Automatic generation of
random self-checking
test cases

A technique of automatically generating random
software test cases is described. The nature of
such test cases ensures that they will execute to
completion, and their execution is predicted at the
time of generation. Wherever possible the test
cases are self-checking. At run-time their execu-
tion is compared with the predicted execution.
Also described are implementations of the tech-
nique that have been used to test various IBM pro-
grams—PL /I language processors, sort/merge
programs, and Graphical Data Display Manager al-
phanumeric and graphics support.

In this paper our main intention is to commu-
nicate to the reader the concept of test case
generators—programs that create random test
material for software. The methods we advocate
create test cases that execute to completion without
error and are self-checking. The test cases them-
selves will detect errors at execution time.

Although the concepts of test case generation apply
equally to different areas of software, it is important
to note that a separate and distinct generator must
be coded for each item of software to be tested by
this method. A test case generator is a specific test
tool rather than a general one. The main sections of
the paper describe three specific test case genera-
tors that have been used to test IBM program
products. These descriptions illustrate the tech-
niques and provide guidance for the readers who
wish to implement their own test case generators.

IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

by D. L. Bird
C. U. Munoz

Predecessors of our generators

Two predecessors of our test case generators were
important and are briefly described. They are “syn-
tax machines” and Seaman’s work on compiler
testing.

Syntax test case generators. Syntax test case gener-
ators have been produced by Hanford,' Purdom,’
Celentano,’ and Bazzichi and Spadafora.*

The technique of these generators is most often used
for compiler testing. A formal definition of the
source language is provided as input to the genera-
tor. This definition runs to several hundred lines for
a language such as PL/I. It specifies the permitted
forms of all statements and their arguments. It
defines also the various compound statements, such
as loops, groups, and blocks. Random test cases will
then be produced that obey these syntax rules. It is
also possible to request a minimal set of tests that
exercise “all productions” of the formal definition.

©Copyright 1983 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM
copyright notice are included on the first page. The title and
abstract, but no other portions, of this paper may be copied or
distributed royalty free without further permission by computer-
based and other information-service systems. Permission to
republish any other portion of this paper must be obtained from
the Editor.

BIRD AND MunOZ 220

Such test cases are satisfactory for testing the
syntax phase of a compiler and may uncover some
defects, or “bugs,” in code generation. Their limita-
tion is that the resultant generated code will not, in
general, be executable. Even if a test case does
execute without ending abnormally, it is impossible
to tell if it has executed correctly. The only way to
detect bugs in the code generation phase, therefore,
is to manually check the code produced—an
immensely tedious and difficult job.

Seaman’s PL/I test case generator. In October
1974, R. P. Seaman’® described his work in testing
high-level language compilers. His method created
random test programs that exercised various fea-
tures of the PL/I language. He ensured that the
programs were executable (by initializing all vari-
ables, choosing valid subscripts, etc.), but did not go
so far as to predict the execution of the randomly
generated statements.

His method of verification depended on the exis-
tence at the time of two parallel compilers (the PL/1
Optimizing and Checkout Compilers). Each test
case would be compiled and executed twice. The
resultant values of all the variables after the opti-
mizing run would be compared with those after the
checkout run. Any discrepancy would indicate a
bug in one of the two compilers.

The method proved very successful, and Seaman
noted, “The present method of writing test cases
(hand-coding) is very much a hit and miss affair.
There are far too many combinations of language
and implementation features for an exhaustive test,
so many arbitrary decisions have to be made. Cur-
rently, these random decisions are made when the
test cases are written and never subsequently
changed. As a result, there are permanent gaps in
the testing coverage. We need to automate the
writing of test cases so that these random arbitrary
decisions are not fixed and frozen in the test cases
forever. If this can be achieved, the effect will be a
greater coverage of the compiler by the testing

process.”

In the years following Seaman’s work a team of
three programmers, including one of the authors of
this paper, did design and write a PL/I test case
generator that produced executable, self-checking
test cases. These test cases covered a large subset of
the PL/1language and did not rely on the presence of
a second compiler for verification. This PL/I genera-
tor is described in the next section.

230 B8IRD AND MUNOZ

PL/I Test Case Generator

The PL/1 Test Case Generator was first used to test
later releases of the PL/1 Optimizing and Checkout
Compilers. The test cases produced were syntacti-
cally correct and guaranteed to execute to comple-
tion without any errors or program checks. Another

The heart of a test case generator is
aloop.

important aspect was that they were completely
self-checking. If a test case produced no error
diagnostics, it was known to have executed correctly
and could be discarded. A test case several hundred
lines in length could be generated in a few sec-
onds.®

The composition of a compiler test case. Generated
compiler test cases are composed of three different
types of statements:

o, Structural statements. These form the basic
framework of the test case. They include the
PROCEDURE and END statements and the subrou-
tine that sends out the error diagnostics.

* Random statements. These form the bulk of the
test case. The type of statement and all its options
and arguments are chosen randomly to span the
language covered by the generator.

% Self-checking statements. These statements are
intermingled with the random statements to ver-
ify at run-time that the test case executes in a
correct manner.

A simple example illustrating this composition is
the following:

/* MAIN PROCEDURE (STRUCTURAL) */
/* DECLARATION (STRUCTURAL) */
/*» DECLARATION (RANOOM) +,
/* ASSTGNMENT (RANDOM) */
/% VALIDATION (SELF-CHECKING) */
(STRUCTURAL) */

PLOO001:PROC OPTIONS (MAIN);
DCL FIXO1 FIXED BIN(31) INIT(3);
DCL FIX0Z FIXED BIN(31) [NIT(3);
FIX01=2+F1X02; /* DEBUG: 5 */
IF FIX017=5 THEN CALL ERROR(1);
END PLO00O1; /* END

The relative frequency of each of the possible source
statements (and options) is controlled by a set of

IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

weights. These weights (which are declared as
variables inside the generator) each have a default
value that may be respecified at test case generation

At the end of each section of random
statements, some checking code is
added to the test case.

time. If one particular type of statement has a high
weight, it will appear densely in the generated test
case. Should a statement have a zero weight, it will
not appear at all.

In this way, test cases may be focused on known
weak areas of a compiler. Also, any language fea-
tures not yet supported by a compiler under devel-
opment may be weighted out until such support is
available.

The structure of the test case generator. The heart of
a test case generator is a loop that selects, randomly,
the next source statement to be added to the test
case. It then calls a generator subroutine responsible
for creating a random example of that source state-
ment. Each of these subroutines has three duties:

« It must create the text of the statement.

e It must predict the eventual execution of the
statement.

o It must ensure self-checking of the statement.

The first of these duties is relatively easy to achieve
and was the basis of previous test tools known as
“syntax machines.” The remaining two duties are
harder to attain but provide the two key advantages
of our method of test case generation: guaranteed
executability and automatic self-checking.

In general there is one generator subroutine for each
of the source statements in the language under test.
There are also service routines such as a random-
number generator, several expression generators,
and variable-selection subroutines.

IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

To predict the execution of each statement, the
generator maintains a constantly updated diction-
ary of all the variables so far declared in the test
case being generated. This dictionary holds infor-
mation on the data type, array bounds, and, most
important, the current value of each variable. These
current values are continually changing as the test
case is created statement by statement.

An example of statement generation. As an exam-
ple of the steps involved in generating a single
statement, we will consider the following (random)
assignment statement:

FIX10(3) = FIX11*2 - FIX12(1,3); /% DEBUG: 49 »/

These are the steps:

1. The random-number generator is called to
choose which type of statement will be added to
the test case. An “assignment” statement is
chosen.

