A simple architecture for
consistent application
program design

This paper addresses the architectural design as-
pects of general business computer application
programs written in high-level procedural program-
ming languages. It puts forth design concepts for
easily built, maintainable programs and describes a
unique approach to program decomposition.

he trend in computer application development

is toward the use of application program gener-
ators, nonprocedural languages, and other advanced
technologies. However, a great amount of current
development effort still involves procedural lan-
guage application programming. This paper mainly
concerns those programmers who must continue
their work in procedural programming languages
without the use of application generators.

A major expense in computer applications is the
cost of ongoing program maintenance, a significant
portion of which occurs because different program-
mers have different solutions to the same program-
ming problems. In many environments, if the same
program specifications are given to a number of
different programmers, there will be little likelihood
of getting any similar solutions and great difficulty
in having any programmer maintain any other
programmer’s solution. When responsibility for a
program changes, additional expense is incurred
because the new programmer must take the time to
understand design techniques that are different
from the ones he knows. If the design is not fully
understood, changes can damage the program,
causing unnecessary cost and inconvenience to the
business organization.

I1BM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

by G. R. Rogers

A contributing factor to this problem is the pro-
grammer approach to functional decomposition.
Some published techniques tend to be too general,
and programmers apply individual interpretations
to them. Other, more specific, published approaches
are unsuitable in active, dynamic application envi-
ronments.

Described herein is a new design approach' that can
be used for general business application programs
written in high-level procedural programming lan-
guages. It has been used for batch report programs,
batch edit programs, batch sequential update pro-
grams, batch selection programs, copy programs,
the Application Development Facility (ADF)* spe-
cial processing programs, interactive data entry
programs, interactive inquiry programs, and inter-
active update programs. The approach utilizes a
single architecture that views computer application
programs as four-level hierarchies of logical mod-
ules. Benefits of the technique include improved
maintenance productivity through design consisten-
cy, faster learning curves for novice programmers,
and some simplification of the system design
process.

The techniques are used with temporary and new
employees. These employees learn the concepts

© Copyright 1983 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and 1BM
copyright notice are included on the first page. The title and
abstract, but no other portions, of this paper may be copied or
distributed royalty free without further permission by computer-
based and other information-service systems. Permission to
republish any other portion of this paper must be obtained from
the Editor.

ROGERS

199




Figure 1 Detailed system design

quickly, and subsequent people are able to maintain
the resulting programs easily.

The following sections of this paper review the
system development cycle to show where the con-
cepts fit, discuss other published decomposition
approaches and describe the problems with each,
explain the four-level concept, show how reusable
code applies, demonstrate the concepts with a sam-
ple problem, and conclude with a description of
other benefits of the approach.

Program decomposition in the system
development cycle

The first, and key, step in the system development
cycle is to analyze thoroughly the requirements of
each particular business enterprise. The system
design can be represented by a data flow network
such as that shown in Figure 1. The network
consists of data streams and nodes (or functions)
commonly called programs. A program exists when
an identifiable operation, such as report printing,
takes place.

When the programs have been identified, they can
be created in one of three ways: by using a supplied
system utility function such as a sort, by using a
program generator such as RPG II1,” or by writing a
procedural program in a language such as PL/L*
The last approach is used when the particular
programming organization chooses not to use a
system utility function or program generator.

If the third approach is adopted, the application
programmers are faced with a key problem that is
the subject of the remainder of this paper: How is a
particular program to be subdivided into its func-

200 rocers

tional components after the overall program func-
tions have been described and documented?

Available decomposition techniques

Four program decomposition techniques currently
available to programmers are source/transform/
sink decomposition, transactional decomposition,
functional decomposition, and data structure
decomposition. These techniques have been de-
scribed by Myers.’

Source/transform/sink decomposition is the princi-
pal technique used in composite design. It is based
on the premise that every problem has an inherent
structure and that the program structure should
closely resemble the problem structure. Decomposi-
tion using this technique involves discovering the
inherent structure of the problem and understand-
ing how the data are flowing through the problem
structure as well as how the data are transformed
while flowing. This information is used to identify
the immediate-subordinate modules of the pro-
gram/module being analyzed. The major steps in
this decomposition approach are

1. Identify and outline the structure of the prob-
lem.

2. Identify, in this problem structure, the major
stream of input data and the major stream of
output data.

3. Identify the point in the problem structure where
the input data stream last exists as a logical
entity and the point where the output data
stream first exists as a logical entity.

4. Describe each division of the problem as a single
function, using these points as dividing points in
the problem structure. These divisions indicate
the functions of the immediate-subordinate mod-
ules.

Not all programs or program modules can be
decomposed using the source/transform/sink meth-
od. If the problem does not seem to fit this tech-
nique, transactional decomposition is a second
method that programmers may use.

When a problem cannot be depicted as a fixed
sequence of subproblems (source/transform/sink),
it can often be viewed as a set of actions relating to
the specific input transactions that must be
processed. The program modules may be organized
according to the specific types of transactions that
must be processed.

IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983




There are still other situations where source/trans-
form/sink decomposition and transactional decom-
position do not suit the problem. If this is the case, a
third approach that programmers may use is func-
tional decomposition. Here programmers look for
common functions around which to build a pro-
gram. Myers’ dismisses this approach as ad hoc.
However, many programs appear to be organized on

To improve productivity, individual
programmers must achieve
consistency in program
decomposition.

this basis as programmers recognize and take
advantage of common functions appearing repeat-
edly in business application programs.

When programmers design programs, they often
use a combination of these three techniques, with
refinement steps, to arrive at a final design. How-
ever, a great variance in programmers’ solutions to
similar programming problems results, although
each programmer is, himself, consistent. After gain-
ing some experience, he begins to notice similarities
in the types of programs that he develops.

The variance appears to be caused by the general
nature of the above-described decomposition tech-
niques. Each programmer interprets the approaches
according to his own thought processes. Difficulties
arise in the program maintenance phase of the
system development cycle when one programmer
has to adapt to another’s thinking pattern.

To improve maintenance productivity, individual
programmers must achieve consistency in program
decomposition.

To date, the most consistent decomposition approach
is a data structure technique developed by Jackson.®
This technique is based on the assumption that the
structure of a program is related to the input and
output data structures of the data it processes. The

1BM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

steps to achieve data structure decomposition are

1. Define the input and output data to clarify the
understanding of the problem environment.

2. Find one-to-one relationships between the input
and output data structures.

3. Define intermediate data structures to provide a
transformation, if there are no one-to-one rela-
tionships.

4. Develop a program logic structure based on the
data relationships.

Although one of the values of this approach is that it
promotes consistent program designs, development
groups in the IBM Toronto Laboratory find it
unsuitable in a highly volatile data-base/data-
communication environment where data bases are
very large and complex and user changes contin-
ually affect the structure and contents of the data
bases. This type of decomposition forces program-
mers to discard a great amount of code whenever
the data structures change, which is very expensive.
Also, this technique may not provide modular pro-
grams.

For business application programs, the solution to
the decomposition problem is much simpler than the
above-summarized methodologies suggest. There
are many similarities among such application pro-
grams, and herein a four-level design architecture is
given to support them. The architecture is simple
and consistent, makes use of high- and low-level
common code, is highly suitable for an active pro-
gram maintenance environment, works with soft-
ware managers such as the Information Manage-
ment System (IMS),” and can quickly aid the devel-
opment of program design skills in new employees.

A significant difference between this method and
other top-down design methods is that the upper two
design levels are given, and design refinement, if
necessary, involves only the bottom two levels. Iden-
tification of specific types of program functions at
each design level contributes to design simplicity
and is the key to design consistency.

The remainder of this paper describes the architec-
ture and gives a simple program design example to
illustrate the concepts. The technique addresses the
programming design aspects of computer system
implementation. It is appropriate for many general
business application programs written in high-level
procedural languages.

rocers 201




Figure 2 Basic program structural architecture

LEVEL 1 SUBSERVIENT
LEVELS
MAINLINE

LEVEL 2

DECISION
LOGIC

LEVEL 3

DETAIL
PROCESSING

SUPPORT
LEVEL
UTILITY
[{ FUNCTIONS

The application program as a four-level
hierarchy

Procedural language application programs have
four key parts: iteration, decision control, data
detail processing, and support operations. These
functions are organized into a modular structural
hierarchy of four logical levels to form the basic
program structural architecture, as shown in Figure
2.

Iteration appears at the top of the hierarchy in the
mainline module. This module controls the main-
event processing for the program. It directs initial
and final program processing and evaluates the
conditions under which the program operates. With
some products, such as IBM’s Application Develop-
ment Facility,” the functions of this module are
provided as part of the supplied control system. For
other environments, programmers may use a stan-
dard version of the mainline module, described later
in this paper.

The next level in the hierarchy is the decision logic
level. It is invoked from the main processing section
of the mainline module. This level identifies the type
of application program and makes the major pro-

202 RroGERs

gram logic flow decisions. The decision logic for
most application programs belongs to one of four
categories: control break, balance line, single-panel
interactive (update or inquiry), or multipanel inter-
active.

Detail-processing modules are at the next level in
the hierarchy, where data construction and manipu-
lation take place. These functions are generally
unique to each program.

Acting for all levels in the hierarchy are the utility

function modules. These operate at the support level
and provide common functions usable by all levels

In general business application
programs, many functions occur
frequently.

in the application program hierarchy. Utility func-
tion modules can support other utility modules.

Decisions affecting overall program flow appear in
the higher levels of the program hierarchy, whereas
data processing is concentrated at the lower levels.

Classical functions

A reusable function is a programming function that
is developed once and used in many different pro-
grams. Since Stevens, Myers, and Constantine®
theorized that composite design would result in less
new code being developed, many authors have dis-
cussed the subject of reusable functions. However,
there has not been much specific documentation on
reusable functions. Existing documentation tends to
be project-specific, and the documented code occurs
at a low hierarchical level in programs.

