Full-screen testing of
interactive applications

This paper describes the dialog test functions of
the Interactive System Productivity Facility /Pro-
gram Development Facility program product, with
emphasis on the full-screen design that makes it
unique. Perspective is provided by a brief summary
of the test facilities available in the predecessor
System Productivity Facility program product (SPF)
and the requirements that led to their enhance-
ment.

he last ten years have seen a dramatic increase

in the number of on-line interactive data
processing applications, at the expense of tradi-
tional batch production systems. However, the
increased sophistication and ease of use found in
these end user systems have not often been matched
in the tools used by programmers to develop them.
The growing programmer shortage and today’s
emphasis on programming quality and productivity
are focusing more attention on this deficiency.
Businesses are beginning to treat systems develop-
ment as a regular application in itself,' and more
programming tools are becoming available to sup-
port development. Many more integrated tools are
needed to bring the programming development
process up to par with existing end user applica-
tions.

Most of a programmer’s work is divided among the
activities of design, coding, testing, and documenta-
tion. The project described in this paper has concen-
trated on the testing phase—specifically, the test-
ing of interactive applications—and has tried to
apply to it the same usability characteristics and
state-of-the-art technology found to be successful in
current user applications. This work was part of
ongoing development efforts to enhance the System

246 wmauRer

by M. E. Maurer

Productivity Facility (SPF) program product,” a
widely used program development tool. The result-
ing dialog test function was shipped in the Interac-
tive System Productivity Facility/Program Devel-
opment Facility (ISPF/PDF or PDF) program prod-
uct, which is an SPF follow-on. Figure 1 summarizes
the evolution of the SPF product set and points out
where dialog test fits in.

Because of the large amount of programmer time
spent on detection and correction of programming
errors—twenty-five percent of the development
time reported in one study® and three times the time
spent on coding reported in another study*—it is no
surprise to find close attention paid to the productiv-
ity of the debugging process.

Interactive debugging products are available for
such machines and operating systems as the Pro-
gram Control System on TSS/360, Interactive Debug
on System/34, TSO TEST for MVS, and CP/CMS
Debug for vM. Even compilers have interactive
debugging versions—the PL/1 Checkout Compiler,
for example. What is new in the current effort is the
exploitation of the power of a full-screen terminal to
provide much more usable debugging assistance,
and provide it at the symbolic level at which the
programs are coded.

©Copyright 1983 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM
copyright notice are included on the first page. The title and
abstract, but no other portions, of this paper may be copied or
distributed royalty free without further permission by computer-
based and other information-service systems. Permission to
republish any other portion of this paper must be obtained from
the Editor.

IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

Furthermore, the implementation of the support as
a consistent extension to the program development
tool already used by the programmer for coding,
compiling, and documentation gives the program-
mer familiar and established externals and a
coherent and more complete package. Let us briefly
describe the underlying SPF product to explain the
derivation and applicability of the current effort.

History

SPF was first introduced in 1975 as the Structured
Programming Facility, which is a collection of
programming development tools that have greatly
simplified many programming tasks. SPF prompted
the user to enter required information on a sequence
of display screens and retained much of that infor-

Our experiences in developing such
applications suggested requirements
for debugging assistance.

mation from one session to the next. Included in SPF
were data-set utilities, job submission functions,
operating system command interface, and full-
screen edit and browse functions with four-way
scrolling.

Within a few years, users were learning that there
were underlying service routines in SPF that could
be even more valuable than the tools for those who
were developing interactive applications. These ser-
vices could be used to free the programmer from
display device and many operating system depen-
dencies and to facilitate data handling, allowing the
programmer to concentrate on application-specific
processing. Such interactive applications became
known as dialogs (referring to conversations
between the user at the terminal and the program in
the computer). The collection of services was then
termed the dialog manager.

Demand for a formalized offering of this function
resulted in the development of a new SPF in 1980,

IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

Figure 1 Evolution of the SPF products

1975 SP¥
STRUCTURED
PROGRAMMING
FACHITY
PROGRAMMER TOOLS

1980 spt
SYSTEM PRODUCTIVITY
FACILITY
PROGRAMMER TOOLS
DIALOG MANAGER
SURVICES

1982 ISPF
INTERACTIVE ISPF

1982 ISPF . PDF

SYSTEM PRODUCTIVITY
FACILITY
DIALOG MANAGER
SERVICES

PROGRAM DEVELOPMENT
FACILITY
PROGRAMMER TOOLS
DIALOG TEST

the System Productivity Facility program product.
This “new” SPF included all the capability of the
previous product, plus the externalization of the
dialog manager services.