2. The subroutine responsible for generating
assignments is called. It (randomly) decides that
the assignment should be of the “fixed binary”
type.

3. The subroutine next calls a service routine to
choose the target variable. The service routine
makes a random choice from all fixed-binary
variables so far declared in the test case being
created. It returns the text of the target variable
(FIx10(3)) and a pointer to the position in the
dictionary where the data of the variable are
held.

4. The “assignment” subroutine now calls the
binary expression subroutine to create the text of
the right-hand side of the assignment and to
predict its value at execution time.

5. The expression subroutine, which is coded recur-
sively so that expressions of any complexity may
be produced, constructs the source of a binary
expression (FIX11*%2 — FIX12(1,3)), using only
constants or variables that are known to be
initialized at this moment in the test case. It
returns both the text and the predicted value of
the expression, say, 49.

6. The assignment subroutine concatenates the text
of the target variable, an equal sign, the text of
the source expression, a semicolon, and finally, a
debugging comment that gives the predicted
value. It then calls a further service routine to
add this statement to the test case under con-
struction.

7. Itstores the predicted value (49) into the diction-
ary entry for the target variable. Any further

BIRD AND MUNOZ 231

statements that refer to the variable will use this
latest value in their predictions.

8. Finally, the assignment subroutine passes con-
trol back to the main loop, ready for the selection
of the next statement.

Note that the expression generator rejects any
expressions that would cause an interrupt, such as
zero-divide, at execution time. It also ensures that
uninitialized variables are not used. In this way
executability is ensured.

At the end of each section of random statements,

some checking code is added to the test case. This
code checks that the value of each modified variable

The execution of some types of
random statement may affect the
subsequent flow of execution in the
test case.

is in accordance with the prediction made at test
case generation time. The above assignment state-
ment, for example, would trigger a self-checking
statement of this type:

[F FIX10(3) —= 49 THEN CALL ERROR(126);

Every time a call to the error subroutine is added to
the test case, the argument to be passed is incre-
mented by one. So if the diagnostic “ERROR AT 126”
occurs at run-time, it will be because the variable
FIX10(3) did not have the predicted value of 49.

Thus, the assignment subroutine has fulfilled its
three objectives. It has created the text of the
assignment statement. It has predicted its eventual
execution. It has also ensured that the correct
execution of the statement will be verified.

Generation of statements that control program
flow. The execution of some types of random state-
ment may affect the subsequent flow of execution in
the test case. In general, further random statements

232 &R0 AND MUNOZ

will be placed on the correct path of flow; a call to
the error subroutine may be placed on the incorrect
path.

Consider this example of a typical generated IF
statement:
IF FIX22 > FIX11 ® 9 e FIX03(7)
THEN
CALL ERROR(218);
ELSE
FIX12 = 53
The steps involved in its creation are similar to those
mentioned in the previous section. A relational
expression is created, and its value (true or false) is
predicted. Again we see the three elements—text,
prediction of execution, and self-checking.

Calls and procedures. A problem that has not yet
been mentioned is that of generating code that may
be executed more than once at run-time. The gener-
ator does not incorporate a post-processing inter-
preter and must therefore be able to predict the
execution of each statement at the time of its
generation. Steps have to be taken to ensure that
statements executed more than once (such as those
inside do-loops) execute identically on each occa-
sion. The same is true for the statements inside
procedures that are called from more than one place
in the test case.

For example, if the generated statement FIXO01
= FIX02 + 2; is to be executed more than once, the
value of FIX02 must be the same each time (other-
wise the execution of subsequent statements using
FIX0o1 would be unpredictable). The generator
therefore makes a restriction on internal proce-
dures. If a procedure is to be called from more than
one place in the test case, its statements must refer
only to variables declared inside the procedure.

For procedures called from only one place in the test
case, the prediction of the statements immediately
following a CALL statement may depend on the
values of the variables on exit from the called
procedure. Therefore, the called procedure must be
generated immediately following the generation of
the CALL. Since in general the position of an inter-
nal procedure would not be that immediately fol-
lowing the CALL, a text-moving mechanism is
required. This mechanism is described later.

Do-loops. As mentioned previously, each random
statement within an iterative do-loop must execute
identically each time. To achieve such execution,
the generator divides all variables declared in the

IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

test case into two categories, those of “left bias” and
those of “right bias.” This categorization is ran-
domly decided for each variable and array element
at the time of its declaration. Within an iterative
do-loop the following restrictions apply:

e Only right-biased variables may appear on the
right-hand side of an assignment.

¢ Only left-biased variables may have their values
altered.

These restrictions ensure that each statement will
always execute identically. Apart from these
restrictions, completely general statements are pro-
duced inside do-loops. Nesting of such loops is
permitted to an implementation-defined level (sev-
en, at present).

The correct execution of loops is verified by includ-
ing self-checking statements inside the loops. These
statements increment a variable that will later be
checked. Other special-case statements may be
inserted in the loop, such as an assignment to an
array element whose index is a simple function of
the loop variable. Again, the array would later be
checked by the test case to verify correct execution.

Very little is gained by permitting large numbers of
iterations in a test case. The number of iterations is
therefore normally kept low. Keeping the number
low does not represent any restriction on the syntac-
tic form of the DO statement itself. The do-loop
parameters will be created by calls to the appropri-
ate expression generator. The expressions chosen
will be adjusted by a constant, so that the number of
iterations will be set as required.

The following is a typical generated DO group:

DO PTRO1->FIX02 = -45 TO (483-DIM(BIT04,4)*12)-520 BY (FIX21-5);
/* START = -45, INCREMENT = -3, END = -51, COUNT = 3 »/
... various random statements ...
FIX07 = FIXQ7 + 1; /* INCREMENT LOOP CHECK VARIABLE =*/

END;

The predicted value for FIX07 at the end of the loop
will be checked later, thereby verifying the correct
execution of the DO statement.

Similar methods are used for do-loops with WHILE
or UNTIL clauses.

The generator output routine. In several situations it

would be inconvenient to place generated state-
ments straight into the test case under construction.

IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

For example, it was mentioned that the text of an
internal procedure must be generated immediately
after the CALL to it (since the prediction of the
statements following the CALL might be affected by
variables that had changed value inside the called

In several situations it would be

inconvenient to place generated

statements straight into the test
case under construction.

procedure). But in some cases the procedure cannot
physically follow the CALL. For example, the CALL
might be on the first branch of an IF statement, with
an ELSE clause to follow.

Similarly, the need for a declaration (typically for a
self-checking variable) might become apparent
while the generator is in the depths of constructing
some complex statement.

To allow for subsequent reordering of the text, each
statement is stored initially into an array. Asso-
ciated with each element of the array is a flag,
specifying what post-positioning, if any, is required.
When all the statements have been generated, a
post-processing subroutine reorders the text and
writes it out to disk.

The same scheme is used to bring all the declara-
tions in a block to the start of the block. This
procedure aids debugging and improves the physical
appearance of the test case. Another subroutine
formats the test case, indenting nested DO, IF, and
SELECT statements.

The generator weighting scheme. The method of
weighting used is common to all our test case
generators. Wherever the generator must choose
between several alternatives, each of the alterna-
tives has a numerical weight (or biasing factor)
associated with it. These weights are declared as
variables within the generator, and their values
affect the relative frequencies with which various
language features appear in the test cases.

