
Software reliability 
analysis 

Methods proposed  for  software reliability predic- 
tion are reviewed. A case study is then  presented 
of the analysis of failure data from a  Space  Shuttle 
software  project to predict  the number of failures 
likely during a mission, and the subsequent verifi- 
cation  of  these predictions. 

B uyers of large, expensive software  critical  to the 
success of important missions have begun to see 

the need for the developers to provide a  sort of 
“limited warranty” with regard  to the probability 
that  the software will perform  as specified during  a 
mission. Specification of such reliability is custom- 
arily  required of developers of hardware systems. 
The failure-inducing  mechanisms in the two cases, 
however, are entirely  different. The failures of 
software  depend  entirely upon the number  and 
kinds of errors (or design faults/bugs) in it  and  the 
probability that they will  be encountered  during the 
mission. The reliability improves as  errors  are dis- 
covered and  corrected,  and  error-free  software, by 
definition, is one hundred percent reliable.  There is 
no counterpart  to  this  situation in hardware sys- 
tems. On the  other  hand, aging  and  degradation 
play no role in software  failures.  These differences 
notwithstanding,  the concepts developed in reliabil- 
ity  theory for hardware systems have provided a 
starting point for modeling software  failures.] The 
approaches  include  probabilistic models that aim at 
predicting reliability and  other  elements of software 
quality on the basis of program  properties such as 
size and complexity, and  statistical models that base 
reliability prediction on an  analysis of failure  data. 

by P. N. Misra 

This  paper  deals with the  statistical  approach  to 
software reliability prediction. We consider the 
estimation of the  number of software  failures likely 
during  a mission on the basis of data on errors 
discovered during  the test  and  validation phase. 
Several  interesting models for such an analysis have 
been proposed over the past ten  years,  and the 
literature on the  subject  has grown large. Success to 
date, however, has only been modest, and some 
basic issues remain open. We provide a brief intro- 
duction to these models. It is not our purpose to 
present  a comprehensive discussion or a  compara- 
tive analysis. Papers  comparing the competing mod- 
els have appeared in the  literature,* but the 
attempts  appear  premature  due  to a paucity of data 
on which to  base the tests.  Indeed, one of the 
principal problems in this  area has been lack of a 
data base of systematically  gathered  failure data 
from various projects. 

Our main objective is to present  failure data from a 
large  software project, analyze  these  through  a 
simple model, and  compare  its predictions with the 
behavior subsequently observed. The  failure  data 
are from software developed by IBM’S Federal  Sys- 
tems Divison under  contract to NASA’s Johnson 
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Space  Center  for  the  Space  Shuttle  Ground 
Processing System.  The  project, we felt,  came close 
to providing “clean”  data for reliability  analysis. 
The  software  and  data collection  process are briefly 
described in a  later section, followed by a discussion 
of the  failure  data, model fitting,  and  reliability 
estimation. 

Software reliability 

In  the  past  decade, several  models have been  pro- 
posed for predicting  software  reliability in an envi- 
ronment  similar  to  that  during which the  past 
failure  data were collected.  This is the so-called 
representativeness-of-testing  assumption. A com- 
monly used conceptual model of software considers 

The objective of software reliability 
analysis  is to predict  future  behavior 

of the  software. 

a  program  as  a  mapping  from  an  input  space  to  an 
output  space.  The  inputs  are chosen by a  random 
mechanism,  and  a  failure is observed if the  input is 
from  a  certain  subset of the possible inputs.  Clearly, 
if software  failure  data  from  tests  are  to provide a 
basis  for predicting  the behavior during  the  opera- 
tional  phase,  this  input selection mechanism  must 
be the  same  for  both. 

