
The system architecture

An integrated
programming and data
base language

of EAS-E:

EAS-E is an application development system based
on an entity-attribute-set view of system descrip-
tion. It consists of a procedural language for ma-
nipulating data base and main storage entities, and
direct (nonprocedural) facilities for interrogating
and updating data base entities. The EAS-E soft-
ware itself was implemented with the entity-attri-
bute-set view. This paper reviews some of the
EAS-E features and considers some of its imple-
mentation details. This paper is both an introduc-
tion to the EAS-E software architecture and an ex-
ample of the usefulness of the entity-attribute-set
view.

E AS-E (pronounced “easy”) is an application-
developed system based on an entity-attribute-

set view of system description. EAS-E allows the
application developer to manipulate higher-level
data structures in main storage and in the data base
with equal facility. In particular, it allows him to
work with entities, attributes, and sets in main
storage and in the data base as easily as he works
with main storage variables in conventional pro-
gramming languages.

The application designer conceives the application
in terms of the entities (objects and things) that
must be remembered, their attributes (properties),
and the sets (order collections of entities) that they

by D. P. Pazel
A. Malhotra
H. M. Markowitz

own or belong to. The application can then be
implemented in EAS-E, which directly supports
operations on entities, attributes, and sets.

EAS-E consists of a procedural language for manipu-
lating data base and main storage entities, and
direct (nonprocedural) facilities for interrogating
and updating the data base entities. The virtues of
the EAS-E entity-attribute-set view with respect to
building application systems are presented in Refer-
ences 1 and 2. Reference 1 also compares programs
written in EAS-E with programs written in other
programming systems. In the present paper we
discuss the EAS-E software and the advantages of
the entity-attribute-set view in building system soft-
ware.

Simple EAS-E commands written by an application
programmer, e.g., to CREATE a data base entity,
FILE it into a set, or FIND it later, can result in quite

@Copyright 1983 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM
copyright notice are included on the first page. The title and
abstract, but no other portions, of this paper may be copied or
distributed royalty free without further permission by computer-
based and other information-service systems. Permission to
republish any other portion of this paper must be obtained from
the Editor.

188 PAZEL. MALHOTRA, AND MARKOWITZ IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

complex actions. The consequences of such actions,
although transparent to the user, are to perform
such actions as communicating information to and
from the data base, efficiently manipulating very

Very little is required to go from the
conceptual model to the application

program.

large sets, and ensuring the integrity of the data
base. Thus the programmer communicates his
intentions in a compact, readable form and the
EAS-E software translates those intentions into the
detailed computer actions required to execute them
efficiently.

In the first part of this paper, the general character
of the EAS-E language is explored. A simple example
is first modeled in the EAS-E philosophy or world
view. This same example is then presented as a
simple main storage program written in the EAS-E
language. Finally, the example is seen again as a
data base application written in EAS-E. Very little is
required to go from the conceptual model to the
application program. The paper then shows the data
base query and modification aspects of EAS-E. The
concluding section shows the modeling of the execu-
tion environment of the EAS-E application system
using the very philosophy on which EAS-E is based.
Using this, structure and actions required by the
EAS-E execution environment become clear. Thus,
despite the complexity of these actions, the EAS-E
software was implemented in a relatively short time
by the authors with a relatively small amount of
source code. We believe that the large amount of
function produced per unit of resource expended
was due in large part to the use of the entity-
attribute-set view in the building of the EAS-E
software itself. In summary, the following are high-
lights of EAS-E:

It is an integrated data base and programming
language that simplifies the specification of com-
plex data base actions.

IEM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

It incorporates a powerful modeling philosophy.
EAS-E is easy to use.

The E A S E world view

The primitive concepts that comprise the world view
behind our integrated programming and data base
language are Entity, Attribute, Set, and Event (thus
EAS-E). The power of these concepts has been used
previously, for example, in two widely used simula-
tion languages, SIMSCRIPT3’4 and

An entity may be thought of as a distinct structure
or object. If one were to model a governmental
system, for example, one might consider states and
cities as entity types. When we refer to an entity
type, we refer to a class of similar entities. For
example, in a model containing 99 cities, CITY is the
entity type of which there are 99 instances or
entities. STATE is another entity type with one or
more instances.

An attribute is a property or characteristic of an
entity. Each attribute takes on values from some
domain, e.g., real numbers, integers, alphanumeric
strings, and pointers to user-defined entities. An
attribute has at most one value at any time, or it
may be undefined. For example, the entity type
CITY may have CITY-NAME and MAYOR as attri-
butes, and the entity type STATE may have
STATE-NAME as an attribute.

A set is a collection of zero, one, or more entities of
one or more entity types; a set is owned by an entity.
For example, in the system with entity types CITY
and STATE, we may introduce the set called
CITY-SET owned by entities of type STATE, with
member entities of type CITY. In the representation
of the system, each STATE owns a CITY-SET con-
sisting of some number of CITY entities.