BIRD AND MUNOZ 233

For example, suppose that the generator has to
choose between three possible options for a Record
/0 READ statement. These options may have asso-
ciated weights of 3, 1, and 2. A generator service
routine is passed the three weights and chooses one

The generator has also successfully
tackled complex language areas.

of the options by calling a random-number genera-
tor to select a number between 1 and 6 (= 3 + 1
+ 2).If 1, 2, or 3 is chosen, option | will appear in
the test case. If 4 is chosen, option 2 will appear; and
if 5 or 6 is chosen, option 3 will appear. So, the
relative frequency of option 1 being selected against
option 2 is 3:1, in accordance with the weights.

Whenever an option is just two-way (should the
character declaration incorporate the VARYING
option, for example), it is simpler to use a single
percentage weight. If this is set to 20, about 20
percent of the character strings in the test case will
have the VARYING attribute.

It is for the implementer of the test case generator to
decide which random decisions should have a
weight accessible to the generator user, and which
should be hard-wired as constants.

In addition to the weights, various options may be
set. These options include the proposed length of the
test case, the maximum permitted nesting of do-
loops, and the complexity of expressions required.
Again, these options all have default values. They
may be overridden at generation time if required.

Extent of language covered by the PL /I generator.
Self-checking test case generation has been
extended to cover most of the data types, storage
classes, statements, and built-in functions in the
PL/I language. It is not the intention of this paper to
give details of the implementation of all parts of the
generator. The methods used to test compiler sup-
port of VSAM record I/0 can be hinted at by giving
some typical generated statements:

234 BrRD AND MUNOZ

ON KEY(VSAMKS) GOTO VSMO17;

WRITE FILE(VSAMKS) KEYFROM('APPLE') FROM{GREC(3));

CALL ERROR(93); /* WRITE OUT OF SEQUENCE RAISES KEY CONDITION =/
VSMO17: REVERT KEY(VSAMKS);

The generator adds statements to the test case that
will send data back and forth between the data set
and the test case. Throughout the generation
process the generator maintains a prediction of the
current contents of the VSAM data set. On this
occasion, the generator predicts that the WRITE
statement will raise the KEY error condition. It
therefore inserts extra code to trap the error. Should
the error on-unit not be entered, diagnostic 93 will
inform the test case runner of the error.

Wherever possible, the generator adds helpful com-
ments to the generated statements to aid debug-

ging:

READ FILE(PATH1) INTO (GREC(1)); /» NEXT KEY='ROSE', MAIN KEY='LEMON's/
STROZ2.FIX08(2)=534 + FIX05+27 - LENGTH(BITO7); /* DEBUG: 612 */

In the first statement, the predicted VSAM keys of a
sequential read are given. In the second, the pre-
dicted assignment value is shown.

The generator has also successfully tackled complex
language areas such as the REFER structure attri-
bute. Even if adding generator support for a new
language area seems likely to be a complex venture,
it is usually the case that conventional testing of the
new area would be even more difficult. And once a
language feature is added to the generator, there is
the huge bonus that it will automatically appear in
conjunction with all the other supported language
features. Problems due to interactions may be
detected.

Types of testing not handled by the generator meth-
od. Since the test cases produced by the generator
are syntactically correct, they are of little use in
testing compile-time diagnosis of faulty input. Test
cases for this area must therefore be handwritten.
Similarly, run-time diagnostics testing is usually
performed with handwritten test cases, partly
because there is little virtue in repeating such tests,
partly because in general they cannot be made
self-checking.

It is inconvenient for the generator to produce some
special cases. For example, it might be worthwhile
to test whether or not a loop would iterate success-
fully 10000 times. It would not be sensible to
introduce such loops in the middle of randomly
generated test cases, though, since they might then

IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

take hours to execute. A handwritten test case
would be used instead.

Finally, some system-related functions are difficult
to support, including tasking, reentrancy, fetching,
and the linking of external procedures. It will often
prove convenient, though, to use generated test
cases as the basis for testing these functions.

Summary of PL/I generator. The Optimizing and
Checkout Compilers had been in the field for sev-
eral years before test case generation was used with
them. The full benefit of the method was therefore
not felt. Nevertheless, generation has been used to
locate several bugs in the existing code and to
successfully test features added in subsequent
releases such as VSAM support, the SELECT state-
ment, DO UNTIL, DO REPEAT, and LEAVE.

Compiler testing is one of the most suitable areas
for test case generation, since it is relatively easy to
achieve the goal of self-checking. The need for
testing by generator is also high, since large
amounts of test material are required that would be
expensive and time-consuming to produce by hand.

Alphanumerics and graphics test case
generators

The Graphical Data Display Manager (GDDM) is
an IBM program product that supports the display of
text and graphics on terminals and printers. The
first three releases of this product have been suc-
cessfully tested by test case generators.

Three main types of processing are provided by the
GDDM package: alphanumeric, general graphics,
and business graphics. Each has its own distinct
application program interface (API), and each was
tested with a separate test case generator.

Alphanumeric processing consists of both output
and input. The generated test cases involved were
therefore able to incorporate a high degree of self-
checking, using a scheme of data echoing that will
be described later.

Graphics processing is output only. The end prod-
uct—a picture on a screen or printer page—can be
checked only by the human eye. However, various
aids were devised to assist the checking of output
from generated test cases. Despite initial doubts
from some quarters as to whether test case genera-
tion would be effective in this area, the method
proved extremely successful. Many hundreds of

IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1883

valid problems were located, and subsequent defect
rates have been low.

It was also found that vast quantities of test material
were required to locate the bugs. For a given release,
testing would start as soon as any new function
became available. Using the previously described
weighting scheme, test cases would be produced con-
taining all the GDDM function of the previous release
plus the new function just added to the code by
development. As development proceeded, more func-
tions would be switched on in the generator. Eventu-
ally it would produce test cases covering the whole of
the function for the new release. Under this method of
testing, bugs were found at a uniform rate for some
five or six months.

To create sufficient test material manually would
have been impractically time-consuming and expen-
sive. Using test case generators, just one program-
mer performed the functional verification test of
some 60 000 lines of code.

The GDDM alphanumeric test case generator. The
alphanumeric function to be tested is basically the
definition of the alphanumeric fields that make up a
screen layout and the transmission of data to and
from these fields.

Since it is not possible to make “output” test cases
self-checking, the output produced may need to be
compared against the generated test case source.
During early testing of new code, it may be neces-
sary to check, for example, that field 22 is yellow
and reverse-video and that it does start in column 13
and end in column 40. To ease this comparison, the
generator predicts the appearance of each screenful
of output and adds this prediction to the source of
the test case (see example that relates to Figure 1).
The generated test case also floods the entire screen
with color before executing a block of alphanumeric
statements. Subsequent declarations of alphanu-
meric fields cause holes to appear in this back-
ground, enabling the test case operator to “see”
unassigned fields that would otherwise be invisible.

The transmission of alphanumeric data is self-
checked, using the following echoing scheme. Out-
put of 1/0 alphanumeric fields consists of a number
of identical characters with one or more question
marks included, for example QQQQQ?QQQ. The test
case operator is expected to overtype the question
marks with the other transmitted character (Q in
this case). When a subsequent GET is performed on

BIRD AND MUNOZ 235

the field, the generated test case will check that the
2 has been correctedly modified to a Q.

This combination of “echoing” the sent data and
requesting a field modification by the operator acts
as an indirect check that the output was performed
correctly. Although the fields are declared in ran-
dom positions and are of random sizes, the operator
knows that he must merely overtype the ? charac-
ters and point the light pen at those fields containing
special light-pen prompts. The test case can there-
fore be executed without any knowledge of the test
case source.

