important at each node in the network,
are not exposed to other nodes in the network.* This
makes it possible to define a single architecture
rather than a unique interface between every pair of
products.

302 cRraveT AL

LINE (S)

____________ A
OISTRIBUTED OPERATING SYSTEM |

|

|

|

VIAM |

fLuscies |

—

LUs manage resources. Each LU makes a set of
resources available to its programs. The exact set is
product and configuration dependent; examples are
the following: processor cycles, main storage, files
on disk or tape, such 1/0 devices as keyboards or
displays, and such abstract resources as sessions,
queues, or data base records. Some of these
resources are local to a program; that is, they are
attached to the same LU as the program. Other
resources are remote; that is, they are attached to
other LUs. (The LUs might be within the same
physical node.) Sessions are local resources at each
LU, but they are shared between LUs. Most of the
distributed utility services® and all the applications
provided by an SNA network are provided by pro-
grams that run on LUs and use sessions to commu-
nicate among themselves. Terminals are not special
in this regard. Fixed-function terminals have built-
in programs that define the terminal’s behavior.”'

Resource allocation is a central function of the LUs.
Programs can ask the LU for access to a resource.
The LU then schedules access to its wholly-owned
resources (such as files), coordinates the allocation
of shared resources (such as sessions), and creates
new copies of abstract resources, including sessions,
when necessary. The larger, higher-function LUs
may also provide resource allocation deadlock

IBM SYSTEMS JOURNAL, VOL 22, NO 4, 1983

detection, resource change commitment control,
resource access security, and resource formatting
(or presentation) services to their programs.

Sessions and conversations. The sessions carrying
messages between LUs or programs running atop
LUs are resources shared between those LUs, as
shown in Figure 5. The first SNA products® used
sessions between LUs to connect remote application
programs to centralized application programs. Each
session was dedicated to the use of a single program
at each LU. Very quickly, however, the number of
programs associated with an LU grew. Furthermore,
any-to-any conmnectivity among the programs in
each LU became the norm. Hence, the concept of
the conversation was developed. A conversation is a
serial time slice of a session.” This extension recog-
nizes the large differential cost between activating a
new session, which might involve many network
components and the execution of many instructions,
and activating a new conversation by using an
existing, but not busy, session.

The resulting use of conversations has become
recognizably that of zransactions. Hence, applica-
tion programs running on LUSs are called transaction
programs. Figure 6 illustrates the sharing of a
conversation between two programs.

Two LUs connected by one or more sessions share
responsibility in the allocation of sessions to trans-

action programs for use as conversations. When
both LUs elect to allocate the same session resource,
contention can occur. This condition is resolved by
making one end of the session the contention winner
and the other end the contention loser.’* The LU that
loses an allocation attempt tries again on another
session, or if none is free, it activates an additional
session. If this is not possible, the LU queues the
request for a conversation until it can be satisfied.
When a conversation ends, the session on which it
was carried becomes free for reallocation.

LU types. In order to provide useful communication
within a distributed operating system, the local
operating systems (LUs) have to share a common set
of protocols. These protocols have the following two
functions: (1) activating a session between two LUs,
which is analogous to establishing a telephone con-
nection between two offices, and (2) using the
session to communicate, which is analogous to the
dialogue that two persons exchange over a telephone
connection. Just as a caller establishes the language
of the call when he says “hello” rather than “buenos
dias,” a protocol called an LU session type (some-
times “LU session type X’ is shortened to “LU X”)**
is established at the time a session is created. The
LU types fall into three groups:

» Not specified by SN4. LU 0 is defined by imple-
mentations. A number of products have defined

Figure 5 Sessions are resources shared between LUs

PROGRAM R

IBM SYSTEMS JOURNAL, VOL 22, NO 4, 1983

SHARED SESSICN

DISTRIBUTED OPERATING SYSTEM

LacaL
RESBURCES

. PROGRAM B

Grav eT AL 303

Figure 6 Transaction programs share conversations

their own program-to-program protocols. (See
References 36, 38, and 56.)

& Terminals. The behavior of the terminal as seen
by the host program is architecturally defined so
that multiple terminal implementations can be
supported at lower implementation costs to the
host programs than would result from individual-
ized support.

LU 1. Applications use LU 1 to access such nondis-
play 1/0 devices as printers and keyboard-printer
terminals. The terminal is modeled as built-in
transaction programs with local resources that
can include keyboards, console printer, line print-
ers, card punches, card readers, diskettes, and
hard disks.

LU 2. Applications use LU 2 to access display
terminals with the IBM 3270 data stream.”’

LU 3. Applications use LU 3 to access printers with
a subset of the IBM 3270 data stream.”®

LU 4. Applications use LU 4 to access terminals
that are similar to LU 1 terminals.

LU 7. Applications use LU 7 to access display
terminals with the 1BM 5250 data stream.

s Program-to-program. LU 6 provides SNA-defined
interprogram communication protocols and is the
base on which the IBM distributed operating sys-
tem function is evolving.

The definitions of terminal LU types emphasize the
terminal end of the session, with few constraints
placed on the host end of the session. This allows

304 cRrav et AL,

SHARED CONVERSATION

DISTRIBUTED OPERATING SYSTEM

LOCAL
RESOURCES

optimizations of host programming support for
these LU types. Sometimes this leads to the same
functions being achieved by different means. For
example, no constraints are defined on the mapping
of terminal operator dialog-to-session protocols.
Thus, one product might use several session-level
conversations to accomplish the same thing another
product does within a single conversation. Whereas
the resulting dialog can look the same to an operator
at a display terminal, the detailed message
sequences exchanged over the session can be quite
different. Terminal protocols and applications at
the host often take advantage of the decision-
making capability of the human operator who is
thought to be present at the terminal. As a result,
any attempt to use a terminal LU type as an
interface between application programs has to deal
not only with the problems created by the defini-
tional emphasis on the terminal end of the session
but also with the additional burden of simulating a
human operator. Human flexibility, especially in
error recovery situations, is difficult to imitate in
programs.

To illustrate the specialized nature of terminal LU
types, consider LU 2. This LU type has restrictive
assumptions built into its error recovery protocols.
The host LU is assumed to be responsible for all
error recovery algorithms. Restrictive assumptions
are also built into its resource naming. The termi-
nal’s LU name is implicitly the name of the display.

IBM SYSTEMS JOURNAL, VOL 22, NO 4, 1983

Such assumptions are also built into its security
facilities. An operator at the terminal LU is assumed
to be able to enter log-on information on the display.
Similarly, such assumptions are built into output
scheduling algorithms that are used by hosts. Out-
put is limited to one display screen’s worth of data
$0 as not to overrun the operator’s ability to read the
display. Restrictive assumptions are also built into
its IBM 3270 data stream.*"®

LU type 6 provides a general-purpose interprogram
protocol that avoids the limitations of terminal LU
types. Its latest release, LU 6.2,” is also referred to as
Advanced Program-to-Program Communication
(APPC).