The current project was begun to address problems
of moving user-written ISPF applications into pro-
duction efficiently and effectively. Our experiences
in developing such applications suggested require-
ments for debugging assistance. OQur observations of
other testing tools, when compared with the tech-
nologies in user applications, showed that there was
much opportunity for improvement of their user
interfaces. The rudiments of debugging functions
were part of the old SPF product, but it had to be
greatly expanded to address the needs of large-scale
system developers.

This paper concentrates on ways in which the dialog
testing functions incorporated in ISPF/PDF have
advanced the state of the programming testing art.
First, we examine how a programmer uses ISPF
services. We then analyze testing requirements and
describe the environment that ISPF offers for test-
ing. Finally, we describe ways in which the new
product has been able to satisfy these requirements
in innovative ways. The reader is referred to the
available product documentation for additional
detail.*”’

Maurer 247

Coding ISPF applications

A programmer may code an ISPF application in any
one or a combination of the following languages: the
command procedure language of the host system
(EXEC2 for VM/CMS or CLIST for MVS/TSO) or a
supported programming language (including PL/I,
COBOL, FORTRAN, or assembler language). The
command procedures or programs are called appli-
cation or dialog functions, and they embody the
processing of the application. When the program-
mer needs a service provided by ISPF, he codes a call
to that ISPF service in his function. Services avail-
able to the ISPF application perform the following
functions:

« Direct the flow of control among the dialog func-
tions and the panels.

e Display predefined panels (screen images) and
messages to the end user.

¢ Define and maintain ISPF symbolic variables to
pass data among the dialog functions, the dialog
manager (ISPF), and the end user.

e Maintain application data in specialized files,
called tables. Tables are logically similar to two-
dimensional arrays in which each row corresponds
to a record in a traditional data set, and each
column corresponds to a field in that record.

e Produce tailored output by processing control
statements and performing variable substitution
in a special input file called a skeleton.

 Provide generalized edit and browse facilities for
application data.

A user dialog, therefore, can contain many kinds of
parts: functions, panels, dialog variables, tables,
messages, and skeletons. Let us use an example to
illustrate the relationship among these parts in a
sample ISPF application.

Figure 2 shows part of a dialog that displays a panel
to an end user and saves the data entered on the
panel in an ISPF table. There are interactions among
the application functions coded by the programmer,
the ISPF dialog manager, the data sets it uses, and
the end user at a terminal. The reference numbers
in the figure identify each major interaction.

At reference number 1 in Figure 2, the dialog
invokes the ISPF display service. The display service
obtains the requested panel from the panel library
at 2 and displays the panel at the terminal. The
display service interprets the user responses at 3,
and then returns control to the application at 4,

248 Maurer

when the user enters the END command. Next, the
application invokes the table add service at 5, which
writes the data to the application’s table at 6, and
returns control to the application at 7.

Notice that the application programmer has only to
invoke the display service. There is no need to
understand how to obtain the panel from the
library, how to send it to the terminal for display, or
how to obtain or interpret the user response. In these
ways ISPF services increase the productivity of pro-

Notice that the application
programmer has only to invoke the
display service.

grammers who are developing interactive applica-
tions. The programmer does have to code the panel,
however (including the screen image and processing
logic his application requires), and be sure it is in
the panel library for ISPF to find.

With this example in mind, we examine the testing
assistance that would help the programmer debug
ISPF applications like this, and the usability charac-
teristics ISPF should have.

Requirements

As with most interactive products, user require-
ments for testing dialogs fall into two basic catego-
ries: (1) functional requirements that describe the
product capabilities, and (2) interface requirements
that describe the user interface to the function. In
many ways, the interface requirements are more
important than the functional requirements,
because a product that is not easy to use will not be
used, regardless of its function. Indeed, this is the
area we identified as significant for enhancement in
the current project. We wanted to give the tester
facilities comparable to those in current end user
applications.

IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

Figure 2 Sample ISPF application interactions

APPLICATION
FUNCTION

CALL

END USER DISPLAY

-4

SPF DIALOG
MANAGER

DATA SETS

DISPLAY PANEL

: 2
SERVICE ~ L IBRARY

USER ENTERS
DATA AT
TERMINAL

The functional requirement for dialog test is to help
a tester debug the ISPF-specific parts of applica-
tions—panels, messages, file skeletons, tables, and
ISPF services used. The programmer developing the
application illustrated in Figure 2, for example,
needs a way to test the panel for proper coding. The

IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

TABLE
LIBRARY

SERVICES

OTHER
SERVICES

product should provide convenient ways to simulate
missing, incomplete, or defective parts of a dialog.
In the example above, it should be possible to test
the subroutine that updates the table, even if the
subroutine that displays the panel to the user is not
yet written. The debugging tool must help the

mauvrer 249

programmer test both the individual parts of an
application and the integrated and complete sys-
tem.