In the early days of testing new function, a few
detailed comparisons might be made between the
screen output and the corresponding test case
source. Later on, many more runs would be made
without any reference to the source unless an appar-
ent error occurred.

As in the PL/I generator, there are separate subrou-
tines for each of the alphanumeric API calls (i.e.,
each of the statements in the GDDM language). As
before, each subroutine is responsible for creating
the text of the statement, predicting its execution,
and (as far as is possible) assisting in its checking.

Example of an alphanumeric statement subrou-
tine. A description of the steps involved in generat-
ing the GDDM “ASDFLD” (field-declare) statement is
now given to indicate to the reader how such a
generator should be coded. Note that wherever the
word “choose” is used, a call to the random-number
generator will occur.

1. Choose a valid field number.

2. Erase the generator’s internal memory of this
field number if it was already in use. The
previously occupied terminal screen positions
will then be available for subsequently declared
fields.

3. Choose a row and column position for the field
within the current page dimensions.

4. Choose a depth and width for the field that does
not carry the field outside the current page.

5. Call a generator subroutine to check that the
proposed field would not illegally overlap any
existing fields. If it would, return to 3. (Five
attempts are made before generation of the
statement is abandoned.)

6. Store information on field placement and field
attributes into the dictionary of the generator for
the current page.

236 BRD AND MUNOZ

7. Produce text of the statement, e.g.,

/* FIELD-NUMBER ROW COLUMN DEPTH WIDTH FIELD-TYPE */
CALL ASDFLD(13, 18, 40, 6, 2, 1)

and add it to the test case being generated.

The subroutine has created the text of the ASDFLD
statement and predicted its execution. It has also
ensured that such execution would not cause an
error (such as overlapping another field). Verifica-
tion of execution will occur either via a visual check
by the test case operator or indirectly if the field
takes part in subsequent 1/0 operations.

An example of generated output to test alphanu-
meric support. Part of a test case produced by the
GDDM alphanumeric test case generator follows as
an example of generated output.

JRRRR AR R RIS xR

/* CREATE PAGE 10 *»/
JHERERIRIER R TR R/
CALL FSPCRT(10,27,67,3);
CALL GSFLO(1,1,26,67);
CALL FRAME;

/* DEFINE PAGE w/
/* DEFINE GRAPHICS FIELD */
/*FILL IN BACKGROUND 70 AID CHECKING*/

/ /
/% INITIAL FIELD DECLARATIONS FOR BLOCK */
/

/

CALL ASDFLD(75,16,22, 7, 9,4);
CALL ASDFLD(52, 7, 4, 1,80,0);
CALL ASDFLD(97,17,38, 2,11,1);

/* WRAP-ARQUND FIELD =

~

/ /
/% END OF INITIAL FIELD DECLARATIONS */
/ /

CALL ASCPUT(97,22,(6)'2'11'2'[1(15)'2"); /* NUMERIC 1/0 #/
CALL ASCPUT(75,61,(61)'!"); /* DEFERRED LP FIELD */
CALL ASCCOL(75,14,' 53661 257356'); /* CHARACTER COLOR ATTRIBUTES =/
CALL ASCSS(97, 4,' A A'); /% CHARACTER S-SET ATTRIBUTES */
CALL ASCPUT(52, 4,(L)' ("11"2'11(2)' (") /% ALPHANUMERIC /0 */
CALL ASFCUR{ 97, 1, 1); /* SET CURSOR POSITION */
CALL ASQCOL(75,14,FIELD_CHECK); /% QUERY COLOR ATTRIBUTES */
IF SUBSTR(FIELD_CHECK,1,14)==' 53661 257356' THEN CALL ERROR(42);

CALL ASDFLD(75,10, 4, 7,13,4}; /* REPLACE PREVIOUS FIELD */

etc.

CALL ASCPUT(29,63,(48)'8'(1'2'1i(14)'8');
CALL ASCPUT(95, 6,'?2'11(5)'0');

/* NUMERIC 1/0 */
/* NUMERIC 1/0 */

PAGE;
/ /
I */
/% SCREEN PREDICTION */
/* */
/ Lhd /

. .88888883888888888888888888888888

UV L bbtdttdbs,
Fhbbbb bbbt

IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

CALL ASDFLD(99,27,2,1,57,2);
CALL ASCPUT(99,44,'OUTPUT 11 FROM TESTCASE G175343 TO DEVICE 17');
CALL ASREAD(TYPE ,MOD,COUNT);

/* FIELD FOR LOGO =/

/ /
/* QUERY MODIFIED FIELDS AND CHECK RETURNED VALUES */
/

/

CALL ASQMOD{ 5,f _ID,TLENG,ILENG);
/ * /
/* GODM-REL3 RETURNS FIELDS IN F_ID ORDER, LP FIELDS FIRST */
/
IF F_ID(1)-= 75 THEN CALL ERROR(47);

IF TLENG(1)-= 91 THEN CALL ERROR{(48);
IF ILENG(1)-= 56 THEN CALL ERROR{ 49);
If F_ID(2)== 29 THEN CALL ERROR(50);

IF TLENG(2)-= 91 THEN CALL ERROR(51);
[F ILENG(2)-= 63 THEN CALL ERROR(52);
IF F_ID(3)-= 52 THEN CALL ERROR(53);

IF TLENG(3)-= 8 THEN- CALL ERROR{ 54);
IF ILENG(3)-= 2 THEN CALL ERROR{ 55);
IF F_ID(4)-= 95 THEN CALL ERROR(56);

IF TLENG(4)-= 6 THEN CALL ERROR(57);
IF ILENG(4)-= 6 THEN CALL ERROR(58);
IF F_ID(5)-= 97 THEN CALL ERROR{ 59);

IF TLENG(5)-= 22 THEN CALL ERROR(60);
IF ILENG(5)-= 22 THEN CALL ERROR(61);

/*LIGHTPEN/FIELD 1x/
/*ALPHA FIELD 2%/
/*ALPHA FIELD 3%/
/*ALPHA FIELD 4/

/*ALPHA FIELD 5wy

etc. (further checking code will follow)

The output from this section of generated code is
shown in Figure 1.

The GDDM graphics test case generator. The main
problem to be overcome with graphics testing is
verification of the random output on the color
terminal. Some bugs appear as program checks,
loops, or incorrect diagnostics, but many appear as
faulty output at the terminal. It would be
immensely tedious and time-consuming to have to
compare each line or curve on the screen with the
statement in the test case that produced it, in the
hope of finding a mismatch and thus a bug. The
following five techniques have therefore been used
to enable easy verification of the output from the
random test cases.

Sending markers to the predicted primitive end
points. Every time the generator creates a primitive
statement (for example, a line or an arc), it calcu-
lates the predicted end points of the primitive.
Before adding a WRITE statement to the test case,
the generator creates a loop of MARKER primitives
to send colored markers to each of the predicted
primitive end points. A complex marker consisting
of a yellow diamond and a black plus sign is used so
that it will show distinctly against any shaded
background.

IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

Figure 1 Output from the section of generated
alphanumerics test case; the operator will
overtype the ? character, causing those fields
to be echoed back to the test case for
self-checking

The eventual output from the test case will there-
fore be a merging of the random primitives and the
markers that predict their end points. When the test
case is executed, it will not be necessary to verify the
position of each primitive against the text of the
random statement that produced it. The tester need
only confirm that

1. Every primitive has a special marker at each
end.

2. There are no unattached special markers on the
screen.

This method allows the correctness of the output to
be verified at a glance.