Interprogram communication requirements

Interprogram communication protocols are used by
a wide variety of applications and services. Here we
discuss the more important of these requirements.

Abstraction. Programs using an interprogram com-
munication service should not need to be aware of
the details of how the service is implemented. This is
a widely recognized principle of modularity—or
layering—that has been applied in SNA from the
beginning.

Semantic completeness. The primitives made avail-
able to the communicating programs should be
complete in the sense of leaving out no needed
functions. To give an obvious example, both the
sending and receiving of data need to be supported
functions. Less trivial are the following functions:

» Notification of conversation failure.

» Selection of transport characteristics.

Delay. Interactive applications require very short
response times, hence low transport delays, for
best productivity.*

Capacity. Batch applications require sufficient
capacities to meet production schedules.
Security. Sensitive data must be protected from
unauthorized access or modification while being
transported between programs.

Cost. Some applications, especially transport of
bulk data, must use the lowest-cost transport in
order to be justified.

» For general usefulness, the protocols must be
adequate for general-purpose application to gen-
eral-purpose application. Fixed-function termi-
nals are predefined applications running on (pos-
sibly) a subset of a general-purpose processor.

IBM SYSTEMS JOURNAL, VOL 22, NO 4, 1983

« To support multiple users, two adjacent LUs may
have to support several concurrent conversations.
This implies that multiplexing, as exemplified by
parallel sessions, is required.®'

« For security, access to such secure resources as
data bases must be controllable.

To encourage wide use, the
protocols should be easily
incorporated into high-level
languages.

« Commitment control requires that the LU must
support checkpointing for distributed applications
when desired, including resynchronizing after LU
or session failures.

« Accounting requires that the communication pro-
tocols make transaction identifiers available for
use in accounting, tracing, and activity logging.

Efficiency. Although ease-of-use is important, espe-
cially in reducing the cost of developing new appli-
cations, it is also necessary to provide a highly
efficient protocol. Session-level exchanges should be
equal to or fewer than the number of invocations of
the program’s interface to the session resource.

High-level languages. The communication primi-
tives have to be available in a wide variety of
products in basically equivalent semantic forms. To
encourage wide use, the protocols should be easily
incorporated into high-level languages. Mapping or
formatting of the data that are sent and received
must be supported.

Control functions. Adequate control over the total
work load between any pair of LUs should be
available to the controlling operators of the LUs
involved. For example, if one operator wants to stop
operation gracefully, the other operator must be
informed so that one LU is not reactivating sessions
as fast as the other LU is deactivating them.

Subsets. The protocols must be subsettable to allow
implementation by the smallest products while still

aray eT AL. 305

supporting function adequate for the largest ones.
This subsetting must be controlled to ensure the
maximum feasible connectivity. In addition to a
base of function required of all implementations,
the optional functions must be collected into sets.
An option set must be implemented totally or not at
all. By limiting the number of option sets, the
maximum amount of function is made available
between given pairs of implementations.

Migration. LU 6.2 must support application pro-
grams that use earlier program-to-program proto-
cols.

Defining Advanced Program-to-Program
Communication

The requirements discussed in the preceding sec-
tions have been met by SNA’s Advanced Program-
to-Program Communication (APPC). We now
describe APPC and discuss how the APPC design
meets the requirements for an interprogram com-
munication protocol.

Abstraction. The requirement to provide a high
degree of abstraction in the definition of the APPC

protocols had to be met within the context of the
existing SNA definitions,’ which are in the form of a
canonical implementation of an SNA node.*” This
implementation model has grown as the functions
and scope of SNA have evolved.

The method of defining the LU 6.2 conversation
functions is in terms of programming-language-like
statements, called verbs. Documentation with
verbs, which are completely defined by the proce-
dural logic that generates session flows, provides
significantly greater precision than English prose.
Figure 7 shows how the verbs define the interactions
between transaction programs and LUs for conver-
sation resources. A set of verbs is referred to as a
protocol boundary rather than as an application
program interface, in order to distinguish them
from the functionally similar interfaces that prod-
ucts provide for the use of their application pro-
grams.®

The presentation services component interprets
verbs and can be thought of as including a subrou-
tine for each verb. The LU resource manager does
allocation of conversation resources and assignment
of conversations to the sessions, keeping queues of
free sessions and pending allocation requests. Its

Figure 7 Programs communicate with the aid of an operating system

APPC [>——

——<] PRGTOCGL BOUNDARY

— LOCRL RESOURCES -~

DISTRAIBUTED OPERATING SYSTEM

SHARED
SESSION

306 cravET AL

IBM SYSTEMS JOURNAL, VOL 22, NO 4, 1983

equivalent component in products also allocates
local resources in product-specific ways.

Semantic completeness. The following verbs that
define conversations provide a variety of func-
tions.%*

SEND_DATA moves data into a buffer and returns
control to the transaction program. The conversa-
tion resource supports the sending of arbitrary
amounts of data structured as a series of variable-
length records delimited by two-byte length fields.
The data are actually sent on the conversation
cither as a result of a subsequent verb (e.g., CON-
FIRM) or when the buffer is filled.

RECEIVE_AND_WAIT returns data and/or control
information to the transaction program. Once
issued, the transaction program is in a wait state
until something arrives on the conversation.

PREPARE_TO_RECEIVE marks the end of a mes-
sage and gives up the right to send to the partner
program. PREPARE_TO_RECEIVE causes control
information to be sent to the receiving program to
inform it that it has send control.

FLUSH causes all buffered data and control infor-
mation to be sent.

REQUEST__TO_SEND asks the partner program for
the right to send. This interrupt capability does not
require truly asynchronous reporting of the
REQUEST_TO_SEND. The interrupt notification
occurs as a return code on a verb issued against the
conversation.

SEND_ERROR reports an error in the data being
received by terminating the incoming message,®
purging the pieces that are buffered in the conversa-
tion, notifying the sending transaction of the error,
and reversing the flow so that the program that
issued SEND_ERROR obtains send control. With
send control, the transaction program that issued
SEND_ERROR can optionally use a data transfer to
convey further information about the error and
trigger whatever error recovery the transaction pro-
grams are designed to support.

Similarly, the sending program may detect an error
in its local resources that makes it impossible to
complete the message it is sending. The sending
program then issues SEND_ERROR while retaining
send control, and the receiving program is notified
of the error condition.

BM SYSTEMS JOURNAL, VOL 22, NO 4, 19883

CONFIRM ends a message and asks the partner
program for assurance that no errors have been
detected in it. The receiving program can reply with
CONFIRMED if it has not detected any errors, or it
can issue SEND_ERROR.

