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Systems Network  Architecture (SNA) defines the 
behavior of networks of heterogeneous, loosely 
coupled processors. This paper  describes the  de- 
velopment of program-to-program communication 
services in SNA and  introduces Advanced Program- 
to-Program Communication (APPC), the culmination 
of this development. It also discusses the use of 
APPC  in the construction of distributed services 
and shows that SNA with APPC and  other SNA ser- 
vices can  be thought of as a distributed  operating 
system. 

S ystems  Network  Architecture (SNA) was 
announced by IBM in 1974. Since  then, the 

original  set of functions, which supported  distribu- 
tion of data processing between applications in a 
single central processor and  multiple  distributed 
cluster  controllers,  has been enhanced by the addi- 
tion of many new functions  and new products.  This 
paper  assumes some familiarity with SNA. (See 
References 1 - 14.) 

The first section of this  paper reviews growth  trends 
in networks and  distributed processing. The second 
section briefly reviews the overall design of SNA. 
After  distinguishing between the physical network 
of nodes connected by data links and  the network of 
Logical Units (LUS) connected by sessions, this 
review emphasizes  the  properties of LUS, sessions, 
and  application  programs. 

The  third section reviews applications within net- 
works and discusses the requirements for interpro- 
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gram communication that these  applications place 
upon the  architecture.  The last section introduces 
Advanced  Program-to-Program  Communication 
(APPC) and shows how APPC meets  many of these 
requirements. 

Growth trends 

The rapid improvements in computer  and  terminal 
function together with declining costs suggest con- 
tinued  large  growth in applications  during the rest 
of the 1980s. The number of installed worksta- 
tions-many of them intelligent-may  reach 
twenty million during the next five years. Because 
they are easy to develop, small  (independent)  appli- 
cations for these  workstations are expected to be 
available in wide variety.  Applications that  can 
exist only in interaction with other  applications  and 
remote data will  be more difficult to develop and so 
will be  available in less variety. 

An important  growth  area is local area net- 
Relatively inexpensive direct connections 

are featured by local area networks, along with low 
delay  and high bandwidth. The SNA design, which 
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keeps the logical network” of LUS and sessions 
independent of physical configurations, allows low 
delay, high bandwidth, as well as inexpensive con- 
nections and  any  other physical network properties 
to be exploited if they are present. The network 
owner can configure the physical network to meet 
cost, performance, installability,  maintainability, 
and  security In this  regard, SNA 
is similar  to  operating systems that  are not limited 

Lessons  from  an  earlier  period of 
growth  in the computer  industry  can 

be applied to the  current  rapid 
growth in distributed  processing. 

to  a specific machine configuration but which can 
operate over a wide range of processor, storage,  and 
device configurations. 

Lessons from an earlier period of growth in the 
computer  industry can be applied to  the  current 
rapid growth in distributed processing. When 
machines became  large  and reliable enough to 
support  multiprogrammed  operating systems, the 
importance of maintaining  compatibility between 
different applications and different computer instal- 
lations quickly became  apparent.  While some appli- 
cations  and some data were isolated, many pro- 
grams  and  data were interrelated.  Installations 
adopted  a limited number of languages  and  put 
their data in shared files or data bases. Utility 
programs (e.g., sort)  and  other system services (e.g., 
spooling supervisors) were adopted in preference to 
application-specific programs. The savings that 
resulted were primarily in the most scarce of 
resources: skilled people. 

The same forces are still at  work; benefits will 
accrue from limiting the  number of languages used 
in a network, from providing shared,  secure access 
to the  data around  the network, and from adopting 
network utilities  and services in preference to appli- 
cation-specific programs. The development and 
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wide use of network utilities, the advent of intelli- 
gent workstations and  small processors dependent 
on servers, and  distributed applications, in general, 
require  a set of architecturally defined interpro- 
gram communication primitives as  a foundation. 

Systems Network Architecture (SNA) 

LUs and  data  transport. An SNA network consists of 
nodes connected by data links. Path control ele- 
ments in each of these nodes route packets2* from 
resource managers-called Logical Units (LUS)- 
along logical connections-called sessions-to 
their destination LUS.~’ The collection of all  path 
control elements and  the data link control elements 
that interconnect  them  constitute  a  transport net- 
work. Nodes  can be connected by multiple links and 
contain  a  variable  number of LUS. 

An LU initiates  a session with a  partner by providing 
the partner’s Lu name.  This LU name is transformed 
into an address placed into  a packet header follow- 
ing access to  a local or remote  directory containing 
name-to-address  translation^.^^ Actual execution- 
time  routing uses the addresses carried in the packet 
headers.  A  name that characterizes  the mode of 
service to be provided by the session (e.g., “fast,” 
“bulk,”  “secure”) is also specified at  session initia- 
tion. 

A distributed  operating  system. An SNA network can 
be viewed from many perspectives. One of the more 
fruitful ones is to view it as a  distributed  operating 
~ y s t e m , ~ ~ - ’ ~  where the network is decomposed into 
programs or processes34 running on a  shared (dis- 
tributed)  operating system and connected by suit- 
able  interprogram communication. Of course, each 
program  actually  runs on a local operating system. 
Figure 1 illustrates two programs using their  shared 
operating system to help them  communicate. 

Figure 2 illustrates two programs using SNA as their 
shared,  distributed  operating system to commu- 
nicate. When the  operating system is distributed, 
interprogram communication has  to use message 
exchanges rather  than  shared  storage.” Inasmuch 
as  remote  program communication is restricted to 
message exchange mechanisms, they should be  used 
with local program partners  to provide local/remote 
transparency.  This means that, in most cases, com- 
munication between programs has  the flavor of 
access to such 1/0 objects as files, rather  than  the 
flavor of access to data  structures mapped into local 
memory. 



Figure 1 Programs communicate with the aid of an operating system 
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The effects of inhomogeneity. We often conceive of upgrades,  and  software  upgrades  all being inter- 
an  operating system as a designed structure,  similar leaved with application processing. They are less 
to a  car or a  painting.  This conception, however, designed than evolved. A distributed  operating sys- 
becomes less and less true as  the size of the tem, being larger, is yet more organic, with many 
computer system being managed by the  operating elements at different (but  compatible) levels of 
system increases. Most large systems are in a con- function. Even  in the simplest case of a network of 
tinual state of change, with repairs,  hardware identical nodes with identical software,  repair of 
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Figure 3 A network of sessions between LUs 
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software errors introduces inhomogeneity. This is 
the  case because the network cannot  (realistically) 
be changed instantaneously. Nor can  a typical large 
network be shut down enough to  change every node 
at  the same time. It follows that network protocols 
must be capable of tolerating growth and  change. 

Similarly, network applications must also be capa- 
ble of tolerating growth and  anticipating  change. 
Whereas  the two halves of a  distributed application 
may at first run on nodes  known to  the initial 
designers, one or the  other half is likely to run on a 
different type of node in the  future.  Further, ser- 
vices  (e.g.,  file access) that were local may be 
distributed  later. All of this  creates  a  requirement 
for a common set of remote services for application 
programs. This  can be met in either of two ways: (1) 
all the nodes  over  which applications are to be 
distributed  can be within the  same product family 
(e.g., all might be ClCS/VS, although not all at  the 
same release and  maintenance levels), or (2) the 
services can be provided by common, architectur- 
ally defined protocols. These two solutions are not 
mutually exclusive. A network can  contain  applica- 
tions that  are designed to take advantage of either 
or both of these types of distributed services. 

