
Abstract  design  and 
program translator: New 
tools for software design 

Abstract Design And Program Translator (ADAPT) 
is an integrated set  of tools and approaches  for the 
design and development of software systems. To- 
gether  they include a module specification lan- 
guage and a system design  language  for  specifying 
module interfaces and  interconnections. This pa- 
per explains some of  their major features  and illus- 
trates their use in the  design  of some examples-a 
set  of reusable software  components and a gener- 
alized  editor system. Benefits of the ADAPT ap- 
proach are discussed, emphasizing executable  de- 
sign and modifiability. 

D iscussed  in this paper is a new approach  to 
software design that consists of two primary 

tools: (1)  a system definition language, called the 
External Structure, which supports  programming in 
the large, and (2) a specification language, the 
ADAPT programming  language, for specifying the 
semantics of individual modules. ADAPT is our 
acronym for Abstract Design And Program  Trans- 
lator. 

We discuss first general concepts of ADAPT and  its 
components. These concepts are then  illustrated 
using examples of module and system design. We 
compare  and  contrast ADAPT methodology and  cur- 
rent practice  and show  ways of improving the 
specification process in general  and module and 
system specification in particular.  We conclude 
with a discussion of experience, design tradeoffs, 
analysis tools, and  compatibility of ADAPT with 
existing code. 

by J. L.  Archibald 
B. M. Leavenworth 
L. R. Power 

General concepts and components 

ADAPT is based on the use of two languages. The 
External Structure language provides for descrip- 
tions of all modules contained within a system, 
giving their allowable interfaces  and  the intercon- 
nections between modules. The  External  Structure 
allows the  separate compilation of individual mod- 
ules and becomes a repository of design information 
at  different stages in the design process. 

The ADAPT specification language provides for 
semantic specification of individual modules. It is 
similar  to  such  other data abstraction  languages as 
CLU,' Ada,* MESA,3 and E ~ c l i d . ~  The specification 
language  has facilities for defining three kinds of 
modules, corresponding to  procedural, data, and 
iterative  (control)  abstractions. 

There  are two fundamentally different approaches 
to  the specification of systems. In the first, the 
specification-whether in English or some formal 
or semiformal representation-and the implemen- 
tation are  separate.  The problem in this  case is 
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showing the equivalence of the two representations. 
This may be accomplished by proving program 
correctness or by testing. Further, it is difficult to 
keep these two descriptions synchronized during  the 
software life cycle. In the  other  approach,  there is 
only one specification, which is then transformed to 
an  executable  program by a  translator.  This  ensures 
semantic equivalence. ADAPT follows the  latter 
approach, even though  it has a  separate  language 
for high-level system descriptions. 

In the ADAPT approach, the tools include  a  transla- 
tor that converts ADAPT programs  to  a  target  lan- 
guage,  currently  PL/I.  The  translator reads in a 
system specification written in the  External  Struc- 
ture  language  and a module specification written in 
the ADAPT specification language. The module 
specification is processed with respect to  the system 
specification. Processing consists of strong  type 
checking, in addition  to the translation to the  target 
language. A variety of outputs may be obtained  to 
assist in the design process. 

The ADAPT language 

ADAPT is an algorithmic  language for defining the 
detailed  semantics of modules. In addition  to con- 
trol  structures  comparable to those of other high- 
level languages, ADAPT provides facilities for han- 
dling abstract  data.  The  three kinds of modules 
which can be defined are  the following: 

PROCEDURE is like procedures in other  languages, 
but  parameters may be user-defined data types, in 
addition  to the  data types provided by the lan- 
guage. 
CAPSULE is used to specify a data  abstraction  and 
consists of an  internal  data representation  and 
operations  (called encapsulated  procedures or 
iterators) that  manipulate  the  internal represen- 
tation. 
ITERATOR is used to specify how elements of an 
abstract  data collection are obtained so that 
actions on the elements  can be programmed inde- 
pendently. 