This function should complement existing operating

system debugging aids used to debug non-ISPF
application processing logic. It has to be sufficiently

Dialog test, therefore, makes
extensive use of selection and data
entry panels instead of commands.

flexible to complement different styles of testing,
yet provide enough guidance so that a novice tester
becomes productive quickly.

The general process of debugging any program
suggests some other kinds of function that dialog
test should provide. For instance, on the most basic
level, a tester executes a program and hopes it runs
correctly. When it fails, the tester tries to determine
where, how, and why it failed. He typically goes
through an iterative process, narrowing down the
source of an error. It is helpful to stop the test at key
points in the execution to examine variables or
modify their values, to examine input to and output
from critical or suspect subroutines, and to trace
control flow or changes to data areas. This view of
testing provides the justification for many of the
functions in dialog test.

Implementing dialog test as an ISPF application and
part of PDF provides a firm basis for satisfying the
user interface requirements. By retaining the time-
tested externals of SPF, we could provide consistency
and familiarity to the user. Dialog test, therefore,
makes extensive use of selection and data entry
panels instead of commands. It also has a similar
panel design and (where applicable) control flow
and screen manipulation commands and processes

250 MAURER

identical to those of SPF. As an ISPF application
itself, dialog test has available the same facilities as
end user applications.

In addition, we recognized the importance of letting
the developer conduct the debugging sessions at the
symbolic level at which the application is written.
Unlike many existing debugging aids, data and
locations in programs should be referenced by
name, rather than by computations of hexadecimal
addresses. Data should be displayed in translated
characters whenever possible, not in memory for-
mat. The burden of remembering lengthy or com-
plex data should be assumed by the system. Dialog
test should present lists of items for selection by the
user rather than requiring him to remember a name
to tell the program. We wanted to avoid introducing
a new complex debugging language and to minimize
the amount of training required to use the function.
This means that dialog test should present testing
options as selections on panels rather than forcing
the tester to remember and enter commands. List-
ing the testing options would also help the tester
remember the available facilities, thereby encour-
aging him to take advantage of all the power of the
system when doing a test.

Discussions with internal users who had built ISPF
dialog applications verified these requirements.
Before designing the specific functions, we had to
ensure an adequate execution environment for test-
ing dialogs. SPF had very limited test functions that
required major restructuring for this ISPF/PDF
project.

Base test support

The SPF product provided test support in two ways.
It allowed the tester to set general execution condi-
tions to facilitate testing through parameters with
which SPF was invoked. It gave specific debugging
functions through options on panels during a test
session,

Specifying TEST and TRACE when SPF is first
invoked results in the following key execution char-
acteristics:

» Dialog objects are re-fetched from their libraries
when needed, so that the latest changes can be
used immediately.

o Extra information, which is useful for debugging,
i1s shown on screen image printouts and tutorial
panel displays and is written to the log.

1BM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

Figure 3 SPF support selection panel

SELECT OPTION wmwmm>

1 TEST PANEL ~ DISPLAY PANEL AS USER WOULD SEE IT

2 TEST FUNCTION = INVOKE DIALOG FUNCTION OR SELECTION MENU

3 TEST VARIABLES - SET OR DISPLAY VARIABLES FOR TEST FUNCTION

4 CONVERT MENUS ~ CONVERT SELECTION/TUTORIAL MENUS TO NEW FORMAT
& CONVERT MSGS — CONVERT MESSAGES TO NEW FORMAT

6 TEST MENU -~ TEST OLD FORMAT SPF MENUS

7 TRACE MODE -~ SET TRACE MODE FOR SCREEN 1

e The tester can continue execution after a severe
error, so that more than one problem can be
discovered in a single test session.

The execution functions are implemented as part of
the SUPPORT option on the SPF Primary Option
Menu. This selection displays the panel shown in
Figure 3, on which the first three options are testing
functions, and the remainder help a programmer
convert to new SPF facilities. With the test panel
function (option 1 in Figure 3), the programmer can
visually verify the format of his panel, and then type
data into input fields. The programmer identifies
the panel, using the same parameters that would be
coded in a dialog to invoke the DISPLAY service.
Option 2 lets the tester identify and give control to
the function to be tested, by entering data for the
parameters of the SELECT service in appropriately
labeled fields. Finally, variable names can be
entered on a list with option 3 to display their
current values, to modify their values, or to define
new variables.