ALLOCATE spawns new activity at another LU by

building a conversation to a named partner pro-
gram. The named partner is placed in execution and

The dynamic allocation of resources
creates the possibility of resource
allocation deadlocks among
transactions.

given addressability to the conversation that started
it. Thus, the ALLOCATE verb carries several param-
eters, including the following:

* LU_NAME is the name of the LU at which the
partner program is located.*

¢ TPN is the Transaction Program Name of the
partner program with which the conversation is
desired.

¢« MODE_NAME specifies the type of transportation
service that the conversation is to provide. For
example, a SECURE, a BULK, or a LOW_DELAY
conversation can be requested. The LU uses a
session with the appropriate MODE_NAME to
carry the conversation.®’

The target of the conversation is a newly created
process or task,®® which means that the distributed
processing in the network at any instant of time
consists of a number of independent, distributed
transactions, each of which consists of two or more
transaction programs connected by conversations.
Graphs of sample distributed transactions are
shown in Figure 8.

The dynamic allocation of resources creates the
possibility of resource allocation deadlocks among
the transactions at one LU or among transactions at
several LUs. The designers of transactions have to
consider this problem. For local resource deadlock,

erav eT L. 307

Figure 8 Two examples of distributed transaction
programs

they can either rely upon the deadlock detection
services that the LUs may provide, or they can
design every transaction to use the same order of
allocation for all resources. Because deadlock detec-
tion can become complex when trying to detect
possible deadlocks involving remote transaction
programs,® distributed deadlocks—if they occur—
are detected by timers.

DEALLOCATE ends the conversation. Inasmuch as
either partner may issue DEALLOCATE, conversa-
tions vary from a single short message to many
exchanges of long or short messages. For efficiency,
the FLUSH, CONFIRM, and SYNCPT functions may
be combined with deallocation to minimize session
flows. A conversation could continue indefinitely,
terminated only by a failure of an LU or by the
session that carries it. Transaction programs are not
ended by DEALLOCATE, but continue until they
terminate their own execution, end abnormally, or
are terminated by control operator action.

SYNCPT (syncpoint) makes the accumulated
changes to muitiple resources permanent. Also
included in this function is the ability to abort. That
is, the application can choose to roll back to the
boundary defined by the previous syncpoint verb
execution.

Committing changes atomically with SYNCPT is an
optional service within APPC. Additionally, this
function provides for recovery at the boundaries
defined by the syncpoint verbs when connectivity is
broken.

Conversations are defined to the syncpoint service
in each LU at ALLOCATE time as either being
protected by syncpoint or as being unprotected. In

308 craveT AL

the latter case, the transaction programs are them-
selves responsible for error recovery synchroniza-
tion.

The transaction programs have direct control over
their use of the APPC verbs. Some verbs cannot be
issued in certain states. For example, a program
cannot issue SEND_DATA when it is not in send
state. These restrictions enforce the SNA half-
duplex and error notification protocols. Any addi-
tional protocol features that may be desired are
created and enforced by the transaction programs.
For example, they might obey the rule that only the
program that starts a conversation may end the
conversation.

Efficiency. Conversations are mapped efficiently
onto sessions. For example, that which the programs
see as two short messages (perhaps an inquiry and

its reply) results in two short messages flowing in

the network. Figures 9 and 10 are two examples of
coupled transaction programs that illustrate the
efficiency with which verb sequences are mapped
onto session flows. These examples have been sim-
plified by omitting some parameters from the verbs.
Details may be found in Reference 1.

The verbs in Figure 9 have the following effects:

1. TP(a) issues ALLOCATE to request a conversation
with partner program b. The LU creates an
allocation request, using information provided in
the ALLOCATE verb. The LU places the allocation
request in the send buffer and returns control to
TP(a), with the conversation in the send state.
Nothing is sent.

2. TP(a) issues SEND_DATA, which causes the LU
to place the data in its buffer behind the alloca-
tion request. The data are short enough that
nothing is sent.

3. TP(a) issues DEALLOCATE with TYPE(FLUSH),
which means that the deallocation is to be imme-
diate. The LU sends the contents of its buffer
with a DEALLOCATE indication. The conversa-
tion is now completed at TP(a). The session flow,
consisting of one message, starts TP(b), with the
conversation in receive state.

4. TP(b) issues RECEIVE_AND_WAIT and receives
all the data.

5. TP(b) issues another RECEIVE_AND_WAIT and
receives the DEALLOCATE_FLUSH indication.

1BM SYSTEMS JOURNAL, VOL 22, NO 4, 1983

Figure 9 A one-way conversation

P(a)'runnnngJ
J ALLOCATE
TPN('b")

CT
Ct

C2] SEND_DATA

£3]) DEALLOCATE
TYPE (FLUSH) Cstart TP (b}
Lend conversationl C4] RECEIVE_AND_W
WHART RECEIVED=DHTH COMPLETE .

£S5 RECEIVE_AND_WAIT
NGAT RECETVEDSDEALLOCATE_FLUSH

£6] DEALLOCATE
TYPE (LOCAL)
Cend conversationl

v

Figure 10 A two-way conversation with confirmation

CTP (a)l runningl
ALLOCATE

TPNU'D")
SEND_DATA

C1J SEND_DATA

Cstart TP (b) 3]
C21 RECEIVE_AND_KWA
WHAT _ HECEIVED=DHTH INCOMPLETE

C31 RECEIVE_AND_WAIT

v

WHAT _RECEIVED=DATA_COMPLETE

£S] RECEIVE_AND_WAIT
WHRT _RECEIVED=SEND

C6] SEND_DATA

C73 DEALLOCATE
TYPE (CONFIRM)

v

C4] PREPARE_TO_RECEIVE
RECEIVE_AND_WAIT

WHAT _RECEIVED=DATA_COMPLETE
€8] RECEIVE_AND_WAIT
WHAT _RECETVED=CONFIRM_ DEHLLOCHTE
£91 CONFIRMED RETURN_CODE=0K
£10] DERALLOCRTE Lend conversationl
TYPE (LOCAL)
Cend conversationl

IBM SYSTEMS JOURNAL, VOL 22, NO 4, 1983 aray ET AL. 309

6. TP(b) issues DEALLOCATE with TYPE(LOCAL),
causing the LU to discard its control information
for the conversation. This ends the conversation
for TP(b). Both TP(a) and TP(b) continue in
execution until they end themselves.

Notice that three verbs have been compressed into
one message. If the message is short enough, it can
flow as one packet.

Figure 10 shows additional features of the APPC
verbs:

1. The first two verbs are the same as in the

previous example, except that this TP(a) must
send a larger amount of data. These data are

Performance of a distributed
transaction is affected by the
internal performance of the
executing nodes.

long enough that the LU has to send some data
while retaining a portion of the data in its local
send buffer.

2. TP(b) issues RECEIVE_AND_WAIT, thereby
obtaining the first portion of the data.

3. TP(b) issues RECEIVE_AND_WAIT again,
thereby causing the LU to suspend the execu-
tion of TP(b) until the remaining portion of the
data has been received by the LU.”