The ability  to  distribute applications brings with it 
many design problems (e.g., how to divide a given 
function, how to divide data, how to recover from 

partial  failures), but this  ability also brings new 
opportunities. The partitioning that is required to 
distribute functions creates new and  durable  inter- 
faces at which growth and evolution can occur. 
When functions are divided along correct lines, the 
pieces become building blocks to be  used in future 
applications. 

The development of distributed applications is 
expensive, a  fact that creates  a  demand for trans- 
parently distributed services (e.g., file access) and 
for network utilities (e.g., file transfer). SNA prod- 
ucts have answered this  demand with a variety of 
distributed services and utilities. For examples, see 
References 36-46. 

LUs as local operating systems. We now hide the 
transport network and  concentrate on the network 
of LUS and sessions  shown  in Figure 3.4' Just  as 
adjacent nodes can be connected by multiple links, 
LUS can be connected by multiple sessions, called 
parallel sessions. The LUS are more than merely 
ports for message traffic: each LU provides operat- 
ing system services (including interprogram com- 
munication)  to one or more local programs. That is, 
each program sees an Lu as being the local operat- 
ing system on which it  runs. The result is that each 
program sees the network of loosely coupled LUS 
connected by sessions as  a  distributed  operating 
system. 
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Figure 4 The mapping of products into LUs 
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Figure 4 illustrates the relationship of LUs to prod- 
ucts. In this  example, the LUS are both CICS/VS, one 
running on MVS and the  other on VSE. In both cases, 
VTAM implements the local portion of the  transport 
network.48 Other portions of the physical network, 
such as IBM 3725 multiplexors and modems, are 
lumped in with LINE(S) in the figure. Notice  that 
there  are multiple levels of interpretation in this 
example: the  hardware  interprets  the microcode, 
which interprets MVS (or VSE), which interprets 
VTAM, which interprets CICS, which interprets  the 
application  program.  Sometimes  one  interpreter 
completely hides a lower one. MVS does not see the 
hardware;  it sees only the  System/370 instruction 
set (ignoring diagnostic  instructions). On the  other 
hand, VTAM sees both MVS services and  the Sys- 
tem/370 instruction  set. CICS might be described as 
running on MVS and using VTAM services, thinking 
of VTAM as  an extension of MVS (which, as a 
privileged subsystem,  it  is). Not only alternative 
descriptions  but also many varied implementations 
are possible. For example, the  System/38 system 
structure includes the  equivalent of VTAM under the 
machine  interface.  These  variations,  although  inter- 
esting and  important at  each node in the network, 
are not exposed to other nodes in the network.49 This 
makes it possible to define a single architecture 
rather  than  a  unique  interface between every pair of 
products. 

LUs manage  resources. Each LU makes a  set of 
resources available to its  programs. The exact  set is 
product  and configuration dependent; examples are 
the following: processor cycles, main  storage, files 
on disk or tape, such 1/0 devices as keyboards or 
displays, and such abstract resources as sessions, 
queues, or data base  records.  Some of these 
resources are local to  a  program; that is, they are 
attached  to  the  same Lu as  the program.  Other 
resources are remote; that is, they are attached  to 
other LUS. (The LUS might be within the  same 
physical node.) Sessions are local resources at each 
LU, but  they are  shared between LUS. Most of the 
distributed  utility servicesSo and  all the applications 
provided by an SNA network are provided by pro- 
grams  that run on Lus and use sessions to commu- 
nicate  among themselves. Terminals are not special 
in this  regard. Fixed-function terminals have built- 
in programs that define the terminal's behavior." 

Resource  allocation is a  central  function of the LUs. 
Programs  can  ask the LU for access to  a resource. 
The LU then schedules access to  its wholly-owned 
resources (such as files), coordinates the allocation 
of shared resources (such as sessions), and  creates 
new copies of abstract resources, including sessions, 
when necessary. The  larger, higher-function LUS 
may also provide resource  allocation  deadlock 
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detection, resource change  commitment  control, 
resource access security,  and  resource  formatting 
(or presentation) services to  their  programs. 

Sessions and  conversations. The sessions carrying 
messages between LUS or programs  running atop 
LUS are resources shared between those LUS, as 
shown in Figure 5. The first SNA products5’ used 
sessions between LUS to connect  remote  application 
programs to centralized  application  programs.  Each 
session was dedicated  to the use of a single program 
at each LU. Very quickly, however, the number of 
programs associated with an LU grew.  Furthermore, 
any-to-any connectivity among the programs in 
each Lu became  the  norm.  Hence, the concept of 
the conversation was developed. A conversation is a 
serial  time slice of a session.53 This extension recog- 
nizes the  large  differential cost between activating  a 
new session, which might involve many network 
components and  the execution of many  instructions, 
and  activating  a new conversation by using an 
existing, but not busy, session. 

The resulting use of conversations has become 
recognizably that of transactions. Hence,  applica- 
tion programs  running on LUS are called transaction 
programs. Figure 6 illustrates the  sharing of a 
conversation between two programs. 

action programs for use as conversations. When 
both LUS elect to allocate the  same session resource, 
contention can  occur.  This condition is resolved by 
making one end of the session the contention winner 
and  the  other end the contention loser.54 The Lu that 
loses an allocation attempt tries  again on another 
session, or if none is free,  it  activates  an  additional 
session. If this is not possible, the L u  queues the 
request for a conversation until it can be satisfied. 
When  a conversation ends, the session  on  which it 
was carried becomes free for reallocation. 

LU types. In  order  to provide useful communication 
within a  distributed  operating  system,  the local 
operating systems ( L ~ s )  have to share  a common set 
of protocols. These protocols have the following two 
functions: (1) activating  a session between two Lus, 
which is analogous to establishing  a telephone con- 
nection between two offices, and  (2) using the 
session to  communicate, which is analogous  to the 
dialogue that two persons exchange over a telephone 
connection. Just  as  a  caller establishes the language 
of the call when he says “hello” rather  than “buenos 
dias,”  a protocol called an LU session type (some- 
times “LU session type X” is shortened  to “Lu x”)55 
is established at  the time  a session is created.  The 
LU types fall  into  three  groups: 

Two LUS connected by one or more sessions share Not  specijed by SNA.  LU 0 is defined by imple- 
responsibility in the allocation of sessions to  trans- mentations. A number of products have defined 

Figure 5 Sessions are resources shared between LUs 
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Figure 6 Transaction programs share conversations 
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their own program-to-program protocols. (See 
References 36,  38, and 56.) 
Terminals. The behavior of the  terminal as seen 
by the host program is architecturally defined so 
that multiple terminal  implementations  can be 
supported at  lower implementation costs to  the 
host programs than would result from individual- 
ized support. 
LU 1. Applications use LU 1 to access such nondis- 
play I/O devices as  printers  and  keyboard-printer 
terminals. The terminal is modeled as built-in 
transaction  programs with local resources that 
can include keyboards, console printer, line print- 
ers,  card punches, card  readers,  diskettes,  and 
hard disks. 
LU 2. Applications use LU 2 to access display 
terminals with the IBM 3270 data  stream.57 
LU 3. Applications use LU 3 to access printers with 
a subset of the IBM 3270 data stream.58 
LU 4. Applications use LU 4 to access terminals 
that  are similar  to LU I terminals. 
LU 7. Applications use LU I to access display 
terminals with the IBM 5250 data  stream. 
Program-to-program. LU 6 provides SNA-defined 
interprogram communication protocols and is the 
base on which the IBM distributed  operating sys- 
tem function is evolving. 

