Software reliability
analysis

Methods proposed for software reliability predic-
tion are reviewed. A case study is then presented
of the analysis of failure data from a Space Shuttle
software project to predict the number of failures
likely during a mission, and the subsequent verifi-
cation of these predictions.

Buyers of large, expensive software critical to the
success of important missions have begun to see
the need for the developers to provide a sort of
“limited warranty” with regard to the probability
that the software will perform as specified during a
mission. Specification of such reliability is custom-
arily required of developers of hardware systems.
The failure-inducing mechanisms in the two cases,
however, are entirely different. The failures of
software depend entirely upon the number and
kinds of errors (or design faults/bugs) in it and the
probability that they will be encountered during the
mission. The reliability improves as errors are dis-
covered and corrected, and error-free software, by
definition, is one hundred percent reliable. There is
no counterpart to this situation in hardware sys-
tems. On the other hand, aging and degradation
play no role in software failures. These differences
notwithstanding, the concepts developed in reliabil-
ity theory for hardware systems have provided a
starting point for modeling software failures.! The
approaches include probabilistic models that aim at
predicting reliability and other elements of software
quality on the basis of program properties such as
size and complexity, and statistical models that base
reliability prediction on an analysis of failure data.
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This paper deals with the statistical approach to
software reliability prediction. We consider the
estimation of the number of software failures likely
during a mission on the basis of data on errors
discovered during the test and validation phase.
Several interesting models for such an analysis have
been proposed over the past ten years, and the
literature on the subject has grown large. Success to
date, however, has only been modest, and some
basic issues remain open. We provide a brief intro-
duction to these models. It is not our purpose to
present a comprehensive discussion or a compara-
tive analysis. Papers comparing the competing mod-
els have appeared in the literature,” but the
attempts appear premature due to a paucity of data
on which to base the tests. Indeed, one of the
principal problems in this area has been lack of a
data base of systematically gathered failure data
from various projects.

Our main objective is to present failure data from a
large software project, analyze these through a
simple model, and compare its predictions with the
behavior subsequently observed. The failure data
are from software developed by 1BM’s Federal Sys-
tems Divison under contract to NASA’s Johnson
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Space Center for the Space Shuttle Ground
Processing System. The project, we felt, came close
to providing ““clean” data for reliability analysis.
The software and data collection process are briefly
described in a later section, followed by a discussion
of the failure data, model fitting, and reliability
estimation.

Software reliability

In the past decade, several models have been pro-
posed for predicting software reliability in an envi-
ronment similar to that during which the past
failure data were collected. This is the so-called
representativeness-of-testing assumption. A com-
monly used conceptual model of software considers

The objective of software reliability
analysis is to predict future behavior
of the software.

a program as a mapping from an input space to an
output space. The inputs are chosen by a random
mechanism, and a failure is observed if the input is
from a certain subset of the possible inputs. Clearly,
if software failure data from tests are to provide a
basis for predicting the behavior during the opera-
tional phase, this input selection mechanism must
be the same for both.

Typically, data are available from software tests as
a sequence !, 1, ---, ¢; of successive times between
failures, or alternatively as samples x(¢,), x(,), ---,
x(t,) of a failure-counting process x(¢), defined as
the number of failures observed up to time ¢ of
software execution. The objective of software relia-
bility analysis, then, is to predict future behavior of
the software in terms of random variables ¢(j + 1),
Hj + 2), ---, which are the future interfailure times,
or, in the second case, in terms of x(z, + T'), which
specifies the number of failures in the next T time
units.
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The reliability of software in the next 7" time units,
given the record of failures encountered in interval
[0, ¢] is defined as

R(t, T) = Probability {no software failures in
[t,t + T]}

Actually, one is interested in more: If the mission
will not be error-free, how many failures may be
encountered? If too many, how much more time is
needed for testing and error correction before the
software attains the prescribed reliability? Insofar
as software failures may differ in their impact, the
above analysis may be carried out separately for
subsets of failures classified on the basis of their
severity.