4. TP(a) issues PREPARE_TO_RECEIVE followed
by RECEIVE_AND_WAIT, which causes the LU
to send the contents of its buffer together with
the SEND indication. The execution of TP(a)
may have been delayed because of the execu-
tion of other programs at its LU, because it may
have been doing other processing that did not
result in activity on this conversation, or
because it may have executed the PRE-
PARE_TO_RECEIVE verb immediately after the
SEND_DATA, but the data may have encoun-

310 GRAYET AL

tered some delay in transit. The LU suspends
execution of TP(a) until it receives data to
satisfy the RECEIVE_. AND_WAIT.

Control is returned to TP(b) as soon as the
remaining portion of data is received by its LU.

5. TP(b) issues another RECEIVE_AND_WAIT and
receives the SEND indication.

6. TP(b) issues SEND_DATA, causing the LU to
place the data in its buffer. Nothing is sent.

7. TP(b) issues DEALLOCATE with TYPE(CON-
FIRM), which implies confirmation processing
and causes the LU to send the contents of its
buffer together with a CONFIRM_DEALLO-
CATE request. The CONFIRM causes the LU to
suspend execution of TP(b) processing until it
receives an affirmative or negative response.

The LU returns control to TP(a), indicating that
the program has received all the data.

8. TP(a) issues another RECEIVE_AND_WAIT and
receives the CONFIRM_DEALLOCATE request.

9. TP(a) responds affirmatively by issuing CON-
FIRMED, thus causing its LU to send an affirma-
tive response. A SEND_ERROR can be issued
instead of CONFIRMED, in which case the con-
versation remains allocated at both programs.

The LU returns control to TP(b) to indicate
successful completion of the DEALLOCATE. The
conversation is complete for TP(b).

10. TP(a) issues DEALLOCATE with TYPE(LOCAL),
which causes the LU to discard its control
information for the conversation. The conversa-
tion ends for TP(a).

Performance of a distributed transaction is affected
by many variables, including the internal perform-
ance of the nodes at which each component transac-
tion program executes. In smaller processors, it may
be important to minimize buffer occupancy and
keep the path lengths to send and receive packets
low. In larger processors, it may be important to
reduce the number of times transaction programs
are dispatched (e.g., processor pipelines and caches
drain when a new program is dispatched) by using
large data areas even at the expense of some

IBM SYSTEMS JOURNAL, VOL 22, NO 4, 1983

increase in the directly measured path length per
packet. In this way, total throughput and average
path lengths for completion of a transaction can be
improved.

With APPC, performance can be tuned by adjusting
session packet sizes and numbers of available buf-

With enough receive buffers, a
transaction program can be
dispatched only once for each
message that it receives.

fers. These changes do not affect the APPC verbs.
With enough receive buffers, a transaction program
can be dispatched only once for each message that it
receives. Alternatively, if buffers are the critical
resource, a transaction program can be dispatched
once for every packet that is received.

Another way in which APPC improves performance
is by mapping conversations directly onto sessions.
The resulting short path lengths preserve the effi-
ciency of higher-level services.”' For example, the
Asynchronous SNA Distribution Service’? moves
data directly from the network into its final data set
without moving it through a spool file.

High-level languages. So far, we have discussed
basic conversations, those that provide full access to
the communication primitives and complete control
over the format of the transmitted data. APPC also
defines a set of mapped conversation verbs (imple-
mentable with the basic conversation verbs) that
hide certain options and details of the basic conver-
sation verbs from the program. Mapped conversa-
tions are designed to be used by application pro-
grams written in high-level languages.

A major characteristic of a high-level language is

that programs written in it are independent of the
external representations of the data structures on

IBM SYSTEMS JOURNAL, VOL 22, NO 4, 1983

which they operate. The mapped conversation verbs
define optional support for data mapping opera-
tions, similar in concept to the familiar formatted
1/0 defined in languages such as FORTRAN and
PL/I. When this option is being used, a map name is
sent with the transmitted data so that the receiving
map support can understand the format of the
data.

The set of mapped conversation verbs closely paral-
lels the basic conversation sets and includes the
following: MC_SEND_DATA, MC_RECEIVE_
AND_WAIT, MC_PREPARE_TO_RECEIVE, MC_
FLUSH, MC_SEND_ERROR, MC_CONFIRM, MC_
CONFIRMED, MC_REQUEST_TO_SEND, MC_
ALLOCATE, and MC_DEALLOCATE.

Control functions. Both network application pro-
grams and service transaction programs use the
execution services provided by LUs. As shown in
Figure 11, service transaction programs run on LUs
in the same way as other transaction programs.
They interact with a human operator, or they may
run as a pure programmed operator. Many service
transaction programs affect only the local LU. An
example is the command to display the current set
of active transaction programs.

Other control transactions, especially those that
relate to sessions, can affect other LUs as well as
applications at other LUs. For example, a local
command to prematurely terminate a transaction
that is using a conversation causes the conversation
to be ended abnormally, a state change that must be
transmitted to the partner LU for presentation to the
transaction program that is sharing the conversa-
tion. Or a decision to deactivate one or more of the
sessions shared by two LUs may be made by one LU’s
operator but must be communicated to the other LU.
APPC includes several control operator verbs that
provide LU-to-LU control and coordination, espe-
cially for activation and deactivation of sessions.
This is illustrated in Figure 12.

When a distributed service transaction program
starts at one LU, it creates a conversation to a
partner transaction program in a partner LU. The
two transaction programs then cooperate to perform
the desired control activity. Error recovery logic
handles such situations as operators attempting
conflicting operations at the same time and session
failures that can occur in the middle of a control
transaction. Some of the APPC control operator
verbs are the following:

GRAYET AL. 311

Figure 11 Service transaction programs

INITIALIZE_SESSION_LIMITS determines the lim-
its on the number of parallel sessions per mode
name between two LUs. By agreeing on these limits
in advance, the LUs can activate sessions with the
partner’s predetermined cooperation. This knowl-
edge simplifies recovery from errors that may occur
during attempts to activate sessions, ranging from
mismatched system definitions to network failures.

RESET_SESSION_LIMITS resets to zero the agreed-
upon session limits and also deactivates the sessions
for a given mode name to a partner LU. Options
allow queued requests for conversations to be satis-
fied before the reset is completed.”

ACTIVATE_SESSION activates one or more sessions
for a given mode name.

DEACTIVATE_SESSION deactivates a specific ses-
sion. Unlike RESET_SESSION_LIMITS, it does not
change the session limits.

Control operator transactions are not the only LU-
to-LU control flow in LU 6.2. Various data in the
session activation command are used to reduce the
amount of system definition required for two LUs to
communicate. For example, at the time each session

312 araveT AL

is activated, the LUs agree upon the maximum size
of the packets that they will exchange.™

When the syncpoint functions are used, the LUs
must ensure that compatible recovery logs are
active on each LU, and they must also exchange
resynchronization data after failures of conversa-
tions that were protected by syncpoint. Both of these
activities utilize service transactions distributed
between the partner LUs.