The definitions of terminal LU types emphasize the 
terminal end of the session, with few constraints 
placed on the host end of the session. This allows 

optimizations of host programming support for 
these LU types. Sometimes  this  leads  to  the  same 
functions being achieved by different means. For 
example, no constraints are defined on the mapping 
of terminal  operator dialog-to-session protocols. 
Thus, one product might use several session-level 
conversations to accomplish the  same  thing  another 
product does within a single conversation. Whereas 
the resulting dialog can look the  same  to  an  operator 
a t  a  display  terminal,  the  detailed message 
sequences exchanged over the session can be quite 
different. Terminal protocols and applications at 
the host often take  advantage of the decision- 
making capability of the  human  operator who is 
thought  to be present at the  terminal. As a  result, 
any attempt to use a  terminal LU type as  an 
interface between application programs has to deal 
not only with the problems created by the defini- 
tional emphasis on the  terminal  end of the session 
but also with the  additional burden of simulating  a 
human  operator.  Human flexibility, especially in 
error recovery situations, is difficult to  imitate in 
programs. 

To illustrate  the specialized nature of terminal LU 
types, consider LU 2. This LU type  has restrictive 
assumptions built into its error recovery protocols. 
The host LU is assumed to be responsible for all 
error recovery algorithms.  Restrictive assumptions 
are also built into its resource naming. The  termi- 
nal's LU name is implicitly the  name of the display. 

304 GRAY ET AL IBM SYSTEMS JOURNAL, VOL 22. NO 4, 1983 



Such assumptions are also built into its security 
facilities. An operator at  the  terminal LU is assumed 
to be able  to  enter log-on information on the display. 
Similarly, such assumptions are built into  output 
scheduling algorithms that  are used by hosts. Out- 
put is limited to  one display screen’s worth of data 
so as not to overrun the operator’s ability  to read the 
display. Restrictive assumptions are also built  into 
its IBM 3270 data ~ t r e a m . ~ ’ ~ *  

LU type 6 provides a  general-purpose  interprogram 
protocol that avoids the  limitations of terminal LU 
types. Its latest release, LU 1 j . 2 , ~ ~  is also referred  to  as 
Advanced Program-to-Program  Communication 
(APPC). 

Interprogram communication requirements 

Interprogram communication protocols are used by 
a wide variety of applications and services. Here we 
discuss the more important of these  requirements. 

Abstraction. Programs using an  interprogram com- 
munication service should not  need to be aware of 
the  details of  how the service is implemented. This is 
a widely recognized principle of modularity-or 
layering-that has been applied in SNA from the 
beginning. 

Semantic  completeness. The primitives made avail- 
able  to  the  communicating  programs should be 
complete in the sense of leaving out no needed 
functions. To give an obvious example, both the 
sending and receiving of data need to be supported 
functions. Less trivial are  the following functions: 

Notification of conversation failure. 
Selection of transport  characteristics. 
Delay. Interactive applications require very short 
response times, hence low transport delays, for 
best productivity.60 
Capacity. Batch applications require sufficient 
capacities to meet production schedules. 
Security. Sensitive data must be protected from 
unauthorized access or modification while being 
transported between programs. 
Cost. Some applications, especially transport of 
bulk data, must use the lowest-cost transport in 
order to be justified. 
For general usefulness, the protocols must be 
adequate for general-purpose application to gen- 
eral-purpose  application. Fixed-function termi- 
nals are predefined applications running on (pos- 
sibly) a  subset of a general-purpose processor. 
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To  support multiple users, two adjacent LUS may 
have to support several concurrent conversations. 
This implies that multiplexing, as exemplified by 
parallel sessions, is required.6’ 
For security, access to such secure resources as 
data bases must be controllable. 

To encourage  wide  use,  the 
protocols should be  easily 

incorporated  into  high-level 
languages. 

Commitment control requires that  the LU must 
support checkpointing for distributed applications 
when desired, including resynchronizing after LU 
or session failures. 
Accounting requires that  the communication pro- 
tocols make  transaction identifiers available for 
use in accounting,  tracing,  and activity logging. 

Efficiency. Although ease-of-use is important, espe- 
cially in reducing the cost of developing new appli- 
cations, it is also necessary to provide a highly 
efficient protocol. Session-level exchanges should be 
equal  to or fewer than  the number of invocations of 
the program’s interface  to  the session resource. 

High-level  languages. The communication primi- 
tives have to be available in a wide variety of 
products in basically equivalent semantic forms. To 
encourage wide use, the protocols should be easily 
incorporated into high-level languages. Mapping or 
formatting of the  data  that  are sent  and received 
must be supported. 

Control  functions. Adequate control over the  total 
work load between any pair of LUS should be 
available  to  the controlling operators of the LUs 
involved. For example, if one operator wants to stop 
operation gracefully, the  other  operator  must be 
informed so that one LU is  not reactivating sessions 
as  fast as  the other LU is deactivating  them. 

Subsets. The protocols must be subsettable to allow 
implementation by the smallest products while still 
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supporting function adequate for the  largest ones. 
This subsetting  must be controlled to  ensure  the 
maximum feasible connectivity. In addition  to  a 
base of function required of all  implementations, 
the optional functions must be collected into sets. 
An option set must be implemented totally  or not at  
all. By limiting the  number of option sets,  the 
maximum amount of function is made  available 
between given pairs of implementations. 

Migration. L u  6.2 must  support  application pro- 
grams that use earlier  program-to-program proto- 
cols. 

Defining  Advanced Program-to-Program 
Communication 

The requirements discussed in the preceding sec- 
tions have been met by SNA’S Advanced Program- 
to-Program  Communication  (APPC). We now 
describe APPC and discuss how the APPC design 
meets the  requirements for an interprogram com- 
munication protocol. 

Abstraction. The requirement to provide a high 
degree of abstraction in the definition of the APPC 

protocols had to be met within the context of the 
existing SNA  definition^,^ which are in the  form of a 
canonical implementation of an SNA node.62 This 
implementation model has grown as  the functions 
and scope of SNA have evolved. 

The method of defining the LU 6.2 conversation 
functions is  in terms of programming-language-like 
statements,  called verbs. Documentation with 
verbs, which are completely defined by the proce- 
dural logic that generates session  flows, provides 
significantly greater precision than English prose. 
Figure 7 shows how the verbs define the  interactions 
between transaction  programs  and LUS for conver- 
sation resources. A  set of verbs is referred to as a 
protocol boundary  rather  than as  an application 
program  interface, in order  to distinguish them 
from the functionally similar  interfaces that prod- 
ucts provide for the use of their application pro- 
g r a m ~ . ~ ~  

The presentation services component interprets 
verbs and  can be thought of as including a  subrou- 
tine for each verb. The LU resource manager does 
allocation of conversation resources and assignment 
of conversations to  the sessions, keeping queues of 
free sessions and pending allocation requests. Its 

Figure 7 Programs communicate with the aid of an operating system 
~~ 
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equivalent component in products also  allocates 
local resources in product-specific ways. 

