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A  technique of automatically  generating random 
software test cases is described.  The  nature  of 
such test cases ensures that they will execute to 
completion, and  their  execution is predicted at the 
time of generation. Wherever possible the  test 
cases are self-checking. At run-time their execu- 
tion is  compared  with the predicted  execution. 
Also described are implementations  of the tech- 
nique that have been used to test various IBMpro- 
grams-PL/I language processors, sort/merge 
programs, and Graphical Data Display Manager al- 
phanumeric and graphics support. 

I n  this  paper  our main intention is to  commu- 
nicate  to the reader the concept of test  case 

generators-programs that  create random  test 
material for software. The methods we advocate 
create test cases that execute  to completion without 
error  and are self-checking. The test  cases  them- 
selves will detect  errors at execution time. 

Although the concepts of test  case  generation apply 
equally to different  areas of software,  it is important 
to note that a  separate  and  distinct  generator  must 
be coded for each  item of software  to be tested by 
this  method.  A  test  case  generator is a specific test 
tool rather  than a  general one. The main sections of 
the paper  describe  three specific test case  genera- 
tors that have been used to  test IBM program 
products.  These  descriptions  illustrate the tech- 
niques and provide guidance for the  readers who 
wish to implement their own test  case  generators. 
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Predecessors of our generators 

Two predecessors of our  test  case  generators were 
important  and are briefly described.  They are “syn- 
tax  machines”  and  Seaman’s work on compiler 
testing. 

Syntax  test  case generators. Syntax test  case  gener- 
ators have been produced by Hanford,’ Purdom,’ 
Celen tan~,~  and Bazzichi and S p a d a f ~ r a . ~  

The technique of these  generators is most often used 
for compiler testing.  A  formal definition of the 
source  language is provided as input to the genera- 
tor.  This definition runs to several hundred lines for 
a  language such as PL/I. It specifies the permitted 
forms of all  statements  and  their  arguments.  It 
defines also the various compound statements, such 
as loops, groups, and blocks. Random  test cases will 
then be produced that obey these  syntax rules. It is 
also possible to  request  a  minimal  set of tests that 
exercise “all productions” of the formal definition. 
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Such  test  cases are satisfactory for testing the 
syntax phase of a compiler and  may uncover some 
defects, or “bugs,” in code generation.  Their  limita- 
tion is that  the resultant  generated code will not, in 
general, be executable. Even if a  test  case does 
execute  without  ending  abnormally,  it is impossible 
to tell if it has executed  correctly. The only way to 
detect bugs in the code generation phase, therefore, 
is to  manually  check the code produced-an 
immensely tedious and difficult job. 

Seaman’s PL/I test  case  generator. In  October 
1974, R. P. Seaman’  described his work in testing 
high-level language compilers. His method created 
random  test  programs that exercised various fea- 
tures of the PL/I language. He ensured that  the 
programs were executable  (by  initializing  all  vari- 
ables, choosing valid subscripts,  etc.),  but did not go 
so far  as  to  predict  the execution of the randomly 
generated  statements. 

His method of verification depended on the exis- 
tence at  the  time of two parallel compilers (the PL/I 
Optimizing  and  Checkout  Compilers).  Each  test 
case would be compiled and  executed twice. The 
resultant values of all  the variables after  the opti- 
mizing run would  be compared with those  after the 
checkout  run. Any discrepancy would indicate  a 
bug in one of the two compilers. 

The method proved very successful, and  Seaman 
noted, “The present method of writing  test cases 
(hand-coding) is very much a hit and miss affair. 
There  are  far too many  combinations of language 
and  implementation  features for an exhaustive  test, 
so many arbitrary decisions have to  be  made. Cur- 
rently,  these  random decisions are  made when the 
test cases are written  and never subsequently 
changed. As a  result,  there are permanent  gaps in 
the testing coverage. We need to  automate  the 
writing of test cases so that these  random  arbitrary 
decisions are not fixed and frozen in the test cases 
forever. If this  can be achieved, the effect will be  a 
greater coverage of the compiler by the testing 
process.’15 

In the years following Seaman’s work a  team of 
three  programmers,  including one of the  authors of 
this  paper, did design and  write  a PL/I test  case 
generator that produced executable, self-checking 
test cases. These  test cases covered a  large  subset of 
the PL/I language  and did not rely on the presence of 
a second compiler for verification. This PL/I genera- 
tor is described in the next section. 

230 B I R D   A N D  MUNOZ 

PL/I Test  Case Generator 

The PL/I Test  Case  Generator was first used to  test 
later releases of the PL/I Optimizing  and  Checkout 
Compilers. The test  cases produced were syntacti- 
cally correct  and  guaranteed  to  execute to comple- 
tion without  any  errors or program  checks.  Another 

The heart of a test case  generator is I 
a  loop. 

important  aspect was that they were completely 
self-checking. If a  test  case produced no error 
diagnostics, it was known to have executed  correctly 
and could be  discarded.  A  test  case several hundred 
lines in length could be  generated in a few sec- 
onds.6 

The  composition of a compiler  test case. Generated I 
compiler test cases are composed of three different 
types of statements: 

Structural  statements. These  form the basic 
framework of the test case. They  include the 
PROCEDURE and END statements  and  the  subrou- 
tine that sends out the  error diagnostics. 
Random  statements. These  form the bulk of the 
test  case. The type of statement  and  all  its options 
and  arguments  are chosen randomly  to  span the 
language covered by the  generator. 
Selj-checking  statements. These  statements  are 
intermingled with the random  statements  to ver- 
ify at run-time that  the test  case  executes in a 
correct  manner. 

I 

A  simple  example  illustrating  this composition is 
the following: I 

PLOOO0l:PROC  OPTIONS  (MAIN); 
OCL F I X 0 1   F I X E 0   B I N ( 3 1 )  INIT(3); /* OECLARATION  (STRUCTURAL) * /  

/* MAIN PROCEDURE (STRUCTURAL) * /  

OCL F I X 0 2   F I X E 0   B I N 0 1 1   I N I T ( 3 ) ;  /*  OECLARATION (RANDOM) * /  
F I X 0 1 = 2 t F I X 0 2 ;  /* OEBUG: 5 * /  / *  ASSIGNMENT (RANDOM) * /  
I F   F I X 0 1 - = 5  THEN CALL  ERROR(1); /* VALIOATION (SELF-CHECKING) * /  
END PLOOOOI; /f EN0 (STRUCTURAL) * /  

The relative  frequency of each of the possible source 
statements  (and options) is controlled by a  set of I 
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weights. These weights (which are declared as 
variables inside the  generator) each have a  default 
value that may be respecified at test case  generation 

At the  end of each  section of random 
statements, some checking code is 

added to the test case. 

time. If one particular  type of statement  has  a high 
weight, it will appear densely in the  generated test 
case. Should  a  statement have a zero weight, it will 
not appear at all. 

In this way, test cases may be focused on known 
weak areas of a  compiler. Also, any  language  fea- 
tures not yet supported by a compiler under devel- 
opment  may be weighted out  until such support is 
available. 

The  structure of the test case generator. The  heart of 
a  test  case  generator is a loop that selects, randomly, 
the next source  statement to be added  to the test 
case. It then  calls  a  generator  subroutine responsible 
for creating  a  random  example of that source  state- 
ment.  Each of these  subroutines has three  duties: 

It must create  the text of the  statement. 
It must  predict  the  eventual execution of the 

It must  ensure self-checking of the  statement. 

The first of these  duties is relatively easy to achieve 
and was the basis of previous test tools known as 
“syntax  machines.” The remaining two duties are 
harder to attain  but provide the two  key advantages 
of our method of test  case  generation:  guaranteed 
executability  and  automatic self-checking. 

In general  there is one  generator  subroutine for each 
of the source  statements in the  language  under  test. 
There  are also service routines such as  a random- 
number  generator, several expression generators, 
and variable-selection subroutines. 

statement. 
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To  predict the execution of each  statement,  the 
generator  maintains  a  constantly  updated diction- 
ary of all the variables so far declared in the test 
case being generated.  This  dictionary holds infor- 
mation on the  data type, array bounds, and, most 
important,  the current value of each  variable.  These 
current values are continually  changing as  the test 
case is created  statement by statement. 

An  example of statement generation. As an exam- 
ple of the steps involved in generating  a single 
statement, we will consider the following (random) 
assignment  statement: 

F I X I O I 3 )  = F I X l l * 2  - F I X 1 2 ( 1 , 3 ) ;  /* DEBUG: 49 *I 

These are  the steps: 

1. The random-number  generator is called to 
choose which type of statement will be  added to 
the  test case. An “assignment”  statement is 
chosen. 

2. The  subroutine  responsible  for  generating 
assignments is called.  It  (randomly) decides that 
the assignment should be of the “fixed binary” 
type. 

3. The subroutine next calls  a service routine  to 
choose the  target variable. The service routine 
makes a  random choice from all fixed-binary 
variables so far  declared in the  test  case being 
created.  It  returns  the text of the  target variable 
(FIXlO(3)) and  a pointer to  the position in the 
dictionary  where  the data of the variable are 
held. 