Subsets. The SN4 Format and Protocol Reference
Manual® describes SNA by defining, for example,
with programming language declarations, the for-
mats of messages that flow between network entities
and the programs that generate, manipulate, trans-
late, send, and receive those messages.

The SN4 Transaction Programmer’s Reference
Manual for LU Type 6.2' defines the verbs that
describe the functions being provided by the imple-
menting products. Figure 13 illustrates a functional
definition given in the programmer’s reference
manual. Not all the parameters on ALLOCATE are
shown.

IBM SYSTEMS JOURNAL, VOL 22, NO 4, 1983

Figure 12 Distributed service transaction programs

| l

I
| I
| DISTRIBUTED CONTROL |
|

I
|

|

DISTRIBUTED CPERATING SYSTEM

Although the meta-implementation technique ex-
plicitly and unambiguously defines all possible mes-
sage flows, it does not illustrate which flows prod-
ucts must support (both on the send and receive
sides) and which they may leave out. Furthermore,
while defining the appropriate subsets of support is
clearly the most difficult problem, conveying those
conclusions in a written, unambiguous form is not
simple. Defining supported functions using a pro-
gramming language as noted earlier in the section
on abstraction has the added benefit of providing a
framework within which statements of required
versus optional product support can be discussed.
Each verb or parameter is specified individually as
being in the base support required of all products or
in one or more option sets, for both local and remote
support.' For example, the ALLOCATE verb defined
in Figure 13 is further defined in Figure 14.

The B’s in Figure 14 indicate that support for the
verb or parameter is in the base. The M’s show that

IBM SYSTEMS JOURNAL, VOL 22, NO 4, 1983

support is part of the mapped conversation option
set. The numeral 1 shows that support is part of the
syncpoint option set. The dashes show that returned
parameters are not visible to the remote transaction
program.

The APPC functions, represented as verbs and
parameters, can be viewed in a functional relation-
ship as well as in a subset-control relationship. Some
functions can be used to implement other functions.
This is, some functions are primitives from which
other functions can be implemented. For example,
ALLOCATE is used as part of error recovery for the
syncpoint function. That is, after a session outage,
the LUs run service transaction programs to
exchange resynchronization information. Other
portions of the syncpoint function use session encod-
ings that are not present in the base. In this view, the
base does not provide all primitives necessary to
implement some of the options. To add the sync-
point option, an LU must provide additional pro-

eray T AL. 313

Figure 13 Part of the ALLOCATE verb definition

~SUPPLIED PARAMETERS:

e ﬂME { variable }

gHﬁDE AME vartuble |

P TPN . { vorioble

TYPE (. BHSIC CGNVERSRTION }

‘ { M D_CONVERSATION)
VSYNC LEVEL i ND E 1

CONFIRM }

! SYNCPT }

'RETURNED Paﬁnnsféas'
RESOURCE . (. varoable)
% | HETUHN .CODE 1 variable)

e

gram support below the verb interface. Some option
sets are built entirely on the base. Mapped conver-
sations are an example of this.

The subset control and generic (architecture)
description of functions provided by APPC permit
the design and coding of distributed transaction
programs without regard for the particular products
upon which the individual programs are to be
executed. The subsets required to support each of
the distributed programs are clear to the designer,
as a result of the verbs and parameters used for each
distributed program. The subsets can be used to
determine the set of products needed to support the
required functions. Once these products are select-
ed, the architecturally defined verbs can be trans-
lated in a straightforward manner to the particular
languages supported by each of the products. If the
designer limits himself to using only functions
defined to be in the base, he is assured of the ability
to implement the distributed programs on all LU 6.2
products, including those that may be added to the
network at a later time. Since all optional functions
are grouped into a limited number of option sets and
since a product implementing any function in an
option set must implement all functions in that
option set, connectivity is also ensured between
distributed programs (using a given option set) on
different product implementations of LU 6.2 that
support the option set.

Migration. As the latest release of LU 6, LU 6.2 has
provided for the migration of most LU 6.0 and LU 6.1
application programs without change to the appli-

314 craveT AL

cations.”” The LU 6.1 protocols closely correspond,
from an application’s viewpoint, to a subset of the
mapped conversation verbs. Product publications
should be consulted to determine the exact degree of
compatibility. The LU 6.1 session encodings, on the
other hand, are not an exact subset of the LU 6.2
encodings. The LU 6.1 encodings are not a subset of
the LU 6.2 message encodings.

Concluding remarks

The requirements for interprogram communication
have been shown to lead to Advanced Program-
to-Program Communication (APPC), a shared
resource environment specifically designed to sup-
port SNA’s evolution as a distributed operating
system.

SNA’s design in general and APPC in particular
provide a foundation upon which additional distrib-
uted processing services can be provided by IBM,
other suppliers of hardware and software, and own-
ers of individual networks. One example of such a
service is described in the article “SNA Distribution
Services” in this issue of the IBM Systems Journal.
Another example is Document Interchange Archi-
tecture,® implemented by SCANMASTER, DISPLAY-
WRITER, and DISOSS. Past experience with services
for local operating systems leads us to expect many
more distributed services to come.

Acknowledgments

Many persons have contributed to the architecture
and implementation of SNA. The following were
chiefly responsible for the LU 6.0 and LU 6.1 architec-
ture: Julian Jones, Dave Eade, Pete Lupton, and
Pete Homan from CICS; Ed Cobb and Mike Stewart
from IMS; Pete Hansen from System/38; Jim Gray,
Mike Lerner, and Ron Ramos from Communica-
tion Systems Architecture. The following have been
chiefly responsible for the LU 6.2 architecture: Pete
Homan, John Cole, Phil Mead, Pete Lupton, and
Roger Cath from CICS; Pete Hansen from the DDP
Center in Rochester, Minnesota; Wayne Duquaine
from System/34; John Fetvedt from System/38;
Joel Webb from Series 1; Lynne Brooks from the
ISC Project Office in Kingston, New York; Ed Cobb
from IMS, Bob Nelson from Austin, Texas; Jim
Gray, Mike Lerner, Mark Pozefsky, Ray Bird,
Marsha Ferree, John Wilder, and Joe Austin from
Communication Systems Architecture. Invaluable
management coordination and encouragement have

IBM SYSTEMS JOURNAL, VOL 22, NO 4, 1983

Figure 14 ALLOCATE verb base and options definition

VERB AND PRRAMETER

LOCAL SUPPORT

REMBTE SUPPORT

ALLOCATE
LU_NAME
MODE_NAME
TPN
TYPE (BASIC_CONVERSATION)
TYPE (MAPPED_CONVERSATION]
SYNC_LEVEL [NONE)
SYNC_LEVEL (CONFIRM)
SYNC _LEVEL (SYNCPT)
RESOURCE
RETURN_CODE

O WWw I

T® wwomoom
4

—

1
1

been provided by Bob Sundstrom, Terry Rogers,
Tony McNeill, Diana Froelich, Robert Lee, Ken
Coleman, Pete Hansen, Bob Chappuis, Ed Sussen-
guth, John Broughton, John Rood, and Nick Tem-
ple.