These entity, attribute, and set facilities can be used
to implement more complex structures such as
stacks, pipelines, trees, and bills of material in a
straightforward manner, as discussed in Reference
3 . There are no limits on the number of sets an
entity type may own or belong to. Also, there is
flexibility in allowing entities of various types to
belong to the same set or to own the same set. With
this flexibility, the application modeler has full
power in modeling structures as complex as he could
possibly wish.

A visual aid for expressing the relationships among
entities, attributes, and sets is illustrated in Figure

PAZEL, MALHOTRA, AND MARKOWITZ 189

Figure 1 An entity-attribute-set (EAS) description of a
system

1. The entity types are listed with their attributes,
the sets they own, and the sets to which they belong.
The information in Figure 1 is referred to as the
entity-attribute-set (EAS) description of a system.

In working with an EAS structure, there are five
basic actions out of which higher-level actions may
be built. One may CREATE an entity, that is, make
an instance of an entity type. One may assign values
to attributes of entities. Entities may be FlLEd in or
REMOVEd from sets. Finally, entities may be
DESTROYed; that is, an instance of an entity of some
type may be annihilated. To add a new city to the
system, for example, one CREATES a CITY entity,
assigns values to its CITY-NAME and MAYOR, and
FILES it into the CITY-SET of STATE.

The programming and data base language

EAS-E has been implemented on VM/370 at the IBM
Thomas J. Watson Research Center, where it sup-
ports several applications. In this section, we first
present EAS-E as a programming language. ,411 basic
operations are defined for private work spaces in
main storage. W e then present EAS-E as a data base
language in which the basic operations extend natu-
rally to data base concepts. Finally, we discuss the
facilities that EAS-E provides to change data base
definitions and modify existing entities to conform
to new definitions. In the following sections, we
discuss the implementation of these facilities.

EAS-E as a programming language. EAS-E includes
an English-like procedural programming language
that embodies many such standard language fea-
tures as various data types, input/output, and con-
trol statements. E A S E also features simple methods
of defining and manipulating main storage EAS
structures. Such structures are defined by means of

the EVERY and DEFINE statements. The information
in Figure 1, for example, is written as follows:

EVERY STATE HAS A STATE-NAME, AN0 OWNS A CITY-SET
EVERY C I T Y HAS A CITY-NAME, A MAYOR,

DEFINE STATE-NAME, CITY-NAME, AND MAYOR AS TEXT VARIABLES
AND BELONGS TO A CITY-SET

Sets in E A S E may be ordered in any one of the
following three ways: (1) First In First Out (FIFO),
(2) Last In First Out (LIFO) and (3) RANKED, that
is, sorted according to the values of one or more
attributes of the member entities. In main storage,
these three types of sets are implemented as linked
lists. In the given example, CITY-SET may be
defined as FIFO or LIFO. Alternatively, CITY-SET
can be ranked by CITY-NAME to provide an alpha-
betical ordering of the cities, specified as follows:

DEFINE CITY-SET AS A SET RANKED BY CITY-NAME

Entity and set definitions are contained in the initial
section of an EAS-E program, called the PREAMBLE.
This is followed by the executable source code. As
mentioned earlier in this paper, EAS-E has many of
the standard features of programming languages.
We shall not discuss these here; instead we concen-
trate on the statements that manipulate EAS struc-
tures special to EAS-E. Statements corresponding to
the five basic actions listed in the previous section
are the following: CREATE an entity, DESTROY an
entity, assign values to attributes with LET or READ
statements, FILE entities into sets, and REMOVE
entities from sets. The following example illustrates
how these statements may be combined to add a city
to a state:

CREATE A CITY
LET C ITY-NAME= lGREENVILLE l
LET MAYOR=lJEAN GREEN1
F I L E C I T Y I N C I T Y - S E T (S T A T E)

EAS-E also provides a simple syntax for finding
specific entities that are based on given attribute
values. For example, if one wants to find the CITY
with a CITY-NAME of GREENVILLE in the
CITY-SET owned by STATE, and if found remove it
from the set and delete it from the system, he writes
the following procedure:

F I N D THE C I T Y I N C I T Y S E T (S T A T E) W I T H C I T Y N A M E = l G R E E N V I L L E I -
I F FOUND

REMOVE C I T Y FROM CITY_SET(STATE)
DESTROY C I T Y

ELSE

EAS-E as a data base language. In the development
of an EAS-E data base application, the user has a

190 PAZEL. MALHOTRA, AND MARKOWITZ IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

particular overview. Entity, attribute, and set struc-
tures are stored in the data base. The data base
resides in a separate virtual machine and is overseen
by a custodian program. The custodian manages
the data and can respond to simultaneous requests
from several virtual machines that are running
EASE programs.