4. The “assignment”  subroutine now calls the 
binary expression subroutine  to create  the text of 
the  right-hand side of the assignment  and to 
predict its value at execution time. 

5 .  The expression subroutine, which is coded recur- 
sively so that expressions of any complexity may 
be produced, constructs the source of a  binary 
expression (FIX1 1*2 - FIX12(1,3)), using only 
constants or variables that  are known to be 
initialized at this moment in the test case. It 
returns both the text  and the predicted value of 
the expression, say, 49. 

6 .  The assignment  subroutine  concatenates the text 
of the  target variable,  an  equal sign, the text of 
the  source expression, a semicolon, and finally, a 
debugging  comment that gives the predicted 
value. It then calls a  further service routine to 
add this statement to the test  case  under con- 
struction. 

7. It  stores  the  predicted value (49) into the diction- 
ary  entry for the  target  variable.  Any  further 
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statements  that refer  to the variable will use this 
latest  value in their predictions. 

8. Finally, the assignment  subroutine passes con- 
trol back  to the main loop, ready for the selection 
of the next statement. 

Note  that  the expression generator  rejects any 
expressions that would cause  an  interrupt, such as 
zero-divide, at execution time.  It  also  ensures that 
uninitialized  variables are not used. In  this way 
executability is ensured. 

At  the end of each section of random  statements, 
some checking code is added  to the  test case.  This 
code checks that  the value of each modified variable 

The  execution  of some types of 
random  statement  may affect the 

subsequent flow of execution in the 
test case. 

is in accordance with the prediction made at test 
case  generation  time. The above assignment state- 
ment, for example, would trigger  a self-checking 
statement of this  type: 
IF FIXlO(3) -= 49 THEN  CALL  ERROA(126); 

Every time  a  call to the  error  subroutine is added  to 
the test case,  the  argument to be passed is incre- 
mented by one. So if the diagnostic “ERROR AT 126” 
occurs at run-time,  it will be because the variable 
FIXlO(3) did not have the predicted value of 49. 

Thus,  the assignment  subroutine  has fulfilled its 
three objectives. It has  created  the  text of the 
assignment  statement. It has predicted  its  eventual 
execution. It has also ensured that  the correct 
execution of the  statement will  be verified. 

Generation of statements that  control program 
pow. The execution of some types of random  state- 
ment  may affect the subsequent flow  of execution in 
the test case. In general,  further  random  statements 
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will  be placed on the correct  path of flow; a  call  to 
the  error subroutine  may  be placed on the incorrect 
path. 

Consider  this  example of a  typical  generated IF 
statement: 
I F  F I X 2 2  > FIX11 9 FIX03(7) 

THEN 
CALL ERROR(218); 

ELSE 
FIX12 = 5; 

The steps involved in its  creation are similar  to  those 
mentioned in the previous section. A  relational 
expression is created,  and  its value (true or false) is 
predicted.  Again we see the  three elements-text, 
prediction of execution, and self-checking. 

Calls and procedures. A problem that has not yet 
been mentioned is that of generating code that may 
be executed more than once at run-time.  The gener- 
ator does not incorporate  a post-processing inter- 
preter  and  must  therefore be able  to  predict  the 
execution of each  statement at  the  time of its 
generation.  Steps have to be taken  to  ensure that 
statements executed more than once (such as those 
inside do-loops) execute  identically on each occa- 
sion. The  same is true for the  statements inside 
procedures that  are called from more than one place 
in the  test case. 

For example, if the generated  statement FIXOl 
= FIX02 + 2; is to be executed more  than once, the 
value of FIX02 must be the  same each  time  (other- 
wise the execution of subsequent  statements using 
FIXOl would  be unpredictable). The generator 
therefore makes a  restriction on internal proce- 
dures. If a  procedure is to be called from more than 
one place in the  test  case,  its  statements  must  refer 
only to  variables  declared inside the procedure. 

For procedures called from only one place in the test 
case, the prediction of the  statements immediately 
following a CALL statement  may depend on the 
values of the variables on exit from the called 
procedure.  Therefore, the called procedure  must be 
generated  immediately following the generation of 
the CALL. Since in general the position of an  inter- 
nal procedure would not be that immediately fol- 
lowing the CALL, a text-moving mechanism is 
required.  This mechanism is described later. 

Do-loops. As mentioned previously, each  random 
statement within an iterative do-loop must  execute 
identically each  time.  To achieve such execution, 
the  generator divides all  variables  declared in the 
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test case  into two categories, those of “left  bias”  and 
those of “right  bias.”  This  categorization is ran- 
domly decided for each  variable  and array element 
at  the time of its  declaration.  Within  an  iterative 
do-loop the following restrictions  apply: 

Only  right-biased  variables may appear on the 

Only  left-biased  variables may have their values 
right-hand  side of an  assignment. 

altered. 

These  restrictions  ensure that each  statement will 
always  execute  identically.  Apart  from  these 
restrictions, completely general  statements  are pro- 
duced inside do-loops. Nesting of such loops is 
permitted  to an implementation-defined level (sev- 
en, at  present). 

The correct execution of loops  is  verified  by includ- 
ing self-checking statements inside the loops. These 
statements  increment  a  variable  that will later be 
checked. Other special-case  statements  may be 
inserted in the loop, such as  an assignment  to an 
array element whose index is a  simple function of 
the loop variable.  Again,  the array would later  be 
checked by the test  case  to verify correct  execution. 

Very little is gained by permitting  large  numbers of 
iterations in a  test case. The number of iterations is 
therefore normally kept low. Keeping the  number 
low does not represent  any  restriction on the syntac- 
tic form of the DO statement itself. The do-loop 
parameters will  be created by calls to  the appropri- 
ate expression generator.  The expressions chosen 
will be adjusted by a  constant, so that  the number of 
iterations will be set as required. 

The following is a typical generated DO group: 

DO PTROl->FIXOP = - 4 5  TO 1483-DIM(BIT04,4)*12)-520 B Y  l F I X 2 1 - 5 ) ;  
/* START = -45, INCREMENT = - 3 ,  END = -51, COUNT = 3 */  
. . .  var ious   random  s ta tements  . . .  
F I X 0 7  = F I X 0 7  + 1 ;  /* INCREMENT  LOOP CHECK VARIABLE */  

END; 

The predicted value for FIX07 at  the end of the loop 
will be checked later,  thereby verifying the correct 
execution of the DO statement. 

Similar methods are used for do-loops with WHILE 
or UNTIL clauses. 

The  generator  output  routine. In several situations  it 
would  be inconvenient to place generated  state- 
ments  straight  into  the  test  case  under  construction. 
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For example,  it was mentioned that  the text of an 
internal  procedure  must be generated  immediately 
after  the CALL to it (since the prediction of the 
statements following the CALL might be affected by 
variables that had changed value inside the called 

In several  situations  it  would be 
inconvenient  to place generated 
statements  straight  into the test 

case under construction. 

procedure). But in some cases the procedure  cannot 
physically follow the CALL. For example,  the CALL 
might be  on the first branch of an IF statement, with 
an ELSE clause  to follow. 

Similarly,  the need for a  declaration  (typically for a 
self-checking variable)  might become apparent 
while the  generator is in the depths of constructing 
some complex statement. 

To allow for subsequent  reordering of the  text,  each 
statement is stored  initially  into  an array. Asso- 
ciated with each  element of the  array is a flag, 
specifying what post-positioning, if any, is required. 
When all the  statements have been generated,  a 
post-processing subroutine  reorders the text  and 
writes it  out to disk. 

The  same scheme is  used to bring all the  declara- 
tions in a block to the  start of the block. This 
procedure  aids  debugging  and improves the physical 
appearance of the  test  case.  Another  subroutine 
formats  the test case, indenting nested DO, IF, and 
SELECT statements. 

The  generator  weighting  scheme. The method of 
weighting used is common to all  our test case 
generators. Wherever the  generator must choose 
between several alternatives,  each of the  alterna- 
tives has  a  numerical weight (or biasing factor) 
associated with it.  These weights are declared  as 
variables within the  generator,  and  their values 
affect the  relative frequencies with which various 
language  features  appear in the  test cases. 
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For  example,  suppose  that  the  generator  has  to 
choose between  three possible options for a Record 
1 / 0  READ statement.  These  options  may  have  asso- 
ciated  weights of 3,  1, and 2. A generator  service 
routine is passed the  three  weights  and chooses one 

The  generator  has  also  successfully 
tackled complex  language areas, 

- 

of the  options by calling  a  random-number  genera- 
tor  to  select  a  number  between l and 6 (= 3 + l 
+ 2). If 1, 2 ,  or  3 is chosen,  option  1 will appear in 
the  test  case. If 4 is chosen,  option 2 will appear;  and 
if 5 or 6 is chosen,  option  3 will appear. So, the 
relative  frequency of option 1 being  selected  against 
option 2 is 3:1, in accordance  with  the  weights. 

Whenever  an  option is just two-way (should  the 
character  declaration  incorporate  the VARYING 
option, for example), it is simpler  to  use  a  single 
percentage  weight. If this is set  to 20, about 20 
percent of the  character  strings in the  test  case will 
have  the VARYING attribute. 