Cited references and notes

1.

10.

11.

12.

Systems Network Architecture: Transaction Programmer’s
Reference Manual for LU Type 6.2, GC30-3084, IBM
Corporation; available through IBM branch offices.

. An Introduction to Advanced Program-to-Program Com-

munication, GG24-1584, IBM Corporation; available
through IBM branch offices.

. Systems Network Architecture: Format and Protocol Ref-

erence Manual: Architecture Logic, SC30-3112, 1BM Cor-
poration; available through IBM branch offices.

. Systems Network Architecture: Sessions Between Logical

Units, GC20-1868, IBM Corporation; available through
IBM branch offices.

. Systems Network Architecture: Introduction to Sessions

Between Logical Units, GC20-1869, IBM Corporation;
available through IBM branch offices.

. The Office Information Architectures: Concepts, GC23-

0765, IBM Corporation; available through IBM branch
offices.

. Systems Network Architecture: Concepts and Products,

GC30-3072, IBM Corporation; available through IBM
branch offices.

. Systems Network Architecture: Technical Overview, GC30-

3073, IBM Corporation; available through IBM branch
offices.

. J. P. Gray and T. B. McNeill, “SNA multiple-system

networking,” IBM Systems Journal 18, No. 2, 263-297
(1979). This paper focuses on SNA’s network services, as
distinct from its operating system services.

D. P. Pozefsky and F. D. Smith, “A meta-implementation
for Systems Network Architecture,” IEEE Transactions on
Communications COM-30, No. 6, 13481355 (1982).

G. D. Schultz, D. B. Rose, C. H. West, and J. P. Gray,
“Executable description and validation of SNA,” IEEE
Transactions on Communications COM-28, No. 4, 661~
677 (1980).

J. P. Gray, “SNA operating system services to support
distributed processing,” Proceedings of the 1982 IEEE

iBM SYSTEMS JOURNAL, VOL 22, NO 4, 1983

14.

15.

16.

18.

19.

20.

21.

22.

23.

International Large Scale Systems Symposium, 161-165
(1982). 1EEE order number 82CH1741-8; available through
IEEE Service Center, 445 Hoes Lane, Piscataway, NJ
08854.

. T. Schick and R. F. Brockish, “The Document Interchange

Architecture: A member of a family of architectures in the
SNA environment,” IBM Systems Journal 21, No. 2,
220-244 (1982).

R. J. Sundstrom and G. D. Schultz, “SNA’s first six years:
1974-1980,” Proceedings of the Fifth International Con-
ference on Computer Communication, Atlanta, Georgia,
27-30 October 1980, 578585 (1980).

R. C. Dixon, N. C. Strole, and J. D. Markov, “A token-ring
network for local data communications,” IBM Systems
Journal 22, No. 1-2, 4762 (1983).

J. A. Saltzer, “Why a ring?” Proceedings 7th Data Commu-
nications Symposium, 211-217 (1981).

. From an abstract point of view, a network is merely a set of

nodes and edges connecting them. One can view an installed
data communications network at several different levels of
abstraction. If, for example, the abstract nodes are physical
products and the edges are cables and communication lines,
a physical network view is obtained. If the abstract nodes are
LUs and the edges are sessions, a logical network view is
obtained. If the abstract nodes are application programs and
the edges are conversations (as discussed later in this paper),
a distributed application network view is obtained.

SNA supports several local communication facilities today,
including the SDLC loop on the IBM 8100,' the IBM 4331
systems, and up to 3-megabyte-per-second speeds between
host processors running VTAM? connected with the IBM
3088.

IBM 8100 Information System Communication and Loop
Description, GA27-2883, IBM Corporation; available
through IBM branch offices.

ACF/VTAM General Information: Introduction, GC27-
0462, IBM Corporation; available through IBM branch
offices.

IBM 3088 Multisystem Channel Communication Unit
Product Description Manual, GA22-7081, I1BM Corpora-
tion; available through IBM branch offices. Up to eight
processors can be fully interconnected by one IBM 3088.
The packets in SNA are called Path Information Units
(PIUs).

In addition to LUs, SNA defines Physical Units (PUs) and
System Services Control Points (SSCPs) as senders and

araY ET AL 315

24.

25.
26.

27.

28.

29.

30.

31

32.

33.

34.

3s.

36.

37.

38.

39.

receivers of messages. For more information, consult Refer-
ences 3,7, 8,and 9.

The SSCPs in the network cooperatively provide an
LUNAME-t0-LU address directory and other related ses-
sion services for use by LUs when sessions are being
activated and deactivated. For details see References 3, 8,
and 9.

G. D. Schultz first applied the distributed operating system
paradigm to SNA in conversations during 1973.

P. H. Enslow, “What is a ‘distributed’ data processing
system?,” Computer 11, No. 1, 13-21 (January 1978).

R. Eckhouse, J. Stankovic, and A. van Dam, “An overview
of two workshops on distributed processing,” Computer 11,
No. 1,22-26 (Januvary 1978).

H. C. Forsdick, R. E. Schantz, and R. H. Thomas, “Operat-
ing systems for computer networks,” Computer 11, No. 1,
48-57 (Janunary 1978).

R. W. Watson and J. G. Fletcher, “An architecture for
support of network operating system services,” Computer
Networks 4, 33—-49 (1980).

J. Mitchell and J. Dion, “A comparison of two network-
based file servers,” Proceedings of the Eighth Symposium
on Operating System Principles, SIGOPS 15, No. 5, 45-46
(December 1981).

R. Rashid and G. Robertson, “Accent: A communication
oriented network operating system kernel,” Proceedings of
the Eighth Symposium on Operating System Principles,
SIGOPS 15, No. 5, 64-75 (December 1981).

A. Birrell, R. Levin, R. Needham, and M. Schroeder,
“Grapevine: An exercise in distributed computing,” Pro-
ceedings of the Eighth Symposium on Operating System
Principles, SIGOPS 15, No. 5, 178-179 (December 1981).

R. A. Finkel, “Issues for distributed operating systems,”
Proceedings of INFOCON 82, 204-205 (1982).

Whether a program is a process or merely a portion of a
process depends on what is considered to be the machine that
provides instruction interpretation. For example, CICS/VS
is a single process (task) as far as MVS is concerned. But
CICS application programs are processes (tasks) as far as
CICS is concerned. CICS is a subtasking monitor, and its
applications are interpreted by CICS alone as far as they are
concerned.