A number of models’* of the software failure
process make essentially similar assumptions:

1. The instantaneous failure rate of software is
proportional to the number of errors remaining
in it, each of which is equally likely to cause the
next failure.

2. The time separations between failures are statis-
tically independent and distributed exponen-
tially with different failure rates.

Following Musa,>® we shall take time to mean

software execution time. Denoting the initial fault

content of the software by NV, we see that the failure
rate between the occurrence of the (i — 1)th and ith
failures is

L) = c(N — i+ 1)

where ¢ is a constant of proportionality. Here we
have assumed that the errors are corrected immedi-
ately as they are discovered. The probability density
function of the corresponding interfailure time is

Sy = L(i) exp [ L(i)1]

The resulting failure-counting process x(t), defined
earlier, has a mean value function

m(t) = N[1 — exp (—ct)]

The distribution of x(z), however, is not simple to
characterize.

The assumptions of the above model are open to
question. Variations of these have been proposed,
but generally without a cogent conceptual or
empirical basis.” Littlewood and Varrall®’ appear to
bring greater realism by dropping assumption 1
given above, although at the expense of considerable
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complexity. Of course, as Littlewood points out,’
complexity in models, especially if they are to be
implemented on computers, is not to be feared if it

According to one model, the number
of software failures in an interval
follows a Poisson distribution.

brings the models closer to the real world. This,
however, remains to be established by more tests
with “real” data.

A slightly simpler model is one proposed by Goel
and Okumoto,*” who assume that the failure pro-
cess is a nonhomogeneous Poisson process. This
model replaces assumptions 1 and 2 above with
those corresponding to the structure of a Poisson
process. The interfailure times are no longer inde-
pendent, and the instantaneous failure rate between
failures varies with time. The Poisson structure
brings about a simplification in the analysis of
failure data given either as interfailure times or as
samples of a failure-counting process. Goel and
Okumoto take the form of the mean value function
of the Poisson process to be the same as that for the
model described above. Of course, NV and ¢ can no
longer be interpreted exactly as before. We change
notation and write the mean value function as

m(t) = a[l — exp (=b1)]
with a corresponding instantaneous failure rate
L(t) = m'(t) = abexp (—bt)

The failure process x(z) has a Poisson distribution
with expected value m(¢) and

Prob {x(1) = n} = [m(8)] " exp [-m(1)]/nl,
n=0,1,2":

The number of software failures in any interval
follows a Poisson distribution. Furthermore, the
number of errors which would be found if the
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testing went on forever is Poisson-distributed with
mean a. Parameter b is a constant of proportionality
determining the rate at which the remaining errors
are being discovered.

Some general comments on these models are in
order. First, the mean value function of failure
process in both cases is a monotonically increasing
function with decreasing slope. This conforms to our
experience: When a piece of software is tested, the
errors are found relatively quickly at first, and as
testing proceeds, the rate of error discovery gets
slower and slower. The errors in paths executed
under more frequently occurring conditions are
found quickly, and those in paths traversed under
infrequent and unusual conditions remain to be
discovered. We therefore expect to be able to fit
roughly such a function to software failure data.
The question is whether the probabilistic structure
of the model can “explain” the data and predict
future failures. Second, our discussion has omitted
several important practical features of software
testing and debugging which may be accounted for
in the models. We have assumed, for example, that
the error responsible for an observed failure is
corrected instantaneously and perfectly. Clearly,
recurrence of a failure until the associated error is
fixed may simply be disregarded, as we have done in
our analysis. Actually, recurrences of failures due to
known errors convey information on the failure
process. There does not appear to be a simple way,
however, to work this into the models. The problem
of imperfect debugging is relatively easy to account
for on an average basis with only a modest increase
in model complexity.®® Musa,® in his calendar time
model of reliability, has attempted to incorporate
features related to management of manpower and
computer time allocation for the software testing
and debugging process.