To define data base entity types, the user prepares a
file of definitions similar to that of a PREAMBLE and
communicates them to the data base. Then the user
writes a series of programs to work with the data

To write a program that works with
the data base, the user must specify

which entity types are to be
maniplated.

base, manipulating the previously defined struc-
tures. These programs are then compiled and exe-
cuted.

I f the entities and sets of the preceding section were
to define a new data base system called GOVERN-
MENT, the user would begin by transmitting the
following file of definitions to the custodian:

DATA BASE DEFINITIONS FOR DATA BASE GOVERNMENT

DEFINE STATE-NAME AS A TEXT VARIABLE
EVERY STATE HAS A STATE-NAME AND OWNS A CITY-SET

EVERY CITY HAS A CITY-NAME, A MAYOR,
AND BELONGS TO A CITY-SET

DEFINE CITY-NAME, MAYOR AS TEXT VARIABLES

DEFINE CITY-SET AS A SET RANKED BY CITY-NAME

END

After these definitions have been stored in the data
base, the user is ready to work with them, creating,
destroying, filing, and removing entities, and setting
attribute values. This can be done either with the
E A S E procedural language discussed in this paper,

or with the direct (nonprocedural) facilities. Proce-
dural commands for doing this are essentially the
same as those for main storage entities, but with a
few differences.

To write a program that works with the data base,
the user must specify which entity types are to be
manipulated. This is done in the PREAMBLE of the
program with the DATA BASE ENTITIES INCLUDE
statement. For example, to work with the entity
types STATE and CITY, the user writes the following
statement:

DATA BASE ENTITIES INCLUDE STATE AND CITY FROM GOVERNMENT

Attributes and sets of STATE and CITY need not be
specified in the PREAMBLE. The compiler obtains
this information from the definitions stored in the
data base.

The user works with data base entities much as
though working with main storage entities. For
example, to loop over all data base entities of a given
type, such as CITY, he may write the following
statement:

FOR EACH CITY, DO.,,

With that, the executing program acquires each
ClTY entity from the data base, one at a time.
Alternatively, the FIND statement can be used to
find a particular entity of a given type whose
attributes satisfy certain criteria. This and some of
the previous concepts are used in the following
example of a program to add the city GREENVILLE
to the state OHIO:

PREAMBLE

DATA BASE ENTITIES INCLUDE STATE AND CITY FROM GOVERNMENT
NORMALLY ACCESS IS READ.WRITE

END
FIND THE STATE WITH STATE-NAME=lOHIOl
CREATE A CITY
LET CITY-NAME=IGREENVILLEl
LET MAYOR=lJEAN GREEN1
FILE CITY IN CITY-SET(STATE1

END

Unlike main storage entities, data base entities are
addressed by variables of data type REFERENCE.
Reference variables may be declared anywhere in a
program with an access mode of read.write or
read.only. A reference variable with the prevailing
access mode is automatically provided for each
entity type specified in the DATA BASE ENTITIES
INCLUDE statement.

PAZEL MALHOTRA, AND MARKOWITZ 19 1 IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

Each data base entity has a unique data base
identijcation number. In the current implementa-
tion, the identification number consists of three
integer values, namely a type number that identifies
the entity type, a slot number that serializes the
instance of this type, and a dash number that
indicates the number of times this slot has been
occupied. Identification numbers are stored in vari-
ables of type IDENTIFIER. They are helpful in

Simple queries can be written as
small EAS-E programs.

accessing entities explicitly. For example, if ID is an
identifier variable and REF is a reference variable,
the assignment

L E T R E F = I D

results in bringing from the data base the entity
whose identification number is given in ID. The
entity is brought read.only or read.write, depending
on the access mode of the reference variable.

When a program ends normally (i.e., not by crash-
ing) the changes made to the data base are commit-
ted (made permanent). In addition, changes made
up to a particular point may be committed by
execution of the following statement:

RECORD ALL DATA BASE ENTIT IES

I f the user wishes to undo the data base manipula-
tions prior to a RECORD, the UNLOCK ALL DATA
BASE ENTITIES statement may be used. In case of
system crashes, either the entire contents of an
implicit or explicit record will be reflected by the
data base or none of its contents will be reflected.

Queries in EAS-E. Simple queries can be written as
small EAS-E programs. For example, the following
program prints the names and mayors of all the
cities in New York:

PREAMBLE
DATA EASE ENTITIES INCLUDE STATE AND C I T Y FROM GOVERNMENT
EN0
F I N D THE STATE WITH STATE_NAME=INEW Y O R K I
FOR EACH C I T Y I N C I T Y - S E T (S T A T E)
P R I N T 1 L I N E THUS . . .

C I T Y
P R I N T 1 L I N E W I T H C I T Y - N A M E (C I T Y) AND MAYOR(C1TY) THUS . . .

MAYOR

. .

END

Here the PRINT statement prints the line(s) follow-
ing it exactly as specified, except that the asterisks
are replaced by variable names.

