The Project Automated
Librarian

The Project Automated Librarian (PAL) is a tool that
has been created to manage the logistical prob-
lems inherent in a medium-sized software develop-
ment project. The main goals of PAL are to elimi-
nate the problems of simultaneous updates to soft-
ware modules, while allowing programmers access
to the latest possible versions of the software. PAL
also seeks to prevent the software from getting
into an inconsistent state that could prevent users
from proceeding with software development be-
cause of someone else’s errors. PAL is a general-
purpose tool, in the sense that it does not care
what language or languages the system is being
written in. It makes backups, keeps version infor-
mation, and maintains documentation of changes.

hen two or more people work on development

of software for a single system, certain prob-
lems frequently arise. One of these occurs when
several people wish to update a given component of
the system. They may all make private copies, make
the changes, and then attempt to install the modi-
fied code. Unless steps are taken to avoid it, the last
person to install the changes will “win,” and the
changes made by the others will be lost. A partial
remedy is to have the editor being used maintain a
list of the changes to the file, and have these
“update files” applied to the original file. This
remedy only works if the changes were made to
disjoint portions of code.

The other major problem is that of currency. Even if
all programmers are working on different areas of
code, it is highly desirable that when one set of
changes has been tested and approved, it be imme-

2 14 PRAGER

by J. M. Prager

diately installed so that everyone associated with
the project can have the latest possible version.
Under VM (Virtual Machine Facility/System Prod-
uct), the basic minidisk support does not provide
safe write access to common files for more than one
person at a time. Instead, it is necessary to build a
higher level of support to achieve this goal.

A possible solution to these problems, but one that is
only really practical in a two-person project, is to
have “private” arrangements about who works on
which components of the system next, and who has
the latest versions of the various components. To be
at all workable, this requires constant attention to
such “bookkeeping” details.

The use of a human librarian can alleviate these
problems, but it is a burdensome and boring task for
the individual, especially if backups are needed and
change documentation must be made. It was to
solve these problems that the Project Automated
Librarian (PAL) was developed. A human librarian
is still needed (to install and maintain PAL), but this
task is small compared with that performed by PAL
itself.

©Copyright 1983 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM
copyright notice are included on the first page. The title and
abstract, but no other portions, of this paper may be copied or
distributed royalty free without further permission by computer-
based and other information-service systems. Permission to
republish any other portion of this paper must be obtained from
the Editor.

IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

PAL was created to manage the software develop-
ment of the POLITE' project at the IBM Cambridge
Scientific Center. POLITE is a real-time editor-
formatter which has about 44 000 lines of code.
This code is being worked on by up to six people
simultaneously. It is mostly the case that different
programmers have different parts of the code to
work on, but some sections of code need to be
changed by two or more people. Because of a great

PAL allows people to gain access to
the latest possible version of the
system.

concern that POLITE provide good human factors, it
was seen to be critical that the latest version of the
system be quickly made available for testing (and
use).

PAL is written in Pascal’ and EXEC2,’ and runs
under the Conversational Monitor System of VM
(vM/cMS).* It is used to solve as far as possible the
problems listed above.

PAL is like the Source Code Control System (SCCS)°
in some respects. They both, for example, allow only
one user at a time to modify a software component.
sccs, however, is much more oriented to making
past releases accessible—in fact it attempts to re-
cord every version of every component that ever
existed. It does this by storing “deltas”—represen-
tations of changes between successive versions of a
component. The most recent version of a software
component must be generated dynamically by
applying all relevant deltas to the original version of
the component. PAL, on the other hand, keeps entire
copies of previous versions; the number of such
backups kept is settable by the installation. SCCS
does not perform the compilations, assemblies, etc.,
which PAL may perform once a set of changes has
been resubmitted to the system.

As is described in more detail later, PAL solves the
problem of simultaneous updates by “checking out”
code to the first person who asks for it, as in a

IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

lending library; nobody else can modify the code
until it is “checked in” again. PAL maintains a
project disk where all files reside with read access
given to everybody, but one can update only by
going through both the check-out and check-in
processes.