Typically,  data  are  available  from  software  tests  as 
a  sequence t , ,  t2,  . . ., tj  of successive times between 
failures, or alternatively  as  samples x ( t , ) ,  x ( t 2 ) ,  . . ., 
x ( t k )  of a  failure-counting process x ( t ) ,  defined as 
the  number of failures observed up  to  time t of 
software  execution.  The  objective of software  relia- 
bility analysis,  then, is to  predict  future behavior of 
the  software in terms of random  variables t ( j  + l ) ,  
t ( j  + 2), . . ., which are  the  future  interfailure times, 
or, in the second case, in terms of x(tk + T ) ,  which 
specifies the  number of failures in the next T time 
units. 
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The  reliability of software in the  next T time  units, 
given the  record of failures  encountered in interval 
[0, t ]  is defined as 

R ( t ,  T )  = Probability {no software  failures in 

[ t ,  t + TI I 
Actually,  one is interested in more: If the mission 
will not be error-free, how many  failures  may be 
encountered? If too many, how much  more  time is 
needed  for testing  and  error  correction  before  the 
software  attains  the  prescribed  reliability?  Insofar 
as  software  failures  may differ in their  impact,  the 
above  analysis  may be carried  out  separately for 
subsets of failures classified on the basis of their 
severity. 

A number of  model^^-^ of the  software  failure 
process make essentially similar  assumptions: 

1. The  instantaneous  failure  rate of software is 
proportional  to  the  number of errors  remaining 
in it,  each of which is equally likely to  cause  the 
next  failure. 

2. The  time  separations between failures are  statis- 
tically independent  and  distributed exponen- 
tially with different  failure  rates. 

Following M ~ s a , ~ . ~  we shall  take  time  to  mean 
software execution time.  Denoting  the  initial  fault 
content of the  software by N ,  we see that  the  failure 
rate between the  occurrence of the ( i  - 1)th  and  ith 
failures is 

L(i)  = c(N - i + 1)  

where c is a  constant of proportionality.  Here we 
have  assumed  that  the  errors  are  corrected  immedi- 
ately  as  they  are discovered. The  probability  density 
function of the  corresponding  interfailure  time is 

f ( t )  = L(i)  exp [ - L ( i ) t ]  

The  resulting  failure-counting process x ( t ) ,  defined 
earlier,  has  a  mean  value  function 

m ( t )  = N[1 - exp ( - c t ) ]  

The  distribution of x ( t ) ,  however, is not simple  to 
characterize. 

The  assumptions of the  above model are open to 
question.  Variations of these have  been  proposed, 
but  generally  without  a cogent conceptual or 
empirical basis.* Littlewood and Varra1I6.’ appear  to 
bring  greater realism by dropping  assumption  1 
given above, although  at  the expense of considerable 

MISRA 263 



complexity. Of course, as Littlewood points out,’ 
complexity in models, especially if they are to be 
implemented on computers, is  not to  be  feared if it 

According to one  model, the number 
of software failures in  an interval 

follows a Poisson distribution. 

brings the models closer to the real world. This, 
however, remains to be established by more tests 
with “real”  data. 

A slightly simpler model is one proposed by Goel 
and Ok~moto,’ ,~ who assume  that the  failure pro- 
cess is a nonhomogeneous Poisson process. This 
model replaces assumptions 1 and 2 above with 
those corresponding to  the  structure of a Poisson 
process. The  interfailure times are no longer inde- 
pendent,  and  the  instantaneous  failure rate between 
failures varies with time. The Poisson structure 
brings about  a simplification in the analysis of 
failure data given either  as  interfailure  times or as 
samples of a  failure-counting process. Goel and 
Okumoto  take the form of the mean value function 
of the Poisson process to be the  same  as  that for the 
model described above. Of course, N and c can no 
longer be interpreted  exactly as before. We  change 
notation and  write the mean value function as 

m(t)  = a[l  - exp ( -b t ) ]  

with a corresponding instantaneous  failure rate 

L ( t )  = m’(t) = ab exp (- bt) 

The failure process x ( t )  has a Poisson distribution 
with expected value m(t)  and 

Prob { x ( t )  = n} = [m( t )]  ’ exp [ -m( t )] /n! ,  
n = 0,1,2;.. 