Such a program is easy to write and allows a
common query to be run over and over again. A
more sophisticated version of the example would
parameterize the program on the state name and
perhaps the information to be displayed. In fact,
EAS-E users tend to write query generators tailored
to the queries they need most frequently.

For unusual queries and for looking through the
data base, BROWSER, the full-screen nonprocedural
facility mentioned earlier, is the most convenient.
BROWSER allows one to move through the data base
mostly by pressing program function keys on the
terminal; it also allows the specification of simple
reports with headings, totals, etc. BROWSER is
described in References 2 and 7.

Modifying data base definitions. At any time after
the GOVERNMENT data base is first defined, the
definitions stored in it may be modified by state-
ments such as those in the following program:

DATA BASE DEFIN IT IONS FOR DATA BASE GOVERNMENT

M O D I F I E D D E F I N I T I O N
EVERY STATE HAS A STATE-NAME, OWNS A CITY-SET

AND A COUNTY SET
DEFINE STATE-NAME AS A TEXT VARIABLE

NEW D E F I N I T I O N S
EVERY COUNTY HAS A COUNTY NAME. A COUNTY SEAT.

AND BELONGS TO A COUNTY-SET
- .

DEFINE COUNTY-NAME, COUNTY-SEAT AS TEXT VARIABLES
DEFINE COUNTY-SET AS A SET RANKED BY COUNTY-NAME

END

Since the definition for CITY has not changed, it
need not be resubmitted.

At this point, there are both an old and a new
definition for STATE. Existing entities of type STATE
are in the format defined by the old definition. In
transforming the individual entities to the format
defined by the new definition, they pass through
another format called a dual format. The dual

IBM SYSTEMS JOURNAL, VOL 22. NO 3, 1983

format is a combination of the old and the new
formats; i.e., it consists of two distinct entities, one
in the old and the other in the new format. Thus
each individual STATE can be in one of the following
three formats: (1) old format, (2) dual format, or
(3) new format. Entities are converted from old to
dual format when they are first pointed to by
variables of data type DUAL REFERENCE. This con-
sists of the entity in the old format followed by an
empty new format. One can now copy the common
attributes and sets from the old into the new format
with the following statement:

MOVE THE COMMON ATTRIBUTES AND SETS OF STATE

One may then fill in the other attributes of the
entity in the new format and populate the new sets
that it owns. In doing so, one can refer to attributes
and sets of the old or new entity by prefixing their
names with 0- and N-, respectively. When no
longer needed, the old version of the entity may be
destroyed, putting the entity into new format. When
all the entities of a given type are in the new format,
the custodian permits the old definition to be
purged.

EASE implementation structures

Both the EAS-E compiler and data base custodian
have been designed and built using the EAS philoso-
phy. This has reduced several-fold the time required
to implement the language and data base manage-
ment system. The EAS view also pervades the back-
ground environment for an executing program. This
environment is the principal topic of the remainder
of this paper.

Data base entity structure. Data base entities are
maintained on permanent storage and managed by
the custodian. When a program requests an entity,
the custodian fetches the entity from permanent
storage and sends it to the program's main storage.
At this point, the data base entity consists of a
contiguous piece of storage with attributes laid out
sequentially. The compiler uses the definition of the
entity type to compute the offsets of these attri-
butes. The offsets occur in fixed positions for all
attributes of a given type. In the case of such
variable-length attributes as TEXT, which may have
arbitrary length, the offset points to a field that
contains a relative displacement value. Figure 2
illustrates the way in which this displacement indi-
cates where in the entity structure the text and its
length are embedded.

IEM SYSTEMS JOURNAL, VOL 22. NO 3, 1983

Figure 2 A data base entity with a text attribute
~ ~~~

Another consideration in the layout of a data base
entity concerns ranked set structures. Data base
ranked sets are implemented in a manner quite
different from main storage ranked sets. In order to
provide rapid access to members in large sets, some
information about the ranking attributes of the
member entities is embedded in the entity structure
of the owner.' Since the amount of ranking informa-
tion is variable, the displacement of the ranking
information, like the displacement of TEXT attri-
butes, is stored in a position indicated by a fixed
offset.

To summarize, a data base entity starts with fixed-
length attributes and the displacements of variable-
length attributes stored in positions that are con-
stant for the entity type. This is followed by the
variable-length attributes.

Fundamental system structures. To enable a user to
work with data base entities in a manner equivalent
to main storage entities, EAS-E provides mechanisms
that (1) bring data base entities into main storage;
(2) keep track of what has been brought into main
storage and where it is located; and (3) record
information in the data base. The structures used
for this are now described.

Every EAS-E executing program is automatically
provided with a main storage entity called the
PROGRAM. Attributes assigned to the PROGRAM are
in essence global variables. Sets owned by the
PROGRAM are also global or universal sets.