PAL allows people to gain access to the latest
possible version of the system, because it acts as a
central depository for all working components of the
system. Users are discouraged from keeping “per-
sonal” copies of any part of the system, except those
components under active development. Users will
typically only check out “source” files; derived files
such as TXTLIBs and MODULEs are generated auto-
matically by PAL when the source files are checked
back in. Thus, all users access the most recent tested
versions of the components of the system, installed
in the project library.

Beyond the solution of these problems, benefits of
using PAL include disk space savings (due to limit-
ing the number of identical copies of a file), auto-
matic change history and documentation, and auto-
matic backup and version generation.

PAL requires all users to have their identification on
a single VM system. It does not cater to remote
users, or to two or more parallel development efforts
at different sites.

PAL was not intended to be highly sophisticated and
complex. For example, it contains no security fea-
tures to prevent unauthorized changes being
made—it relies on trust. Furthermore, it assumes a
style of modular programming to work well. How-
ever, since its raison d’étre is to eliminate the need
for a human librarian, it was designed primarily to
be simple to install, modify, and use. Reaction from
sites that have installed PAL confirms that these
goals have been achieved.

This paper consists of four major sections. First, we
give a description of PAL. Then we describe how PAL
appears while it is being used. In the third section,
we describe tools for building and modifying PAL
itself. Finally, we discuss current implementations,
future developments, and potential problems with
PAL.

Description of PAL

General overview. PAL runs under VM/CMS as a
disconnected virtual machine. It maintains a project

PRAGER 2 1 5

disk that contains the most up-to-date version of all
project files, including any executable modules or
other “derived” files. Each module is regenerated

PAL maintains a catalog of all files in
its domain.

when successful submissions of new versions of
source code occur. Logically, PAL appears to the
user as a librarian; the user may check out many
files that are not already out and may check them
back in when done. Physically, checking in and
checking out are accomplished by EXECs which
send files between the user’s machine and PAL’s
machine.

PAL exerts more control, however, than simply the
checking in and out of files. Although it is expected
that the user will verify the changes he made to code
before resubmitting the file (at least as far as
syntactic correctness is concerned), this cannot be
guaranteed. Thus PAL performs “appropriate’” syn-
tactic checking (e.g., zero return code from compil-
er) before check-ins are accepted. PAL also auto-
matically generates any files that are derived from
the files checked back in. This procedure is ex-
plained in some detail below, using Pascal compila-
tions as an example.

The problem of getting the right files regenerated
when a given file has changed, known as the prob-
lem of “consistent compilation,”® is the responsibil-
ity of the project librarian who sets PAL up. This
problem is discussed in the third section.

PAL maintains a catalog, or inventory, of all files in
its domain. Some files may be source files, others
may be generated (by PAL) from these source files,
others may be EXECs, and so on. Most circulate to
all users, although some may have their circulation
denied (typically, one will not want to allow TEXT

2 1 6 PRAGER

files and MODULES to be checked out). Each file is
marked accordingly in the catalog. A human librar-
ian installs all files initially, using an aid known as
LIBTOOL, which is described later. During this
procedure, the librarian informs PAL what processes
are to be run whenever a file is checked in. Thus,
whenever a source file is changed and checked in,
PAL will be able to regenerate the module, as well as
any other derived files.

POLITE, the project that provoked the development
of PAL, is written in Pascal. PAL will typically
circulate to users (members of the POLITE project
team) either COPY files or PASCAL source files. In
the generation of a POLITE MODULE during check-
in, there are four stages of processing, any of which
may be required from the original source files:

1. MACLIBs are built up from COPY files.

2. TEXT decks are generated by compiling PASCAL
files with MACLIBs.

3. TXTLIBs are generated from TEXT decks.

4. A MODULE is made from TEXT decks and
TXTLIBs.

The notion that up to four stages of processing may
be required on checking in any file has been general-
ized in PAL to remove language dependencies. Thus,
the fact that POLITE is written in Pascal is irrelevant
to the general operation of PAL, which would work
just as well compiling any language, as long as the
commands to do so are put into the catalog initially.
In fact, as is described in a succeeding section, PAL
can be used for maintaining system documentation
instead of (or as well as) maintaining software.