The number of software  failures in any  interval 
follows a Poisson distribution.  Furthermore, the 
number of errors which would  be found if the 
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testing went on forever is Poisson-distributed with 
mean a. Parameter b is a  constant of proportionality 
determining  the rate  at which the remaining  errors 
are being discovered. 

Some  general  comments on these models are in 
order.  First,  the mean value function of failure 
process in both cases is a monotonically increasing 
function with decreasing slope. This conforms to  our 
experience: When  a piece of software is tested, the 
errors are found relatively quickly at first, and  as 
testing proceeds, the  rate of error discovery gets 
slower and slower. The  errors in paths executed 
under more frequently  occurring conditions are 
found quickly, and  those in paths  traversed  under 
infrequent  and  unusual conditions remain  to be 
discovered. We therefore expect to be able  to fit 
roughly such a  function  to  software  failure data. 
The question is whether the probabilistic structure 
of the model can  “explain”  the data and  predict 
future failures.  Second, our discussion has omitted 
several important  practical  features of software 
testing  and  debugging which may  be  accounted for 
in the models. We have assumed, for example, that 
the error responsible for an observed failure is 
corrected  instantaneously  and  perfectly.  Clearly, 
recurrence of a  failure  until  the associated error is 
fixed may simply be disregarded, as we have done in 
our analysis.  Actually,  recurrences of failures  due to 
known errors convey information on the  failure 
process. There does not appear  to be a  simple way, 
however, to work this  into the models. The problem 
of imperfect  debugging is relatively easy to account 
for on an average basis with only a modest increase 
in model c~mplexi ty .~ .~  Musa,6 in his calendar  time 
model of reliability, has attempted  to  incorporate 
features  related to management of manpower and 
computer  time allocation for the software  testing 
and  debugging process. 

Given a record of observed failures  during  tests, 
fitting a model consists of an  estimation of its 
parameters. For the nonhomogeneous Poisson 
process model used in our analysis,  computation of 
maximum likelihood estimates of parameters Q and 
b is discussed in Reference 9. Suppose  failure data 
are available from software  tests  carried  out over a 
period of length t ,  and that a and b are  the estimates 
of the corresponding model parameters based on 
these data. Then,  according  to the model, software 
failures  during  a mission of length T will have a 
Poisson distribution with mean 

L = a[exp ( -b t )  - exp {-b(t  + T ) } ]  
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The model also gives estimates of the number of 
remaining  errors  and the additional  time needed for 
testing  to improve reliability to a prescribed val- 
~ e . ' . ~  

Week Test Critical Major  Minor 
Hours Errors Errors Errors 

Table 1 Software failure data: Weekly summary 

Shuttle Ground System software 

The  Shuttle Ground  System provides the flight 
controllers at  the Johnson Space  Center with 
processing support  to exercise command  and control 
over flight operations.  Such responsibility requires 
the  Ground  System  to verify each  function per- 
formed by the computers  aboard the  Shuttle, and  to 
carry  out  analyses  that  are beyond the  capacity of 
those  computers. The workload consists of process- 
ing high-speed telemetry data  and push-button  and 
terminal  interactions with the flight controllers. 

Both independent  verification  and 
mission  simulations execute the 

software in  a manner quite similar to 
that in the mission. 

With over one-half million source lines of code, it is 
one of the  largest  real-time systems developed to 
date. 