Given a record of observed failures during tests,
fitting a model consists of an estimation of its
parameters. For the nonhomogeneous Poisson
process model used in our analysis, computation of
maximum likelihood estimates of parameters a and
b is discussed in Reference 9. Suppose failure data
are available from software tests carried out over a
period of length ¢, and that @ and b are the estimates
of the corresponding model parameters based on
these data. Then, according to the model, software
failures during a mission of length T will have a
Poisson distribution with mean

L = alexp (—bt) — exp {~b(t + T)}]
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The model also gives estimates of the number of

remaining errors and the additional time needed for

testing to improve reliability to a prescribed val-
89

ue.”

Shuttie Ground System software

The Shuttle Ground System provides the flight
controllers at the Johnson Space Center with
processing support to exercise command and control
over flight operations. Such responsibility requires
the Ground System to verify each function per-
formed by the computers aboard the Shuttle, and to
carry out analyses that are beyond the capacity of
those computers. The workload consists of process-
ing high-speed telemetry data and push-button and
terminal interactions with the flight controllers.

Both independent verification and
mission simulations execute the
software in a manner quite similar to
that in the mission.

With over one-half million source lines of code, it is
one of the largest real-time systems developed to
date.

We have examined the pattern of discovery of errors
in the software that supported Space Shuttle flights
STS2, STS3, and STS4. Each successive release of this
software was tested by an independent verification
group and then delivered for operational use, which
comprises mission simulations and the missions. We
have taken data from a phase where the software
had become stable. Release-to-release changes con-
sisted of error fixing and minor modifications.
Anomalous behavior of the software during inde-
pendent verification, mission simulations, and the
mission was documented in the so-called discrep-
ancy reports. Each such report records the nature of
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Table 1 Software failure data: Weekly summary

Week Test Critical Major Minor
Hours Errors Errors Errors

1 62.5 0 6 9

2 44.0 0 2 4

3 40.0 0 1 7

4 68.0 1 1 6

5 62.0 0 3 5

6 66.0 0 1 3

7 73.0 0 2 2

8 73.5 0 3 5

9 92.0 0 2 4
10 71.4 0 0 2
11 64.5 0 3 4
12 64.7 0 1 7
13 36.0 0 3 0
14 54.0 0 0 S
15 39.5 0 2 3
16 68.0 0 5 3
17 61.0 0 5 3
18 62.6 0 2 4
19 98.7 0 2 10
20 25.0 0 2 3
21 12.0 0 1 1
22 55.0 0 3 2
23 49.0 0 2 4
24 64.0 0 4 5
25 26.0 0 1 0
26 66.0 0 2 2
27 49.0 0 2 0
28 52.0 0 2 2
29 70.0 0 1 3
30 84.5 1 2 6
31 83.0 1 2 3
32 60.0 0 0 1
33 72.5 0 2 1
34 90.0 0 2 4
35 58.0 0 3 3
36 60.0 0 1 2
37 168.0 1 2 11
38 111.5 0 1 9

anomalous behavior, the test session in which it was
observed, the severity of the error in terms of its
impact (critical, major, and minor, based on well-
defined criteria), and other information relevant to
error isolation. The discrepancy reports were exam-
ined by the appropriate development groups for
validity, and errors, if any, were corrected in a
subsequent release.

It should be noted that both independent verifica-
tion and mission simulations execute the software in
a manner that is quite similar to, though not identi-
cal with, that in the mission. Typically, verification
is a scaled-down version of the mission planned to
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Figure 1 Software failures versus test hours
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verify the error fixes and any new features in the
release. It has no flight crew participation, and fewer
telemetry streams and flight controller consoles are
active than in a mission. The simulations are typi-
cally full-scale tests, but their main purpose is to
train the flight crew and the controllers in the
mission procedures and in various contingencies that
may arise. A simulation session may concentrate
entirely, for example, on repeatedly running various
abort scenarios. Although the principal modules
dealing with telemetry data processing, trajectory
computations, and operating system services are still
exercised, the range of system states and inputs may
not be representative of the mission.