A data base representative, or DB.REP, is a type of
main storage entity used to keep track of data base
entities brought into main storage. Each data base
entity brought into the environment of an executing
EAS-E program has a unique DB.REP. Essential
attributes of DB.REP are the pointer to the main
storage representation of the entity (DB.CORE), the
access mode (DB.ACC), and the unique identifica-

PAZEL, MALHOTRA. AND MARKOWITZ 193

Figure 3 An EAS description of EAS-E system structures

DB.REP

RV.STR

PROGRAM

DB.CORE
DBACC
DB.IDEN
DB.STYLE

RV.IDEN
RV.CORE

RVS

DBR

tion number for that entity (DB.IDEN). The PRO-
GRAM owns a FIFO set called DBR to which the
DB.REPs belong.

As mentioned earlier, reference variables are used
to refer to data base entities. In fact, the reference
variable does more than merely point to the main
storage location of a data base entity. It encapsu-
lates all the information about the existence of the
data base entity in main storage. Thus each refer-
ence variable is a pointer to a main storage entity
called a reference variable structure or RVSTR,
which has as attributes the identification number
(RVJDEN), and a pointer to the main storage repre-
sentation of the data base entity (RVCORE). Also,
since more than one reference variable can point to
a data base entity, the RVSTR belongs to a set called
RVS which is owned by the DB.REP entity.

The EAS structure of these relationships is shown in
Figure 3. The entity-attribute-set names shown are
not the actual names used in our implementation.
The names used here provide readability. Our
implementation is designed to conform to conven-
tions that distinguish system-defined and user-
defined names; it is discussed in Reference 8. Later
in this paper, we show that DB.REP and RVSTR have
additional attributes. These may be ignored for the
moment until we discuss the structures needed for
the modification of data base definitions.

As an example of how these structures are used at
execution time, consider the actions associated with
the statement CREATE A CITY. First, a request is
made to the data base custodian for a unique
identification number for the new entity. Using

194 PAZEL. MALHOTRA. AND MARKOWITZ

information provided in the object code, the execut-
ing program builds an empty main storage version
of the entity. A DB.REP is created for the entity, its
attributes are filled in, and it is filed into the DBR
set. Next, an RVSTR is created, its attributes are
filled in, and it is filed into the RVS set of the DB.REP.
The reference variable CITY is now made to point to
the RVSTR.

As another example, consider the actions associated
with a statement that brings an entity from the data
base, for example, by setting a reference variable to
an identifier variable. The PROGRAM’S DBR set is
searched for an entity with that identification num-
ber. If the entity is not found there, it is requested
from the custodian. Then a DB.REP is created, its
attributes filled in, and it is filed in DBR. If the
entity is found in the DBR set, its access mode is
checked and upgraded from read.only to read.write
if necessary. If the access mode is upgraded, notifi-
cation is sent to the custodian. Finally, the attri-
butes of the RVSTR to which the reference variable
will point are filled in, and the RV.STR is filed into
the RVS set of the DB.REP.

Data base set organization and manipulation. As
previously mentioned, the EAS-E language provides
three kinds of set organizations-First In First Out
(FIFO), Last In First Out (LIFO), and RANKED
organizations. LIFO and FIFO data base sets are held
together as linked lists (like main storage sets).
First- and last-member attributes are automatically
defined for the owner entity, and successor and
predecessor attributes are defined for any member
entity. These member attributes point to the first
and last members of the set and the successor and
predecessor in the set of the particular member,
respectively. The owner entity may also keep a
membership count attribute, and the member entity
may have an attribute pointing to the owner. For
FIFO and LIFO sets, the difference between main
storage sets and data base sets is that set pointer
attributes are IDENTIFIER variables.

Ranked data base sets, on the other hand, are based
on an entirely different organization. If ranked data
base sets were implemented as linked lists, a search
for a member with given attribute values would
proceed by considering each member in turn until
the desired one was found. Since accessing many
members of a large data base set can be very
time-consuming, such an implementation is unrea-
sonable. To overcome this problem, ranked data
base sets are organized as balanced trees.’ A bal-

IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983

anced tree has a root node associated with the owner
entity from which a tree of subnodes extends, with
the leaf nodes pointing to the member entities.
Information is maintained at each node that relates
to the value ranges of the ranking attributes on the
offspring nodes. The fanout at each node is quite
large and is based upon keeping the size of the node
entity close to one page. The implementation of
ranked data base sets is discussed in more detail in
Reference 1.

The implementation of ranked data base sets
requires that the structure of data base entities be
somewhat different from main storage entities,
where ranked sets are implemented as linked lists.
For example, the top node of a ranked set is
included in the structure of the owner. In order for
the system routines to locate that information,
EAS-E generates an attribute in the entity that
contains a displacement to the ranked set informa-
tion relative to the beginning of the owner. Also, the
tree nodes require the existence in the data base of
an automatically defined entity type. The EAS-E
system manipulates these entities according to the
needs of the balanced trees. The extra entity attri-
butes and the data base node entities are transpar-
ent to the user.