We have examined  the  pattern of discovery of errors 
in the software that supported  Space Shuttle flights 
STS2,  STS3, and STS4. Each successive release of this 
software was tested by an independent verification 
group  and  then delivered for operational use, which 
comprises mission simulations  and  the missions, We 
have taken data from a phase where the software 
had become stable.  Release-to-release  changes con- 
sisted of error fixing and minor modifications. 
Anomalous behavior of the  software  during inde- 
pendent verification, mission simulations,  and  the 
mission  was documented in the so-called discrep- 
ancy  reports.  Each such report records the  nature of 

1 62.5 
2 44.0 
3 40.0 
4 68.0 
5 62.0 
6 66.0 
I 73.0 
8 73.5 
9 92.0 

10 71.4 
11 64.5 
12 64.7 
13 36.0 
14 54.0 
15 39.5 
16 68.0 
17  61 .O 
18 62.6 
19 98.7 
20 25.0 
21 12.0 
22 55.0 
23 49.0 
24 64.0 
25 26.0 
26 66.0 
27  49.0 
28 52.0 
29 70.0 
30 84.5 
31 83.0 
32 60.0 
33 12.5 
34  90.0 
35 58.0 
36 60.0 
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1 
1 
4 
3 
2 
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9 

anomalous behavior, the test session in which it was 
observed, the severity of the error in terms of its 
impact  (critical,  major,  and minor, based on well- 
defined criteria),  and  other  information relevant to 
error isolation. The discrepancy reports were exam- 
ined by the  appropriate development groups for 
validity, and  errors, if any, were corrected in a 
subsequent  release. 

It should be noted that both independent verifica- 
tion and mission simulations  execute  the  software in 
a  manner that is quite  similar to, though not identi- 
cal with, that in the mission. Typically, verification 
is a scaled-down version of the mission planned to 
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Figure 1 Software failures versus test hours 
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verify the  error fixes and  any new features in the 
release. It has no flight crew participation, and fewer 
telemetry streams and flight controller consoles are 
active than in a mission. The simulations are typi- 
cally full-scale tests, but  their main purpose is to 
train  the flight crew and  the controllers in the 
mission procedures and in various contingencies that 
may arise. A simulation session may  concentrate 
entirely, for example, on repeatedly running various 
abort scenarios. Although the principal modules 
dealing with telemetry data processing, trajectory 
computations, and  operating system services are still 
exercised, the  range of system states  and inputs may 
not  be representative of the mission. 

The project data bases maintained  information on 
software  test sessions and scenarios, discrepancy 
reports  written  during  each,  and dispositions of 
these  reports.  These data bases provide us with 
samples of the failure-counting process, one  sample 
per test session. Note  that  data on software  inter- 
failure  times,  though  richer in information  content, 
require more of the  data collection process and  may 
be harder  to  come by  in general. 

A weekly summary of software  test hours and  the 
errors of various severities discovered is given in 
Table 1. The last two entries correspond to mission 
STS3. A plot of the cumulative  test  hours versus the 
number of errors found is given in Figure 1. The 
errors labeled as critical, being few  in number, have 
been lumped together with the major  errors. The 
flattening tendency is quite pronounced in the plot 
for the major  errors,  but less so for the minor errors. 
The plot for all  errors is basically similar to that for 
the minor errors, the  larger of its two constituents. 
The minor errors, which are occasionally referred  to 
in the programmers’ lingo as “nits,”  may not always 
be caught in their first occurrence;  indeed, some 
may never be caught. 

Model fitting and reliability analysis 

The nonhomogeneous Poisson process model was 
fitted separately  to  errors classified as major  and 
minor, and  then  to  all  errors. The last  category, of 
course, is just  the sum of the major  and minor 
errors.  This  fact, however, is kept from the model. 
This  creates  a  slight problem, for example, in inter- 
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preting the estimated values of parameter a in the 
three cases, but we will ignore it. 

The maximum likelihood estimates of parameters a 
and b, computed from the failure data,  are  as 
follows: 

a b 

major  errors 163.813 0.28759 x 
minor errors 31 5.551 0.25756 x 
all  errors 597.887 0.20988 x 

With  these values of the  parameters,  the  mean value 
functions have been superimposed on the  error  data 
in Figures 2 to 4. The fit in each  case  appears  to be 
good, but,  as noted earlier, it would  be a  mistake  to 
read too much into  it  yet. The question is whether  a 
nonhomogeneous Poisson process with a  mean value 
function as fitted could reasonably have given rise to 
the observed realization.  We  do  an easy test of 
computing  90th  percentile upper and lower bounds 
of the Poisson process and find the observed realiza- 
tion in each  case well within the bounds. Figure  5 
gives such a plot  for the major  errors.  This  test 

Table 2 The predicted and actual software failures 
during STS4 

Software Failures 
Major Minor Total 

Predicted 
Median 3 I 13 
90% 6 11 19 

Actual 5 9 14 

suggests that  the probabilistic structure of the soft- 
ware  failure process is not inconsistent with that of 
the Poisson process. 