When a file is checked in, PAL generates all those
files that are derived from it. If there are any errors
during the process (such as compilation errors), the
entire set of changes is rejected and sent back to the
originator, along with an appropriate message. If
there are no problems, the newly checked-in files
are installed and the catalog is updated. Messages
are sent to all users linked to the project disk
informing them of the update.

PAL in more detail. The architecture of PAL is shown
schematically in Figure 1. PAL runs in a virtual
machine which is normally disconnected. The
machine maintains two minidisks, the B-disk which
contains the library and all related execs, and the
A-disk which is used for temporary files created
during the check-in process. PAL runs an exec that
puts it in a wait state until input arrives in its virtual

1BM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

card reader. When this happens, PAL “wakes up”
and begins processing the input.

A typical user is linked to PAL’s B-disk with read
access. To check out a file, he runs the main PAL
exec, which resides on that disk. After all the files he
wants have been named (which PAL checks to see
are both in the library and are permitted to be lent
out), PAL is asked to process these requests. This
causes a CONTROL file to be generated and trans-
mitted from the user’s virtual machine to PAL’s
virtual machine. On receipt of this file in its reader,
the PAL machine wakes up and reads in the file. The
file contains a list of tasks to be performed. PAL sees
that the user has requested some files to be checked
out, so sends him the message

“BEGINNING CHECKOUT PROCESSING”

followed by
“I AM CHECKING OUT filename filetype FOR YOU”

for every file to be checked out. When PAL finishes,
it goes back to sleep and waits for more input in its
reader. PAL uses special class descriptions for CON-
TROL and library files, in order to distinguish them
from each other and from any other random files
that might get sent to its machine. PAL only (ini-
tially) pays attention to CONTROL files, which it
reads in and analyzes. If a CONTROL file specifies a
check-in function, PAL looks at the other files in its
reader.

The user will read the files that PAL sends him onto
his own private disk(s), and edit and test the
changes there. Clearly the user will not usually have
a copy of the complete system under development.
Since PAL maintains the latest versions of all files,
both source and derived, the user need merely be
linked to PAL’s B-disk in order to have read access to
any part of the system he has not checked out.

A user tells PAL that he wishes to check in files in
much the same way that he checks them out. For
each file to be checked in, PAL asks if any changes
have been made. If the user answers in the affirma-
tive, PAL prompts the user to supply some documen-
tation of the change. This documentation, which is
either typed in on the spot or copied from a
previously prepared file specified by the user, is put
in to a DESCRIPT (description) file.

When this part of the process has been completed,
PAL constructs a CONTROL file listing all the files to
be checked in, along with the names of the

IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

Figure 1 PAL-user relationship under VM

CATALOG
STMTS FILES
llll’ EXECS
I INK LIBRARY ITSELF

USER’S
MACHINE

DESCRIPT files. The CONTROL file and all the others
are then sent from the user to PAL, which then
wakes up, scans its reader for a CONTROL file, and
reads it in. It issues the message

“BEGINNING CHECKIN PROCESSING”

and then reads in all files specified in the CONTROL
file.

As mentioned earlier, PAL is configured to expect up
to four sequential stages of processing to occur when
a file is checked in, although this number can easily
be changed. For Pascal, these stages correspond to
MACLIB, TEXT, TXTLIB, and MODULE generation,
and they must happen in that order, although there
may be several steps during each stage. For exam-
ple, a given COPY file may be INCLUDEd in several
Pascal programs, so that when this file is checked in,
several compilations take place. As far as PAL is
concerned, there is no particular semantics asso-
ciated with these stages, which we will call STAGEI,
STAGE2, STAGE3, and STAGE4.