Looping through data base sets. The compilation of
a loop statement in EAS-E, such as

FOR EACH C I T Y I N C I T Y - S E T (S T A T E)

results in a simple loop control when the set is a
linked list. More precisely, thejirst or fast pointer
of the owner is used to initiate the loop, and the
successor or predecessor pointers of the members
are used to continue the loop until the last member
is processed. If selection clauses such as WITH
CITY-NAME=IGREENVILLEl are appended to the
previously looping statement, a series of tests (IF
statements) are generated within the loop proper. In
this case, although the domain of the loop appears
smaller, the full set must still be searched. That is,
each member of the set must be brought into main
storage and tested.

The ranked set organization just described is
designed to help locate entities that meet given
conditions, without bringing in each member of the
set. To do this, the compiler must identify and
extract the bounds given on the loop constraints in
the source program and arrange to pass these
restrictions at execution time to a set-scanning
mechanism.

IBM SYSTEMS JOURNAL, VOL 22. NO 3, 1983

To identify the selection criteria, the compiler scans
the selection clauses on a loop statement for con-
straints of the following form:

< RANKING ATTRIBUTE > < LOGICAL RELATION > < EXPRESSION >

Here EXPRESSION is an arithmetic expression that
does not contain any ranking attributes. We call
such a constraint a P-CONSTRAINT. For each
ranked-set loop, the compiler examines the ap-
pended constraints and seeks out the first n P-

The problem of passing the selection
information at execution time to the
loop-searching mechanism has been

addressed by designing an EAS
structure to contain that information.

CONSTRAINTS that are related to the ranking attri-
butes in order and are linked by "and"s, for maxi-
mum n; that is,

< P-CONSTRAINT > < "AND" > < P-CONSTRAINT > < "AND" >

Here the P-CONSTRAINTS are ordered by the rank-
ing attribute. These P-CONSTRAINTS are then trans-
lated into object code that generates a selection
structure that imposes these limits on the domain of
the loop. The selection structure is discussed more
fully later in this paper. Constraints that do not fit
into this pattern are translated into a set of condi-
tional clauses in the main body of the loop, as usual.
Thus, members are selected in accordance with the
P-CONSTRAINTS that embody the specifications on
the ranking attributes; if necessary, they are
brought into main storage and tested for other
criteria.

The problem of passing the selection information at
execution time to the loop-searching mechanism has
been addressed by designing an EAS structure to
contain that information. Calls are then generated
in the loop structure that fill in those structures and

PAZEL. MALHOTRA. AND MARKOWITZ 195

Figure 4 EAS view of selection structures

FINDSPEC
WITHSPECS

SPEC
VALUE
MOOE
RELATION
ORDER
NUMBER

WITHSPECS 1

eventually pass them to the loop mechanism at
execution time. An EAS view of a selection structure
is shown in Figure 4.

The selection structure consists of an owner node
(FINDSPEC) that owns a set of SPECS, each of whose
members contain all the information about a P-
CONSTRAINT. VALUE is the execution-time value of
the EXPRESSION portion of the P-CONSTRAINT.
MODE indicates the data type of the ranking attri-
bute being constrained. RELATION specifies how the
ranking attribute relates to the VALUE, e.g., =, <,
>, etc. ORDER indicates whether ranking on that
attribute is by high or low value. NUMBER is the
ordinal number of the ranking attribute, that is,
first, second, third, and so forth. This structure is
used by the looping mechanism to search the bal-
anced tree of the set. Selection structures are also
used in FILE and REMOVE operations to find where a
new member should go and to find the member that
is to be removed. The creation, filling in, utilization,
and clean-up of these structures is completely trans-
parent to the user.

RECORD and UNLOCK. The execution of the
statement RECORD ALL DATA BASE ENTITIES
results in making all creates, destroys, and other
alterations of data base entities permanent to the
data base. A RECORD may be issued at any time
during program execution and may be specified
with a HOLD option, in which case all read.write
entities that have been accessed remain accessed
upon completion of the RECORD. This saves commu-
nication overhead if the entities are used again. If
HOLD is not specified, all read.write entities not
pointed to by a reference variable (i.e., not being
used) are released. This saves main storage space in
the program. The following paragraph shows how
the DB.REP and RV.STR structures are used in the
RECORD operation.

196 PAZEL, MALHOTRA, AND MARKOWITZ

The identification number of each read.write entity,
as represented by DB.REPs in the DBR set, is written
onto a communication buffer. If the entity has been
destroyed, this fact is noted. Otherwise, the entity is
rebuilt as a contiguous piece of storage, with text
attribute and ranked set information appended to
the entity and copied into the communication buff-
er. This buffer is transmitted to the custodian, who
commits these changes to the data base. When
control is returned from the custodian, the DBR set
must be scanned once more to find the DB.REPs of
entities recorded, to free the main storage version of
those entities, to null out and remove RVSTRs from
RVS sets, and finally to destroy their DB.REPs.