Semantic  completeness. The following verbs that 
define conversations provide a variety of func- 
ti0ns.6~ 

SEND-DATA moves data into  a buffer and  returns 
control to the  transaction  program. The conversa- 
tion resource supports  the sending of arbitrary 
amounts of data  structured  as a series of variable- 
length records delimited by two-byte length fields. 
The  data  are actually  sent on the conversation 
either as a  result of a subsequent verb (e.g., CON- 
FIRM) or when the buffer  is  filled. 

RECEIVE-AND-WAIT returns data  and/or control 
information  to  the  transaction  program.  Once 
issued, the  transaction  program is  in a wait state 
until something arrives on the conversation. 

PREPARE-TO-RECEIVE marks  the  end of a mes- 
sage  and gives up the  right  to send to  the  partner 
program. PREPARE-TO-RECEIVE causes control 
information  to be sent  to  the receiving program  to 
inform it that it  has send control. 

FLUSH causes all buffered data  and control infor- 
mation to be sent. 

REQUEST-TO-SEND asks  the  partner  program for 
the right  to  send.  This  interrupt  capability does not 
require  truly  asynchronous  reporting of the 
REQUEST-TO-SEND. The  interrupt notification 
occurs as a  return code on a verb issued against  the 
conversation. 

SEND-ERROR reports an error in the  data being 
received  by terminating  the incoming 
purging the pieces that  are buffered in the conversa- 
tion, notifying the sending transaction of the  error, 
and reversing the flow so that  the program that 
issued SEND-ERROR obtains send control.  With 
send control, the  transaction  program that issued 
SEND-ERROR can optionally use a data transfer  to 
convey further information about  the  error  and 
trigger whatever error recovery the  transaction pro- 
grams are designed to  support. 

Similarly,  the sending program may detect  an  error 
in its local resources that makes it impossible to 
complete the message it is sending. The sending 
program then issues SEND-ERROR while retaining 
send control,  and the receiving program is notified 
of the  error condition. 
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CONFIRM ends a message and asks the  partner 
program for assurance that no errors have been 
detected in it.  The receiving program  can reply with 
CONFIRMED if it  has not detected  any  errors, or it 
can issue SEND-ERROR. 

ALLOCATE spawns new activity at another LU by 
building a conversation to  a named partner pro- 
gram.  The named partner is placed in execution and 

The  dynamic  allocation of resources 
creates the possibility of resource 

allocation  deadlocks among 
transactions. 

given addressability to  the conversation that  started 
it.  Thus,  the ALLOCATE verb carries several param- 
eters, including the following: 

. Lu-NAME is the name of the LU at which the 
partner program is located.66 
TPN is the Transaction  Program Name of the 
partner program with which the conversation is 
desired. 
MODE-NAME specifies the  type of transportation 
service that the conversation is to provide. For 
example, a SECURE, a BULK, or a LOW-DELAY 
conversation can be requested. The LU uses a 
session with the  appropriate MODE-NAME to 
carry  the  onv versa ti on.^^ 

The  target of the conversation is a newly created 
process or task,6s which means that  the distributed 
processing in the network at any  instant of time 
consists of a  number of independent,  distributed 
transactions, each of which consists of two or more 
transaction  programs connected by conversations. 
Graphs of sample  distributed  transactions are 
shown  in Figure 8.  

The  dynamic allocation of resources creates  the 
possibility of resource allocation deadlocks among 
the  transactions at one LU or among transactions a t  
several LUS. The designers of transactions have to 
consider this problem. For local resource deadlock, 



Figure 8 Two examples of distributed transaction 
programs 

they can either rely upon the deadlock detection 
services that  the LUS may provide, or they  can 
design every transaction  to use the  same order of 
allocation for all resources. Because deadlock detec- 
tion can become complex when trying to detect 
possible deadlocks involving remote  transaction 

distributed deadlocks-if they occur- 
are detected by timers. 

DEALLOCATE ends the conversation. Inasmuch as 
either  partner may issue DEALLOCATE, conversa- 
tions vary from a single short message to many 
exchanges of long or  short messages. For efficiency, 
the FLUSH, CONFIRM, and SYNCPT functions  may 
be combined with deallocation to minimize session 
flows. A conversation could continue indefinitely, 
terminated only by a  failure of an LU or by the 
session that carries  it.  Transaction programs are not 
ended by DEALLOCATE, but continue  until they 
terminate  their own execution, end  abnormally, or 
are terminated by control operator  action. 

SYNCPT (syncpoint)  makes  the  accumulated 
changes to multiple resources permanent. Also 
included in this  function is the  ability to  abort.  That 
is, the application  can choose to roll back to the 
boundary defined by the previous syncpoint verb 
execution. 

Committing  changes  atomically with SYNCPT is an 
optional service within APPC. Additionally, this 
function provides for recovery at  the boundaries 
defined by the syncpoint verbs when connectivity is 
broken. 

Conversations are defined to the syncpoint service 
in each LU at  ALLOCATE time  as  either being 
protected by syncpoint or as being unprotected. In 

the  latter case,  the  transaction programs are them- 
selves responsible for error recovery synchroniza- 
tion. 

The transaction programs have direct control over 
their use of the APPC verbs. Some verbs cannot be 
issued in certain  states. For example, a  program 
cannot issue SEND-DATA when it is not in send 
state.  These restrictions enforce the SNA half- 
duplex and  error notification protocols. Any addi- 
tional protocol features that may be desired are 
created  and enforced by the  transaction programs. 
For example, they might obey the  rule that only the 
program that  starts a conversation may end the 
conversation. 

Efficiency. Conversations are mapped efficiently 
onto sessions. For example, that which the programs 
see as two short messages (perhaps an inquiry and 
its reply) results in two short messages flowing  in 
the network. Figures 9 and 10 are two examples of 
coupled transaction programs that illustrate  the 
efficiency with which verb sequences are mapped 
onto session  flows. These examples have  been sim- 
plified  by omitting some parameters from the verbs. 
Details may be found in Reference 1. 

The verbs in Figure 9 have the following effects: 

1. TP(a) issues ALLOCATE to request a conversation 
with partner  program b. The LU creates an 
allocation request, using information provided  in 
the ALLOCATE verb. The LU places the allocation 
request in the send buffer and  returns control to 
TP(a), with the conversation in the send state. 
Nothing is sent. 

2 .  TP(a) issues SEND-DATA, which causes the LU 
to place the  data in its buffer behind the alloca- 
tion request. The  data  are short enough that 
nothing is sent. 

3.  TP(a) issues DEALLOCATE with TYPE(FLUSH), 
which means that  the deallocation is to be imme- 
diate.  The LU sends the  contents of its buffer 
with a DEALLOCATE indication. The conversa- 
tion is  now completed at TP(a). The session flow, 
consisting of one message, starts TP(b), with the 
conversation in receive state. 