In business application programs, great amounts of
data, often contained in complex structures, must
traverse most of the key functions. Therefore, if
there are to be reusable functions of a generally
applicable nature, they must be able to handle the
different elements and data structures that occur in
various programs.

IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983




The data variations make it difficult for program-
mers, without access to code generators, to create
ready-to-run reusable functions in object code form.
The practical alternative is to specify the functions
in pseudo code. The programmer adds his data
references to the pseudo code to complete the func-
tion designs. He can then code the functions in his
selected programming language and compile them
to produce the object code.

In general business application programs, many
functions occur repeatedly. The author has identi-
fied some of these functions and developed specific
reusable code which fits in the above-described
design architecture at high and low levels in pro-
grams. The author has chosen to call these “classi-
cal” functions and in a handbook’ has provided
pseudo PL/1 code for them. (Although the program-
ming language of our development department is
PL/I, the code is simple and has been written to be
understood by readers who work in other high-level
procedural programming languages.)

In the following section, each of the logical levels in
the structure of a program is discussed. Also given is
a descriptive overview of the “classical” functions
that can be used at the various levels.

Program structural levels

Level 1 — Mainline. One of the biggest problems
facing maintenance programmers is determining
the exact conditions under which a program exe-
cutes. Often maintenance programmers examine
several levels in the hierarchy of a program and are
perplexed as to why the program runs, given certain
input conditions. When the logic for primary control
is widely dispersed, the initial developer and subse-
quent maintenance programmers may have diffi-
culty fully understanding all the interactions of the
program. It is extremely important for maintenance
programmers to know under what circumstances
the program functions, and this knowledge should
be easily obtainable. When the run conditions of the
program are buried in the hierarchy, programmers
can easily make changes at the wrong places, caus-
ing unpredictable results.

The primary purpose of the mainline logic is to
make the key operative conditions clearly visible.
With consistent documentation standards, pro-
grammers should be able to comprehend readily the
reasons for program execution.

IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

Figure 3 Mainline module

MODULE MAINLINE [(system parameters)] MAIN.
CALL INITIAL (initialization variables).
DO WHILE condition for data to be processed is valid. i

CALL DECIDE (decision logic variables). :
ENDDO.
CALL ENDJOB (end of job variables).

ENDMODULE.

This mainline module is the root of the program at
the top of the program hierarchy. It is usually
written by the programmer. Sometimes it is sup-
plied as part of a software manager, as with the
special processing option of ADF.?

For designing the mainline logic, a “classical” func-
tion called the standard mainline’ has been devel-
oped. It is a very simple piece of code that controls
three sequential functions: initialization, main
processing, and end-of-job processing. The logic for
the standard mainline module is shown in Figure 3.

Initialization uses a utility-level module to establish
starting values and to handle other processing (such
as control record validation) that takes place at the
beginning of the program.

Following initialization is main processing, the
major component of the mainline module. This
function checks the validity of the condition or
conditions under which the program operates and
iteratively invokes the processing decision logic at
the next lower level in the program. An input data
stream that has not yet reached its end or a terminal
user who has not yet told the program he is finished
are valid conditions for continued program opera-
tion.

The final step in the mainline module is to call a
utility-level module to handle the end-of-job
processing. The end-of-job module may print grand
totals, produce end-of-job summary reports, write
audit totals onto a log file, and perform orderly
program shutdown.

rocers 203




There is limited data processing and handling at
this top level in the program hierarchy. A condition
or conditions controlling execution of the program,
data to be initialized, data passed to the end-of-job
processing module, and data base and data commu-

In an interactive system, the
programmer may want to control the
processing flow from data panel to
data panel.

nication work areas (which may be parameters
when control is passed to the mainline module) are
the likely data to be handled.

Level 2 — Decision logic. Decision logic is the
second level in the program structural hierarchy.
Here the characteristic logic of the processing solu-
tion appears. Again, practically no data are
processed at this level. However, the amount of data
handling increases significantly. The decision logic
provides, in a sense, a message switching/control
function and ensures that the appropriate data are
correctly passed among the subservient program
levels.

When programmers acquire some experience, they
begin to notice that many programming problems
repeatedly appear. Most general business applica-
tion programs can be classified in one of four
groups: control break, balance line, single-panel
interactive (update and inquiry), or multipanel
interactive. “Classical” reusable functions are
defined for each of these groups.’

Control break logic is a very common programmer-
written application logic. It is used for batch report
programs, batch validation programs, and data
reduction programs (where data are condensed and
put on a file or data base for further processing by
subsequent programs) and is based on the concept
of changes in sequence keys of a sequenced input
data stream. A control break occurs when a key
field changes value. At this time, related processing

204 rocers

such as totaling takes place. A zero control break
program is a copy program.

Balance line logic concerns the matching of sets of
streams of sequential items. The match may be
called a file update, a merge, or a selection; one
stream of data is matched against another similarly
sequenced stream of data. The input consists of two
streams of data in ascending, similarly sequenced
order. The input data may come from sequential
files, data bases, or tables. The output is a single
stream of sequential data containing the results of
the matches. The output data stream may also be a
sequential file, data base, or table.