The project data bases maintained information on
software test sessions and scenarios, discrepancy
reports written during each, and dispositions of
these reports. These data bases provide us with
samples of the failure-counting process, one sample
per test session. Note that data on software inter-
failure times, though richer in information content,
require more of the data collection process and may
be harder to come by in general.
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A weekly summary of software test hours and the
errors of various severities discovered is given in
Table 1. The last two entries correspond to mission
STS3. A plot of the cumulative test hours versus the
number of errors found is given in Figure 1. The
errors labeled as critical, being few in number, have
been lumped together with the major errors. The
flattening tendency is quite pronounced in the plot
for the major errors, but less so for the minor errors.
The plot for all errors is basically similar to that for
the minor errors, the larger of its two constituents.
The minor errors, which are occasionally referred to
in the programmers’ lingo as “nits,” may not always
be caught in their first occurrence; indeed, some
may never be caught.

Model fitting and reliability analysis

The nonhomogeneous Poisson process model was
fitted separately to errors classified as major and
minor, and then to all errors. The last category, of
course, is just the sum of the major and minor
errors. This fact, however, is kept from the model.
This creates a slight problem, for example, in inter-
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preting the estimated values of parameter a in the
three cases, but we will ignore it.

The maximum likelihood estimates of parameters a
and b, computed from the failure data, are as
follows:

a b

163.813 0.28759 x 10~°
315.551 0.25756 x 107°
597.887 0.20988 x 107*

major errors
minor errors
all errors

With these values of the parameters, the mean value
functions have been superimposed on the error data
in Figures 2 to 4. The fit in each case appears to be
good, but, as noted earlier, it would be a mistake to
read too much into it yet. The question is whether a
nonhomogeneous Poisson process with a mean value
function as fitted could reasonably have given rise to
the observed realization. We do an easy test of
computing 90th percentile upper and lower bounds
of the Poisson process and find the observed realiza-
tion in each case well within the bounds. Figure 5
gives such a plot for the major errors. This test

Table 2 The predicted and actual software failures
during STS4

Software Failures
Major Minor Total

Predicted
Median 7 13
90% 11 19

Actual 9 14

suggests that the probabilistic structure of the soft-
ware failure process is not inconsistent with that of
the Poisson process.

The main test, of course, is to compare the predic-
tion of software failures for a future mission on the
basis of this structure with the subsequent experi-
ence. We did just that for the STS4 mission. From
our earlier discussion, these failures are predicted to
have a Poisson distribution whose mean is specified
by the corresponding estimates of parameters a and
b, cumulative test hours ¢, and mission duration 7.
Table 2 gives the median and 90th percentile points

Figure 2 Actual and fitted major software failures versus test hours
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of the predicted probability distributions corre-
sponding to the major, minor, and all failures for the
200-hour mission. Also given are the numbers of

Development of reliability models is
important to both the customer and
the developer of software.

software failures subsequently observed during the
mission. The observed failures are consistent with
the distribution functions predicted by the model.

We have also since done an after-the-fact analysis
of what this model would have predicted for the
STS2 and STS3 missions on the basis of error data
available at each mission. In both cases, the num-
bers of observed failures were found consistent with
the corresponding Poisson distributions predicted
by the model.

Remarks

Our objective has been to present an analysis of
software failure data from a project where the issue
of reliability is vital. It is not our purpose to
champion the Goel-Okumoto model. We chose it for
its simplicity. The other models are not as tractable
when failure data are given as samples of the
failure-counting process. Yet, with appropriate sim-
plifying assumptions, some of these models could
have been “pushed through” and might have
yielded reasonable results.