PAL maintains the library catalog and four STMTS
(statement) files, corresponding to STAGEIl-4. For
each file in the catalog, there is a (possibly empty)

PRAGER 217

Figure 2 Example of software structure

MODULES

list of entries for each of the four stages. These
entries are labels and refer to lines in the STMTS
files that will be executed when the files are checked
in (with changes). Thus the STAGE1 STMTS file

218 rracer

MACLIBS

PASCAL FILES

TEXT FILES

TXTLIBS

contains all of the calls to generate MACLIBs, the
STAGE?2 STMTS file contains all of the Pascal compi-
lation calls, and so on. Rather than having the
operations to be performed listed with each file in

iBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

Figure 3 Contents of four STMTS files

M2: MACLIB GEN M2 C4 C5

Pl: EXEC PASCALVS Pl
P2: EXEC PASCALVS P2

P4: EXEC PASCALVS P4

P1: EXEC PASCMOD P1 TL1

contents of STAGE1 STMTS file

M1: MACLIB GEN M1 C1 €2 C3

TL1: TXTLIB GEN TL1 P2 P3 P4

T

contents of STAGE2 STMTS file
LIB (M1) NOPRINT)
LIB (M1 M2) NOPRINT)

(
(

P3: EXEC PASCALVS P3 (LIB (M2) NOPRINT)
(LIB (M2) NOPRINT)

contents of STAGE3 STMTS file

contents of STAGE4 STMTS file

the catalog, the indirection is preferred because
many files may share some processing (e.g., they
may all generate the same MODULE).

When checking in a file with changes, PAL looks it
up in the catalog to determine its associated labels.
PAL then looks in each of the four STMTS files in
turn for the corresponding EXEC statements and
performs the requisite processing.

For example, consider the simple software structure
depicted in Figure 2. C1 to C3 are COPY files in
MACLIBM]1, and C4 and C5 are COPY files in M2, P1 is
a PASCAL file which includes C1 to C3, and P2
includes C3 and C4, whereas P3 and P4 both include
C4 and C5. T1 to T4 are the TEXT decks formed by

IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

compiling P1 to P4. TL1 is a TXTLIB formed from T2
to T4; T1 and TL1 are linked to form the module P1.

The STAGE! STMTS file contains the CMS state-
ments to generate M1 and M2 from the COPY files.
The STAGE2 STMTS file contains the statements to
compile P1 to P4, with reference to the appropriate
MACLIBs. The STAGE3 STMTS file contains the
statement to generate TL1, and STAGE4 STMTS con-
tains the one to generate the P1 MODULE (see Figure
3). How these statements are keyed to the check-ins
of the respective source files is described later in the
section on the maintenance of PAL.

The necessity for identifying and distinguishing
among different processing stages becomes appar-

PraGER 210

Figure 4 Top-level PAL screen

“Press PF10 to process ¢

ent when several files are checked in at once.
Consider a TXTLIB that is generated from two
compiled Pascal files, both of which have just been
checked in (e.g., TL1 from P2 and P3). The STMTS
files will specify for both Pascal files a compilation
and TXTLIB generation. Since the TXTLIB genera-
tion is the same in both cases, that operation should
occur after the two compilations, so that it need only
be done once. As another example, if a collection of
PASCAL files and COPY files have been checked in,
the MACLIBs should be generated from the COPY
files before the PASCAL files are compiled.

These considerations (and analogous ones for non-
Pascal systems) force PAL to adopt a certain strat-
egy for processing check-ins. For the set of files
checked in for any single transaction, PAL looks up
all the STAGE! statements (ignoring duplications),
and then processes them. The same then happens
for STAGE2, STAGE3, and STAGE4 in turn. This
strategy both minimizes the total processing
required and guarantees that each file is processed
with the most up-to-date versions of associated files
at all times.

220 rrAGER

All checked-in files reside at first on PAL’s A-disk,
the work disk. All dependent files that are generated
by the check-ins are also stored on the A-disk.

PAL presents the user with a screen
showing a menu of possible actions.

When all processing that has been triggered by the
check-in has finished successfully, PAL issues the
message

“]l HAVE CHECKED IN filename filetype WITH
CHANGES”

for each such file, copies all checked-in and gener-
ated files from the A-disk to the B-disk (the library
disk), erases them from the A-disk, and goes back to
sleep. If a file is checked in with no changes, no
processing is required. If one of the processing
stages fails, due to, say, compilation errors, the
entire job is terminated, the files are sent back to the
user, and a message is given to the user explaining
what has happened.