The single-panel interactive update transaction
occurs in many simple on-line update systems. Each
user-terminal transaction is treated as a single panel
with associated source code. A simplified version of
this logic can be used for inquiry-only applications.

In an interactive system, the programmer may want
to control the processing flow from data panel to
data panel. Some of the panels are simply selection
(menu) panels, others are data-only panels, still
others may be a mixture of the two types. The
decision logic of the multipanel interactive transac-
tion controls the flow from panel to panel and from
an input/output device to a panel.

Level 3 — Detail processing. At this level, the
program should primarily process the data. The
actual modules that appear are defined by the
decision logic that invokes them.

Programs should have simplified control logic and
should maximize the data processed. For these
reasons, the modules at this level in the structure of
a program will be much larger than those found at
the mainline and decision logic levels.

Since the detail processing level of the program
deals with specific data manipulation, this level
tends to be unique for each program. Therefore, no
“classical” functions have as yet been identified for
this level.

Level 4 (support) — Utility function. Utility func-
tions occur in most business programs. They per-
form tasks that are called from various locations
throughout the program. Utility functions can be
supported by other utility functions. Therefore,
although the program structure has four logical
levels, it may have more than four physical levels.

IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983




In general, utility functions tend to be relatively
simple modules that process data rather than affect-
ing control logic. “Classical” functions that have
been identified’ at this level are print report detail,
simple sequential read, sequential read and table
load, Zeller’s Congruence, “bubble” sort, and
binary search.

The print report detail logic is a simple, common
module used to print report data. It formats and
outputs the appropriate data and sets up and prints
report page heading lines for each new page. Often
this particular piece of logic is incorrectly created
by programmers.

The simple sequential read logic reads a sequential
stream of data coming from a file or data base. In
addition to providing physical access to the data, it
verifies the sequence of the incoming stream of
data. Failing to check sequence is a common pro-
gramming error.

When sequential input data appear in sets of rec-
ords or segments, it is convenient to load related

The best method of sorting files and
data streams is to use
system-provided “stand-alone” sort
facilities.

groups into a table for subsequent group handling.
Programmers may use the logic of the sequential
read and table load to perform this function.

In data processing, programmers may need to know
the day of the week that a particular event takes
place. For example, certain functions may have to
be executed every Wednesday or a program may
have to account for employees not working on
Saturday or Sunday. To convert a date (e.g., Octo-
ber 21, 1982) into the day of the week (e.g.,
Thursday), a formula known as Zeller’s Con-
gruence'’ is available. Month, day, and year are the
input parameters, and the procedure produces an

IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

alphabetic and a numeric representation for the day
of the week (Sunday through Saturday).

The best method of sorting files and data streams is
to use system-provided “stand-alone” sort utilities;
however, from time to time, programs are required
to order small in-memory tables. A simple method
for this operation is to use a function known as
“bubble” sort.

Numerous programs require data table searches.
These searches are normally accomplished by using
a search verb or a similar function provided by the
programming language. Sometimes programmers
write their own sequential search modules. If a
programmer must search a very large sequenced
in-memory table, he may use the binary search
“classical” function.

In addition to these reusable functions, businesses
have additional sets of utility functions characteris-
tic of the enterprise. These functions will be identi-
fied by the organization itself. In the following
example program, the module for user profile evalu-
ation is probably a reusable function for all users in
a company.

An example program

The decomposition of an IMS data-base/data-com-
munication program illustrates the method of
designing application programs. This example is
less complex than real-life programs, but it does
illustrate the decomposition technique and shows
how the functional modules are interconnected to
form the program. The design process is taken
through the decomposition phase to the identifica-
tion and high-level pseudo coding of the functional
modules. From that point onward in the develop-
ment cycle, the coding is, to a large extent, a
relatively mechanical exercise.

The example program is an on-line program used to
update a data base containing existing employee
name and address data. A display terminal device is
used to enter transactions for processing by the
program.

IMS sign-on and user validation procedures are
used, and, after signing on to the program, the user
will be presented with a selection menu. The user
then selects a transaction code and, depending on
the choice, the program ends, a name and address
display is shown, or a job description display is

rocers 205




shown. The layout of these displays can be found in
the Appendix to this paper.

For name and address data, the user is prompted to
enter an employee number. The program then
accesses an employee data base and returns the
name and address information. With proper au-
thorization, the name and address data can be
changed by the terminal user.

For job description data, the user is also prompted
to enter an employee number. The program subse-

There are two major types of
multitransaction interactive
programs.

quently accesses the employee data base and returns
with a display showing employee name, job title,
and job description. Proper authorization enables
the user to change the job description data.

Both data panels have an option for experienced
users, allowing them to transfer to another display
or end the program without recourse to the menu
display.

All programs in the user organization must access a
common utility function for data base update
authorization.