Although offering some help to the dialog develop-
er, this test function was limited by restrictions on
the nature and scope of reference of the test vari-
ables and by requiring the tester to remember the
names of the dialog variables of interest. For ISPF/
PDF, we were interested in eliminating these con-
straints on the dialog tester and adding significant
additional function.

IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

Extended test environment

The goal for the new test function was to simulate
an actual production environment for the user dia-
log being tested. The user dialog should not require
modification for test, and ISPF variables should be
accessible to the tester just as they are to the
program being tested. The dialog test facilities
should execute as an ISPF application under the
control of the dialog manager, but give control to
the user dialog (another ISPF application) as though
it were running alone on ISPF.

Implementation of a test environment accomplishes
these objectives. Critical to this implementation is a
careful separation of dialog variables and control
structures between dialog test and the dialog being
tested. However, the dialog manager has knowledge
only of the active dialog at any particular time, and
it is not aware that control is switched back and
forth between the two dialogs.

Figure 4 illustrates this problem. The ISPF dialog
manager controls an application running under it,
and creates control structures and dialog variables
for the application. As this application, the dialog
test facility “shadows” itself and separates its con-
trol areas from a similar set belonging to the dialog
being tested. At appropriate times, dialog test
causes control to be passed to this shadow applica-
tion or takes back control.

maurer 251

Figure 4 Dlalog manager/dialog test relationship

SPF DIALOG
MANAGER

DIALOG APPLICATION

TEST FACILITY

CONTROL AREA
TEST FACILITY

In addition, any operation on user data performed
through a dialog test option is treated as an exten-
sion of the user program. This means, for example,
that if the tester changes a variable value (using the
dialog test variables option), the variable retains the
new value when the dialog being tested is given
control. This is consistent with the expected uses of

252 wmauRer

DIALOG APPLICATION

CONTROL AREA

dialog test options to substitute for missing pieces of
an application or to correct problems caused by the
dialog being tested.

With this internal test environment in place, we

could design a test function to satisfy the detailed
requirements for function and usability.

IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

Implementation

ISPF is implemented so that the tester need never set
initial parameters to do testing. Some of the old
function obtained from those parameters is now
given to the tester automatically when the test
facility is selected. Other functions have been
replaced with greatly expanded capability and flexi-
bility that are available interactively to the tester.

The old display panel and invoke function options
have been retained, with some change to reflect new
capabilities of the underlying ISPF services and the
enhanced test environment. The variables option
has been completely redesigned to increase its
power and usability.

New test functions for ISPF/PDF, derived from an
analysis of the typical debugging process, include
the following:

» The ability to set breakpoints where execution of
the application being tested is suspended, to allow
the use of other test facilities.

» The ability to trace the usage of dialog services
and dialog variables.

e The ability to browse trace output in the ISPF log
during test.

e The ability to examine and update ISPF tables.
e The ability to invoke interactively any dialog
service except CONTROL.

The old SPF SUPPORT option has been redesigned as
the DIALOG TEST option, with a primary option

Most important is that the user’s
interface to these functions be as
simple, flexible, and consistent as

possible.

menu that presents selections for the dialog test
functions, as shown in Figure 5. This approach lets
the user conduct the test by choosing the desired
options, in the order required for the application

Figure 5 Dialog test primary option menu

OPTION mmm> _

1 FUNCTIONS - Invoke dialog functions/selection manus
2 PANELS — D1splay panels

3 VARIABLES - Display/set varfable information

4 TABLES — Display/modify table itnformation

5 LOoG -~ Browse ISPF leog

[DIALOG SERVICES - Inveke dtalog services

7 TRACES -~ Specify trace definittons

8 BREAKPOINTS ~ Specify breakpoint definttions

T TUTORIAL - Display tnformation about Dialog Test

X EXIT - Terminate dialog testing

Enter END command to terminate dfalog testing.

IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

MAURER 253

problems at hand and for his particular style of
testing. Categorizing and listing the functions this
way reduces training requirements by reminding
testers of the available options.

Most important is that the user’s interface to these
functions be as simple, flexible, and consistent as
possible. Many test options-—variables, tables,
breakpoints, and traces—require sets of informa-
tion that the tester usually enters and updates
during the test session. We have recognized this
commonality and have made it the most important
area in which to concentrate our usability improve-
ments. Described next is the basic design for all
these areas, illustrated by the variables option. This
is followed by a description of the other new test
functions.

Externals

The manner in which the test functions are provided
to the user has undergone many revisions, because
of the importance of having the right user interface
and the importance we place on optimizing the
usability of the product. Following the successful
precedent of the SPF product and the requirements
for dialog test, it became clear that the testing
options should be presented to the user as lists, and

that the user would be prompted to enter required
data. The types of panels to be used for the prompt-
ing, and their organization, were critical decisions.