4. TP(b) issues RECEIVE-AND-WAIT and receives 
all the  data. 

5 .  TP(b)  issues another RECEIVE-AND-WAIT and 
receives the DEALLOCATE-FLUSH indication. 
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Fiaure 9 A one-wav conversation 

CTP (a) runn I no3 
C 1 3  ALLOCATE 

TPN [ ' b ' l  

C23 SEND-DATA 

C33 DEALLOCRTE 
TYPE  (FLUSH) _______+ C s t a r t  TP [b) 3 

Cend  conversat I on3 C43  RECEIVE AND WAIT 
WHAT,~ECE~VED=DATA,CCJMPLETE 

WHRT,RECE~VEO=DEALLOCATE-FLUSH 
C53 RECEIVE-RND  WAIT 

C63 DEALLOCATE 
TYPE  ILOCALI 

Figure 10 A two-way  conversation with confirmation 

CTP la1 runn I ne3 

T P N ( ' b ' 1  
ALLOCATE 

C13 SEND-DATR C s t a r t  TP (b13 
C23 RECEIVE  RND-WAIT 

WHAT-AECE I VEO=ORTR- INCOMPLETE 

C33 RECEIVE-AND-WAIT 

E 4 3  PREPARE-TO-RECEIVE - WHAT-RECEIVED=DATA-COnPLETE 
RECE  IVE-AND-WA I T 

C53 RECEIVE-AND-WRIT 
WHAT,RECEIVED=SEND 

C63 SEND-DATA 

C73 DEALLOCATE - TYPE  ICONFIRMI 

C83 RECEIVE-AND-WAIT 

C93 CONFIRHED 
C103 DEALLOCATE 

TYPE  (LOCAL1 
tend   convcrsat  I on3 

WHRT,RECEIVED=DATR-COMPLETE 

WHAT-RECEIVED=CONFIRM-DEALLOCRTE ______, RETURN,CODE=OK . 
tend   convcreat  I on3 
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6 .  TP(b) issues DEALLOCATE with TYPE(LOCAL), 
causing the LU to  discard  its control information 
for the conversation.  This ends the conversation 
for TP(b). Both TP(a) and TP(b) continue in 
execution until  they end themselves. 

Notice that  three verbs have been compressed into 
one message. If the message is short  enough,  it  can 
flow as one  packet. 

Figure 10 shows additional  features of the APPC 
verbs: 

1. The first two verbs are  the  same  as in the 
previous example, except that this TP(a) must 
send a  larger  amount of data.  These  data  are 

Performance of a  distributed 
transaction is affected by the 
internal  performance of the 

executing  nodes. 

long enough that  the LU has  to send some data 
while retaining  a portion of the  data in its local 
send buffer. 

2. TP(b) issues RECEIVE-AND-WAIT, thereby 
obtaining the first portion of the  data. 

3. TP(b)  issues RECEIVE-AND-WAIT again, 
thereby  causing the LU to suspend the execu- 
tion of TP(b) until the remaining portion of the 
data has been received by the LU.” 

4. TP(a) issues PREPARE-TO-RECEIVE followed 
by  RECEIVE-AND-WAIT, which causes the LU 
to send the contents of its buffer together with 
the SEND indication. The execution of TP(a) 
may have been delayed because of the execu- 
tion of other  programs at its LU, because  it  may 
have been doing other processing that did not 
result in activity on this conversation, or 
because  it  may  have  executed  the PRE- 
PARE-TO-RECEIVE verb  immediately after  the 
SEND-DATA, but the  data may have encoun- 
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tered some delay in transit.  The Lu suspends 
execution of TP(a) until  it receives data  to 
satisfy the RECEIVE- AND-WAIT. 

Control is returned  to TP(b) as soon as  the 
remaining portion of data is received by its  LU. 

5 .  TP(b) issues another RECEIVE-AND-WAIT and 
receives the SEND indication. 

6 .  TP(b) issues SEND-DATA, causing  the LU to 
place the  data in its buffer. Nothing is sent. 

7. TP(b) issues DEALLOCATE with TYPE(C0N- 
FIRM), which implies confirmation processing 
and  causes the LU to send the contents of its 
buffer together with a CONFIRM-DEALLO- 
CATE request. The CONFIRM causes the LU to 
suspend execution of TP(b) processing until it 
receives an affirmative or negative response. 

The LU returns  control  to TP(a), indicating that 
the program  has received all the  data. 

8. TP(a) issues another RECEIVE-AND-WAIT and 
receives the CONFIRM-DEALLOCATE request. 

9. TP(a) responds affirmatively by issuing CON- 
FIRMED, thus  causing  its LU to send an affirma- 
tive response. A SEND-ERROR can be issued 
instead of  CONFIRMED, in which case  the con- 
versation remains  allocated at  both programs. 

The LU returns  control to TP(b) to  indicate 
successful completion of the DEALLOCATE. The 
conversation is complete for TP(b). 

10. TP(a) issues DEALLOCATE with TYPE(LOCAL), 
which causes the LU to  discard  its control 
information  for the conversation. The conversa- 
tion ends for TP(a). 

Performance of a  distributed  transaction is affected 
by many  variables, including the  internal perform- 
ance of the nodes at which each  component  transac- 
tion program executes. In smaller processors, it  may 
be important to minimize buffer occupancy and 
keep the  path lengths  to send and receive packets 
low. In larger processors, it  may  be  important to 
reduce the number of times  transaction  programs 
are dispatched (e.g., processor pipelines and  caches 
drain when a new program is dispatched) by using 
large  data  areas even at  the expense of some 
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increase in the directly measured  path  length per 
packet. In this way, total  throughput  and average 
path lengths for completion of a  transaction can be 
improved. 

With APPC, performance  can be tuned by adjusting 
session packet sizes and  numbers of available buf- 

With  enough receive buffers,  a 
transaction  program  can be 

dispatched  only  once  for  each 
message  that it receives. 

fers.  These  changes do not affect the APPC verbs. 
With enough receive buffers, a  transaction  program 
can be dispatched only once for each message that  it 
receives. Alternatively, if buffers are  the critical 
resource, a  transaction  program can be dispatched 
once for every packet that is received. 

Another way in which APPC improves performance 
is  by mapping conversations directly onto sessions. 
The resulting short  path  lengths preserve the effi- 
ciency of higher-level services.” For example, the 
Asynchronous SNA Distribution Service” moves 
data directly from the network into  its final data set 
without moving it through  a spool  file. 

High-level  languages. So far, we have discussed 
basic conversations, those that provide full access to 
the communication primitives and complete control 
over the  format of the  transmitted data. APPC also 
defines a  set of mapped conversation verbs (imple- 
mentable with the basic conversation verbs) that 
hide certain options and  details of the basic conver- 
sation verbs from the  program.  Mapped conversa- 
tions are designed to be used by application pro- 
grams written in high-level languages. 

A major characteristic of a high-level language is 
that programs written in it are independent of the 
external  representations of the  data  structures on 

which they  operate. The mapped conversation verbs 
define optional support for data mapping opera- 
tions, similar in concept to  the  familiar  formatted 
1 / 0  defined in languages such as FORTRAN and 
PL/I. When this option is being used, a  map  name is 
sent with the  transmitted data so that  the receiving 
map  support can understand the format of the 
data. 

The set of mapped conversation verbs closely paral- 
lels the basic conversation sets and includes the 
following: MC-SEND-DATA, MC-RECEIVE- 
AND-WAIT,  MC-PREPARE-TO-RECEIVE, MC- 
FLUSH, MC-SEND-ERROR,  MC-CONFIRM, MC- 
CONFIRMED,  MC-REQUEST-TO-SEND, MC- 
ALLOCATE, and MC-DEALLOCATE. 

Control functions. Both network application pro- 
grams  and service transaction  programs use the 
execution services provided by Lus. As  shown  in 
Figure 1 1, service transaction programs run on LUS 
in the  same way as other  transaction programs. 
They interact with a  human  operator, or they may 
run as a  pure programmed operator.  Many service 
transaction  programs affect only the local LU. An 
example is the command to display the  current set 
of active  transaction  programs. 