How PAL is used

PAL presents the user with a screen such as that
depicted in Figure 4. The user may check files in or
out, list those files checked in or out, review the
history (documentation) of a file, or list all files
most recently checked in or out by any user. There
are sorting and scrolling facilities for all of the
listing functions. We discuss here only the checking
in and out of files. The system returns to this menu
after any of its subsystems (accessed by PF1-6) have
terminated.

If the user indicates that he wishes to check files
out, PAL presents him with a screen such as that in
Figure 5. The user may specify any number of files,
and, assuming that the files are in the library and
that they may circulate, PAL internally queues up a
series of actions to check out the indicated files. In

IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1883

Figure 5 Check-out menu

On each line enter the file name and file type
of a file you wish to check out.

v

P2 PASCAL
C1 CopY

Vv V.V V

vV Vv Vv

oo w U U NnwR N
B 8 8 H R B HH
v

v

Currently on loan to user SAB
Marked to be punched to your reader

A null ENTER will end

this instance, the user has requested two files
(names in italics) and the system’s responses are
shown. The first request has been rejected because
the file is already on loan. The second request has
been accepted. When the user terminates this
screen and issues the PROCESS command at the
top-level screen (Figure 4), the transactions are
actually executed, and the files sent to him.

Alternatively, the user may elect to check files in
(see Figure 6). PAL allows him to check in only those
files which he himself has checked out. PAL asks for
the filename(s) and whether any changes have been
made. Even if no changes have been made, this
check-in procedure must still be followed (although
no files are actually transmitted), so that PAL can be
informed that the file is available to others (i.e., put
back into circulation). Figure 6 shows the state of
the screen after the user has entered the name of a
file (C1 COPY) to be checked in, the system has
asked if the file was modified, and the user has
replied “yes.” The user has already checked in the
files listed at the top of the screen during this
transaction.

IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

If changes have been made, PAL presents the user
with a screen (see Figure 7) in which he gives a
description of the changes he has made to the file.
The user might have written the documentation in
another file prior to the check-in session. In this
case, PAL allows the user to specify the name of that
file, and PAL reads it in as the description of the
change.

When all check-ins have been entered and the
PROCESS command given at the top level, the files
are sent from the user to PAL’s disconnected
machine. On receiving each file, PAL will run the
appropriate execs as specified in the catalog. If all
compilations, assemblies, etc. proceed without
error, the derived files (if any) are generated, all
new files are installed and put back in circulation,
and all affected users are notified of the change.

The previous versions of the files just checked in are
not written over. They are renamed, and for any
derived file such as a module, a record may be kept
of all the files from which the penultimate version of
it was derived. Thus, PAL keeps track of successive

PRAGER 221

“releases” of the module and the associated source
files. How many such backups are to be permitted is
a decision to be made at the local installation. We
recommend that files be archived onto tape when
the maximum number of backups is reached.

Figure 6 Check-in screen

e T e

checkin P4 PASCAL

checkin P3 PASCAL PAL keeps a complete record of changes made to

files in its catalog. Figure 8 shows the change-log
for a file C1 COPY that has just been checked in (see
Figure 6) and documented (Figure 7).

File to check in: ==> C1 COPY

Was it modified (yes/no)? ==> yes Maintaining PAL

As mentioned earlier, the utility program named
LIBTOOL is provided to the human librarian for
updating PAL’s data base and catalog. It contains
facilities for adding and removing catalog entries,
specifying or canceling entry properties such as
whether a file gets circulated or backed-up, provid-
ing version information, and specifying what is to be
done to a file when it is checked back into the
library.

Press ENTER to finish

We will not present much detail of these functions
here, save to say that LIBTOOL does as much check-

Figure 7 Entering descriptions of changes

Description of modifications to C1 Copy
Enter DESCRIPT file name, if any, to use ==>

Defined new type : POLITE_COMMAND UNIT, a
record for passing around variables and states
related to the execution of a command.