Data entry panels were planned first, to capture the
information needed for each function or to display
information to the tester. These are panels with
labeled fields that indicate to the user the informa-
tion being requested or displayed. Figure 6 shows
our initial panel design approach to define and
initialize a variable. This design takes advantage of
the whole screen and clearly identifies information.

Limitations to such a design become obvious when
an attempt is made to change or delete a previously
specified variable, or to examine all variables
entered so far, or to determine the number of
interactions required to create ten variables. We
wanted to make it easy for the user to examine or
change any variable or many variables, with a
minimum number of interactions, and without
remembering exact variable names.

Many functions of dialog test, in addition to vari-
ables, share these same requirements. A scrollable
selection list, which is familiar from other parts of
PDF, satisfies some of the objectives. That list,
however, must be more than just selectable, because

Figure 6 Initial design of the define variable panel

COMMAND mmmue>>

VARIABLE NAME m—— e
VARIABLE POOL

- -

ATTRIBUTE

- —

ENTER THE DESCRIPTION OF THE NEW VARIABLE TO BE DEFINED:

VARIABLE VALUE D e

F = Function
S = Shared
P = pProfile

T = Truncated

254 maurer

IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

Figure 7 Final design of the test variables panel

COMMAND memwm>

ADD AND CHANGE VARIABLES.

VARIABLE P A VALUE

1117 EMPLBLDG F 101
t11y EMPLDEPT F az28

111y EMPLDIVL F Manufacturing
t1ry EMPLFNAM F Mary

tert EMPLINIT F D

tery EMPLILLNAM F Deoe

11y EMPLLOC. F Poughkeepsiea
11 EMPLNUMC F 12345678

Y11Y EMPLOFF_ F 1-B-34

t111 EMPLPHON F 111-2222

Yoy oz s N

VARIABLE DISPLAY AND SET

UNDERSCORES NEED NOT BE BLANKED.
ENTER END COMMAND TO FINALIZE CHANGES.

————= LINE 000001 COL 001
SCROLL wmwma> P

update capability is necessary for many of the
displayed fields.

It became apparent that table display panels of
ISPF could be implemented to satisfy all these
objectives. These panels present tables of informa-
tion in two-dimensional arrays. Here each row
corresponds to one entity (such as a variable) and
each column contains one item of data describing
that entity (such as its value). The table data may
be scrolled, so that there can be as many rows as
needed. The application presenting a table display
panel—dialog test, in this case——can be written to
support multiple updates of data in any of the
columns. The addition of a column for the entry of
line commands provides a way for even more flexi-
ble manipulation of the data by the user.

The final design of the variables test panel used to
display, modify, or define and initialize variables is
illustrated in Figure 7. The display panel shows all
the variables defined for the dialog being tested, so
that the user need not remember and enter the

IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

names of the variables. The names are arranged in
the following pool order to match their search order
from a user program: (1) function pool, (2) shared
pool, and (3) profile pool. Within each pool, the
names are arranged alphabetically. While the user
is examining or setting a specific variable, it is easy
to browse the other variables and possibly spot an
error.

The system retains all specifications that the user
has entered or that the dialog has created, and
automatically displays them when the appropriate
test option is selected. The user simply overtypes
any data on the display that are to be changed or
else uses line commands to manipulate an entire
row.

The leftmost column of the test variable panels is a
line command area, as in the PDF Editor. New
variables are defined by inserting new lines in the
display, using the I line command, and entering
descriptions in the appropriate columns. Other test
options permit the use of appropriate line com-

MAURER 25§

Figure 8 Help panel for test variables option

TUTORTAL o s o o o ot o o i o o e o m e VARIABLES = e e e e e st et e e e TUTORIAL
OPTION =mwmm>

The VARIABLES option allows you to display and modify the function, shared,
and profile peool vartable values for the function currently 1n execution.

In addttton mew vartables may be created.

The following toptics are presented 1n sequence, or may be selected by number:

1 - Definttions 4 — Primary Commands
2 —~ Vartables Panel S - Line Commands
3 -~ Manipulating Vartables 6 — Usage Notes

—————— CUR PANEL = ISR7V000 PERV PANEL = ISR7V000

LAST MsSG IsPD241 ——~-m—-—

mands, including insert, delete, and repeat. The
LOCATE primary command makes it easy to find an
item such as a variable in the displays.