It is for the  implementer of the  test  case  generator  to 
decide  which  random decisions should  have  a 
weight accessible  to  the  generator  user,  and  which 
should  be  hard-wired  as  constants. 

In addition  to  the  weights,  various  options  may  be 
set.  These  options  include  the proposed length of the 
test  case,  the  maximum  permitted  nesting of do- 
loops, and  the  complexity of expressions  required. 
Again,  these  options  all  have  default  values.  They 
may be overridden  at  generation  time if required. 

Extent  of  language covered  by  the PL/I generator. 
Self-checking  test  case  generation  has  been 
extended  to cover  most of the  data  types,  storage 
classes, statements,  and  built-in  functions in the 
pL/I language.  It is not  the  intention of this  paper  to 
give details of the  implementation of all  parts of the 
generator.  The  methods used to  test  compiler  sup- 
port of VSAM record 1/0 can  be  hinted  at by giving 
some  typical  generated  statements: 
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ON KEYIVSAMKS)   GOT0  VSM017;  
W R I T E   F I L E ( V S A M K S 1   K E Y F R O M i ' A P P L E ' )   F R O M l G R E C ( 3 ) ) ;  
CALL  ERROR(93); / *  WRITE  OUT OF SEQUENCE R A I S E S  KEY C O N D I T I O N  */  
V S M O l 7 :   R E V E R T   K E Y ( V S A M K 8 ) ;  

The  generator  adds  statements  to  the  test  case  that 
will send  data  back  and  forth  between  the  data  set 
and  the  test  case.  Throughout  the  generation 
process the  generator  maintains a prediction of the 
current  contents of the VSAM data  set. On this 
occasion,  the  generator  predicts  that  the WRITE 
statement will raise  the KEY error  condition.  It 
therefore  inserts  extra  code  to  trap  the  error.  Should 
the  error  on-unit  not  be  entered,  diagnostic  93 will 
inform  the  test  case  runner of the  error. 

Wherever possible, the  generator  adds  helpful  com- 
ments  to  the  generated  statements  to  aid  debug- 
ging: 

READ F I L E ( P A T H 1 )   I N T O   ( G R E C ( 1 ) ) ;  /* N E X T   K E Y = ' R O S E ' ,   M A I N   K E Y = ' L E M O N ' * /  
S T R O L . F I X 0 8 1 2 ) = 5 3 4  t F I X 0 5 + 2 7  - L E N G T H ( B I T 0 7 ) ;  /* DEBUG: 6 1 2  * i  

In the  first  statement,  the  predicted VSAM keys of a 
sequential  read  are given. In the  second,  the  pre- 
dicted  assignment  value is shown. 

The  generator  has  also successfully tackled  complex 
language  areas  such  as  the REFER structure  attri- 
bute. Even if adding  generator  support for a new 
language  area  seems likely to  be  a  complex  venture, 
it is usually  the  case  that  conventional  testing of the 
new area would be even more difficult. And  once  a 
language  feature is added  to  the  generator,  there is 
the  huge  bonus  that  it will automatically  appear  in 
conjunction  with  all  the  other  supported  language 
features.  Problems  due  to  interactions  may  be 
detected. 

Types of testing  not handled by the  generator  meth- 
od. Since  the  test  cases  produced by the  generator 
are  syntactically  correct,  they  are of little  use  in 
testing  compile-time  diagnosis of faulty  input.  Test 
cases for this  area  must  therefore  be  handwritten. 
Similarly,  run-time  diagnostics  testing is usually 
performed  with  handwritten  test  cases,  partly 
because  there is little  virtue in repeating  such  tests, 
partly  because in general  they  cannot  be  made 
self-checking. 

It is inconvenient  for  the  generator  to  produce  some 
special  cases.  For  example, it might  be  worthwhile 
to  test  whether or not  a loop  would iterate success- 
fully 10 000 times.  It would not  be  sensible  to 
introduce  such loops in the  middle of randomly 
generated  test  cases,  though,  since  they  might  then 
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take hours to execute. A handwritten  test  case 
would  be used instead. 

Finally, some system-related  functions are difficult 
to support, including tasking,  reentrancy,  fetching, 
and the linking of external  procedures.  It will often 
prove convenient, though,  to use generated test 
cases as  the basis for testing  these  functions. 

Summary of PL/I generator. The Optimizing  and 
Checkout  Compilers had been in the field for sev- 
eral  years before test case  generation was used with 
them.  The full benefit of the method was therefore 
not felt.  Nevertheless,  generation  has been used to 
locate several bugs in the existing code and to 
successfully test  features  added in subsequent 
releases such as VSAM support, the SELECT state- 
ment, DO UNTIL, DO REPEAT, and LEAVE. 

Compiler  testing is one of the most suitable  areas 
for test  case  generation, since it is relatively easy to 
achieve the goal of self-checking. The need for 
testing by generator is also high, since large 
amounts of test  material are required that would  be 
expensive and time-consuming to produce by hand. 

Alphanumerics and graphics test  case 
generators 

The  Graphical  Data Display Manager  (GDDM) is 
an IBM program  product that supports the display of 
text  and  graphics on terminals  and  printers. The 
first three releases of this product have been suc- 
cessfully tested by test case  generators. 

Three main types of processing are provided by the 
GDDM package:  alphanumeric,  general  graphics, 
and business graphics.  Each has its own distinct 
application  program  interface (API), and  each was 
tested with a  separate test case  generator. 

Alphanumeric processing consists of both output 
and  input.  The  generated  test cases involved were 
therefore  able to incorporate  a high degree of self- 
checking, using a  scheme of data echoing that will 
be described later. 

Graphics processing is output only. The end prod- 
uct-a picture on a screen or printer page-can  be 
checked only by the  human eye. However, various 
aids were devised to assist the checking of output 
from generated  test cases. Despite initial  doubts 
from some quarters as to whether  test  case  genera- 
tion would  be effective in this area,  the method 
proved extremely successful. Many  hundreds of 
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valid problems were located,  and  subsequent  defect 
rates have been  low. 

It was  also  found that vast quantities of test material 
were required to locate the bugs.  For a given  release, 
testing would start as soon as any new function 
became available. Using the previously  described 
weighting scheme, test cases would  be  produced  con- 
taining all the GDDM function of the previous  release 
plus the new function just added to the code by 
development. As  development  proceeded, more func- 
tions  would  be  switched on in the generator. Eventu- 
ally it  would  produce test cases covering the whole  of 
the function for the new release. Under this method of 
testing, bugs  were  found at a uniform rate for  some 
five or six months. 

To  create sufficient test  material  manually would 
have been impractically time-consuming and expen- 
sive. Using test  case  generators,  just  one  program- 
mer performed the  functional verification test of 
some 60 000 lines of code. 

The GDDM alphanumeric test case generator. The 
alphanumeric function to be tested is basically the 
definition of the  alphanumeric fields that make  up  a 
screen layout and the transmission of data  to and 
from these fields. 

Since it is not possible to make  “output”  test cases 
self-checking, the  output produced may need to be 
compared  against the generated test case source. 
During  early  testing of  new code, it  may be neces- 
sary  to check, for example, that field 22 is  yellow 
and reverse-video and  that it does start in column 13 
and end in column 40. To  ease  this comparison, the 
generator  predicts the  appearance of each screenful 
of output  and  adds  this prediction to the source of 
the test case (see example that relates  to  Figure 1). 
The generated  test  case also floods the  entire screen 
with color before executing a block of alphanumeric 
statements.  Subsequent  declarations of alphanu- 
meric fields cause holes to  appear in this back- 
ground,  enabling the test case  operator  to “see” 
unassigned fields that would otherwise be invisible. 

The transmission of alphanumeric  data is self- 
checked, using the following echoing scheme. Out- 
put of I/O alphanumeric fields consists of a  number 
of identical  characters with one or more question 
marks  included, for example QQQQQ?QQQ. The test 
case  operator is expected to overtype the question 
marks with the  other  transmitted  character ( Q  in 
this  case).  When  a  subsequent GET is performed on 
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the field, the  generated test case will check that  the 
? has been correctedly modified to a Q. 

This combination of "echoing" the  sent data  and 
requesting a field modification by the  operator  acts 
as  an indirect check that  the output was performed 
correctly. Although the fields are declared in ran- 
dom positions and  are of random sizes, the operator 
knows that he must merely overtype the ? charac- 
ters  and point the light pen at those fields containing 
special light-pen prompts. The test case  can  there- 
fore be executed without any knowledge of the test 
case source. 

In  the early  days of testing new function,  a few 
detailed comparisons might be made between the 
screen output  and  the corresponding test case 
source. Later on, many more runs would  be made 
without any reference to  the source unless an  appar- 
ent  error  occurred. 

As  in the PL/I generator,  there are  separate subrou- 
tines for each of the  alphanumeric API calls (Le., 
each of the  statements in the GDDM language).  As 
before, each  subroutine is responsible for creating 
the text of the  statement, predicting its execution, 
and  (as  far  as is possible) assisting in its checking. 

Example of an alphanumeric  statement  subrou- 
tine. A description of the  steps involved  in generat- 
ing the GDDM  "ASDFLD' (field-declare) statement is 
now  given to  indicate  to  the  reader how such a 
generator should be coded. Note  that wherever the 
word  "choose"  is used, a call to  the  random-number 
generator will occur. 