222 PrAGER IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

Figure 8 Viewing the change log for a particular file

PRAGER
Checked out: 11/24/81 12:06:30
Checked in: 12/02/81 12:28:29

Cl COPY
Status: Modified

Borrowed by:

Description of changes

Defined new type : POLITE_COMMAND_UNIT, a
record for passing -around variables and states
related to the execution of a command.

e 3¢ Y e e e e e % e e e e ke e e e e e e e e ke ke ke ok ok ke e ok ek ke ke ke ke ke k kA ke ok ke ke ko ok ko dkek ke ke k ok

Ci1 copy Borrowed by: PRAGER
Status: Modified Checked out: 11/13/81 16:01:45
Checked in: 11/18/81 12:06:31

Description of changes

PF7 to scroll forward PF8 to scroli backward
Press ENTER to end

ing and prompting as possible during the process to
help ensure that meaningful entries are made to the
catalog. To complete the example given in Section
1, though, we show a few screens generated by
LIBTOOL for the specification of the dependencies of
some of the COPY and PASCAL files of Figure 2.

Figure 9 shows the dependencies of C3 COPY. It says
that when C3 COPY is checked in, statement M1 in
STAGE1 STMTS is executed, as are P! and P2 in
STAGE2 STMTS, TLI in STAGE3 STMTS, and PI in
STAGE4 STMTS (see Figure 3 for these statements).
Clearly, given the dependencies depicted in Figure
2, these actions are necessary and sufficient for
correct regeneration of all files that depend on C3. If
other files are checked in along with C3 COPY, all of
the associated STAGE! statements are executed
before any of the STAGE? statements, and so on.

IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

Figures 10 and 11 show the dependencies of C4 and
P2, which again can be verified by reference to
Figure 2. Note that the headings on PAL’s screens
can be tailored to the particular local usage; for
example, the “STAGEn statements” headings in
Figures 9 to 11 can be changed to “MACLIB genera-
tions,” “PASCAL compilations,” etc., or as appropri-
ate.

Now, it frequently happens that identical process-
ing is required for two (or more) files when they are
updated. For example, it may happen that two
COPY files, say, belong to the same MACLIB, are
INCLUDEd in the same PASCAL files, and so are
pertinent to the generation of the same TEXT decks,
TXTLIBs, and MODULEs. In our example, C4 and C5
have the same dependencies, except that only C4 is
included in P2. For such occasions, LIBTOOL allows

PRAGER 223

the user to say that processing required when file C5
is checked in is the same as that already specified
for file C4 (possibly with certain modifications).
This feature greatly speeds up the building of the
library catalog and reduces errors.

LIBTOOL also asks the librarian for a description of
any file being entered into the library. A description
here of the general function of a file, along with any
documented changes to it (see previous section),
provides at least a first pass at up-to-date overall
system documentation.

Current uses of and future enhancements to
PAL

PAL was created as a general software development
tool, although the POLITE project at the Cambridge
Scientific Center was its intended (sole) user. It is

being used successfully at Cambridge and is in
active use at several other IBM facilities.

One IBM group uses PAL for control of program
development, in particular, Structured Program-
ming Facility (SPF) screen design, and currently has
a library of about 700 to 800 files. Another group
initially used PAL to store documentation only, and
now has about 1500 such files in the system.
Because of the success which the group had with it
there, a second library was established for software
development, currently containing over 2000 files,
although only a few hundred of these are files that
may circulate. These files are of various types,
including macro, assembler, exec, and other lan-
guages.

PAL’s generality has been demonstrated by the way
members of this group are using it to store their

Figure 9 LIBTOOL menu for C3 COPY

Operations for resubmission of file C3 COPY

Circulation allowed = YES

Generate Backups = YES

STAGE1 STAGE2 STAGE3 STAGE4
statements statements statements statements
M1 Pl TLI ‘ P1
P2

Press ENTER to proceed PF5 to add version info PF10 to view statements
Press PF12 to abort

224 rracer

1BM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

Figure 10 LIBTOOL menu for C4 COPY

Operations for resubmission of file C4 COPY

Circulation allowed = YES

STAGE2
statements

STAGE1
statements

Generate Backups = YES

STAGE4
statements

STAGE3
statements

M2 P2
P3
P4

TL1 P1

Press ENTER to proceed PF5 to add version info PF10 to view statements
Press PF12 to abort

software documentation. They send it Document
Composition Facility (DCF)’ source files, and PAL
runs the DCF processor on the files checked in. The
files are accepted if DCF issues a zero return code.
This library consists entirely of DCF source files, but
one can imagine, were disk space plentiful, that PAL
could save-fully formatted documentation in print
format (instead of executable modules in the case of
program development).