This implementation exhibits all the usability char-
acteristics identified in the requirements analysis.
Values of variables are readily examined because
the system automatically presents an ordered list of
all known variables when the function is requested
and identifies them by the symbolic name assigned
by the programmer. Variable values are easily
modified by overtyping the field after the proper
entry is found either by scanning the list or by using
the locate command. New variables are easily
defined by inserting a line and typing the name,
pool, and value. Many of these operations can be
performed with a single interaction.

The tester needs the ability to display variables both
to verify correct dialog execution and to pinpoint the
location where incorrect data are being created. The

256 Maurer

tester may want to change the values of variables to
correct errors so that a test can proceed. It may also
be necessary to force different paths through the
code. Further, a tester may find it necessary to
define new variables to substitute for missing or
incomplete parts of an application.

As in all PDF, detailed tutorial information for test
support is available through the HELP command.
Here, too, attention is given to usability. The tuto-
rial for each suboption in test starts with a selection
panel to categorize the available information into
definitions (if applicable), panel description, task
instructions, commands, and usage notes to aid in
quickly finding the answer to a question. Figure 8
shows the tutorial page displayed when help is
requested from the variables panel.

All tutorials that describe panels make it easy to

find the explanation for a particular part of a panel
by intensifying the words from it that identify each

IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

Figure 9 Help panel for variables test panel

COMMAND =

TUTORTIAL ————m o o VARIABLES ~ VARIABLES PANEL ————————— e TUTORIAL |

The VARIABLES PANEL allows you to change variable values and create new

vartables. Each row of the scrollable displiay rapresents a vartable, as

follows:
teee - The 11me command area (see the Vartiables Line Commands topic).
VARIABLE — The vartiable nrname. This f1leld 1s required.
>4 -~ The pool 1n which the variable exists:
f ~ function.
s ~ shared.
=} -~ profile.
This f1eld 1s reqguired.
A — Attributes of the vartable, 1f any:
N - rnon-modiflable vartable.
T -~ truncated variable.

This f1eld 1s non-modifiable.

field, offsetting their descriptions to the right, and
listing them in the same order as the original panel.
This is illustrated in Figure 9 by the tutorial page
for the panel description of the variables test panel
(obtained by selecting 2 on the panel shown in
Figure 8).

Breakpoints

Existing operating system debugging facilities, such
as TSO TEST or CMS DEBUG, give the tester the
ability to specify locations in programs that are
known as breakpoints. At breakpoints, execution
may be suspended in order to examine and manipu-
late program and test data. This capability is pro-
vided for dialog test and includes the ability to use
any of the test options at a breakpoint. This way, the
tester has maximum flexibility to respond to the
unpredictability of a testing session. At a break-
point, the tester can use all the test options to
analyze the execution of a dialog. Then, on the basis

IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

of this finding, he can modify the rest of the test,
using those same options.

The logical place to allow breakpoint interruptions
for 1SPF applications is at an invocation of dialog
services. A breakpoint BEFORE execution of a ser-
vice allows the tester to validate the input. A
breakpoint AFTER such an execution allows the
modification of the service return code to force
execution of different paths through the applica-
tion.

Additional flexibility derives from allowing the
tester to identify specific dialog functions during
which the breakpoint is to be considered or ignored,
and to control the specific conditions under which a
breakpoint can occur. For example, the tester may
specify that a breakpoint is to occur only in a
particular function or only if a particular service has
completed with a given return code, or only if it was
invoked with a specified parameter value.

MAURER 287

Specifications for these conditions for breakpoints,
like variables, are entered on a table display panel.
Here each row is a new breakpoint definition and
each column contains another part of the descrip-

The user requires access to trace
data during a test in order to use that
information (perhaps at a breakpoint)

to influence his next actions.

tion of the breakpoint. Since many breakpoints may
be needed for only specific and possibly separate
parts of a test, an ACTIVE column lets the tester
disable a breakpoint. The breakpoint may be re-
enabled later without having to re-enter all its data.
The ACTIVE column and other columns default to
the most commonly used values, so that all the tester
has to do is identify the ISPF service name to
completely define a breakpoint.

Whenever the tester selects the BREAKPOINTS
option, all the breakpoints previously defined are
displayed. He can then modify breakpoint specifica-
tions by overtyping selected data, as well as define
new breakpoints by inserting new rows in the dis-
play. This design is very different from a testing tool
like TSO TEST, where the programmer must calcu-
late the hexadecimal address of the location of a
breakpoint. Also, in a tool like TSO TEST, no identifi-
cation of the required information is given, and all
existing breakpoints are not automatically dis-
played while new ones are being defined or
updated.