The main  test, of course, is to  compare  the predic- 
tion of software  failures for a future mission  on the 
basis of this structure with the subsequent experi- 
ence.  We did just  that for the STS4 mission. From 
our  earlier discussion, these  failures are predicted to 
have a Poisson distribution whose mean is specified 
by the corresponding estimates of parameters a and 
b, cumulative  test hours t ,  and mission duration T. 
Table  2 gives the median and  90th  percentile points 

Figure 2 Actual and fitted major software failures versus test hours 
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of the  predicted  probability  distributions  corre- 
sponding to  the major, minor, and  all  failures for the 
200-hour mission. Also given are  the numbers of 

We have also since done  an  after-the-fact  analysis 
of what this model would have predicted for the 
STS2 and STS3 missions on the basis of error data 
available at each mission. In both cases, the num- 
bers of observed failures were found consistent with 
the corresponding Poisson distributions predicted 
by the model. 

Development of reliability  models  is 
important  to both the  customer  and 

the  developer of software. 

software  failures  subsequently observed during  the 
mission. The observed failures are consistent with 
the distribution  functions  predicted by the model. 

Remarks 

Our objective has been to  present  an  analysis of 
software  failure data from  a project where the issue 
of reliability is vital. It is not our purpose to 
champion the Goel-Okumoto model. We chose it for 
its  simplicity. The  other models are not as  tractable 
when failure  data  are given as  samples of the 
failure-counting process. Yet, with appropriate  sim- 
plifying assumptions, some of these models could 
have been “pushed through”  and  might have 
yielded reasonable  results. 

Development of models of software  reliability is 
important for several reasons. The customer’s need 
for specification of reliability  has  already been 
pointed out.  There is a corresponding need on the 

Figure 3 Actual and fitted minor software failures versus test hours 
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Figure 4 Actual and fitted software failures (total) versus test hours 
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part of project managers for the evaluation of 
methodologies of software development and  testing, 
and for scheduling these  activities  to  “build” the 
required  reliability in the software.  Again, the mod- 
els of software  reliability provide a basis for such 
decisions. As an example, note in Figures 2 to 4 that 
the  instantaneous  failure rate for our software 
declines by 20 to 25 percent for each  one  thousand 
hours of testing.  Clearly,  this is related  to both the 
software  and the techniques used in testing  it. No 
conclusions on the efficacy of our testing  can be 
drawn, however, due  to  a lack of comparable  data 
from similar projects. The  same is true of estimates 
of number of errors per, say,  one  thousand  source 
lines of code. An empirical basis for these  important 
indices is provided by an analysis of failure  data 
based on reliability models. Much work, however, 
remains  to be done in data collection and  tests 
before these concepts can be  proven to be of opera- 
tional value in answering questions such as “How 
much testing is enough?”, or “Is the  software  ready 
to fly a mission?” 

Summary 

Software  failure  data from a project, gathered 
during  tests, were analyzed  through  a model that 
postulates the  failure process to be a nonhomoge- 
neous Poisson process. The model was found to fit 
the  data well, and  its predictions of the number of 
failures likely during  a  subsequent mission have 
since been borne out.  A  considerable  amount of 
work, however, remains  to be done in model devel- 
opment  and validation before these concepts can be 
proven to be of operational value. 
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Figure 5 Actual and fitted major software failures and 90 percent confidence bounds derived from the model 
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