The effect of executing an UNLOCK statement is to
release all data base entities. With this statement,
any changes made in an executing program since
the last RECORD are rescinded. This is, in effect, an
undoing of data base actions before they are com-
mitted. The actions for this statement for each
DB.REP in the DBR set are as follows: the main
storage for the data base entity is released, the
RVSTRs are nulled and removed from RVS sets, and
the DB.REP is destroyed. The custodian is told that
all entities this user has accessed are to be released.

Looping and auto-unlock. EAS-E provides the capa-
bility of looping over all data base entities of a
particular type, as in executing FOR EACH CITY
This is accomplished through a get-next operation,
based on a sequential catalog of entities of a given
type maintained by the custodian. To obtain the
first entity, the get-next operation transmits a spe-
cial identification to the custodian. On successive
passes, get-next communicates the identification
number of the previously obtained entity to the
custodian and receives the next entity from the
custodian, or it receives an indication of loop termi-
nation.

In looping over a large number of entities-as in
FOR EACH CITY . . .-main storage can all be used
up unless unneeded entities are released. To relieve
the programmer from having to do this, EAS-E
unlocks read-only entities that are not being used
-that is, they have no reference variables pointing
to them-whenever there are 30 such entities.

Modifying data base definitions. As previously
noted, sometimes both an old and a new definition
may exist for any entity type. An individual entity
of a type may then be in one of three formats-old,

IBM SYSTEMS JOURNAL, VOL 22. NO 3, 1983

new, or dual. Because of this, the DB.REP and
R V S T R are more complex than shown in Figure 3.
Figure 5 provides a more complete description
of EAS-E modification structures. (DB.CORE and
RV.CORE in Figure 3 are referred to as DB.NEW.VER
and RV.NEW.VER, respectively.) Since an entity can
be in old, new, or dual format, each DB.REP and
RV.STR has a pointer to the old version of the entity
in main storage (DB.OLD.VER or RV.OLD.VER) and a
pointer to the new version of the entity in main
storage (DB.NEW.VER or RV.NEW.VER). Also,
DB.STYLE indicates the current format of the enti-
t Y.

When an entity that has two definitions is requested
from the custodian, the following actions are per-
formed. The custodian provides a code to the exe-
cuting program indicating the format of the entity
received from the data base. If the entity is in old
format and is being referenced by a DUAL REFER-

EAS-E has been designed to
accommodate data bases of

arbitrary size, from very small to
very large.

ENCE variable, it is put into dual format with the
creation of a blank new version of the entity and by
setting the DB.REP and RV.STR main storage point-
ers to the respective versions. If the entity is already
in dual format, the data received from the custodian
consist of the concatenation of the two versions of
the entity. The system code then sets the DB.REP and
R V S T R pointers to the respective entities. If the
entity is in new format, then only DB.NEW.VER and
RV.NEW.VER point to the received data.

Depending on the format of the entity, different
ways of packaging it at RECORD time are selected.
In particular, if the entity is in dual format, both
versions of the entity must be reassembled sepa-
rately in a manner specified in the section on
RECORD and UNLOCK. Then both entities are

Figure 5 Description of EAS-E modification structures

moved to contiguous storage in the communication
buffer with the old version preceding the new ver-
sion.

Concluding remarks

This paper has presented a brief overview of the
EAS-E modeling philosophy or world view and the
EAS-E programming language. This approach to
application development focuses sharply on clarity
in data structures (i.e., entities-attributes-sets) and
actions (i.e., events). We have shown that by using a
programming and data base language based upon
these elements, there is little effort in going from a
conceptual model of an application to the applica-
tion program itself. E A S E has been designed to
accommodate data bases of arbitrary size, from
very small to very large.

The E A S E modeling philosophy has been used
throughout the design and implementation of the
EAS-E application development system. The EAS-E
compiler, custodian, and library routines are all
written in the EAS-E language.

Areas for further research include such capabilities
as the following: building of data base utility rou-
tines to be used by host languages, communication
with several EAS-E data bases simultaneously, and
single-user E A S E data bases. In the latter case, the
data would exist as a user’s private data base, as
opposed to residing in a separate service machine.

Cited references

1. A. Malhotra, H. M. Markowitz, and D. P. Pazel, EAS-E: An
Integrated Approach to Application Development, Research

PAZEL, MALHOTRA. AND MARKOWITZ 197 IBM SYSTEMS JOURNAL, VOL 22. NO 3, 1983

Report R C 8457, IBM Thomas J. Watson Research Center,
Yorktown Heights, N Y 10598; also submitted to the ACM

2. H. M. Markowitz, A. Malhotra, and D. P. Pazel, “The ER
Transactions on Database Systems.

and EAS formalisms for system modeling, and the EAS-E
language,” Proceedings of the Second International Confer-
ence on Entity-Relationship Approach, Washington, DC,
October 12-14, 198 I , pp. 29-48; also, Research Report R C
8802, IBM Thomas J. Watson Research Center, Yorktown
Heights, N Y 10598.