Because the bus transfers that are used to access a common
memory can be thought of as small messages, it is possible to
build a distributed shared main memory and make it trans-
parent to application programs. To be useful, however, a
memory bus has to have very large bandwidths and low
delays. This effectively eliminates that approach from con-
sideration as a general-purpose method of interprogram
communication.

Customer Information Control System{Virtual Storage
(CICS/VS), Version I Release 6: General Information,
GC33-0155, IBM Corporation; available through IBM
branch offices. Using the various LU 6 levels, CICS supports
transparent remote access to files, data bases, queues, and
transaction scheduling on other CICS systems.

Distributed Office Support/370 Version 2, GH12-5139,
IBM Corporation; available through IBM branch offices.
DISOSS supports distributed access to a document library,
formatting, printing, and distribution services.

Network Job Entry for JES2, GC23-0100, IBM Corpora-
tion; available through IBM branch offices. NJE provides
network job transmission, output routing, and file transfer
services.

File Transfer Program, GH12-5129, IBM Corporation;
available through IBM branch offices.

316 cravET AL

40.

41.

42.

43.

44,

45.

46.

47.

48.

49,

50.

51.

Distributed Systems Executive Version 2, GH19-6229,
IBM Corporation; available through IBM branch offices.
DSX provides centralized management and control of the
file contents of multiple distributed processors.

IMS/VS General Information Manual, GH20-1260, IBM
Corporation; available through IBM branch offices. IMS/
DC provides message queuing, delivery, routing, transaction
scheduling, and formatting services for centralized and
distributed configurations.

System/38 Data Communication Programmers Guide,
SC21-7825, IBM Corporation; available through IBM
branch offices. System/38 provides transaction scheduling
and formatting services for centralized and decentralized
configurations of System /38 and CICS via LU 6.2.
System/34 Interactive Communication Feature Reference
Manual, SC21-7751, IBM Corporation; available through
IBM branch offices. System/34 ICF provides transparent
transaction initiation between System/34 and System/36
via LU 6.0. It also provides similar support via other LU
types to IMS and CICS.

System/36 Interactive Communication Feature: Reference,
SC21-7910, IBM Corporation; and Guide and Examples,
SC21-7911, IBM Corporation; available through IBM
branch offices. System/36 ICF provides transparent trans-
action initiation between System/34 and System/36 via LU
6.0. It also provides similar support via other LU types to
IMS and CICS.

Distributed Disk File Facility, SC21-7869, IBM Corpora-
tion; available through IBM branch offices. DDFF provides
transparent file access for files contained on System/34 and
System/36.

Many other products provide distributed services for use in
SNA. Consult your IBM representative for additional infor-
mation.

Details of the physical network are not of interest to the LUs,
so long as arbitrary session connectivity is supported. SNA
architecture layers are defined to supply such session con-
nectivity to LUs. In SNA products available at the time this
article was written, arbitrary connectivity was supported for
all pairs of LUs, except when the physical topology would
cause the sessions to flow through a boundary function, as
wounld be the case in NCP/VS.

The architected boundary between an LU and the path
control network® is not at exactly the same place as the
VTAM API used by CICS. Thus, strictly speaking, CICS
and part of VTAM correspond to an SNA LU. However, the
LU function that is in VTAM (transmission control and
parts of LU network services) is a small portion of the total
LU. Therefore, it is correct to think of CICS as the LU and
VTAM as the transport (or transmission subsystem) compo-
nent.

Some product-specific details are exposed across the net-
work when remote management of network nodes is desired.
For example, the load module for a CICS COBOL program
does not run on a System/38. In SNA, these kinds of
differences are handled by applications, such as DSX, that
use the network just like other applications.

Some distributed SNA services are provided by programs
that run on the SSCP or PU NAUs. For example, the
translation of LU name to a network address that is
performed during session initiation is a distributed service
running on SSCP(s).

The canonical (or architectural) description given here does
not necessarily correspond to implementation details. For
example, that which the architecture describes as several
programs running on several LUs might be implemented as

IBM SYSTEMS JOURNAL, VOL 22, NO 4, 1983

52,

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

a single monolithic program. This is commonly done to a
greater or lesser degree in such SNA terminal products as
the IBM 3274 or IBM 525]. In products that support
application programs, the SNA notion of an LU is imple-
mented as a portion (or subsystem) of a native operating
system. The SNA limb is grafted onto a native trunk when
viewed from the perspective of the local operating system,
and the local limb is grafted onto the SNA trunk when
viewed from the perspective of the network.

The first SNA products were the IBM 3600 banking system,
NCP release 3, and VTAM release 1. These were shipped in
1974.

The bracket protocol used for conversations is defined in
Reference 3.

The contention winner status is on a per-session basis. When
parallel sessions exist between two LUs, each LU is gener-
ally the contention winner on some number of the sessions,
thereby permitting that LU always to be guaranteed access
to some number of sessions, even though the partner LU also
wants to use the session. The bidding request used by the
contention loser LU is encoded as bits in the request header:
BBI set to B ‘1” either on FM data or on the LUSTAT DFC
command. The BID command used with other LU types is
not used with LU 6.2.

An LU can support more than one LU session type. CICS/
VS, for example, supports several LU 0 protocols as well as
LU, LU2,LU3, LU4,LU6.1,and LU 6.2.

Through use, some LU 0 protocols have become de facto
architecture. The LU O protocol into which VTAM maps
non-SNA IBM 3270 terminals is an example.”
ACF/VTAM Version 2 Programming, SC27-0611, IBM
Corporation; available through IBM branch offices.

An Introduction to the IBM 3270 Information Display
System, GA27-2739, IBM Corporation; available through
IBM branch offices.

At the time this paper was being written, support for LU 6.2
had been announced by CICS/VS, System/38, SCAN-
MASTER, and DISPLAYWRITER.

W. J. Doherty and R. P. Kelisky, “Managing VM/CMS
systems for user effectiveness,” /BM Systems Journal 18,
No. 1,143-163 (1979). Pages 154—155 of this paper discuss
the improved productivity that results from faster response
times.

The rationale for parallel sessions is given in detail in
Reference 9.

The canonical implementation is also referred to as a meta-
implementation. Although the SNA meta-implementa-
tion™'*!" has many of the properties of a real implementa-
tion, including the ability to be executed, it omits many
features needed by actual implementations. Such features
include interfaces to actual hardware (to attach real commu-
nication lines), to real operators (no library of operator
screens is included), and to interfaces to real programs (only
the FAPL language is supported). Cycle usage and storage
occupancy are not given the same attention that they receive
in products. It is the omissions that make the model node
useful. The resulting small size of the model serves to
highlight the SNA node-to-node protocols.