Other control transactions, especially those that 
relate to sessions, can affect other LUS as well as 
applications at other LUS. For example, a local 
command to prematurely  terminate  a  transaction 
that is using a conversation causes the conversation 
to be ended abnormally,  a  state  change that must be 
transmitted  to  the  partner LU for presentation to  the 
transaction  program that is sharing the conversa- 
tion. Or a decision to  deactivate one or more of the 
sessions shared by two LUS may be made by one LU’S 
operator  but must be communicated to  the  other LU. 
APPC includes several control operator verbs that 
provide Lu-to-LU control and coordination, espe- 
cially for activation and deactivation of sessions. 
This is illustrated in Figure 12. 

When a  distributed service transaction program 
starts  at one LU, it creates  a conversation to a 
partner  transaction  program in a  partner LU. The 
two transaction programs then cooperate to perform 
the desired control activity. Error recovery logic 
handles such situations as operators  attempting 
conflicting operations at  the same  time  and session 
failures that can occur in the middle of a control 
transaction.  Some of the APPC control operator 
verbs are  the following: 
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Figure 11 Service transaction programs 
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LBCRL CONTROL 

INITIALIZE-SESSION-LIMITS determines  the lim- 
its on the  number of parallel sessions per mode 
name between two LUS. By agreeing on these limits 
in advance, the LUS can  activate sessions with the 
partner's predetermined cooperation. This knowl- 
edge simplifies recovery from errors that may occur 
during  attempts  to  activate sessions, ranging from 
mismatched system definitions to network failures. 

RESET-SESSION-LIMITS resets to zero the  agreed- 
upon session limits and also deactivates the sessions 
for a given mode name  to  a  partner LU. Options 
allow queued  requests for conversations to be satis- 
fied before the reset is ~ompleted.'~ 

ACTIVATE-SESSION activates one or more sessions 
for a given mode name. 

DEACTIVATE-SESSION deactivates  a specific ses- 
sion. Unlike RESET-SESSION-LIMITS, it does not 
change  the session limits. 

Control  operator  transactions are not the only LU- 
to-LU control flow in LU 6.2. Various data in the 
session activation command are used to  reduce  the 
amount of system definition required for two LUS to 
communicate. For example, at the  time  each session 

is activated, the Lus  agree upon the maximum size 
of the packets that they will exchange.74 

When the syncpoint functions are used, the LUS 
must ensure that compatible recovery logs are 
active on each LU, and they must also exchange 
resynchronization data  after failures of conversa- 
tions that were protected by syncpoint. Both of these 
activities utilize service transactions  distributed 
between the  partner LUS. 

Subsets. The SNA Format and Protocol Reference 
Manual3 describes SNA by defining, for example, 
with programming  language  declarations,  the for- 
mats of messages that flow between network entities 
and  the programs that generate,  manipulate,  trans- 
late, send, and receive those messages. 

The SNA Transaction Programmer's Reference 
Manual for  Lu Type 6.2' defines the verbs that 
describe the functions being provided by the imple- 
menting products. Figure 13 illustrates  a  functional 
definition given  in the programmer's reference 
manual.  Not  all  the  parameters on ALLOCATE are 
shown. 
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Figure 12 Distributed service transaction programs 
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DISTRIBUTED  OPERRTING  SYSTEM 

I DISTRIBUTED  CONTROL 1 
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Although the  meta-implementation  technique ex- 
plicitly and unambiguously defines all possible mes- 
sage flows, it does not illustrate which flows prod- 
ucts must support  (both on the send and receive 
sides) and which they may leave out.  Furthermore, 
while defining the  appropriate subsets of support is 
clearly  the most difficult problem, conveying those 
conclusions in a  written, unambiguous form is  not 
simple. Defining supported functions using a pro- 
gramming  language as noted earlier in the section 
on abstraction  has  the  added benefit of providing a 
framework within which statements of required 
versus optional product support  can be discussed. 
Each verb or parameter is specified individually as 
being in the base support  required of all products or 
in one or more option sets, for both local and  remote 
support.' For example, the ALLOCATE verb defined 
in Figure 13 is further defined in Figure 14. 

The B's in Figure 14 indicate that support for the 
verb or parameter is in the base. The M's show that 

- 

I 
I 
I 
I 
I 
I 

__1 

support is part of the mapped conversation option 
set. The numeral 1 shows that support is part of the 
syncpoint option set. The dashes show that returned 
parameters are not visible to  the  remote  transaction 
program. 

The APPC functions, represented as verbs and 
parameters,  can be viewed  in a  functional relation- 
ship as well as in a subset-control relationship. Some 
functions can be  used to implement other functions. 
This is, some functions are primitives from which 
other functions can be implemented. For example, 
ALLOCATE is  used as  part of error recovery for the 
syncpoint function. That is, after  a session outage, 
the LUS run service transaction  programs  to 
exchange resynchronization information. Other 
portions of the syncpoint function use session encod- 
ings that  are not present in the base. In  this view, the 
base does not provide all primitives necessary to 
implement some of the options. To  add  the sync- 
point option, an LU must provide additional pro- 
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Figure 13 Part of the ALLOCATE verb  definition 

gram  support below the verb interface.  Some option 
sets are built entirely on the base. Mapped conver- 
sations are  an example of this. 

The subset control and  generic  (architecture) 
description of functions provided by APPC permit 
the design and coding of distributed  transaction 
programs without regard for the  particular products 
upon  which the individual programs are to be 
executed. The subsets required to  support  each of 
the  distributed  programs are clear  to  the designer, 
as a result of the verbs and  parameters used for each 
distributed  program. The subsets  can be used to 
determine  the set of products needed to  support  the 
required functions. Once  these products are select- 
ed,  the  architecturally defined verbs can be trans- 
lated in a  straightforward  manner  to  the  particular 
languages supported by each of the products. If the 
designer limits himself to using only functions 
defined to be in the base, he is assured of the  ability 
to implement the  distributed  programs on all LU 6.2 
products, including those that may be added  to the 
network at  a  later time. Since  all optional functions 
are grouped into  a limited number of option sets and 
since a product implementing any function in an 
option set must implement all functions in that 
option set, connectivity is also ensured between 
distributed programs (using a given option set) on 
different product implementations of LU 6.2 that 
support the option set. 

Migration. As the  latest release of LU 6, LU 6.2 has 
provided for the  migration of most LU 6.0 and LU 6.1 
application programs without change  to  the  appli- 
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 cation^.'^ The LU 6.1 protocols closely correspond, 
from an application’s viewpoint, to a subset of the 
mapped conversation verbs. Product publications 
should be consulted to  determine the exact  degree of 
compatibility.  The LU 6.1 session encodings, on the 
other  hand, are not an exact  subset of the LU 6.2 
encodings. The LU 6.1 encodings are not a subset of 
the LU 6.2 message encodings. 

Concluding remarks 

The  requirements for interprogram communication 
have been  shown to lead to Advanced Program- 
to-Program  Communication (APPC), a  shared 
resource environment specifically designed to  sup- 
port SNA’S evolution as a  distributed  operating 
system. 