Development of models of software reliability is
important for several reasons. The customer’s need
for specification of reliability has already been
pointed out. There is a corresponding need on the

Figure 3 Actual and fitted minor software failures versus test hours
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Figure 4 Actual and fitted software failures (total) versus test hours
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part of project managers for the evaluation of
methodologies of software development and testing,
and for scheduling these activities to “build” the
required reliability in the software. Again, the mod-
els of software reliability provide a basis for such
decisions. As an example, note in Figures 2 to 4 that
the instantaneous failure rate for our software
declines by 20 to 25 percent for each one thousand
hours of testing. Clearly, this is related to both the
software and the techniques used in testing it. No
conclusions on the efficacy of our testing can be
drawn, however, due to a lack of comparable data
from similar projects. The same is true of estimates
of number of errors per, say, one thousand source
lines of code. An empirical basis for these important
indices is provided by an analysis of failure data
based on reliability models. Much work, however,
remains to be done in data collection and tests
before these concepts can be proven to be of opera-
tional value in answering questions such as “How
much testing is enough?”, or “Is the software ready
to fly a mission?”
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Summary

Software failure data from a project, gathered
during tests, were analyzed through a model that
postulates the failure process to be a nonhomoge-
neous Poisson process. The model was found to fit
the data well, and its predictions of the number of
failures likely during a subsequent mission have
since been borne out. A considerable amount of
work, however, remains to be done in model devel-
opment and validation before these concepts can be
proven to be of operational value.
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Figure 5 Actual and fitted major software failures and 90 percent confidence bounds derived from the model

100 _

MAJGA
ERRORS

I | 1
0 400 800 1200
TEST

! T I 1
1600 2000 2400 2800

HOURS

Cited references

1. C.J. Daleand L. N. Harris, “Approach to software reliability
prediction,” Proceedings of the 1982 Annual Reliability and
Maintainability Symposium (1982), pp. 167-175.

2. A. L. Goel, “A summary of discussion on ‘An analysis of
competing software reliability models,” ” IEEE Transactions
on Software Engineering SE-6, No. 5, 501502 (1980).

3. J. Jelinski and P. B. Moranda, “Software reliability
research,” in Statistical Performance Evaluation, W.
Freiberger, Editor, Academic Press, Inc., New York (1972),
pp. 465-484.

4. M. L. Shooman, “Probabilistic models for software reliability
prediction,” in Statistical Performance Evaluation, W.
Freiberger, Editor, Academic Press, Inc., New York (1972),
pp. 485-502.

5. J. D. Musa, “A theory of software reliability prediction and
its applications,” IEEE Transactions on Software Engineer-
ing SE-1, No. 3, 312-327 (1975).

6. J. D. Musa, “The measurement and management of software
reliability,” Proceedings of the IEEE 68, No. 9, 11311143
(1980).

7. B. Littlewood, “Theories of software reliability: How good are
they and how they can be improved,” IEEE Transactions on
Software Engineering SE-6, No. 5, 489500 (1980).

8. A. L. Goel and K. Okumoto, “Time-dependent error detec-
tion rate model for software reliability and other performance
measures,” [EEE Transactions on Reliability R-28, No. 3,
206-211 (1979).

270 wmisra

9. A. L. Goel, “Software error detection model with applica-
tions,” Journal of Systems and Software 1, 243-249
(1980).

Pratap N. Misra /BM Federal Systems Division, 18100 Freder-
ick Pike, Gaithersburg, Maryland 20879. Dr. Misra joined IBM
in Houston in 1974. From 1974 to 1979 he worked on NASA-
sponsored studies related to development of pattern recognition
techniques to identify crops in Landsat images. Since 1979 he
has been associated with system engineering groups, first in the
Ground Based Space Systems project in Houston and currently
in the FAA Program in Gaithersburg. Dr. Misra received a B.S.
degree from the Indian Institute of Technology, Kanpur, India,
in 1965, an M.S. degree from Lehigh University in 1967, both in
mechanical engineering, and a Ph.D. in engineering sciences
from the University of California, San Diego, in 1973.

Reprint Order No. G321-5195.

IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983