When the dialog being tested is executing and a
breakpoint is reached, the tester is presented with a
panel that identifies the call within the dialog where
the breakpoint is taken. The displayed panel con-
tains selections for all the dialog test options. Using
these options, the tester learns more about the
problem being analyzed, and thus can use this

258 MAURER

information dynamically to refine the conduct of
the test. When the tester is ready to resume execu-
tion of the interrupted dialog, he has only to select a
GO option.

Traces

Detailed information about the use of dialog vari-
ables and dialog services is a valuable debugging aid
provided through the TRACE option. Since tracing
may degrade performance and create large amounts
of output, however, the tester must be able to limit
the scope of a trace to only those data that are
needed.

The single SPF TRACE parameter was replaced in
ISPF/PDF by a powerful and flexible tracing capabil-
ity to track both variables (that are referenced, set,
or changed) and dialog service calls throughout an
application or within specific functions.

Definitions of traces are entered on table display
panels with all the function previously described for
variables and breakpoints. The trace output for a
variable includes the name of the variable, its value,
the pool in which it is defined, the type of reference
to it, and the ISPF service that caused the reference.
For a service call, the output identifies the applica-
tion, screen, and function in which the call occurred,
the starting and ending point of the service, and the
parameters with which the service is invoked.

In the design of trace support, it was difficult to
resolve the questions of where to direct trace output
and how to make it accessible to the user. One
candidate for the output was a new trace data set.
Opposing this was the fact that it is generally
undesirable to require additional data sets for the
user to define and manage. The ISPF transaction log
was another possibility, but the log could not be
accessed during the ISPF session. The user requires
access to trace data during a test in order to use that
information (perhaps at a breakpoint) to influence
his next actions.

This problem was resolved by enhancing the log
interface so that the ISPF log could be accessed
during the test session in an easy and familiar way.
The BROWSE LOG option gives the user the PDF
Browse facility with the ISPF log. Additionally, the
tester can use the split screen capability to browse
the log on one screen while entries are being
recorded into it on another. Using the log also
provides a time stamp on each trace entry.

IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

Figure 10 Typical trace output

BROWSE LOG ~ SPFLOG2.LIST —~—m=—me—am——————

COMMAND mmwm>

TIME *hdk SPF TRANSACTION LOG www USERID: Z73MEM
14:50 START OF ISPF LOG = =~ = — SESSION # 176 ———— e

14:54 DIALOG TRACE —-———————m—— -~ APPLICATIONCISR> FUNCTIONC(T1) SCREEN(L>
14:56 TBCREATE BEGIN — ISPEXEC TBCREATE T1 KEYSCEMPLNUM EMPLNAME)
14:58 TBCREATE END.. — ISPEXEC TBCREATE T1i KEYSCEMPLNUM EMPLNAME)
14:60 . .RETURN CODE (4> -

14:62 EMPLNUM. POOL (F) — VALUE(B876914)>

14:64 ..GET BY TBADD -

14:70 DIALOG TRACE ~—=——m——m——— — APPLICATIONCISR> FUNCTION(T2) SCREENCL)
14:72 END OF ISPF LOG - - — — - SESSION # 176 ————memem— e

In Figure 10, the DIALOG TRACE entry (at 14:54)
identifies the application, function, and screen when
a trace was initiated and indicates (at 14:70) when
one of those values changed. A function trace entry
appears at both the beginning and end of a dialog
service call and shows the parameters with which
that service was invoked. See lines headed
TBCREATE BEGIN and TBCREATE END at 14:56 and
14:58, respectively. They indicate that the user
dialog called ISPF to create a table named TI1
through the ISPEXEC interface and that the table
had two keys, variables EMPLNUM and EMPLNAME.
Variable trace entries span two lines and show the
variable name, pool, value, type of reference, and
service causing the reference. For example, one can
infer from the variable trace entry at 14:62—-14:64
that variable EMPLNUM was being traced by the
user. At this time, his dialog called the TABDD
service to add a row to the table. That service
needed to get the value of variable EMPLNUM, thus
causing the entry “876914 ” in this trace log.

IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

Tables

ISPF tables provide a convenient way to save appli-
cation data either permanently or temporarily. A
set of table services makes this function available to
the application. The tables option of dialog test
gives the tester quick interactive access to many
table services for examining or manipulating tables
during a test.

Using the options identified on the table panel
shown in Figure 11, the tester can easily do the
following:

e Enter test data into an ISPF table to use as input
for the dialog being tested.

 Correct errors in a table during a test so that a test
can continue without interruption.

¢ Substitute for an unavailable part of a dialog that
would have manipulated a table to provide input
for the test.