SNA’S design in general  and APPC in particular 
provide a foundation upon which additional  distrib- 
uted processing services can be provided by IBM, 
other suppliers of hardware  and  software,  and own- 
ers of individual networks. One  example of such  a 
service is described in the  article “SNA Distribution 
Services” in this issue of the IBM Systems Journal. 
Another  example is Document Interchange  Archi- 
tecture: implemented by SCANMASTER, DISPLAY- 
WRITER, and DISOSS. Past experience with services 
for local operating systems leads us to expect many 
more distributed services to come. 
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Figure 14 ALLOCATE verb base and options  definition 
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(PIUS). 

23. In addition to LUs, SNA defines Physical Units (PUS) and 
System Services Control Points (SSCPs) as senders and 
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receivers of messages. For more information, consult Refer- 
ences 3,7,8, and 9. 

24. The  SSCPs in the network cooperatively provide an 
LUNAME-to-LU  address directory and other related ses- 
sion services for use by Ltis when sessions are being 
activated and deactivated. For details see References 3, 8, 
and 9. 

25. G .  D. Schultz first applied the  distributed  operating system 
paradigm to SNA in conversations during 1973. 

26. P .  H. Enslow, “What is a ‘distributed‘ data processing 
system?,” Computer 11, No. 1, 13-21 (January  1978). 

27. R. Eckhouse, J. Stankovic, and A. van Dam,  “An overview 
of two workshops  on distributed processing,” Computer 11, 
No.  1.22-26  (January 1978). 

28. H. C. Forsdick, R. E.  Schantz,  and  R. H. Thomas,  “Operat- 
ing systems for computer networks,” Computer 11, No. I, 
48-57 (January 1978). 

29. R. W. Watson and J. G. Fletcher, “An architecture for 
support of network operating system services,” Computer 
Networks 433-49  (1980). 

30. J. Mitchell and J. Dion, “A comparison of two network- 
based file servers,” Proceedings of fhe Eighth Symposium 
on Operating System Principles, SIGOPS IS, No. 5, 45-46 
(December 1981). 

31. R. Rashid and G. Robertson, “Accent: A communication 
oriented network operating system kernel,” Proceedings of 
the Eighth Symposium on Operating System Principles, 
SJGOPS 15, No.  5,64-75 (December 1981). 

32. A. Birrell, R. Levin, R.  Needham, and M. Schroeder, 
“Grapevine: An exercise in distributed computing,” Pro- 
ceedings of the Eighth Symposium on Operating System 
Principles, SIGOPS IS, No. 5 ,  178-179 (December 1981). 

33. R. A. Finkel, “Issues for  distributed  operating systems,” 
Proceedings of INFOCON 82,204-205 (1 982). 

34. Whether  a program is a process or merely a portion of a 
process depends on what is considered to be the machine that 
provides instruction interpretation. For example, CICS/VS 
is a single process (task)  as  far  as  MVS is concerned. But 
CICS application programs are processes (tasks)  as  far  as 
CICS is concerned. CICS is a  subtasking monitor, and its 
applications are  interpreted by CICS alone as  far  as they are 
concerned. 

35. Because the bus transfers  that  are used to access a common 
memory can be thought of as small messages, it is possible to 
build a  distributed  shared main memory and make it  trans- 
parent to application programs. To be useful, however, a 
memory bus has  to have very large bandwidths and low 
delays. This effectively eliminates that  approach from con- 
sideration as  a general-purpose method of interprogram 
communication. 

36. Customer Information Control SystemlVirfual  Storage 
(CICSlVS), Version I Release 6: General Information, 
GC33-0155, IBM Corporation; available through IBM 
branch offices. Using the various LU 6 levels, CICS supports 
transparent  remote access to files, data bases, queues, and 
transaction scheduling on other  CICS systems. 

37. Distributed  Ofice  Support/370 Version 2, GH12-5139, 
IBM Corporation; available through IBM branch offices. 
DISOSS supports distributed access to  a document library, 
formatting, printing, and distribution services. 

38. Network  Job Entry for JES2, GC23-0100,  IBM Corpora- 
tion; available through IBM branch offices. NJE provides 
network job transmission, output routing, and file transfer 
services. 

39. File Transfer Program, GH12-5129, IBM Corporation; 
available through  IBM branch offices. 
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40. Distributed Systems Executive Version 2, GH19-6229, 
IBM Corporation; available through  IBM branch offices. 
DSX provides centralized management and control of the 
file contents of multiple distributed processors. 

41. IMSIVS General Information Manual, GH20-1260, IBM 
Corporation; available through IBM branch offices. IMS/ 
DC provides message queuing, delivery, routing, transaction 
scheduling, and  formatting services for centralized and 
distributed configurations. 

42. System138 Data Communication Programmers Guide, 
SC21-7825, IBM Corporation; available through IBM 
branch offices. System138 provides transaction scheduling 
and formatting services for centralized and decentralized 
configurations of System/38  and CICS via LU 6.2. 

43. System134 Interactive Communication Feature Reference 
Manual, SC21-7751,  IBM Corporation; available through 
IBM branch offices. System134 ICF provides transparent 
transaction initiation between System134 and  System/36 
via LU 6.0. It also provides similar support via other  LU 
types to IMS  and  CICS. 

44. System/36 Interactive Communication Feature: Reference, 
SC21-7910,  IBM Corporation; and Guide and Examples, 
SC21-7911,  IBM Corporation; available through IBM 
branch offices. System136 ICF provides transparent  trans- 
action initiation between System134 and  System/36 via Lt i  
6.0. It also provides similar support via other LU types to 
IMS and CICS. 

45. Distributed Disk File Facility, SC21-7869, IBM Corpora- 
tion; available through IBM branch offices. DDFF provides 
transparent file access for files contained on System134 and 
System/36. 

46. Many  other products provide distributed services for use in 
SNA. Consult your IBM representative for additional infor- 
mation. 

47. Details of the physical network are not of interest to the LUs, 
so long as  arbitrary session connectivity is supported. SNA 
architecture layers are defined to supply such session  con- 
nectivity to LUs. In SNA products available at the time this 
article was written,  arbitrary connectivity was supported for 
all pairs of LUs, except when the physical topology would 
cause  the sessions to flow through  a boundary function, as 
would be the case in NCP/VS. 

48. The architected boundary between an Lti and  the path 
control network’  is not at exactly the  same place as  the 
VTAM API used by CICS.  Thus, strictly speaking, CICS 
and  part of VTAM correspond to  an SNA LU. However, the 
LU function that is  in VTAM (transmission control and 
parts of LU network services) is a small portion of the total 
LU. Therefore, it is correct to think of CICS  as  the  LU  and 
VTAM as  the  transport (or transmission subsystem) compo- 
nent. 

49. Some product-specific details  are exposed across the net- 
work  when remote  management of network nodes is desired. 
For example, the load module for a CICS COBOL program 
does not run on a  System/38.  In SNA, these kinds of 
differences are handled by applications, such as  DSX$  that 
use the network just like other applications. 

50. Some distributed SNA services are provided by programs 
that run on the  SSCP or PU  NAUs. For example, the 
translation of LU name to  a network address  that is 
performed during session initiation is a  distributed service 
running on SSCP(s). 