1. Choose a valid field number. 
2. Erase  the  generator's  internal memory of this 

field number if it was already in use. The 
previously occupied terminal screen positions 
will then be available for subsequently declared 
fields. 

3. Choose a row and column position for the field 
within the  current page dimensions. 

4. Choose a  depth  and width for the field that does 
not carry  the field outside  the  current page. 

5 .  Call  a  generator  subroutine to check that  the 
proposed  field  would  not illegally overlap any 
existing fields. If it would, return to 3. (Five 
attempts  are made before generation of the 

6 .  Store information on  field placement and field 
attributes  into  the  dictionary of the generator for 
the  current page. 

~ statement is abandoned.) 
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7. Produce  text of the  statement, e.g., 

CALL  ASOFLO(13,   18 ,   40 ,   6 ,  2 .  
/ *  FIELD-NUMBER ROW COLUMN OEPTH  WIDTH FIELD-TYPE * /  

1 ) ;  

and  add  it  to  the  test  case being generated. 

The  subroutine has created  the  text of the ASDFLD 
statement  and predicted its execution. It has also 
ensured that such execution would not cause an 
error (such as overlapping another field). Verifica- 
tion of execution will occur either via a visual check 
by the  test  case  operator or indirectly if the field 
takes  part in subsequent 1 / 0  operations. 

An  example of generated output  to  test alphanu- 
meric support. Part of a test case produced by the 
GDDM alphanumeric test case generator follows as 
an example of generated  output. 
. . . . . . . . . . . . . . . . . . . .  
/ *  CREATE PAGE 1 0  * /  

CALL  FSPCRT(lO,27.67,3); 
/***t****t****tt*tt/ 

/* OEFINE PAGE * /  
CALL  GSFLO(1,1,26,67) ;  /* DEFINE  GRAPHICS  FIELO */ 
CALL FRAME; / * F I L L   I N  BACKGROUNO TO A I D  CHECKING*/ 

/***+****+.+.tt*t**t*******t***t*****t*t./ 

/* I N I T I A L   F I E L O  DECLARATIONS FOR BLOCK * /  
/*************t+t+**t**tt*tttttt*tltt*tt~/ 

CALL  ASOFLO(  75,16,22,   7 .   9 ,4) ;  
CALL  ASOFLO( 52, 7 ,   4 ,   1 , 8 0 , 0 ) ;  /* WRAP-AROUNO F I E L O  */  
CALL  ASOFLO(  97,17,38,  2,11,1); 
/tt*t.,*t.t*t*ttt*tt*t***t*************/ 

/* END OF I N l T I A L   F I E L D  DECLARATIONS */ 
/*tt*********t****t***tt**ttttttt-tttt/ 

CALL  ASCPUTI 7 5 , 6 1 , ( 6 1 ) ' ! ' ) ;  
CALL  ASCPUT(  97,22,( 6 ) ' 2 ' l l ' ? ' l l ( 1 5 ) ' 2 ' ) ;  /* NUMERIC 1/0 */ 

CALL ASCCOL( 7 5 . 1 4 , '   5 3 6 6 1   2 5 7 3 5 6 ' ) ;  /* CHARACTER COLOR ATTRIBUTES */ 
C A L L   A S C S S (   9 7 ,   4 , '   A   A ' ) ;  /* CHARACTER S-SET  ATTRIBUTES */ 
CALL  ASCPUT( 52 ,   4 .1  i ) ' ( ' l l ' ? ' l l ~  2)'l'); / *ALPHANUMERIC I/O */ 
CALL ASFCUR( 9 7 ,  1, 1 ) ;  /* SET CURSOR P O S I T I O N  */ 
CALL ASQCOL(  75.14.FIELO-CHECK); /* QUERY COLOR ATTRIBUTES *I  

CALL  ASOFLO(  75,10, 4 ,  7,13 ,4) ;  
I F  S U B S T R l F I E L O _ C H E C K , 1 , 1 4 ) ~ = '  5 3 6 6 1   2 5 7 3 5 6 '  THEN CALL ERROR( 421;  

/* REPLACE  PREVIOUS F I E L D  */ 

/* OEFERRED L P   F I E L D  

e t c  

CALL  ASCPUTI 29,63,(48)'8'1I'?'I1(14)'8'); /* NUMERIC 1/0 */ 
CALL  ASCPUT( 9 5 ,   6 , ' ? ' ! l (  51'0'); NUMERIC 110 *I  

PAGE ; 

/*rlt****t.*r+*****+tll****tttll****t-tt~~~~~~.~~~~/ 

/* 
/* 

*/ 
SCREEN PREDICTION * /  

/ *  */  
/t+tt*****+*t++*********"**ttt***t*tt.**"******~**********/ 

/* 
I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .88888888888888888888888~8B888888! I I I 
18888888888888888?88888888888688ttttttttttttt+tt+tttttttt+tt, . , , , . , , I I 1  I 
I . . . . . . . . . . . . . . . . . . .  ................................................ I l l 1  
I . . . . . . . . . . . . . . . . . . .  8 ............................................... I l l !  
I . . . . . . . . . . . . . . . . . . .  &tt++tttt+ttt+t+t+tttt+ttttttttttttttttttttttt+l 1 1 1  
I t++t't. . . . . . . . . . . .  .E.. ............................................. I I I I 
1 . . . . . . . . . . . . . . . . . . .  ................................................ I l l 1  
I . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  I ! I !  
I . . .  ? ! ! ! ! ! ! ! ! ! ! ! !  . . .  ................................................ I l l 1  
I . . .  ? ! ! ! ! ! ! ! ! ! ! ! !  . .. ................................................ i l l !  
1 . . .  ? ! ! ! ! ! ! ! ! ! ! ! !  . . .  ................................................ I l l 1  
I . . .  ? ! ! ! ! ! ! ! ! ! ! ! ! . . . E  ............................................... I l l 1  
I . . .  71 ! ! tttt+tt++. . .e.. ............................................. I I I I 
I . .  .?t+++++++++++. . .e.. ............................................. I I I I 

1 . .  K .  .222222?2222. .  ! I I ! 
I ?+++t++t+++++. K. .  I I I I 

I . .  ................................ K. ,22222222222.. . . . . . . . . . . . . . . . . .  I I I 1  
I . ................................. K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 1 1 1  

I K I l l 1  
I K 1 / 1 1  

I .  .+. ............................ tttt*'++++ttt.. .................... I I I I 

. . .  . . . . . . . . . . . . . . . . .  .............................. 
................................ . . . . . . . . . . . . . . . . .  

.................................. ................................ 

.................................. ................................ 
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I ,  ,+, . . . . . . . . .  .?OO., . . . . . . . . . . . . .  t t t t t t t t t + t + t . .  .................... I I I I 
1 . . + . . . . . . . . . . .  OOD..... . . . . . . . . . .  tttttrttttttt...................... I l l 1  
I . .  t.............................+tttttttttttt.................. 1 7 t ~ I I l I  
I . .  . . ........................................................... tttt I I I I 
I I l I I l I l l I I l l l I l l I l l I I I I l I I l 1 I I l I t l I I 1 l I l I I l I I I I l I l I I I I I I I I I l l I l I I I l 1 I I I  
I l l I / l I I l I I l I 1 I l / I l / I l / I 1 I I I 1 I I l I I I I I l l I l I I I I / I I l I / I l I I l I 1 I I l I I l I I l l I I I I  
I / l I / I I I l I I l I / I l I I l / I l I I l I I l I I l l I I 1 I I l I I l I / 1 I I I I 1 I l I l I I l I I I I l I I l I l I l I I l I  
I l l I / / I / l I l 1 l I I l I I l I I l I I l I I l I / / / I I I I I l I l / I / l I l I / l I I I l I 1 l I l I I l I I / I l I l I I I I  
I / l I l / I / l I l I / I I l I I l I I l I I l I I l I / I I I / / I / I I / / I l I I l I l I l I I l I l / I l I / / I I / I l I l I I / I  
I / l I / / I / l I / I l I I l I I l I I I I I I I l l I l l I I l l I l 1 I l I I l I I l I l I l I / l I l I I l I / I I / I I l I l I / I I  
I / l I l / I l / I l I l I I l I l I I / / I / / I I l I l l I I l I I l I I l I l / I l l I l I l I l I I l I I l I I I I l I l I I l I l I I  
* /  

CALL  ASDFLD(99.27,2,1,57,2) ;  /* F I E L D  FOR LOGO * I  
CALL  ASCPUT(99,44,’OUTPUT 11 FROM TESTCASE G175343 TO DEVICE 1 7 ’ ) ;  
CALL  ASREADITYPE.MOD.COUNT1; 
/tt.tt*t*.*tttt***t******ttttttttttttt-.~~~~~.~/ 

/* QUERY MODIFIED  F IELDS AND CHECK RETURNED VALUES * /  
/..t*+tt.***t+t.tt.*t*t******t**t*t*tttt~~~~~~~~~~.~/ 

CALL ASQMOO( 5.F_ID,TLENG,ILENGl; 
/tt*++t++t+t+t++t+tt+tt**********t**tttt~.*~.~~~~~~~~~~~~~~~, 