Interspersing query-current-position statements.
After creating a primitive, the generator may
decide to add a GDDM GSQCP (query-current-
position) statement followed by a checking state-
ment. This check will confirm that GDDM’s calcu-
lation of the current position is the same as that
previously predicted by the test case generator. It
does not guarantee that the primitives will be drawn
to the correct position, since the drawing has not yet
taken place.

Backing grid as aid to detailed checking. When it is
desired to perform a detailed check on the output
produced by GDDM, the user may tell the generator
to use “grid” mode. The created test case will then
use a simple window (coordinate system) of X = 0

BIRD AND MUNOZ 237

— 100 and Y = 0 — 100, rather than a randomly
chosen one, and a backing grid will be sent to the
terminal by the test case to enable easy verification
of the position of the primitives.

Restricting all primitives to the viewport. When
generating a test case, the user may specify whether
or not all primitives should be restricted to the
viewport. It is usual to run the generator in “re-
stricted” mode, and several GDDM drawing errors
were detected by observing that primitives had
strayed outside the viewport.

The method used by the generator to ensure that
arcs remain inside the viewport is to simulate draw-
ing the arc by calculating the current position every
few degrees of the proposed sweep. If the current
position moves outside the viewport, the sweep is
backtracked and then used to replace the previously
chosen sweep. With MOVEs and LINEs, all that is
required is to select the TO-point inside the view-
port.

The generator may be run in “unrestricted” mode to
test whatever “clipping” functions may be sup-
ported by the product under test.

Automatic commenting of test cases. As with our
other test case generators, helpful comments are
added to the source of the test case. Here the
purpose of the added comments is to aid a detailed
verification of the graphics output. For example, an
ARC primitive might appear as

CALL GSARC(36, 59,-56.4); '*ARC-END AT +53.12E+00, +9.92E+00 =~
and if a detailed check were being performed, the
tester could check whether the arc did indeed end at
the predicted (53.12, 9.92). Another example is

CALL GSAREA(1); *TURQUOISE AREA,SHADING PATTERN=11*

The generator keeps track of which attributes the
test case has set at each point and can therefore save

the tester the trouble of scanning back to find the
last setting of an attribute.

The following excerpt from a generated graphics
test case produces the output shown in Figure 2.

CALL DSUSE(1,11);

CALL SS_INIT_LOAD;

CALL FSPCRT(29,0,0,2);
CALL GSFLD(1, 1,31,52);
CALL GSCLP(1); /* SET CLIPPING ON
CALL GSPS({ 1.00000E+00, 6.42999E-01); /* DEFINE PICTURE SPACE *,
/* NO GSVIEW STATEMENT ,WHOLE PICTURE SPACE WILL BE USED »/

/* NO GSWIN STATEMENT, {0:100,0:100) IS DEFAULT =*/

/*USE PRIMARY DEVICE 11 =~/
/* LOAD SYMBOL SETS w7

/% DEFINE PAGE +,

/* DEFINE GRAPHICS FIELD #,

*

238 8RO AND MUNOZ

CALL GSSEG(D); /+ UNNAMED SEGMENT+
CALL GRID; /% SUBROUTINE CALL TO SEND GRID TO SCREEN =~
CALL GSMOVE(15, 54); /% FROM(0.0, 0.0) *
ST TS T
/* BLOCK 1*
SHRRRK KRR IIKRI KKK
CALL GSCM(1); %+ CHARACTER MODE = HARDWARE *
CALL GSCOL(2); /* NEW COLOR IS RED #/
CALL GSARC(45, 96,- 19); /*ARC-END AT +29.6E-01,+66.0E+00%/
CALL GSMOVE(71, 50); /+ FROM(2.9, 66.0)
CALL GSARC(38, 18,- 58); /*ARC-END AT +82.6E+00,+69.7E-01%,
CALL GSQLW(BIN AR(1)); e QUERY LINEWIDTH

IF BIN_AR(1)-=" 1 THEN CALL ERROR(2); /% WRONG LINEWIDTH *,
CALL GSLINE(27, 12); /* FROM(82.6, 6.9) */
CALL GSMOVE(51, 97); 7 FROM(27.0, 12.0) */

CALL GSARC{ 44, 51, 53); /*ARC-END AT +11.4E+00,+84.2E+00+/
CALL GSCOL(5); /% NEW COLOR IS TURQUOISE #/
CALL GSELPS(-15.0E+00,+12.2E+01,-273, 5.33881E+01, 8.37031E+01);
/*CENTRE AT: 68, 68.SWEEP= 4.36938E+02 TO 4.05938E+02 */

etc.

CALL GSPAT(78);

CALL GSCOL(7);
JHEREFATRIEHRFAKKR]
/% AREA STARTING */
JREREERERKIKRKEAR /

CALL GSAREA(1);

/*SHADING 1S FROM 64 COLOUR SET,PATTERN IS NO. 78,DRAWN BOUNDARY=/

/* SET PATTERN FROM 64-COLOR SET */
/*WHITE FOR 64 COLORS*/

DCL PFLT_XO03(6) FLOAT DEC(6) INIT(11, 61, 73, 30, 55,
56);

DCL PFLT_Y03(&) FLOAT DEC(6) INIT(35, 3, 70, 30, 95,
44},

CALL GSPFLT(6,PFLT_X03,PFLT_Y03); /* FROM(7.0, 61.0) */

CALL GSARC(71, 31,-319}); /*ARC-END AT +51.1E+00,+30.9E+00%/
etc.
/

/
/* SEND QUT MARKERS AT PREDICTED ENDPOINTS =/
/ /

DCL XY01(60) FLOAT DEC(6) INIT(
. 54. 2

15.0, 0, .9, 66.0, 71.0, 50.0,

82.6, 6.9, 27.0, 12.0, 51.0, 97.0,

11.4, 84.2, 53.3, 83.7, 52.9, 88.4,

66.0, 89.0, 49.0, 24.0, 34.0, 73.0,

14.0, 22.0, 9.8, 22.7, 72.0, 92.0,

13.0, 85.0, 42.0, 1.0, 7.0, 61.0,

36.0, 19.0, 67.0, 36.5, 51.5, 50.0,

42.5, 62.5, 56.0, 44.0, 51.1, 30.9,

14.9, 31.0, 7.3, 42.6, 11.9, 14.1,

0.5, 33.6, 1.0, 69.0, 41.0, 42.0);
CALL GSCOL(6); /% MARKERS IN YELLOW /
00 1=3,2; /% YELLOW DIAMONDS ROUND BLACK PLUS-SIGNS %/
CALL GSMS(I); /% MARKER FOR PREDICTED END-POINTS %/
D0 J=1 TO 30; /+ LOOP THROUGH SAVED POSITIONS */
CALL GSMARK(XYO1(Z*J-1),XY01(2%J));
END; /% J-LOOP */
CALL GSCOL(8); /% SET COLOR TO BLACK */
END; /% 1-LOOP */

CALL ASDFLD(99,32,2,1,44,2); /* DEFINE ALPHA FIELD FOR PROMPT =/
CALL ASCPUT(99,44, 'CLIPPED 1 FROM TESTCASE G164636 TO DEVICE 11');

/ /

/* GODM GRAPHICS WILL NOW BE QUTPUT */

/

/
CALL ASREAD(TYPE,MOD,COUNT);

GDDM business graphics generator. Business
graphics test cases are, by their nature, output-only.
Since it is not possible to make “output” test cases
self-checking, the output produced must in theory
be compared to the matching test case source.
Performing a detailed comparison, particularly that
of plots against data, is necessarily a time-consum-
ing process.