Although PAL probably does not completely meet
any one person’s needs, it has received a very
enthusiastic response from its users. PAL has been
said to be very valuable to its users, because it is
flexible and well-structured, and fits their needs
well. Users state that it is faster and better than

IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

other systems that they know of, and some even
claim it to be indispensable.

This attitude is surely due to the need in general for
tools such as PAL for project management, rather
than because PAL is ideal. In fact, there are several
areas in which PAL could benefit from extensions
or improvements. These deficiencies have arisen
because the intensive use to which PAL is being put
was not anticipated when it was written (POLITE
then had approximately two dozen source files).

Since PAL accepts check-ins only from the original
borrower, and since check-ins are accepted only if
the new code compiles cleanly, a change in the
interface between code managed by two people

PRAGER 225

Figure 11 LIBTOOL menu for P2 PASCAL

Operations for resubmission of file P2 PASCAL

Circulation allowed = YES

Generate Backups = YES

STAGE1 STAGE2 STAGE3 STAGE4
statements statements statements statements
p2 TL1 P1

Press ENTER to proceed PF5 to add version info PF10 to view statements
Press PF12 to abort

cannot easily be achieved, since neither one can be
the first to check the new code in. This situation can
easily be overcome by introducing to PAL the con-
cept of a “job,” which consists of a set of files
checked out to possibly several people, and which
will be processed only when all are received back.

The PF-key usage is very nonstandard, and should
be changed to conform to any standard adopted by
the installing location.

In order to add or change entries to the catalog via
LIBTOOL, the human librarian must log on to the
PAL machine, thus temporarily removing it from
active service. It has been suggested that updates to
the catalog take place remotely, just as checking in

226 rrAGER

and out of files is performed. It has also been
suggested that the user not have to link to the PAL
machine, but instead send it messages. The current
method of linking is annoying at times, because
users must reaccess every time the library is
updated. The lack of a physical link would also
permit use of PAL across different machines over the
Remote Spooling Communications Subsystem
(rsCS).?

A desirable function to be executed when code is
checked back in is one that automatically tests the
newly generated module(s) to ensure that no regres-
sion has occurred. The roadblock here is not so
much a problem with PAL, which would treat the
test as simply one more step in the check-in process,

IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

but that automatic testing is intrinsically a very
difficult problem. It is still in the domain of com-
puter science research, and is rarely tractable
except in very simple situations. One potential defi-
ciency with PAL in this regard is that the ultimate
answer from such a test must be summed up in a
simple return code, which cannot express the full
range of possible outcomes.

A code developer who uses PAL will usually test new
code before checking it back in. As mentioned

PAL is an automated system that
performs the same functions as a
human librarian.

before, PAL will only check for syntactic correct-
ness; if the new code passes the test, new systems
will be generated and immediately made available
to everybody, system developers and end-users
alike. It may happen that changes should undergo
more extensive checking than a code developer is
willing or able to perform, before the new code is
made available to users. This checking is easily
achieved by setting PAL up with three disks instead
of two. The A-disk will be the work disk as before,
the B-disk will be the system disk containing all
source and most recent modules, etc., and the
C-disk will contain the most recent modules that
have been adequately tested. So the modules on the
C-disk may be as up-to-date as those on the B-disk,
or they may lag behind.

Updating the C-disk is very easily done. An EXEC
called INSTALL is written which contains state-
ments to copy to the C-disk all files of interest to end
users. INSTALL EXEC is put into PAL using LIBTOOL,
and PAL is informed that when INSTALL EXEC is
checked in, INSTALL EXEC will be executed. Now

IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

systems testers will link to the B-disk to access the
latest code; users will link to the C-disk. When
project management is happy that the latest
changes have been adequately tested, someone will
check out INSTALL EXEC and then check it back in,
which will trigger the updating of the C-disk. The
usefulness of this device was recognized at Cam-
bridge very soon after use of PAL was begun, and the
fact that it can be done with the simple addition of
an exec points again to PAL’s versatility.