/* GDDM-REL3 RETURNS F I E L D S  I N  F-ID O R D E R ,  LP FIELDS FIRST * /  
/.t.ttttt**t...*t*********tttttt*ttttttt*.~~~~~~~~~~~~.~*~~~~/ 

I F  F-ID( 11-   75  THEN CALL ERROR( 47) . ;  
I F  TLENG( I ) - =  9 1  THEN  CALL ERROR( 4 8 ) ;  
I F  I L E N G I   1 1 7 s  56 THEN CALL ERROR( 4 9 ) ;  
IF F _ I D (  ZIT= 2 9  THEN CALL ERROR( 501; 
IF TLENG( 2)-= 9 1  THEN CALL ERROR( 511;  
IF ILENG(  2)-= 63 THEN CALL ERROR( 5 2 1 ;  
I F  F-IO( 31-= 52 THEN CALL ERROR( 53); 
I F  T L E N G ( r 3 1 7 =  8 THEN CALL ERROR( 5 4 ) ;  
I F  ILENG(  3)7= 2 THEN CALL ERROR( 55); 
I F  F_ID( 4 ) 7 =   9 5  THEN CALL ERROR( 56); 
I F  TLENG( 4 ) -  6 THEN CALL ERROR( 571;  
IF ILENG(  4 ) - =  6 THEN CALL ERROR( 581; 

I F  TLENG( 51-= 22 THEN CALL ERROR(  601; 
I F  F-ID( 5)-= 9 7  THEN CALL ERROR( 5 9 1 ;  /*ALPHA F I E L D  5 4  

I F  ILENG(  51= 22 THEN CALL  ERROR( 6 1 1 ;  

/ *L IGHTPEN  FIELD 1*/ 

/*ALPHA  FIELO 2*/ 

/*ALPHA FIELD 3*/ 

/*ALPHA  FIELO  4*/  

e t c .   ( f u r t h e r   c h e c k i n g   c o d e   w i l l   f o l l o w )  

The  output from this section of generated  code is 
shown in Figure 1. 

The GDDM graphics  test  case  generator. The main 
problem to  be overcome with graphics  testing is 
verification of the random  output on the color 
terminal.  Some bugs appear  as program checks, 
loops, or incorrect  diagnostics,  but  many  appear as 
faulty  output  at  the  terminal.  It would be 
immensely tedious and  time-consuming  to have to 
compare  each  line or curve on the screen with the 
statement in the test  case that produced it, in the 
hope of finding a  mismatch  and  thus  a bug. The 
following five techniques have therefore been used 
to  enable easy verification of the  output from the 
random  test cases. 

Sending  markers  to  the  predicted  primitive end 
points. Every time  the  generator  creates  a primitive 
statement  (for  example,  a line or an  arc), it  calcu- 
lates  the  predicted end points of the primitive. 
Before adding  a WRITE statement  to  the  test  case, 
the generator  creates  a loop of MARKER primitives 
to send colored markers to each of the predicted 
primitive end points. A complex marker consisting 
of a yellow diamond  and  a  black plus sign is used so 
that it will show distinctly  against any shaded 
background. 
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Figure 1 Output from the section of generated 
alphanumerics test caae; the operator will 
overtype the 7 character, causing those fields 
to  be echoed back to the test case for 
self-checking 

The eventual  output  from the test  case will there- 
fore be a merging of the random primitives and the 
markers that predict  their end points. When the  test 
case is executed, it will not be necessary to verify the 
position of each primitive against the text of the 
random  statement  that produced it. The tester need 
only confirm that 

1. Every primitive has  a special marker at each 

2.  There  are no unattached special markers on the 
end. 

screen. 

This method allows the correctness of the  output to 
be  verified at a  glance. 

Interspersing  query-current-position  statements. 
After  creating  a primitive, the  generator  may 
decide to  add  a GDDM GSQCP (query-current- 
position) statement followed by a checking state- 
ment.  This  check will confirm that GDDM’S  calcu- 
lation of the  current position is the  same  as  that 
previously predicted by the test  case  generator. It 
does not guarantee  that  the primitives will be drawn 
to the  correct position, since the drawing has not yet 
taken place. 

Backing  grid  as  aid  to  detailed  checking. When  it is 
desired to perform  a  detailed check on the  output 
produced by  GDDM, the user may tell the generator 
to use “grid” mode. The  created test  case will then 
use a  simple window (coordinate  system) of X = 0 
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- 100 and Y = 0 - 100,  rather  than a randomly 
chosen one,  and a backing  grid will be sent  to  the 
terminal by the  test  case  to  enable  easy  verification 
of the position of the  primitives. 

Restricting  all  primitives to  the viewport. When 
generating a test  case,  the  user  may  specify  whether 
or not all  primitives  should  be  restricted  to  the 
viewport. It is usual  to  run  the  generator in “re- 
stricted”  mode,  and  several GDDM drawing  errors 
were  detected by observing  that  primitives  had 
strayed  outside  the  viewport. 

The  method used by the  generator  to  ensure  that 
arcs  remain  inside  the viewport is to  simulate  draw- 
ing the  arc by calculating  the  current position every 
few degrees of the proposed  sweep. If  the  current 
position moves outside  the  viewport,  the  sweep is 
backtracked  and  then used to  replace  the previously 
chosen  sweep. With MOVES and LINES, all  that is 
required is to  select  the TO-point inside  the view- 
port. 

The  generator  may  be  run in “unrestricted”  mode  to 
test  whatever  “clipping”  functions  may  be  sup- 
ported by the  product  under  test. 

Automatic  commenting of test  cases. As with  our 
other  test  case  generators,  helpful  comments  are 
added  to  the  source of the  test  case.  Here  the 
purpose of the  added  comments is to  aid a detailed 
verification of the  graphics  output.  For  example,  an 
ARC primitive  might  appear  as 

CALL  GSARCI 36, 5 9 , - 5 6 . 4 ) ;  ‘+ARC-END  AT t 5 3 . 1 2 E t 0 0 ,   1 9 . 9 2 E t 0 0  * 

and if a detailed  check  were  being  performed,  the 
tester  could  check  whether  the  arc  did  indeed  end  at 
the  predicted  (53.12,  9.92).  Another  example is 

CALL  GSAREAII ) ;   ‘ *TURQUOISE  AREA,SHADING  PATTERN=11+ 

The  generator keeps track of which attributes  the 
test  case  has  set  at  each  point  and  can  therefore  save 
the  tester  the  trouble of scanning  back  to find the 
last  setting of an  attribute. 

The following excerpt  from a generated  graphics 
test  case  produces  the  output shown in Figure 2. 

C A L L   D S U S E ( 1 , I I ) ;  !*USE  PRIMARY  DEVICE 11 * I  

CALL  SS_INIT_LOAO; i* LOA0 SYMBOL SETS * ’  
C A L L   F S P C R T ( 2 9 , 0 , 0 , 2 ) ;  
CALL  GSFLDi  1, 1 , 3 1 , 5 2 ) ;  

/+ DEFINE PAGE *, 

C A L L   G S C L P I I ) ;  
/ *  DEFINE  GRAPHICS  FIELD * I  

/* SET C L I P P I N G  ON *, 
C A L L   G S P S (   I . O 0 0 0 0 E + 0 0 ,   6 . 4 2 9 9 9 E - 0 1 ) ;  , +  DEFINE  PICTURE SPACE * /  
/ *  NO GSVIEW  STATEMENT,WHOLE  PICTURE  SPACE W I L L  BE USED *, 
/ *  NO GSWIN  STATEMENT, (0:100,0:100) I S  DEFAULT * /  
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CALL  GSSEG(0) ;  , +  UNNAMED SEGMENT* 
CALL  GRID;  
CALL GSMOVE( 1 5 .   5 4 ) ;  

/ *  SUBROUTINE  CALL TO SEN0  GRID TO SCREEN f 

) *  FROM( 0.0. 0 .01  * 
/*************t++t+, 

‘+ BLOCK 
. . . . . . . . . . . . . . . . . . . .  