The program uses an option of IMS known as
Message Format Services (MFS) for management of
the physical display data. However, in this example,
only the application logic is designed. High-level
English pseudo code for the solution is shown in the
Appendix.

There are two major types of multitransaction inter-
active programs: those which “see” a complete
session for each connected terminal and those which
process only one interaction for any terminal at a
time. IMS data communication programs belong to
the second category. When continuity is required

206 rocers

between subsequent terminal interactions, IMS pro-
vides storage areas for data retention. Each storage
area is associated with a particular terminal.

For the design, the programmer begins the module
identification process at the top of the program
hierarchy. Since the program is to operate under the
control of the IMS data communication monitor,
without the services of a menu management system,
the programmer must provide his own mainline
module. He provides the module by taking the
*“classical” function of Figure 3 and modifying it to
show the unique program data references.

The mainline code shows, without further design
refinement, the modules that are invoked by it at
lower levels in the program hierarchy: initialization,
decision logic, and end-of-job processing.

The initialization module performs both terminal
session initialization and, subsequently, transaction
initialization. It first requests a work area for the
terminal from IMS. The work area contains an
indicator showing whether this is the first interac-
tion for a terminal or a subsequent interaction. On
the first interaction the program starting values
must be set.

The decision logic module controls the overall pro-
gram flow. Although the mainline shows a DO
statement, the decision logic will be invoked only
once for each passage of control from IMS. The DO
format is retained to be consistent with the architec-
ture and other multipanel interactive programs that
“see” complete terminal sessions. In some circum-
stances, for performance reasons, the programmer
may elect to take advantage of the IMS option of
processing all available transactions from all users
before control reverts back to IMS. This option is
achieved with the same mainline logic having itera-
tion control based on the availability of messages
from all users, rather than just one.

The end-of-job processing module performs both
end-of-transaction processing and end-of-terminal
session processing. The terminal user enters an
input parameter (detected by the menu and transac-
tion processing functions) when he desires to end his
session. For end-of-transaction processing, this
module has IMS save necessary data. For end-
of-terminal session processing, the module sets a
value in the work area to end the program.

Figure 4 shows the first step in the design process.

IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983




The programmer proceeds to the design of the
decision logic (second level in the program hierar-
chy). Because the sample program has three inter-
active transactions, it can be categorized as a multi-
panel interactive transaction “classical” function.

The pseudo code is modified with the data refer-
ences to finalize the design at this level in the
program hierarchy, without further refinement.
The code identifies all dependent modules at lower
levels in the module hierarchy: user profile evalua-
tion, receive data from user, send data to user, menu
processing, name and address processing, and job
description processing.

The code shows that this type of interactive pro-
gram cannot be decomposed using the source/
transform/sink approach. The structure of the solu-
tion is very different from the structure of the
problem. The problem structure is a hierarchy of
panels. Menus can invoke transactions or other
menus; transactions can invoke menus or other
transactions. The solution is a single-level iteration
allowing the problem hierarchy to be substantially
modified with minimal impact on the program.

The user profile evaluation module verifies user
access to the transaction. It is a utility function
operating at the support level. When a particular
transaction is selected, the transaction processing
module checks that the code returned by the profile
evaluation module is acceptable. If the code is not
acceptable, the module sends a message to the
terminal user rejecting the update transaction. User
profile data are checked each time the decision logic
is invoked. If the application is long-running, this
check allows instant recognition of changes in user
profile data without having to terminate the appli-
cation.

The send and receive data modules are utility
functions that provide the access path from the
program to the physical terminal device.

The menu-processing module is another transaction
operating at the detail-processing level in the pro-
gram. It verifies the selection option and responds
with a parameter that will cause the decision logic
to pass control to the selected transaction.

The name and address processing evaluates selec-
tion options, prompts the user for data, and updates
the data base (when the user has the proper authori-
zation).

IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

Figure 4 First design step

[ ]

LEVEL 2

DECISION LOGIC

g INITIALIZATION

T M STATES

SUPPORT
LEVEL
(UTILITIES)

The job description processing is very similar to
name and address processing, the job title and job
description fields being the minor differences.

The second step of the design process is now com-
plete and is shown in Figure 5.

If module design refinement is needed, it is done at
the detail-processing and support level phases of the
design evaluation process. The detail-processing
level is evaluated first to determine if any support-
ing functions are needed. The menu processing
module is simple and does not need any supporting
functions. Because the name and address processing
module and the job description processing module
are so similar, we may initially conclude that they
are both likely to use the same supporting functions.
The functions they require are one to read a data
base and one to update a data base.

In the final step, the programmer analyzes the
support level utility functions (initialization,
receive, send, data base read, data base update, and
end-of-job) to determine if they need to be decom-

rocers 207




Figure 5 Second design step

] mAINLINE

AN

1| pECISIoN Logic
(MULTIPANEL

| INTERACTIVE
| TR

LEVEL 1

LEVEL 2

LEVEL 3

| NAME AND

| PROCESSING

| DESCRIPTION

ADDRESS |
1 PROCESSING

R R RTI T.