With an automatically generated test case, this
comparison is neither easier nor more difficult than
with a handwritten test case. The test case genera-
tor offers no benefits in this area. Its main advan-
tage is that the source of, say, a 1000-line test case
can be automatically generated in seconds rather
than needing a few days to be coded manually.

IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

Figure 2 Output from randomly generated graphics test case; the diamond-shaped markers indicate the predicted end

point of each random line or curve

The experience gained from the first three releases
of GDDM business graphics showed that most bugs
display themselves not by a histogram bar being a
quarter of an inch too low, but in some more
immediately obvious fashion. For example, defects
might be indicated by program checks, erroneous
error messages, bars stretching off the top of the
chart, legends not matching components, no data
appearing, or any obvious shading errors. Although
some generated test case runs were made that
involved a detailed comparison of the source with
the output, many more runs, indeed nearly all runs,
were made without any reference to the test case
source unless the output looked suspicious.

A typical test case might be 1200 lines long and put

out 15 charts. There might be, say, four suspicious
aspects to the output, and the relating test case

IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

source would be inspected. On investigation, some
strange combination of options and data might
justify some of the suspected output, and maybe one
or two valid problems would be found.

Brief description of business graphics generator
internals. Each time in going around the main loop,
the generator selects a chart type and then calls the
high-level procedure responsible for producing the
statements that cause such a chart to be built. This
procedure will first call several subroutines, each
responsible for one or more chart layout statements.
These subroutines decide randomly whether or not
to produce each statement, according to the asso-
ciated weight of the statement. Should a statement
be selected, any options or operands are also chosen
by reference to weights and the random-number
generator.

BIRO AND MUNOZ 230

Figure 3 Output from a randomly generated busliness
graphics test case

Next, the procedure chooses the basic data specifi-
cation. For example, the number of bars, number of
components, and data ranges may have to be select-
ed.

Next, several subroutines are called that are respon-
sible for axis-preparation statements. The state-
ments already generated may now be jumbled into a
random order. The penultimate step is to generate
the declarations to hold the actual chart data;
various techniques are used here. For example,
surface chart data may be generated using the
formula

Y=Y + K. * (Xn - ‘Xlow) ** E,

where

Y,. = nth dependent data value in cth component

X, = nth independent data value

K. and E,. = constants chosen so the dependent data
will be inside the prescribed range

Finally, the chart-plotting statement itself is pro-
duced. As with the generators previously described,
the test cases are guaranteed to execute without
error. For example, the generator will ensure that
the total data for a pie chart do not exceed 100
percent and that negative values are not used on a
logarithmic axis.

The following excerpt from a generated business
graphics test case produces the output shown in
Figure 3.

240 ©RD AND MUNOZ

/ /

/* */
/* GDDM HISTOGRAM WILL NOW BE PRODUCED */
/% */

/

DCL TEXT_ATTO01(2) INIT(2/*COLOR*/,0/*CHAR MODE*/);

DCL PATO02(8) INIT(2,3,6,8,3,1,1,8);

DCL AX_ATTOO03(3) INIT(3/%COLR*/,3/%LT*/,1/*LW/);

DCL KEYOO4 CHAR(32) INIT('FRANCE BELGIUM SPAIN ITALY H
/*DATA FOR CHKEY STATEMENT*/

/* DATA FOR CHPAT »/
o /‘AXIS ATTRS */

/ /
/* CHART LAYOUT */

/ /
CALL CHHATT{2,TEXT_ATT001); /* MODIFY HEADER TEXT ATTRIBUTES »/
CALL CHPAT(8,PAT002); /*RESPECIFY PATTERN TABLE*/
CALL CHHEAD(43,'*HISTOGRAM FROM GENERATED TESTCASE 6145501+');
CALL CHHMAR{(7,3); /*DEFINE HORIZONTAL MARGINS */

/ /
/* AX1S PREPARATION */

/ /
CALL CHSET('ABREV'); /% 3=LETTER ABBREVIATIONS »/
CALL CHXDAY(6); /% USE DAY LABELS */
/% NO 'CHXRNG' STATEMENT , X-AXIS WILL USE AUTOSCALE */
CALL CHXTIC(11,4); /% X=AXIS SCALE MARKS w/
CALL CHXSCL(1.0E-01); /% X-AXIS SCALING FACTQR »/
CALL CHXSET('XTICK'}), /% CROSS TICKS ON X-AXIS =/
CALL CHXSET('LABMIOD');
CALL CHXSET('NOFQ');
/* NO 'CHYRNG' STATEMENT , Y-AXIS WILL USE AUTOSCALE */
CALL CHYTTL(30,'e PRIMARY Y-AXIS TITLE *') /* Y-AXIS TITLE %/
CALL CHYTIC(2000000,2); /% Y=AXIS SCALE MARKS */
CALL CHYSET('ATCENTRE'); /*VERTICAL AXIS TITLE POSITION*/
CALL CHYSET('LABADJACENT');
CALL CHDATT(3,AX_ATT003);
CALL CHYDTM(8569087);

/% MODIFY DATUM ATTRIBUTES */
/%Y DATUM LINE,STATE 1%/

/% MISCELLANEOUS */

/
CALL CHKEY(4,8,KEY004);
CALL CHSET('KBOX');
CALL CHKEYP('H','B','C’};

/*DEFINE CHART KEYS*/
/*LEGEND WILL BE BOXED*/
/*DEFINE LEGEND POSITIONw/

/ /
/% DATA PREPARATION */

/
DCL XLOOOS5{(10) INIT(65, 69, 76,
98, 106, 116, 119) ; /*RANGE-STARTS*/
DCL XHI0Q5{10) INIT(69, 76, 79,
106, 116, 119, 133) ; /*RANGE-ENDS*/
/% SPECIAL CASE , TOUCHING BARS */

79, 86, 93,
86, 93, 98,

DCL DATO06(40) FLOAT DEC(6) INIT(,*ABSOLUTE DATAx/

/*COMP 1:+/ 2055461, 2615040, 3574260, 3733298, 4355491,
5041735, 5747890, 6552162, 7411141, 8156578,

/*COMP 2:%/ 1705850, 1748224, 1938725, 1986289, 2219337,
2567247, 3030064, 3692706, 4566554, 5468934,

/=COMP 3:x/ 1701621, 1719223, 1825382, 1855148, 2011877,
2268949, 2639343, 3208919, 4011031, 4885378,

/*COMP 4:%/ 1700449, 1707663, 1765853, 1784078, 1887291,
2073248, 2363399, 2842584, 3563192, 4392173);

/

/
/* HISTOGRAM PLOT */

/
CALL CHHIST(4,10,XL0005,XHI005,DAT006);
CALL CHYDTM(1064425);
CALL ASREAD{TYPE ,MOD,COUNT);

/*PLOT HISTOGRAM~/
/*Y DATUM LINE,STATE 2+/
/*CAUSES QUTPUT TRANSMISSION»/

Sort/merge test case generators

The sort/merge test case generator is, essentially,
two separate generators. The first is a syntax gener-
ator which produces the sort/merge control state-
ments or definition. The second is a sort/merge data
generator which produces the input and expected
output files for the sort/merge program under test.
The sort/merge program is executed using the
control statements from the syntax generator and

IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

the input files from the data generator. The resul-
tant output is then compared against the predicted
output file from the data generator, thereby provid-
ing the self-checking mechanism. This sequence is
shown in Figure 4.