1 *  

CALL GSCM(1) ;  
CALL G S C O L I 2 ) ;  
CALL GSARCI 
CALL GSMOVE( 
CALL GSARCI 
CALL GSOLWIBIN 

4 5 ,  96,- 1 9 ) ;  
7 1 ,  501, 

-AR( 1 I ) ; 
3 8 ,  18,- 5 8 ) ;  

1 THEN CALL ERROR( 

’* CHARACTER MODE = HARDWARE * ’  
/+ NEW COLOR I S  REO * /  

/+ARC-END AT +29.6E-01,+66.OE+OO*/  
’* FROM( 2 . 9 ,  66.01 

) *ARC-ENO  AT  +82.6E+OO, t69 .7E-O1*  
OUERY L INEWIDTH * 

CALL G S L I N E (  2 7 ,  1 2 1 ;  / *  FROM( 82.6, 6 . 9 )  * /  
CALL GSMOVE( 51, 9 7 ) ;  i* FROM( 27.0, 12.0) * /  
CALL GSARCi 4 4 .  5 1 .   5 3 ) :  i*ARC-END AT t l l . 4 E t O O . t 8 4 . 2 E t O O + ’  
CALL  GSCOL(5) ;  
C A L L   G S E L P S ( - 1 5   O E + 0 0 , + 1 2 . 2 E + O l , - 2 7 3 ,   5 . 3 3 8 8 1 E t 0 1 ,   8 . 3 7 0 3 1 E + O l ) ;  
/*CENTRE  AT: 68, 6 8 . S W E E P =   4 . 3 6 9 3 8 € + 0 2  TO 4 . 0 5 9 3 8 E t 0 2  * /  

. .  
/* NEW COLOR I S  fURQUOlSE * /  

e t c  

CALL G S P A T ( 7 8 ) ;  
CALL GSCOL(7) ;  

I* SET  PATTERN FROM 64-COLOR  SET * I  

/*WHITE FOR 64 COLORS*/ 
/***************e*/ 

/**********‘******/ 
I* AREA STARTING * /  

CALL  GSAREA( 1) ; 

DCL PFLT-XO3I  6 )  FLOAT D E C ( 6 )  I N I T (  11, 61, 7 3 ,   3 0 ,  55,  

DCL P F L T _ Y 0 3 (  6 )  F L O A T   O E C ( 6 )   I N I T (   3 5 ,  3, 7 0 ,   3 0 ,   9 5 ,  

CALL GSPFLTI6 ,PFLT-X03,PFLT-Y03) ;  / +  FROM( 7 . 0 ,  61.01 * /  
CALL  GSARC( 7 1 ,   3 1 , - 3 1 9 ) ;  /*ARC-END  AT i 5 1 . l E t O O , + 3 0 . 9 E t 0 0 * /  

/*SHADING I S  FROM 6 4  COLOUR SET,PATTERN I S  NO. 78,ORAWN BOUNDARY*/ 

5 6 ) ;  

4 4 1 ;  

DCL X Y O l (  60) 

82.6, 
1 5 . 0 ,  

66.0, 
11.4, 

1 4 . 0 ,  

3 6 . 0 ,  
13.0, 

4 2 . 5 ,  
1 4 . 9 ,  

CALL   GSCOL(6 ) ;  
DO 1=3,2 ;  
CALL  GSMS(1) ;  
00 J=1 TO 30:  

0 .5 ,  

F L O A T   D E C ( 6 )   I N I T (  
5 4 . 0 ,   2 . 9 ,  

8 4 . 2 ,   5 3 . 3 ,  
6 . 9 ,   2 7 . 0 ,  

8 9 . 0 ,  4 9 . 0 ,  
2 2 . 0 ,  9.8, 
8 5 . 0 ,  42.0, 

62.5, 56.0, 
1 9 . 0 ,  6 7 . 0 ,  

3 1 . 0 ,  7 . 3 ,  
3 3 . 6 ,  1.0, 

/ *  YELLOW 
/* 

* I  
* /  
* /  
* /  

* SET COLOR TO BLACK */  
/* J-LOOP + /  

/+  I -LOOP * /  

CALL  ASOFLDI99,32,2,1,44,2) ;  / *  DEFINE  ALPHA FIELO  FOR PROMPT */  
CALL  ASCPUTI99,44, ’CLIPPEO 1 FROM TESTCASE  G164636 TO DEVICE 1 1 ’ ) ;  
/**+*++++r++*+*ttrt*******t*****************, 
/ *  GOOM GRAPHICS  WILL NOW BE OUTPUT */  
/**+r*rr+r**r+r+rr+rt*tt+tr*+t*trtt***r+~~~/ 
CALL  ASREADITYPE,MOD,COUNT); 

GDDM business graphics generator. Business 
graphics  test  cases  are, by their  nature,  output-only. 
Since  it is not possible to  make  “output”  test  cases 
self-checking,  the  output  produced  must in theory 
be  compared  to  the  matching  test  case  source. 
Performing a detailed  comparison,  particularly  that 
of plots against  data, is necessarily a time-consum- 
ing  process. 

With  an  automatically  generated  test  case,  this 
comparison is neither  easier nor more difficult than 
with a handwritten  test  case.  The  test  case  genera- 
tor offers no benefits in this  area.  Its  main  advan- 
tage is that  the  source of, say, a 1000-line  test  case 
can  be  automatically  generated in seconds  rather 
than  needing a  few days  to  be  coded  manually. 
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Figure 2 Output from randomly generated graphics test case; the diamond-shaped markers indicate the predicted end 
point of each random line or curve 

The experience gained from the first three releases 
of GDDM business graphics showed that most bugs 
display themselves not by a  histogram  bar being a 
quarter of an inch too low, but in some more 
immediately obvious fashion. For example,  defects 
might be indicated by program checks, erroneous 
error messages, bars  stretching off the  top of the 
chart, legends not matching components, no data 
appearing, or any obvious shading  errors.  Although 
some generated  test  case  runs were made that 
involved a  detailed comparison of the source with 
the  output,  many more runs, indeed nearly  all  runs, 
were made  without  any  reference to the test  case 
source unless the  output looked suspicious. 

A typical test  case might be 1200 lines long and put 
out 15 charts.  There might be, say,  four suspicious 
aspects  to the  output, and the relating  test  case 

source would  be inspected. On investigation, some 
strange  combination of options and data might 
justify some of the suspected output,  and  maybe one 
or two valid problems would  be found. 

Brief description of business graphics generator 
internals. Each  time in going around the main loop, 
the  generator selects a chart type and  then calls the 
high-level procedure responsible for producing the 
statements  that cause such a chart to be built.  This 
procedure will first call several subroutines,  each 
responsible for one or more chart layout statements. 
These  subroutines decide randomly whether or not 
to produce each  statement,  according  to  the asso- 
ciated weight of the  statement.  Should  a  statement 
be selected, any options or operands are also chosen 
by reference to weights and  the  random-number 
generator. 

IBM SYSTEMS JOURNAL, VOL 22. NO 3, 1983 



____ 

Figure 3 Output from a randomly generated buslness 
graphics test case 

Next,  the procedure chooses the basic data specifi- 
cation. For example, the number of bars,  number of 
components, and  data ranges  may have to  be  select- 
ed. 

Next, several subroutines are called that  are respon- 
sible for axis-preparation  statements. The  state- 
ments already  generated  may now be  jumbled  into  a 
random  order. The  penultimate  step is to  generate 
the declarations to hold the  actual  chart  data; 
various techniques are used here. For example, 
surface  chart  data may be generated using the 
formula 

Y n c  = V o w  + Kc * (xn - X I O W )  ** Ec 
where 

Y,, = nth  dependent data value in cth component 
X ,  = nth independent data value 
Kc and E,  = constants chosen so the dependent data 

will be inside the prescribed range 

Finally, the  chart-plotting  statement itself is pro- 
duced. As with the  generators previously described, 
the  test  cases are  guaranteed to execute  without 
error. For example, the generator will ensure  that 
the  total  data for a pie chart do not exceed 100 
percent  and that negative values are not used on a 
logarithmic axis. 

The following excerpt  from  a  generated business 
graphics  test  case produces the  output shown in 
Figure 3. 

240 BIRD AND MUNOZ 

/t*.*t**t++tt*trtt++t-t*tttttttttttttttt"**"**"*****"******/ 

OCL TEXT  ATTOOI(2)   INIT(2/*COLOR*/ .O/~CHAR  MODE*/) ;  
OCL P A T 0 6 2 ( 8 )   I N I T ( 2 , 3 , 6 , 8 . 3 , 1 , 1 , 8 ) ;  /* OATA FOR CHPAT 
OCL AX ATTOO3( 3 )  INlT(3/*COLR*/,3/*LT*/,l/+LWt/); /* AXIS  ATTRS */  
OCL KEY004  CHAR(32)   IN IT( 'FRANCE  BELGIUM  SPAIN  ITALY ) ;  

/*DATA FOR CHKEY STATEMENT*/ 

/.+t.tt++t.tt+ttrtttttttt**tt*t*ttttttt/ 

/* CHART LAYOUT 
/.tt.tt+t*.tt+*++*.*~~~~~~~~~.~~~.~~~~~/ 

* /  

CALL  CHHATT(2,TEXT  ATT001); /* MODIFY HEADER TEXT  ATTRIBUTES */  
CALL  CHPAT(8,PATOOz);  /*RESPECIFY  PATTERN  TABLE*/ 
CALL  CHHEAD(43, *HISTOGRAM FROM GENERATED TESTCASE G 1 4 5 5 0 1 * ' ) ;  
CALL  CHHMAR(7.3);  /+DEFINE  HORIZONTAL  MARGINS * I  

/+t**+*****+*****t*ttt*t******+******.*/ 

/* AXIS  PREPARATION 
/ + + t + + * * r t + * * * t * * * * * ~ ~ ~ ~ ~ ~ * ~ ~ * ~ * ~ ~ * . ~ ~ ~ /  

* /  

CALL  CHSET(  'ABREV' ) ;  / *  3-LETTER  ABBREVIATIONS * /  
CALL  CHXDAY(6) ;  
/* NO 'CHXRNG'  STATEMENT , X-AXIS   WILL  USE AUTOSCALE */  