Products are not required to use the syntax defined in
Reference 1. They are required to provide compatible
semantics. That is, there must be a mapping from the
architected functions to the product-supplied functions. For
example, the ALLOCATE verb is implemented using two
statements in both CICS and System/38. CICS uses a
combination of ALLOCATE and CONNECT PROCESS,
whereas System/38 uses the combination of OPEN and

1BM SYSTEMS JOURNAL, VOL 22, NO 4, 1983

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

EVOKE. Since the function provided by the two combina-
tions matches that of the architected ALLOCATE, both
products satisfy the architecture.

Other conversation verbs that are not discussed in the text
are defined in Reference 1. The omitted verbs deal with
details of the model or with LU 6.2 functions that are of
lesser importance.

Messages are encoded as chains in the session flows. Thus
the negative response created by SEND_ERROR causes
the usual SNA action of purging to end of chain.

Products may provide a level of indirection for some parame-
ters. For example, CICS/VS provides SYSID, which maps
indirectly to the target LU_NAME.

The MODENAME supplied by the transaction program
determines the session level characteristics, such as pacing
count, maximum RU size, and session cryptographic sup-
port. MODENAME also determines the COSNAME,
which determines the class of service to be supplied to the
session by SNA’s path control.”

It would have becn possible to make the target of the
conversation an already-running process or task. This was
not done because it would have required that a process-id be
created and distributed to users in need of its value. The
resulting overhead would not have been compensated by any
increase in functional capability. Further, the new-process
model is more lenient for implementation because it is easy
to simulate a new process with an existing one, but not
conversely.

R. Obermarck, “Distributed deadlock detection algorithm,”
ACM Transactions on Database Systems 7, No. 2, 187-208
(June 1982).

LU 6.2 defines optional verbs to allow a transaction program
to wait for the completion of one of a number of RECEIVEs
or other events.

SNA'’s transport and session protocols taken together can be
implemented very efficiently. Path lengths between 1 and 2
instructions per byte for sending or receiving can be achieved
on small and large machines with packet sizes in the range of
256 to 1024 bytes and messages sizes of 1024 bytes and
greater. One reason this efficiency is possible is that, because
path control does not discard packets to achieve congestion
control, data link control’s error recovery brings the failure
ratec of sessions down to a low value. End-to-end error
recovery can then be performed by transaction program
algorithms that are needed anyway to handle node failures
or device recovery. For example, a “resume printing at page
n” command might be needed to handle paper outages. The
same command can also be used for session outages if they
are infrequent. This contrasts with some other network
designs that require end-to-end packet retransmission to
recover from relatively frequent packet losses that are cre-
ated by their own routing and flow control algorithms.

B. C. Housel and C. J. Scopinich, “SNA Distribution
Services,” IBM Systems Journal 22, No. 4, 319-343 (1983,
this issue).

Compare the SBI command used in LU 6.1. Because the LU
6.1 protocol for termination of sessions is localized to each
session, an UNBIND is often foliowed by a new BIND from
the other LU as an attempted error recovery. Only when this
fails is the session termination complete.

The size referred to is the maximum RU size established by
the BIND exchange.

LU 6.0 was shipped in CICS/VS 1.4 in 1978. LU 6.1 was
shipped in CICS/VS 1.5 in 1980 and in IMS/VS 1.1.6 in
1981. A version of LU 6.0, available in ICF for use between

Gray ET AL 317

System/34s since 1980, is now available on System/36. LU
6.1 is defined in Reference 4 and the System/34 version is
defined in Reference 43.

Reprint Order No. G321-5197.

James P. Gray /BM Communication Products Division, P. O.
Box 12275, Research Triangle Park, North Carolina 27709. Dr.
Gray joined IBM in 1970 as a research staff member in a
research group in Raleigh, North Carolina. He worked on
processor architecture in 1970 and 1971, then on network
architecture. He continued this work in the Communication
Systems Architecture Department after 1972. Dr. Gray has
contributed to the definition of several portions of SNA, most
recently as a member of the group responsibie for defining LU
6.2. He has been the technical assistant to the chairman of the
SNA architectural maintenance board since its inception in
1973. Dr. Gray earned a B.E. in electrical engineering from Yale
College, New Haven, Connecticut, in 1965 and a Ph.D. in
communication theory from the Yale Department of Engineer-
ing and Applied Science in 1970.

Peter J. Hansen IBM Information Systems and Communica-
tion Group, 44 South Broadway, White Plains, New York
10601. Mr. Hansen joined IBM in 1969 in Madison, Wisconsin,
as a systems engineer. Since then, he has held technical and
managerial positions in several data base and communication-
oriented advanced technology projects. In addition to participat-
ing in the early design efforts for the IBM 8100 and System/38,
he was a member of the group responsible for the definition of
LU 6.2. He is currently the manager of processor architecture.
Mr. Hansen received his B.S. and M.S. degrees in electrical
engineering from the University of Wisconsin, Madison.

Pete Homan Tandem Computers Incorporated, 19333 Valico
Parkway, Cupertino, California 95014. Mr. Homan joined IBM
at the IBM United Kingdom Laboratories Limited, Winchester,
Hampshire, England, in 1970. He worked initially on the PL/1
Language and the Virtual Telecommunications Access Method
(VTAM). From 1974 to 1979 he was in the development group
responsible for the CICS transaction processing system, working
on the design and implementation of terminal support and
distributed transaction processing function in SNA networks.
From 1979 to 1981, he worked on the staff of the Director of
Communications Programming and was a member of the group
responsible for the definition of LU 6.2, He is currently pursuing
an interest in fault-tolerant transaction processing systems. Mr.
Homan received a B.Sc. in chemistry in 1969 and an M.Sc. in
computer science in 1970 from the University of Birmingham,
England.

Michael A. Lerner IBM Communication Products Division,
P. O. Box 12275, Research Triangle Park, North Carolina
27709. Mr. Lerner is currently a senior engineer manager
responsible for advanced network architecture. He joined IBM in
1967 as a systems engineer and in that position was involved in
installing both the Airline Control Program and a CICS system.
In 1973, Mr. Lerner moved to the Systems Development Division
in Kingston, New York, where he became involved in the
development of SNA, both in the product development area
(IBM 3790) and as an architect in the Communication Systems
Architecture organization. He was a member of the group
responsible for defining LU 6.2. Mr. Lerner received a B.S. in
pharmacy from Columbia University, New York City, in 1963.

318 eraveT AL

Mark Pozefsky /IBM Communication Products Division, P. O.
Box 12275, Research Triangle Park, North Carolina 27709.
Since joining IBM in 1979, Dr. Pozefsky has worked on Systems
Network Architecture (SNA), first on the SNA 4.2 path control
enhancements (explicit and virtual routing) and then on the
definition of LU 6.2. He received an Sc.B. in applied mathemat-
ics from Brown University, Providence, Rhode Island, in 1970
and the Ph.D. in computer science from the University of North
Carolina at Chapel Hill in 1977.

IBM SYSTEMS JOURNAL, VOL 22, NO 4, 1983