3. H. M. Markowitz, “SIMSCRIPT,” Encyclopedia of Com-
puter Science and Technology, Vol. 13, J . Belzer, A. G.
Holtzman, and A. Kent, Editors, Marcel Dekker, New York
(I 979), pp. 79- 136; also Research Report R C 68 1 I , IBM
Thomas J. Watson Research Center, Yorktown Heights, N Y
10598.

4. H. M. Markowitz, B. Hausner, and H. W. Karr, A Simula-
tion Programming Language, Prentice-Hall, Inc., Englewood
Cliffs, NJ (1963).

5 . P. J. Kiviat, GASP-A General Activity Simulation Pro-
gram, U. S. Steel Corporation, Applied Research Laboratory,
Monroeville, PA (July 1963).

6. A. A. B. Pritsker, “GASP,” Encyclopedia of Computer
Science and Technology, Vol. 8, J. Belzer, A. G. Holtzman,
and A. Kent, Editors, Marcel Dekker, New York (1977), pp.
408-430.

7. H. M. Markowitz, A. Malhotra, and D. P. Pazel, The EAS-E
Application Development Summary: Principles and Lan-
guagesummary, Research Report R C 9910, IBM Thomas J.
Watson Research Center, Yorktown Heights, N Y 10598.

8. A. Malhotra, H. M. Markowitz, and D. P. Pazel, The EAS-E
Programming Language, Research Report R C 8935, IBM
Thomas J. Watson Research Center, Yorktown Heights, N Y
10598.

9. R. Bayer and K. Unterauer, “Prefix B-trees,” ACM Transac-
tions on Database Systems 2, No. 1.97- 137 (March 1977).

facilities is a manifestation of a general interest in making
computers more accessible to the nonspecialist, especially the
manager. Dr. Malhotra received his Ph.D. from M.I.T. in
management; he has several years experience as a management
consultant. He is editor of the Program Development Quarterly,
an internal IBM newsletter devoted to advances in program and
application development technology.

Harry M. Markowitz IBM Research Division, Thomas J . Wat-
son Research Center, P.O. Box 218, Yorktown Heights, New
York 10598. Dr. Markowitz has been a research staff member in
the Computer Sciences Department at the Thomas J. Watson
Research Center since he joined IBM in 1974. During this period
his principal interest has been the design and development of the
E A S E application development system. Previously, while at the
RAND Corporation (1952-1959 and 1960-63), he developed
techniques for inverting very large but sparse matrices which are
now widely used. Also at RAND he designed and supervised the
development of the SIMSCRIPT simulation programming lan-
guage. Dr. Markowitz received his Ph.D. in economics from the
University of Chicago. In his Ph.D. dissertation he developed the
“portfolio theory,” which is now regularly taught in finance
departments of business schools.

Donald P. Pazel IBM Research Division, Thomas J . Watson
Research Center. P.O. Box 218, Yorktown Heights, New York
10598. Mr. Pazel is a research staff member in the Computer
Sciences Department at the Thomas J. Watson Research Center.
He joined IBM in 1973 at Morris Plains, New Jersey, where he
worked on the Safeguard project for the Federal Systems Divi-
sion. Since joining the Research Center staff in 1975, Mr. Pazel
has worked in the areas of operating systems, compilers, and data
bases. Mr. Pazel graduated maxima cum laude from LaSalle
College, Philadelphia, in 1972 with a B.A. in mathematics, and
received an M S . degree in mathematics from the University of
Virginia in 1973. He is a member of the Mathematics Associa-
tion of America and the Association for Computing Machinery.

General references Reprint Order No. G321-5190.

M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, K. P.
Eswaran, J. N. Gray, P. P. Griffiths, W. F. King, R. A. Lorie,
P. R. McJones, J. W. Mehl, G. R. Putzolu, I . L. Traiger, B. W.
Wade, and V. Watson, “System R: A relational approach to
database management,” ACM Transactions on Database Sys-
tems 2, No. 1,97-137 (June 1976).

CODASYL Data Base Task Group Report, available from the
Association for Computing Machinery, Inc., 1 133 Avenue of the
Americas, New York, N Y 10036.

C. J. Date, An Introduction to Database Systems, Third Edi-
tion, Addison-Wesley Publishing Company, Inc., Reading, MA
(1981).

Information Management System/360. General Information
Manual: Program Product 5734-XX6, GH20-0765 06061, IBM
Corporation; available through IBM branch offices.

Ashok Malhotra IBM Research Division, Thomas J . Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598. Dr. Malhotra has been a research staff member in the
Computer Sciences Department at the Research Center since
1975. His current research in improved application development

198 PAZEL, MALHOTRA, AND MARKOWITZ IBM SYSTEMS JOURNAL, VOL 22. NO 3, 1983