SUPPORT
LEVEL |
(UTILITIES) |

#
j

{3,5’51!5(”\!:}&);(&{&!.)5&&%&55

posed to give better modularity. Because the exam-
ple program is simple, no further decomposition is
necessary.

The final structural design is shown in Figure 6.

As each level in the program design is established,
the pseudo code for the associated modules can be
written. At the completion of the structural design,
program coding in the selected programming lan-
guage becomes a mechanical exercise.

Other benefits

Although the major benefit of this decomposition
approach is design consistency and thus greater
productivity in a programming maintenance envi-
ronment, the approach provides other significant
benefits as well.

208 rocers

People who are novice programmers often have
difficulty determining what a program should look
like and, in particular, how code should be designed.
This method is simple so that the decomposition
technique and the code examples’® provide a handy
reference to show people how common business data
processing problems can be solved. The problem of
new programmers having to continually reinvent
the work of past generations is avoided.

This design technique also affects the system design
process. It simplifies the identification of the func-
tional units known as programs. Business applica-
tion programs can be identified as one of four types
(control break, balance line, single-panel interac-
tive, multipanel interactive). Along with these pro-
grams, there are system utility programs such as
sort and copy (file to file, file to data base, data base
to file, data base to data base). With use of these

1BM SYSTEMS JOURNAL, VOL 22, NO 3, 1983




utility programs and application programs, system
design entails making selections from among known
functions and arranging them in the proper
sequence to provide the desired system data flow
characteristics.

Concluding remarks

Consistency and maintainability of application pro-
grams, designed using the techniques described in
this paper, are a result of the simplicity of the
approach. Simplicity is achieved via the single
architecture, the stratification of the program into
four distinct layers, and “classical” functions that
show programmers how to design frequently occur-
ring program code.

The concepts are easy to teach, thus reinforcing the
notion that they are simple. New employees in the
Supply Management System area of the IBM

Toronto Laboratory are taught on a tutorial basis,
and university continuing-education students are
taught in a classroom format.

The author continues to attempt to identify addi-
tional “classical” functions relevant to business
programming environments. Until procedural lan-
guage programming is completely replaced by
application code generators, there will be a substan-
tial demand for techniques to improve the produc-
tivity of business application programmers.

Acknowledgment

My gratitude goes to those of the staff and manage-
ment of the IBM Toronto Laboratory who gave their
support and encouragement and spent many hours
reading and constructively criticizing my manu-
scripts.

Figure 6 Final design step — Sample multipanetl interactive program

LEVEL 1
g MAINLINE
LEVEL 2
{ pecisioN LoGic
(MULTIPANEL
INTERACTIVE
| TRANSACTION)
LEVEL 3
MENU | naME anD ] Jos
PROCEsSING | || ADDRESS H bESCRIPTION
| Processing | || PROCESSING
SUPPORT
LEVEL
(UTILITIES)
1 INmiALIZATION 1 user | receve | ] seno 1 rReAD | uroare | 1} enp
| PROFILE DATA { DaTA 1 DATA 1 DaTA | oF
{ evaLuation | [ (FrROMm 1 o | BASE BASE { JoB
: | UsER) ] User '

rocers 209

IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983




Figure 7 Selection menu

Figure 8 Name and address display

EMP1

EMPLOYEE DATA
SELECTION MENU (M)

ENTER TRANSACTION CODE:
N - NAME AND ADDRESS
J - JOB DESCRIPTION
E - END OF SESSION

* INFORMATION/ERROR MESSAGE AREA

EMPLOYEE DATA

NAME AND ADDRESS (N)

EMPLOYEE NUMBER: ABC23
EMPLOYEE NAME: FRED PROGRAMMER

EMPLOYEE ADDRESS: 44 NICE ST
SMALLTOWN

* INFORMATION/ERROR MESSAGE AREA

GO TO TRANSACTION:
(M-MENU, E-END OF SESSION)

Appendix

In this appendix, the pseudo code for each module of
the example program is given. Figures 7, 8, and 9
depict the displays that will be shown depending on
a user’s choice of transaction code as described in
the example.

Mainline module

MODULE MAINLINE (IMS parameters /# including user id */)
MAIN.

CALL INITIAL (IMS parameters,first time indicator,end of
session indicator,panel code,previous panel
code,employee number,previous employee
number,name,address,title,description).

DO once for each terminal interaction.

CALL DECIDE (IMS parameters,first time indicator,end
of session indicator,panel code,previous
panel code,employee number,previous
employee number,name,address,title,de-
scription).

ENDDO.

CALL ENDJOB (IMS parameters,first time indicator,end
of session indicator,panel code,previous
panel code,empioyee number,previous
employee number,name,address,ti-
tle,description).

ENDMODULE.

210 roaErs

Initialization module

MODULE INITIAL (IMS parameters,first time indicator,end of
session indicator,panel code,previous
panel code,employee number,previous em-
ployee number,name,address,titie,descrip-
tion).

get work area for terminal containing IMS parameters,first
time indicator,panel code,previous panel code,employee
number,previous employee number,name,address,ti-
tle,description.