/* USE DAY LABELS */  

CALL  CHXTIC( 1 1 , 4 ) ;  
CALL  CHXSCL(1.OE-01) ;  

/* X-AXIS SCALE MARKS * /  
/* X-AXIS  SCALING FACTOR * /  

CALL  CHXSET(  'XTICK'  ) ;  
CALL  CHXSET(  'LABMIDD' ) ; 

/* CROSS TICKS ON X - A X I S  */ 

CALL  CHXSET(  'NDFO'): 
/*-NO ' C H Y R N G '  T T A T ~ M E N T  , 
CALL  CHYTTL(30, PRIMARY 
CALL   CHYTIC(2000000 .2 ) ;  
CALL  CHYSET(  'ATCENTRE ' 1 ; 
CALL  CHYSET(  'LABADJACENT' ) :  
CALL  CHDATT( 3 AX ATTOO3); 
CALL   CHYDTM(85 i90b7) ;  

Y -AXIS   WILL  USE AUTOSCALE */ 
Y - A X I S   T I T L E  * ' ) ;  /* Y - A X I S   T I T L E  */ 

/+VERTICAL  AXIS   T ITLE  POSIT ION* /  
/* Y-AXIS SCALE MARKS */ 

/* MODIFY  DATUM  ATTRIBUTES * /  
/ * Y  DATUM LINE.STATE I*/ 

/* MISCELLANEOUS */ 
/ t t t t t t t * t . r t t t * * * t t ~ ~ ~ . ~ ~ ~ ~ ~ ~ * ~ ~ ~ . * ~ ~ ~ ~ /  

CALL  CHKEY(4,8,KEY004);  /+DEFINE CHART KEYS+/ 
CALL   CHSET( 'KBOX ' ) /  
C A L L   C H K E Y P ( ' H ' , ' B   , ' C ' ) ;   / * D E F I N E  LEGEND POSITION*/  

/*LEGEND WILL BE BOXEO*/ 

/tt*~t***t*****.***********t**ttttt*t*t*/ 

/* DATA  PREPARATION */ 
/t++t+*******************tt*ttt*tt*****/ 

OCL X L 0 0 0 5 ( 1 0 )   I N I T (  65, 6 9 ,  76 .   79 ,  86, 9 3 ,  

DCL X H I 0 0 5 ( 1 0 )   I N I T (  6 9 ,   7 6 ,  79 ,  86, 93 ,   98 ,  
98 ,   106 ,   116 ,   119 ) ; / *RANGE-STARTS* /  

106, 116,   119,   133) ; / *RANGE-ENDS+/  
/ *  SPECIAL CASE , TOUCHING BARS */ 

OCL D A T 0 0 6 ( 4 0 )  FLOAT  DEC(6 )   IN IT (  /*ABSOLUTE  DATA*/ 
/*COMP I : * /  2 0 5 5 4 6 1 ,  2 6 1 5 0 4 0 ,  3 5 7 4 2 6 0 ,  3 7 3 3 2 9 8 ,  4 3 5 5 4 9 1 ,  

/*COMP 2:*/ 1 7 0 5 8 5 0 ,  1 7 4 8 2 2 4 ,  1 9 3 8 7 2 5 ,  1 9 8 6 2 8 9 ,  2 2 1 9 3 3 7 ,  

/*COMP 3 : * /  1 7 0 1 6 2 1 ,  1 7 1 9 2 2 3 ,  1 8 2 5 3 8 2 ,  1 8 5 5 1 4 8 ,  2 0 1 1 8 7 7 ,  

/*COMP 4 : * /  1 7 0 0 4 4 9 ,  1 7 0 7 6 6 3 ,  1 7 6 5 8 5 3 ,  1 7 8 4 0 7 8 ,  1 8 8 7 2 9 1 ,  

5 0 4 1 7 3 5 ,  5 7 4 7 8 9 0 ,  6 5 5 2 1 6 2 ,  7 4 1 1 1 4 1 ,  8 1 5 6 5 7 8 ,  

2 5 6 7 2 4 7 ,  3 0 3 0 0 6 4 ,  3 6 9 2 7 0 6 ,  4 5 6 6 5 5 4 ,  5 4 6 8 9 3 4 ,  

2 2 6 8 9 4 9 ,  2 6 3 9 3 4 3 ,  3 2 0 8 9 1 9 ,  4 0 1 1 0 3 1 ,  4 8 8 5 3 7 8 ,  

2 0 7 3 2 4 8 ,  2 3 6 3 3 9 9 ,  2 8 4 2 5 8 4 ,  3 5 6 3 1 9 2 ,  4 3 9 2 1 1 3 ) ;  
/l.t.~~.***..(t-*****************t*t**~**/ 

/* HISTOGRAM  PLOT */ 
......................................... 

CALL CHHIST(4,10,XL0005,XHlOO5,DATOO6); 
CALL  CHYOTM(1064425) ;  
CALL ASREAO(TYPE,MOO,COUNT); 

/*PLOT  HISTOGRAM*/ 
/ * Y  DATUM LINE,STATE 2+/ 

/+CAUSES  OUTPUT TRANSMISSION*/ 

Sortlmerge test case generators 

The  sort/merge  test case  generator is, essentially, 
two separate  generators. The first is a  syntax  gener- 
ator which produces the  sort/merge control  state- 
ments  or definition. The second is a  sort/merge  data 
generator which produces the input  and expected 
output files for the  sort/merge  program under  test. 
The  sort/merge program is executed using the 
control statements  from  the  syntax  generator  and 
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the input files from  the data  generator.  The resul- 
tant  output is then  compared  against the predicted 
output file from the  data  generator, thereby provid- 
ing the self-checking mechanism.  This  sequence is 
shown in Figure 4. 

The technique of generating  the  sort/merge control 
statements is similar  to those used by the  other 
generators  and will not  be described here. The 
syntax  generator phase must also set up  the  data 
structure  that describes the  sort/merge application 
represented by the control statements  that  are gen- 
erated. 

Sort/merge data  generation. To describe the  sort/ 
merge data generation  techniques, we start with a 
simple  sort data generation  example. We then con- 
sider how different file structures, key orderings, 
and record formats  are handled. 

Simple sort. The simple  sort data generation  exam- 
ple  is  shown  in Figure 5. The  sort/merge  data 
generator  creates the expected output file for the 
test  case by producing records with the integers in 
the key  field (Field 1) and  random  numbers in the 
scrambling field (Field 2). The expected output file 
produced by the  data generator is then  sorted on the 
scrambling field to produce the input file for the sort 
application  to be tested. 

The first improvement we can make to this example is 
to eliminate the need  to sort the expected output to 
obtain the input, as shown in Figure 6. We perform 
this elimination by writing the expected output file  to 
an intermediate relative (random access)  file sequen- 
tially first. Then we read the records,  which  were 
written sequentially, back in a random order and write 
them to the sequential input file. 

Note  that in Figure 6 the records in the input file 
are in the  same order  as in Figure 5. We no longer 
need to  sort the expected output file to obtain the 
input file for the sort  application. 

Multiple input$les. Another  situation that arises in 
sort  applications,  and  almost always in merge  appli- 
cations, is multiple  input files. This  situation is 
shown in Figure 7.  For sort  applications,  multiple 
input files are supported by reading in the relative 
file randomly  and  writing the records to  the input 
files  in the  order in which they were read  from  the 
random file. To perform  this  operation, the number 
of records in each of the  input files must be  known 
or arbitrarily  set.  Note  that in Figure 7 the records 
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Figure 4 Sort/merge  test case generation environment 

COMPARE PROGRAM 

1 
'SUCCESS 
IF SUCCESSFUL: 

1 
IF,FAILURE: 

NON-COMPARE AT 
RECORD NUMBER: 3214 
BYTE NUMBER: 34 
PREVIOUS RECORD IN HEX: 

99999078272, .. 
EXPECTED RECORD IN HEX: 

99998C25817 ... 
ACTUAL RECORD IN HEX: 

99352C72824 ...' 

are read in randomly in the  same order  as that 
shown in Figure 6 .  When the records are processed 
by the sort  program, they will be read in the  same 



Figure 5 Simple sort 

Expected Output  F i le  

Field 1 Field 2 

2 
1 3121 

232 
3 233 
4 6421 
5 4 
6 4351 

a 
7 432 

54 
9 243 

I n p u t  F i le  

Field 1 Field 2 

5 4 

2 232 
a 54 

3 233 
9 243 
7 432 

4 6421 

order  as if they  had  all been in a single  input file. 
This  procedure allows the  presequencing of the  sort 
application  input  to  be  controlled. 

For  merge  applications,  the  records  written  to  the 
relative file are  read  back in the  order in which  they 
were  written. As these  records  are  read  back  in,  they 
are  written  to a randomly chosen input file of the 
merge  application  to  be  tested  (Figure 8). Note  that 
for each of the  input files, the  records in the  input 
file are in order. 

The IBM DPPX Sort/Merge  product  and IBM DOS 
Sort/Merge  product  support  subsetting of the 
input.  To  accomplish  the  subsetting,  the DPPX prod- 
uct uses the SELECT subcommand  and  the DOS 
product uses the INCLUDE and OMIT statements. 
The  function provided is the exclusion of some of the 
input  records  from  the  sort  or  merge  application 
processing. Thus,  some  records  from  the  input  data 
sets  are not found in the  output  data  set. 