MAURER 259

Figure 11 Test tables panel

OPTION mmm> 1 _

Display row
Delete row

Mod1fy row

H W N R

Add after row

TABL.E NAME mme> testtab

ROW IDENTIFICATION:
BY ROW NUMBER =mm=> *

BY VARIABLE VALUE

empiname Maurer

- —_— -- - TABLES

5 Display structure

6 Display status

CURRENT ROW:

(* = current row)

(Search for row 1f row number blank)

« Display the status and structure of a table to
verify its proper creation by the dialog.

Before selecting this option, a table can be opened or
created, as appropriate, by invoking the TBOPEN or
TBCREATE service on the DIALOG SERVICES option.
In other cases, the dialog being tested would already
have created or opened the table.

The status and structure options are useful for
determining the existence, accessibility, and char-
acteristics of a table. The row options facilitate
examination and modification of the contents of the
table. The tester is given much flexibility in iden-
tifying the table row of interest. He may enter an
absolute row number, or request the current, top, or
bottom row, or provide specific variable names and
values to search for in the row (as shown in Figure
11). Subsequently, table display panels are used to

260 MAURER

present individual rows of the table to the tester,
with each row of the display showing one variable
from the table being examined or updated. Columns
on the display are used to indicate the type of
variable and its current value.

Concluding remarks

The dialog test functions of ISPF/PDF have been
designed to exploit the capabilities of a full-screen
terminal in assisting the programmer to debug an
ISPF application. As an extension to the program
development system, this support provides consis-
tency and familiarity to the programmer, and
reduces the training needed.

The uniqueness of the PDF test functions lies in their

use of the full screen of the terminal. The display
gives presentations of all information entered so far,

IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

and easy ways to modify and add to it, through a
minimum number of interactions. For interactive
applications, the tester has available the key test
functions found in most debugging tools-—break-
points, traces, and variable display and modifica-

Inexperienced programmers have
been successful and productive,
even enthusiastic, in their debugging
of new dialogs using these options.

tion—as well as assistance for ISPF-specific items
such as panels and tables. This function is furnished
at the symbolic level of the application and is
designed to be adaptable to a wide variety of testing
needs.

Early feedback from internal IBM users indicates
satisfaction with this approach. Inexperienced pro-
grammers have been successful and productive,
even enthusiastic, in their debugging of new dialogs
using these options. They have learned how to use
the test functions from the panels themselves and
the tutorials, because no publications were available
at that time and the developers were unable to teach
them. The real test of our work will come with wider
use by more kinds of testers and many different
kinds of ISPF applications. We look forward to
seeing the further requirements that such use might
generate, and to seeing other debugging tools also
move to a full-screen approach.

Acknowledgments

The author gratefully acknowledges the editorial
assistance of Samuel B. Lee and the contributions
made by all who worked on this project, especially
the lead designer, Stanley A. Miller.

Cited references

1. P. E. Schniedler, Jr., “IBM markets a center to improve
productivity,” and W. P. Martorelli, “Conn. Center Speeds
Applications,” Information Systems News, No. 1 (February
8, 1982).

IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

2. P. H. Joslin, “System productivity facility,” IBM Systems
Journal 20, No. 4, 388—-406 (1981).

3. W. A. Delaney, “Predicting the costs of computer programs,”
Data Processing Magazine 8, No. 10, 32-34 (October
1966).

4. F. J. Rubey, “A comparative evaluation of PL/I,” Datama-
tion 14, No. 12, 20-25 (December 1968).

S. Interactive System Productivity Facility, General Informa-
tion, GC34-2078-0; available through IBM branch offices.

6. Interactive System Productivity Facility, Dialog Manage-
ment Services, SC34-2088-0; available through IBM branch
offices.

7. Interactive System Productivity Facility, Program Develop-
ment Facility for MVS, Reference, SC34-2089-0; available
through IBM branch offices.

Meg E. Maurer IBM Information Programming Services, P.O.
Box 390, Poughkeepsie, New York 12602. Ms. Maurer first
joined IBM in 1968 at the Poughkeepsie Programming Center on
the OS/360 project. Her assignments were in control program
design and early feasibility studies of virtual memory and its
application to operating systems. From 1972 to 1977 she was
employed outside IBM successively as an applications project
leader, data base administrator, and manager. She rejoined IBM
in 1977 to work on prototype software problem determination
tools. Since 1980, she has been a manager of the ISPF/PDF
development project, with responsibility for dialog test function.
Ms. Maurer received a B.S. degree in psychology at Fordham
University in 1968. She has also done work toward an M.B.A.
degree at the University of Connecticut at Stamford and at
Marist College in Poughkeepsie, New York.

Reprint Order No. G321-5194.

mavrer 261