IF first time indicator shows first use for this terminal
THEN
set panel code to “‘m"’.
set previous employee number to blank.
ENDIF.

set end of session indicator to ‘‘no”’.
ENDMODULE.

End-of-job module

MODULE ENDJOB (IMS parameters.first time indicator,end
of session indicator,panel code,previous
pane! code,employee number,previous
employee number,name,address,title,de-
scription).

IF end of session indicator = *‘yes”’
THEN
set IMS parameter to end terminal session.
ENDIF.

IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983




insert work area for terminal containing IMS parame-
ters,first time indicator,panel code,previous panel code,em-
ployee number,previous employee number,name,address,ti-
tle,description.

ENDMODULE.

Decision logic module

MODULE DECIDE (IMS parameters,first time indicator,end of
session indicator,panel code,previous
panel code,employee number,previous em-
ployee number,name,address,title,de-
scription).

CALL PROFILE (program code, user id, database id,
access authority).

IF first time indicator shows first time for this terminal
THEN
reset first time indicator.
set previous panel code to blank.
ELSE
CALL RECEIVE (IMS parameters,panel code,em-
ployee number,name,address,ti-
tle,description,transaction code).
ENDIF.

set processing control to “‘select’”.

DO WHILE processing control = ‘‘select’’.
CASE panel code.
WHEN “‘m"

CALL MENU (IMS parameters,end of session indi-
cator,panel code,previous panel
code,message,transaction code,pro-
cessing control).

set previous panel code to “‘m”’.

WHEN “‘n”

CALL NAME (IMS parameters,end of session indi-
cator,panel code,previous panel
code,employee number,previous em-
ployee number,name,address,ti-
tle,description,transaction code,ac-
cess authority,processing control).

set previous panel code to “'n"’.

WHEN “j”

CALL JOB (IMS parameters,end of session indica-
tor,panel code,previous panel code,em-
ployee number,previous employee num-
ber,name,address,title,description,
transaction code,access authority,pro-
cessing control).

set previous panel code to “j

OTHERWISE

set panel code to previous panel code.

set message to ‘“‘invalid transaction code”.

set processing control to ‘‘send’’.

ENDCASE.

ENDDO.

CALL SEND (IMS parameters,panel code,employee num-
ber,name,address,title,description,mes-
sage,transaction code).

ENDMODULE.

IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

Figure 9 Job description display

EMP1
EMPLOYEE DATA
JOB DESCRIPTION (J)

EMPLOYEE NUMBER: ABC23

EMPLOYEE NAME: FRED PROGRAMMER

TITLE: JUNIOR PROGRAMMER

WRITES NEW PROGRAMS
AND MAINTAINS EXISTING
PROGRAMS

JOB DESCRIPTION:

* INFORMATION/ERROR MESSAGE AREA

GO TO TRANSACTION:
(M-MENU, E-END OF SESSION)

Receive module

MODULE RECEIVE (IMS parameters,panel code,employee
number,name,address,title,descrip-
tion,transaction code).

set up IMS/MFS terminal input parameters.

get terminal message segments containing employee num-
ber,name,address,title,description,transaction code
for the particular panel code.

ENDMODULE.

Send module

MODBULE SEND (IMS parameters,panel code,employee num-
ber,name,address,title,description,mes-
sage,transaction code).

set up IMS/MFS terminal output parameters.

insert terminal message segments containing employee
number,name,address,title,description,message,trans-
action code for the particular panel code.

ENDMODULE.

Menu processing module

MODULE MENU (IMS parameters, end of session indicator,
panel code, previous panel code, message,
transaction code, processing control).

IF previous panel code not = “‘m’’ or transaction code =
blank
THEN
set message to blank.
set transaction code to blank.

ROGERS

211




set processing control to ‘“‘send”.
RETURN.
ENDIF.

IF transaction code = “‘e”’
THEN
set employee number,name,address,title,description,
transaction code to blank.
set message to ‘‘good bye”.
set end of session indicator to “'yes'’.
set processing control to “‘send”.
ELSE
set panel code to transaction code.
set processing control to “‘select’’.
ENDIF.

ENDMODULE.

Name and address processing module

MODULE NAME (IMS parameters,end of session indi-
cator,panel code,previous panel code,em-
ployee number,previous employee number,
name,address,title,description,transaction
code,access authority,processing control).

IF previous panel code not = “‘n”
THEN
set employee number,name,address,transaction code
to blank.

set message to "‘enter employee number’’.
set processing control to "send’’.
RETURN

ENDIF.

IF transaction code = ‘“‘e
THEN
set employee number,name,address,title,descrip-
tion,transaction code to blank.

set message to ‘‘good bye”’.
set end of session indicator to “'ves’’.
set processing control to “‘send”’.
RETURN.

ENDIF.

IF transaction code not = blank
THEN
set panel code to transaction code.
set processing control to ‘“‘select’’.
RETURN.
ENDIF.