The  sort/merge  data  generator  supports  the  testing 
of this  function by adding  records,  which  are not 
included in the processing, to  the  input files during 
the  rewriting of the  relative file to  the  actual  input 
files. These  records  are  omitted  from  the  predicted 
output file, against  which  the final comparison is 
made. 

Support  for ordering keys. Our  simple sort example 
contained only one field of integers  to  be  ordered. 
The  general  case is the  ordering  on fields of many 
different  data  types:  character or EBCDIC, zoned 
decimal,  packed  decimal, fixed point,  etc. The 
ordering key may  be  formed  with  any  number of 
these fields in any  order.  The fields may  be of any 
length  and  may  be  ordered  either  ascending or 
descending.  The fields may  be in a  user-specified 
alternate  collating  sequence  and  may  have  differing 
offsets in  different  record  types,  as discussed later. 

We will use  an  example  to show how the  support for 
ordering keys  is implemented.  The  example, in 

Figure 6 Eliminating the need to sort the  expected 
output 

Relative  File 

Field 1 

2 
1 

4 
3 

5 
6 
7 
8 
9 

I n p u t  F i le  

Field 1 

5 
a 
3 
2 

9 
7 

6 
1 

4 
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OS/VS Sort/Merge  control  statements, follows: 

SORT FIELDS=(1,3,CH,D,6,3,ZD,A,11,3,PD,D) 

The  major key is a  character  or EBCDIC data  type 
with a  length of three  characters  and in descending 
order.  The  intermediate key is zoned decimal with a 
length of three  digits  and in ascending  order.  The 
minor key is packed  decimal with a  length of three 
bytes (five digits) in descending  order. 

The  sort/merge  data  generator first  builds a  table  to 
control  the  generation of the  ordering field data. 
The  table  contains  information  to be used for  incre- 
menting  the key (Figure 9). 

The  data  generator proceeds  with the  generation by 
creating  the lowest sequencing value. Then  the  data 
generator  selects  a field to be incremented, based on 
the  table  entry for “increment.”  This  step is fol- 
lowed by a selection of a  byte or digit  within  the 
field to be incremented.  And  last,  the  amount of the 
increment is randomly  produced. 

Figure 10 continues with the  example  to  demon- 
strate  this process. Record 1 has  the low order 
sequence value. Record 2 increments  the  third  byte 

Figure 7 Multiple input files 

of the  character field by “EO.” Record 3 increments 
the first digit of the zoned decimal field by 9. 
Record 4 increments  the  third  digit of the packed 
decimal field by 7. Record 5 increments  the first 
digit of the zoned decimal field by 9, causing  a 
change of sign  within the zoned decimal field. 
Record 6 increments  the  third  digit of the packed 
decimal field by 4, causing  the  third  digit  to  “bor- 
row” from  the second digit,  therefore  incrementing 
the second digit by 1. Record 7 increments  the first 
digit of the zoned decimal field by 2, with the  result 
that  the zoned decimal field changes signs and  there 
is a  “carry”  out of the zoned decimal field to  the 
character field. 

This  example  illustrates  the  technique  for  support- 
ing ordering keys of all varieties in the  sort/merge 
data  generator. As we have  seen,  the  technique is to 
simply perform  arithmetic on the key with incre- 
menting  and  carrying within fields and  across fields. 
A similar  technique is used for  user-specified alter- 
nate  collating  sequences. 

Different record formats. The IBM DPPX Sort/ 
Merge  product  supports  the  sorting of records  that 
do not have  their key fields in the  same locations in 

Figure 8 Merge application 

F i e l d  1 
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8 
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t e l a t i v e   F i l e  

: i e l d  1 

Read I n   S e q u e n t i a l l y  and  Randomly 
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Figure 9 Controlllng the generation of ordering field 
investment, since it  can be enhanced  to  test future 

data releases of the product  under  test. 

each record. Other fields are used to  identify the 
record types that differ. An example of DPPX Sort/ 
Merge control statements for such a  case is given in 
Figure 11. 

The example defines a  sort  application in which 
input records with an “A” in offset 1 will have their 
sort field at  offset 5 ,  input records with a “B” in 
offset 1 will have their  sort field at offset 15, etc. 
The  data generator chooses the record type of a 
record after it has determined  the key value for the 
record.  It  then  sets the record-type-identifying field 
in the record followed by entering the key fields into 
the record at their  appropriate offsets. 

The techniques we have described encompass vir- 
tually all the permissible sort/merge operations. 

Concluding remarks 

Test  case  generation has several benefits compared 
to the presently available  alternatives. Our experi- 
ence has been that  the cost of coding and  debugging 
a test case  generator is considerably less than  that of 
creating sufficient handwritten  test cases for the 
same  function.  A  generator also represents  a  better 

The  range of alternatives  and  combinations in the 
testing coverage for a  particular  feature is higher 
than it would  be in any fixed amount of handwritten 
test cases. Once  a new feature is included in the 
generator,  it has the  potential of appearing with all 
the  other  features  already implemented. 

Finally, the design and coding of a  generator is 
likely to prove considerably more interesting  than 
writing conventional test cases. The  job satisfaction 
of the  testers is therefore  enhanced. 

Software  products are becoming ever more com- 
plex, and the  amount of test  material  they  require 
increases accordingly. It is highly desirable  to find 
automated processes to create such material.  It is 
equally  important  that  the test cases produced 
should be easy to  run  and verify. 

In this paper we have briefly described several 
implementations of our test case  generator princi- 
ple. All have been used successfully to  test signifi- 
cant IBM program products. They have proved 
themselves to be both efficient and effective-small 
numbers of test personnel have located  large  num- 
bers of defects. As we have seen, the method has 
been applied to  areas such as graphics, which were 
initially thought  unsuitable for the technique.  Many 
more areas of testing should benefit equally. 
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Figure 10 Generated ordering field data 

Record 1 
Record 2 
Record 3 
Record 4 
Record 5 
Record 6 
Record 7 
Record 8 
Record 9 

Character  Zoned  Decimal  Packed  Decimal 
Field  Field  Field 

FFFFFF 
FFFFlF 
FFFFlF 
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FFFFlF 
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Figure 11 Different record formats 

URCE RESOURCE(1NPUT)  TYPE(RSDS1  LRLEN(80)  

SELECT  FIELD(RECTYPE)  COND(EQ)  CHAR(A) 
FIELD  NAME(RECTYPE)  LENGTH(1)  OFFSET(1)  FORMAT(CHAR) 

FIELD  NAME(SDRTME)  LENGTH(4)  OFFSET(5)  FORMAT(NUM) 
SELECT  FIELD(RECTYPE)  COND(E0)   CHAR(B) 

SELECT  FIELD(RECTYPE)  COND(EQ1  CHAR(C) 
F IELD  NAME(S0RTME)   LENGTH(4)   OFFSET(15)  FORMAT(NUM1 

F IELD  NAME(S0RTME)   LENGTH(4)   OFFSET(25)  FORMAT(NUM) 
SELECT  FIELD(RECTYPE)  COND(EQ)  CHAR(D) 

. .  

F IELD  NAME(S0RTME)   LENGTH(4)   OFFSET(35)  FORMAT(NUM1 
TARGET  RESOURCE(0UTPUT)  TYPE(RSDS) 

ORDER F IELD(S0RTME)  
END 

3 
..[ 
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executable,  self-checking  test  cases  (for PL/I).  Several  genera- 
tors for other  software  products  have followed, and  he is 
currently  using  generators to test  various  aspects of GDDM 
graphics.  He is author  or  joint  author of three  patents on test  case 
generation  and  has  also  written  four books on contract  bridge. 
Mr. Bird received his M.A.  degree in mathematics  from Gonville 
and  Caius  College,  Cambridge,  England. 

Carlos Urias Munoz IBM General Products  Division,  Santa 
Teresa  Laboratory.  P.O.  Box 50020, San  Jose,  California 
95150. Mr.  Munoz is currently  a  staff  programmer.  He  joined 
IBM in 1974 as a  junior  programmer working in the build and 
release  group  for IMS and  CICS.  During 1976, he was a  member 
of the  team  responsible  for  transferring  development of the  PL/I 
products  from  the  Hursley  Laboratory  to  San  Jose.  During  this 
assignment  he  first  became  familiar  with  the  test  case  generation 
technology  and  then used this  technology while testing  DPPX 
sort/merge in 1978 and 1979. Mr.  Munoz  then  joined  Program- 
ming  Assurance of the  General  Products Division (GPD)  as a 
technical  evaluator  for  the PL/I products. In 1981 he initiated  a 
technology  project  to  extend  the  function of the  PL/I Test  Case 
Generator  and  to  experiment  with  various  testing  approaches 
utilizing  the  scope  and  productivity of the tool. He was a  joint 
recipient of an  excellence  award in 198 1 for  the  sort/merge work, 
and in 1983 he was presented  with  a GPD achievement  award. 
Mr.  Munoz received a B.A. in mathematics  from  the  University 
of California, Los Angeles, in 1974. 
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