An ADAPT procedure or iterator  can  declare  vari- 
ables of built-in or user-defined data types, can 
invoke operators of built-in or user-defined data 
types, and  can  call  procedures  and invoke iterators. 
There  are no nested procedures, but  a  capsule  can 
have nonexported (local) procedures and  iterators, 
in addition to the exported operators of the  data 
type. There  are no global variables. 
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ADAPT supports  the  separate compilation of mod- 
ules. References  to  externally defined names of data 
type, procedures, and  iterators  are resolved by the 
External Structure. 

The ADAPT specification  language 
provides  for  semantic  specification 

of  individual  modules. 

To describe the  features of  ADAPT,  we note its 
differences from such current  languages as PL/I or 
Pascal as we present the elements of the ADAPT 
language. 

Primitive  types. We begin with the following primi- 
tive data types and  type  constructors of  ADAPT: 
I N T  
BOOL 

CHAR 
STRING 

NULL 

INT is similar to the type integer of Pascal  and  to 
FIXED BIN (31) of PL/I. BOOL is similar to type 
boolean of Pascal,  where the keywords TRUE and 
FALSE in ADAPT correspond to Pascal’s true and 
false. PL/I uses bit strings to represent truth values. 
STRING in ADAPT differs from Pascal  and PL/I in 
that in ADAPT it  has unbounded length. CHAR is for 
fixed-length strings  and corresponds to PL/I CHAR- 
ACTER. NULL is a  type having the single literal 
value NIL. NIL should not be confused with the 
built-in function NULL in PL/I or the value nil in 
Pascal, both of which represent  a pointer pointing to 
nothing. There  are no explicit pointers in ADAPT. 
All of the objects in these data types are immutable, 
i.e., objects with values that never change. 

Type  constructors. A type constructor is a  parame- 
terized  type definition. This is also referred to as a 
generic type. A particular  data type is obtained 
when specific values are supplied for the  parameters 
as follows: 

RECORD isl:tl, . . . ,  sn:tn) 
ONEOF (sl:tl, . . . ,  sn:tnl 
ARRAY (type-spec,size) 
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The RECORD type is similar to a record in Pascal or 
structure in PL/I.  That is, one or more field names 

Use  of  compound  names resolves 
conflicts among identical operation 

names  in different data types. 

are specified, together with the  data types asso- 
ciated with each field, as in the following example: 

DCL R RECORDIVALUE:BOOL,COUNT:INTl; /* R e c o r d   d e c l a r e  */ 

. . .  R.VALUE . . .  /*  Access o f  Record  component * /  

The ONEOF type is a  discriminated union similar  to 
the  variant record of Pascal. In ADAPT, any  type 
may be associated with a field name,  whereas in 
Pascal the  variants  are all record types. PL/I does 
not have a  counterpart  to  the ONEOF. The following 
is an  example of ONEOF declaration: 

DCL U ONEOF[EMPTY:NULL,NONEMPTY:STRINGl 

Access to the value of a ONEOF is through the 
control structure SELECT TAG. 

The ARRAY type in ADAPT has a fixed length 
similar to Pascal.  Dynamic  arrays  can be defined as 
user-defined types, using the fixed-length ARRAY as 
a building block. The  syntax of subscripted  vari- 
ables is the  same  as  PL/I.  The following is an 
example of the ARRAY type in ADAPT: 

DCL A ARRAY(INT,100); / *  A r r a y   d e c l a r e  */ 

. _ .  A(24)  . . .  /* Access o f  a r ray   component  */ 

Initialization of data types. Instances of primitive 
data types are given their values by the  appearance 
of literals of the proper form.  Type  constructors 
must be initialized with a CREATE expression of the 
following form: 

type-spec-CREATE ( i n i t i a l i z a t i o n - l i s t  ) 

Here, type-spec may be a RECORD, ONEOF, or 
ARRAY type. The notation type-spec-CREATE (re- 

questing invocation of the CREATE operator for the 
type-spec data type) is an example of a compound 
name.  This consists of a type designation,  a  dot (.) 
and the operation  (in  this  case  CREATE).  Use of 
compound names resolves conflicts among  identical 
operation  names in different data types. 