The technique of generating the sort/merge control
statements is similar to those used by the other
generators and will not be described here. The
syntax generator phase must also set up the data
structure that describes the sort/merge application
represented by the control statements that are gen-
erated.

Sort/merge data generation. To describe the sort/
merge data generation techniques, we start with a
simple sort data generation example. We then con-
sider how different file structures, key orderings,
and record formats are handled.

Simple sort. The simple sort data generation exam-
ple is shown in Figure 5. The sort/merge data
generator creates the expected output file for the
test case by producing records with the integers in
the key field (Field 1) and random numbers in the
scrambling field (Field 2). The expected output file
produced by the data generator is then sorted on the
scrambling field to produce the input file for the sort
application to be tested.

The first improvement we can make to this example is
to eliminate the need to sort the expected output to
obtain the input, as shown in Figure 6. We perform
this elimination by writing the expected output file to
an intermediate relative (random access) file sequen-
tially first. Then we read the records, which were
written sequentially, back in a random order and write
them to the sequential input file.

Note that in Figure 6 the records in the input file
are in the same order as in Figure 5. We no longer
need to sort the expected output file to obtain the
input file for the sort application.

Multiple input files. Another situation that arises in
sort applications, and almost always in merge appli-
cations, is multiple input files. This situation is
shown in Figure 7. For sort applications, multiple
input files are supported by reading in the relative
file randomly and writing the records to the input
files in the order in which they were read from the
random file. To perform this operation, the number
of records in each of the input files must be known
or arbitrarily set. Note that in Figure 7 the records

IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

Figure 4 Sort/merge test case generation environment

F WA ORTSNRN SRRSO NGHAI

RANDOM NUMBER
SEED

SORT/MERGE

DATA GENERATOR !
CONTROL STATEMENTS

DATA STRUCTURE

SORT/MERGE
DATA GENERATOR

i A TR AN NS SR

SORT/MERGE
PRODUCT

COMPARE PROGRAM I

IF SUCCESSFUL: IF FAILURE:
‘SUCCESS’ ‘NON-COMPARE AT
RECORD NUMBER: 3214
BYTE NUMBER: 34
PREVIQOUS RECORD IN HEX:
99999C78272. ..
EXPECTED RECORD IN HEX:
99998C26817...
ACTUAL RECORD IN HEX:
99352C72824...

are read in randomly in the same order as that
shown in Figure 6. When the records are processed
by the sort program, they will be read in the same

8RO AND MUNOZ 241

The sort/merge data generator supports the testing
of this function by adding records, which are not
included in the processing, to the input files during
the rewriting of the relative file to the actual input
files. These records are omitted from the predicted
output file, against which the final comparison is

Figure 5 Simple sort

Expected Output File

Field 1 Field 2 made.

1 3121
2 232 Support for ordering keys. Our simple sort example
3 233 : :

contained only one field of integers to be ordered.
4 6421 . .
5 4 The general case is the ordering on fields of many
6 4351 different data types: character or EBCDIC, zoned
; 422 decimal, packed decimal, fixed point, etc. The
9 243 ordering key may be formed with any number of

these fields in any order. The fields may be of any
length and may be ordered either ascending or
descending. The fields may be in a user-specified
alternate collating sequence and may have differing
offsets in different record types, as discussed later.

T T T T T

Sort on Random Field, Field 2

Input File

We will use an example to show how the support for

Field 1 Field 2 ordering keys is implemented. The example, in

4
54
232
233
243
432
3121
4351
6421

Figure 6 Eliminating the need to sort the expected
output

Relative File

PO WMNOWM

Field 1

order as if they had all been in a single input file.
This procedure allows the presequencing of the sort
application input to be controlled.

O 00~ OYOULE (W)

For merge applications, the records written to the
relative file are read back in the order in which they
were written. As these records are read back in, they
are written to a randomly chosen input file of the
merge application to be tested (Figure 8). Note that
for each of the input files, the records in the input
file are in order.

Read In Randomly and Rewrite

SR

Input File

The 1BM DPPX Sort/Merge product and IBM DOS Field 1
Sort/Merge product support subsetting of the
input. To accomplish the subsetting, the DPPX prod-
uct uses the SELECT subcommand and the DOS
product uses the INCLUDE and OMIT statements.
The function provided is the exclusion of some of the
input records from the sort or merge application
processing. Thus, some records from the input data
sets are not found in the output data set.

I WO W00

242 BRD AND MUNOZ IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

0S/VS Sort/Merge control statements, follows:
SORT FIELDS=(1,3,CH,D0,6,3,20,A,11,3,PD,D}

The major key is a character or EBCDIC data type
with a length of three characters and in descending
order. The intermediate key is zoned decimal with a
length of three digits and in ascending order. The
minor key is packed decimal with a length of three
bytes (five digits) in descending order.

The sort/merge data generator first builds a table to
control the generation of the ordering field data.
The table contains information to be used for incre-
menting the key (Figure 9).

The data generator proceeds with the generation by
creating the lowest sequencing value. Then the data
generator selects a field to be incremented, based on
the table entry for “increment.” This step is fol-
lowed by a selection of a byte or digit within the
field to be incremented. And last, the amount of the

increment is randomly produced.

Figure 10 continues with the example to demon-
strate this process. Record 1 has the low order
sequence value. Record 2 increments the third byte

of the character field by ““E0.” Record 3 increments
the first digit of the zoned decimal field by 9.
Record 4 increments the third digit of the packed
decimal field by 7. Record 5 increments the first
digit of the zoned decimal field by 9, causing a
change of sign within the zoned decimal field.
Record 6 increments the third digit of the packed
decimal field by 4, causing the third digit to “bor-
row” from the second digit, therefore incrementing
the second digit by 1. Record 7 increments the first
digit of the zoned decimal field by 2, with the result
that the zoned decimal field changes signs and there
is a “carry” out of the zoned decimal field to the
character field.

This example illustrates the technique for support-
ing ordering keys of all varieties in the sort/merge
data generator. As we have seen, the technique is to
simply perform arithmetic on the key with incre-
menting and carrying within fields and across fields.
A similar technique is used for user-specified alter-
nate collating sequences.

Different record formats. The 1BM DPPX Sort/
Merge product supports the sorting of records that
do not have their key fields in the same locations in

Figure 7 Muitiple input files

Figure 8 Maerge application

e

Relative File

Field 1

WO~ U WN

i Read In Randomly and Distribute to
4 the Three Input Files In Order

Input File 1 Input File 2 Input File 3

Field 1 Field 1 Field 1
5 3 7
8 9 1
2 6
4

IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

Relative File

Field 1

O 00~ OY UV RN =

| Read In Sequentially and Randomly
|Distribute to Three Input Files

Input File 1 Input File 2 Input File 3

Field 1 Field 1 Field 1
2 5 1
8 6 3
7 4
9

BIRD AND MUNOZ 243

Figure 9 Controlling the generation of ordering field
data

Data Increment Start Amount Asc/Desc
Type Byte

CH Yes 3 255 Desc
D Yes 1 9 Asc
PD Yes 1 9 Desc

each record. Other fields are used to identify the
record types that differ. An example of DPPX Sort/
Merge control statements for such a case is given in
Figure 11.