IF employee number not = previous employee number
THEN
CALL READ (IMS parameters,empioyee num-
ber,name,address,title,description,mes-
sage).
IF message == blank
THEN
set previous employee number to employee num-
ber.
ENDIF.
set processing control to “‘send’’.
RETURN.
ENDIF.

IF access authority shows updates are allowed
THEN

212 rocers

CALL UPDATE (IMS parameters,employee num-
ber,name,address,title,descrip-
tion,message).

ELSE
set message to ‘‘update not authorized’.
ENDIF.

set processing control to ‘‘send’’.
ENDMODULE.

Job description processing module

MODULE JOB (IMS parameters,end of session indica-
tor,panel code,previous panel code,employee
number,previous employee number,name,ad-
dress,title,description,transaction code,ac-
cess authority,processing control).

IF previous panel code not = “j
THEN
set employee number, name, title, description, transac-
tion code to blank.
set message to ‘‘enter employee number’’.
set processing control to “‘send’’.
RETURN.

ENDIF.

IF transaction code = “‘e”’
THEN
set employee number,name,address,title,descrip-
tion,transaction code to blank.
set message to ‘‘good bye”’.
set end of session indicator to 'yes”.
set processing control to “send”’.
RETURN.
ENDIF.

IF transaction code not = blank
THEN
set panel code to transaction code.
set processing control to “‘select”.
RETURN.
ENDIF.

IF employee number not = previous employee number
THEN
CALL READ (IMS parameters,employee num-
ber,name,address,title,description,mes-
sage).
IF message = blank
THEN
set previous employee number to employee num-
ber.
ENDIF.
set processing control to ‘‘send”’.
RETURN.
ENDIF.

IF access authority shows updates are allowed
THEN
CALL UPDATE (IMS parameters,employee num-
ber,name,address,title,descrip-
tion,message).

ELSE
set message to ‘‘update not authorized”.
ENDIF.
set processing control to ‘‘send’’.
ENDMODULE.

IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983




Data base read module

MODULE READ (IMS parameters,employee number,
name,address,title,description,message).

set up IMS data base access parameters.
issue get unique with employee number key to get
employee name, address, title, description.
IF data base segment found
THEN
set message to blank.
ELSE
set message to ‘‘employee information not found’'.
ENDIF.

ENDMODULE.

Data base update module

MODULE UPDATE (IMS parameters,employee num-
ber,name,address,title,description,mes-
sage).

set up IMS data base access parameters.
issue get hold unique with employee number key to get
employee name, address, title, description.
IF data base segment not found
THEN
set message to “‘employee data not available for
update”’.
RETURN.
ENDIF.

issue replace with employee number key to update
employee name,address,title,description.
IF update is successful
THEN
set message to ‘‘data updated’.
ELSE
set message to ‘‘update unsuccessful — call adminis-
trator’’.
ENDIF.

ENDMODULE.
Cited references and note

1. This method has not been submitted to any formal IBM test.
Potential users should evaluate its usefulness in their own
environment prior to implementation.

2. IMS Application Development Facility Program Descrip-
tion/Operations Manual, SH20-2634, IBM Corporation;
available through IBM branch offices.

3. IBM System/38 RPG 11l Reference Manual and Program-
mers Guide, SC21-7725, IBM Corporation; available
through IBM branch offices.

4. OS and DOS PL/I Language Reference Manual, GC26-
3977, IBM Corporation; available through IBM branch
offices.

5. G. J. Myers, Composite/Structured Design, Van Nostrand
Reinhold, Toronto (1978).

6. M. A. Jackson, Principles of Program Design, Academic
Press, Inc., New York (1975).

7. IMS/VS General Information Manual, GH20-1260, IBM
Corporation; available through IBM branch offices.

8. W.P. Stevens, G. J. Myers, and L. L. Constantine, “Struc-
tured Design,” IBM Systems Journal 13, No. 2, 115-139
(1974).

IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

9. G.R.Rogers, Program Design Handbook, TR-74.024, IBM
Canada Limited; available through the IBM Canada Lim-
ited Laboratory Librarian, Toronto (1982).

10. J. V. Uspensky and M. A. Heaslet, Elementary Number
Theory, McGraw-Hill Book Co., Inc., New York (1939).

Gary Robert Rogers IBM Canada Limited Laboratory, 1150
Eglinton Avenue East, Don Mills, Ontario, Canada M3C 1H7.
Mr. Rogers is a staff development analyst. He joined IBM in
1974 and has worked in 1BM Canada Headquarters and the
Toronto Laboratory. For the past three years, he has been
involved with the development of the IBM Americas/Far East
Corporation Supply Management System. Prior to joining IBM,
he completed numerous application software development proj-
ects with a software house and a large corporation. He received a
B.A.Sc. in electrical engineering from the University of Toronto
in 1965, is a member of the Association of Professional Engineers
of Ontario, and is a lecturer at the University of Toronto School
of Continuing Studies.

Reprint Order No. G321-5191.

rRoGERs 213