Summary

During the course of a software development effort
involving several people, it is often the case that two
or more people wish to work on the same pieces of
code. It is also the case that access is required to the
most up-to-date versions of components of the sys-
tem being developed. This can be handled by “pri-
vate” agreements between two or more people, or by
using the services of a human librarian to mediate
all code transfers. Both of these approaches are
unsatisfactory.

PAL is an automated system that performs the same
functions as a human librarian. By checking files in
and out, it ensures that only one person at a time
may modify a file, but allows all project members to
have read access to the system at all times. It
automatically generates new modules and other
dependent files whenever source files are changed,
and it keeps documentation of the changes. PAL is a
general-purpose tool, in the sense that it does not
care what language or languages the system is being
written in. It makes backups as files are changed,
and keeps version information so that earlier
releases of the software may be regenerated.

A further benefit of PAL is that one can be guaran-
teed of having a working version of the system
available at all times. This has proved especially
important to POLITE, which has recently been in a
“demonstration-intensive” mode. Even if the most
recent changes cause a regression to occur, thereby
invalidating the latest modules, a past working
version can easily be found or created, since PAL
keeps backups.

PAL requires its users to describe the changes made
to files when they are checked back in to the library.
This has the effect of enforcing communication
among several people who may be working (in
turns) on the same code. This will be especially
useful when PAL is extended to allow usage from

PRAGER 227

remote machines, as outlined in the previous sec-
tion. In that case, the people involved may have
much less personal contact than if they all worked at
the same site, and may be less likely to be aware of
changes made by one another.

Acknowledgments

PAL was designed and written by two Massachusetts
Institute of Technology students, John C. Gonzalez
and Michael J. Wissner, who worked on the POLITE
project during the summer of 1981. Thanks are due
to Forest Gordon and John Webster for making
enhancements to PAL, and to Peter Hardy and
Sheldon Borkin for their support and suggestions.

Cited references

1. J. M. Prager and S. A. Borkin, POLITE Project Progress
Report, Technical Report G320-2140, IBM Cambridge
Scientific Center (April 1982); available through IBM
branch offices.

2. Pascal/VS Language Reference Manual, SH20-6168, IBM
Corporation; available through IBM branch offices.

3. IBM Virtual Machine/System Product: EXEC2 Reference
Manual, SC24-5219, IBM Corporation; available through
IBM branch offices.

4. IBM Virtual Machine/System Product: CMS User’s Guide,
SC19-6210, IBM Corporation; available through IBM
branch offices.

5. M. J. Rochkind, “The Source Code Control System,” IEEE
Transactions on Software Engineering SE-1, 364-370 (De-
cember 1975).

6. T. R. Horsley and W. C. Lynch, Pilot: A Software Engineer-
ing Case Study, Xerox System Development Department
Technical Report, Palo Alto, CA (July 1979).

7. IBM Document Composition Facility: User's Guide, SH20-
9161, IBM Corporation; available through IBM branch
offices.

8. IBM Virtual Machine Facility/370: Remote Spooling Com-
munication Subsystem (RSCS) User’s Guide, GC20-1816,
IBM Corporation; available through IBM branch offices.

John M. Prager /BM Academic Information Systems, Cam-
bridge Scientific Center, 101 Main Street, Cambridge, Massa-
chusetts 02142, Dr. Prager is a project leader at the IBM
Cambridge Scientific Center. Since joining IBM in 1979, he has
worked in the office systems area, in particular on the POLITE
project, for most of that time. His current interests include the
development of user interfaces for powerful personal worksta-
tions using techniques from artificial intelligence. He has pub-
lished several papers and technical reports and is a member of the
Association for Computing Machinery, the British Computer
Society and the Institute of Electrical and Electronics Engineers
Computer Society. Dr. Prager received a B.A., Diploma in
Computer Science (with distinction), and an M.A. from the
University of Cambridge and a Ph.D. in computer science from
the University of Massachusetts at Amherst.

Reprint Order No. G321-5192.

228 PRAGER IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