The example defines a sort application in which
input records with an “A” in offset 1 will have their
sort field at offset 5, input records with a “B” in
offset 1 will have their sort field at offset 15, etc.
The data generator chooses the record type of a
record after it has determined the key value for the
record, It then sets the record-type-identifying field
in the record followed by entering the key fields into
the record at their appropriate offsets.

The techniques we have described encompass vir-
tually all the permissible sort/merge operations.

Concluding remarks

Test case generation has several benefits compared
to the presently available alternatives. Our experi-
ence has been that the cost of coding and debugging
a test case generator is considerably less than that of
creating sufficient handwritten test cases for the
same function. A generator also represents a better

investment, since it can be enhanced to test future
releases of the product under test.

The range of alternatives and combinations in the
testing coverage for a particular feature is higher
than it would be in any fixed amount of handwritten
test cases. Once a new feature is included in the
generator, it has the potential of appearing with all
the other features already implemented.

Finally, the design and coding of a generator is
likely to prove considerably more interesting than
writing conventional test cases. The job satisfaction
of the testers is therefore enhanced.

Software products are becoming ever more com-
plex, and the amount of test material they require
increases accordingly. It is highly desirable to find
automated processes to create such material. It is
equally important that the test cases produced
should be easy to run and verify.

In this paper we have briefly described several
implementations of our test case generator princi-
ple. All have been used successfully to test signifi-
cant IBM program products. They have proved
themselves to be both efficient and effective—small
numbers of test personnel have located large num-
bers of defects. As we have seen, the method has
been applied to areas such as graphics, which were
initially thought unsuitable for the technique. Many
more areas of testing should benefit equally.

Acknowledgments
Many contributions were made to the PL/1 Test

Case Generator by T. Clowes and R. Weir. Man-
agement support for test case generation work at the

Figure 10 Generated ordering field data

Character Zoned Decimal
Field Field
Record 1 FFFFFF F9F9D9
Record 2 FFFF1F F9FID9
Record 3 FFFF1F FOF909
Record 4 FFFF1F FOF9D9
Record 5 FFFF1F F8FOC1
Record 6 FFFFIF F8FOC1
Record 7 FFFFI1E F9F908
Record 8 FFFEDE F9F9D8
Record 9 FFFEDE F9F9D8

Packed Decimal
Field

99999C
99999C
99999C
99299C
99299C
98899C
98899C
98899C
98891C

244 BRO AND MUNOZ

IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

Figure 11 Different record formats

SOURCE RESOURCE(INPUT) TYPE(RSDS) LRLEN(80)
SELECT FIELD(RECTYPE) COND(EQ) CHAR(A)
SELECT FIELD(RECTYPE) COND(EQ) CHAR(B)
SELECT FIELD(RECTYPE) COND(EQ) CHAR(C)
SELECT FIELD(RECTYPE) COND(EQ) CHAR(D)

TARGET RESOURCE(OUTPUT) TYPE(RSDS)

ORDER FIELD{SORTME)
END

FIELD NAME(RECTYPE) LENGTH(1) OFFSET(1) FORMAT(CHAR)
FIELD NAME(SORTME) LENGTH{4) OFFSET(5) FORMAT(NUM)

FIELD NAME(SORTME) LENGTH(4) OFFSET(15) FORMAT(NUM)
FIELD NAME(SORTME) LENGTH(4) OFFSET(25) FORMAT(NUM)
FIELD NAME(SORTME) LENGTH(4) OFFSET(35) FORMAT(NUM)

IBM Santa Teresa Laboratory is currently being
provided by P. Lue, M. Beasley, and L. Kaleda;
previously support was given by S. McAulay and R.
Dayton. The authors are grateful to D. Gasich and
H. Stinton, and to the referees of the IBM Systems
Journal for their comments on early versions of this

paper.
Cited references

1. K. V. Hanford, “Automatic generation of test cases,” IBM
Systems Journal 9, No. 4, 242-257 (1970).

2. P. Purdom, “A sentence generator for testing parsers,” BIT
12, 366375 (1972).

3. A. Celentano, “Compiler testing using a sentence generator,”
Software Practice and Experience 10, 897-913 (1980).

4. F. Bazzichi and 1. Spadafora, “An automatic generator for
compiler testing,” IEEE Transactions on Software Engineer-
ing FE-8, No. 4, 343-353 (July 1982).

5. R. P. Seaman, “Testing high level language compilers,”
IEEE Computer System and Technology Conference (Octo-
ber 1974), pp. 6—14.

6. D. L. Bird, T. Clowes, and R. E. Weir, “Method of Operating
a Computer to Produce Test Case Programs,” U.K. Patent
Number: 1,479,122 (July 6, 1977), p. 2.

General references

D. L. Bird, “Internal representation of arrays in automatically
generated test case programs,” IBM Technical Disclosure Bulle-
tin 19, No. 3, 1112-1113 (August 1976).

D. L. Bird, T. Clowes, D. G. Jacobs, and R. E. Weir, 4 Test
Program Generator for Testing Compilers of PL/I-Like Lan-
guages, IBM United Kingdom Laboratories Limited, Winches-
ter, Hampshire, United Kingdom (February 1977).

D. L. Bird, “Method of Operating a Computer to Produce Test
Case Programs,” U. K. Patent Number: 1,510,240 (May 17,
1978).

D. L. Bird, “Generating Graphics Test Case Programs,” Euro-
pean Patent Application 52684. (Application also made for USA
patent.)

1BM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

D. L. Bird, “Test case generation for multiple device support,”
IBM Technical Disclosure Bulletin 25, No. 7B, 3765-3767
(December 1982).

C. U. Munoz, Test Case Generator Tutorial, Technical Report
03.122, IBM Corporation, Santa Teresa Laboratory, P.O. Box
50020, San Jose, CA 95150 (November 1980).

David L. Bird IBM United Kingdom Laboratories Limited,
Hursley Park, Winchester, Hampshire SO21 2JN, England.
Mr. Bird joined the IBM Hursley Laboratory in 1968. After two
years of development work on the PL/I Checkout Compiler, he
moved to the area of software testing. Since then he has tested
various language compilers, VTAM, CICS/VS, and the GDDM
alphanumerics and graphics package. In 1973, working with two
other programmers, he designed and coded the first generator of
executable, self-checking test cases (for PL/I). Several genera-
tors for other software products have followed, and he is
currently using generators to test various aspects of GDDM
graphics. He is author or joint author of three patents on test case
generation and has also written four books on contract bridge.
Mr. Bird received his M.A. degree in mathematics from Gonville
and Caius College, Cambridge, England.

Carlos Urlas Munoz /BM General Products Division, Santa
Teresa Laboratory, P.O. Box 50020, San Jose, California
95150. Mr. Munoz is currently a staff programmer. He joined
IBM in 1974 as a junior programmer working in the build and
release group for IMS and CICS. During 1976, he was a member
of the team responsible for transferring development of the PL/1
products from the Hursley Laboratory to San Jose. During this
assignment he first became familiar with the test case generation
technology and then used this technology while testing DPPX
sort/merge in 1978 and 1979. Mr. Munoz then joined Program-
ming Assurance of the General Products Division (GPD) as a
technical evaluator for the PL/I products. In 1981 he initiated a
technology project to extend the function of the PL/I Test Case
Generator and to experiment with various testing approaches
utilizing the scope and productivity of the tool. He was a joint
recipient of an excellence award in 1981 for the sort/merge work,
and in 1983 he was presented with a GPD achievement award.
Mr. Munoz received a B.A. in mathematics from the University
of California, Los Angeles, in 1974.

Reprint Order No. G321-5193.

BIRD AND MuNOZ 245