51. The canonical (or architectural) description given here does 
not necessarily correspond to implementation details. For 
example, that which the  architecture describes as several 
programs running on several LUs might be implemented as 
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a  single  monolithic  program.  This is commonly  done  to  a 
greater  or lesser degree in such SNA terminal  products  as 
the  IBM  3274 or ISM 5251. I n  products  that  support 
application  programs, the  SNA notion of an  LU is imple- 
mented as a  portion  (or  subsystem) of a  native  operating 
system. The  SNA limb  is  grafted  onto  a  native  trunk when 
viewed from the perspective of the local operating  system, 
and  the local limb is grafted  onto  the S N A  trunk when 

52. The first SNA products  were  the  IBM 3600 banking  system, 
viewed from  the  perspective of the network. 

N C P  release  3,  and  VTAM  release 1. These  were  shipped in 
1974. 

53. The  bracket protocol used for  conversations is defined in 
Reference 3. 

54. The contention  winner  status is on  a per-session basis.  When 
parallel sessions exist  between  two  LUs,  each LU is gener- 
ally  the  contention  winner on some  number of the sessions, 
thereby  permitting  that  LU  always  to be guaranteed  access 
to  some  number of sessions, even though  the  partner  LU  also 
wants  to  use  the session. The bidding  request used by the 
contention loser LU is encoded as  bits in the  request  header: 
BBI set  to  B ‘1’ either on FM  data or on the  LUSTAT  DFC 
command.  The  BID  command used with other LU types is 
not used with LU  6.2. 

55.  An  LU  can  support  more  than  one  LU session type. CICS/ 
VS, for example,  supports  several  LU 0 protocols as well as 
LU 1, LU  2, LU 3, LU  4,  LU  6.1,  and  LU 6.2. 

56. Through use, some  LU 0 protocols  have  become de  facto 
architecture.  The  LU 0 protocol into which VTAM  maps 
non-SNA  IBM  3270  terminals is an   e~ample .~’  

57. ACFIVTAM Version 2 Programming, SC27-0611,  IBM 
Corporation;  available  through  IBM  branch offices. 

58. An Introduction to the IBM 3270 Information Displuy 
System, (327-2739, IBM  Corporation;  available  through 
IBM  branch offices. 

59.  At  the  time  this  paper  was  being  written,  support  for  LU  6.2 
had been announced by CICS/VS,  System/38,  SCAN- 
MASTER,  and  DISPLAYWRITER. 

60. W. J. Doherty  and R. P. Kelisky, “Managing VM/CMS 
systems  for  user effectiveness,” IBM Systems Journal 18, 
No. 1, 143-  163 ( 1  979).  Pages  154-  155 of this  paper  discuss 
the improved productivity that results  from  faster response 
times. 

61. The  rationale  for  parallel sessions is given in detail in 
Reference  9. 

62.  The  canonical  implementation is also  referred  to  as  a  meta- 
implementation.  Although  the SNA meta-implementa- 
tion’”’.” has  many of the  properties of a  real  implementa- 
tion,  including  the  ability  to be executed,  it  omits  many 
features needed by actual  implementations.  Such  features 
include  interfaces  to  actual  hardware  (to  attach  real  commu- 
nication lines), to real operators  (no  library of operator 
screens is included),  and to interfaces  to  real  programs (only 
the  FAPL  language is supported).  Cycle  usage  and  storage 
occupancy are not given the  same  attention  that  they receive 
in products.  It is the omissions that  make  the model node 
useful. The resulting  small  size of the model serves to 
highlight  the SNA node-to-node protocols. 

63.  Products  are  not  required  to use the  syntax defined in 
Reference I .  They  are  required to provide compatible 
semantics. That is, there  must  be  a  mapping  from  the 
architected  functions  to  the  product-supplied  functions.  For 
example,  the  ALLOCATE  verb is implemented  using two 
statements in both CICS and  System/38.  CICS uses a 
combination of ALLOCATE  and  CONNECT  PROCESS, 
whereas  System/38 uses the  combination of OPEN and 

EVOKE.  Since  the  function provided by the two  combina- 
tions matches  that of the  architected  ALLOCATE, both 
products  satisfy  the  architecture. 

64.  Other  conversation  verbs  that  are not discussed in the  text 
are defined in Reference I .  The  omitted  verbs  deal  with 
details of the model or  with LU 6.2  functions that  are of 
lesser importance. 

65.  Messages are encoded as  chains in the session flows. Thus 
the  negative  response  created by SEND-ERROR  causes 
the usual SNA action of purging to  end of chain. 

66.  Products  may provide a level of indirection  for  some  parame- 
ters.  For  example, CICS/VS provides SYSID, which maps 
indirectly  to the  target  LU-NAME. 

67. The  MODENAME supplied by the  transaction  program 
determines  the session level characteristics,  such  as  pacing 
count,  maximum RU size,  and session cryptographic  sup- 
port.  MODENAME  also  determines  the  COSNAME, 
which determines  the  class of service to  be  supplied  to  the 
session by SNA’s  path control.’ 

68.  It would have been possible to  make  the  target of the 
conversation an  already-running process or task.  This  was 
not done  because  it would have  required  that  a process-id be 
created  and  distributed  to  users in need of its  value. The 
resulting  overhead would not have  been  compensated by any 
increase in functional  capability.  Further,  the new-process 
model is more  lenient  for  implementation  because  it is easy 
to  simulate  a new process with  an  existing one, but not 
conversely. 

69. R. Obermarck,  “Distributed  deadlock  detection  algorithm,” 
ACM Transactions on Database Systems I, No. 2, 187-208 
(June  1982). 

70. LU  6.2  defines  optional verbs to allow a  transaction  program 
to  wait for the  completion of one of a  number of RECEIVES 
or  other  events. 

7 I .  SNA’s  transport  and session protocols taken  together  can  be 
implemented very efficiently. Path  lengths between 1  and  2 
instructions  per  byte  for  sending  or receiving can be achieved 
on small  and  large  machines  with  packet  sizes  in  the  range of 
256  to  1024  bytes  and  messages  sizes of 1024  bytes  and 
greater.  One  reason  this efficiency is possible is that,  because 
path  control  does not discard  packets to achieve congestion 
control, data link control’s error recovery brings  the  failure 
rate of sessions down to a low value.  End-to-end  error 
recovery  can  then be performed by transaction  program 
algorithms  that  are needed anyway  to  handle node failures 
or device recovery. For example,  a  “resume  printing at  page 
n” command  might be needed  to  handle  paper  outages. The 
same  command  can  also be used for session outages if they 
are  infrequent.  This  contrasts  with  some  other  network 
designs that require  end-to-end  packet  retransmission  to 
recover from  relatively  frequent  packet losses that  are  cre- 
ated by their own routing  and Row control  algorithms. 

72. B. C. House1 and  C. J .  Scopinich, “SNA Distribution 
Services,” IBM Systems Journal 22, No.  4,  3 19-343 ( I  983, 
this  issue). 

73.  Compare  theSBI  command used in LU  6.1.  Because  the  LU 
6.1 protocol for  termination of sessions is localized to  each 
session, an  UNBIND is often followed by a new BIND  from 
the  other  LU  as  an  attempted  error recovery. Only  when  this 
fails is the session termination  complete. 

74.  The  size  referred  to is the  maximum  RU  size  established by 
the  BIND exchange. 

75.  LU 6.0 was  shipped in CICS/VS 1.4 in 1978. LU 6.1 was 
shipped in CICS/VS 1.5 in 1980 and in IMS/VS 1.1.6 in 
I98 I ,  A version of LU 6.0,  available in ICF for  use  between 
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System/34s since 1980, is  now available on System/36.  LU 
6.1  is defined in Reference 4 and the  System/34 version  is 
defined in Reference 43. 
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