For the RECORD type, the initialization list may  be 
empty or consist of one or more name:value  pairs as 
in the following example: 

X = RECORD(VALUE:BOOL,COUNT:INT).CREATE(VALUE:TRUE,COUNT:O); 

Any fields not initialized  must  subsequently be 
assigned values. The ONEOF type  must  be  initialized 
with a proper tag:value  pair, as shown in the follow- 
ing example: 

Y = ONEOF(EMPTY:NULL,NONEMPTY:STRINGl.CREATE(EMPTY:NIL); 

The initialization list for the ARRAY type  must  be 
empty, as in the following example: 

Z = ARRAY[INT,100l.CREATEO; 

RECORDS and ARRAYS are instances of mutable 
data, where individual components of the construc- 
tion may  be  updated by program execution. The  tag 
field of the ONEOF constructor is immutable. Newly 
created  instances of mutable  data  are accessed 
through  an indirect  reference. 

Expressions. As in other  languages, ADAPT expres- 
sions are either  operands or applications of allowa- 
ble operators  to  operands.  Operands  may be literals 
or variables (which may be simple identifiers or 
selections from  instances of constructor  types). 
When an operand  object is created,  it persists as 
long as  it is referenced in the  program. Explicit 
deallocation is not allowed. This is an  object- 
oriented model of data.  There  are no dangling 
references in ADAPT, as  there  are in  PL/I or Pascal. 
Operators  are either  external- or encapsulated- 
function invocations, or they are either  arithmetic 
or relational infix operators.  Encapsulated  functions 
are referred to by compound names, as in the 
following examples: 

Y = QUEUE.PUT(MYQUEUE.QUEUE*GET(HISQUEUE)); 
2 = XtSTACK(INTl .TOP(MYSTK);  

Statements. ADAPT has  conditional  statements 
(IF ... THEN ... and IF ... THEN ... ELSE...), loop statements 
(DO WHILE ... and DO UNTIL...), a compound state- 
ment (DO ... END), and  a SELECT statement.  These 
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behave  as  they  do in PL/I. A LEAVE statement 
differs  from PL/I. In  ADAPT a LEAVE statement 
terminates  execution of the enclosing  loop (DO 
WHILE ... or DO UNTIL...), whereas in PL/I this  may 
also  be used to  terminate  execution of an enclosing 
compound (DO ... END). ADAPT provides an  assign- 
ment  statement, RETURN statement,  and  constructs 
for function  and  procedure  invocations.  There is no 
GO TO statement. 

An EQUATE statement in ADAPT establishes  a  corre- 
spondence  between  an  identifier  and  either  a  literal 
or a  type  specification.  (The const and type declara- 

When  an operand  object  is created, 
it  persists  as  long  as it is referenced 

in the  program. 

tions of Pascal  are  similar  to  an EQUATE statement.) 
In  PL/I,  similar effects require  the  use of the PL/I 
Preprocessor. EQUATE is used in the following 
example: 

~ Q U A T E   S L O G A N  "NOW I S  THE TIME"; 
EQUATE REC RECORDINAME:STRING,FLAG:BOOLI; 

Finally, ADAPT has  a  declaration  statement  that  has 
the  same  syntax  as PL/I but  can  also  be used to 
declare  variables of user-defined data  types,  as 
shown in the following examples: 

DECLARE  STR  STRING; /* Declares STR t o  be an unbounded S T R I N G  * /  

DCL ST C H A R ( 1 0 ) ;  / *  Declares S T  t o  be a f ixed  length */ 
/* s t r ing  of length 10 */ 

DCL  STK  MY-STACK{ INT l  /* Declares STK t o  be a user  defined */ 
/* data  type  construction * /  

Procedures. ADAPT procedures  have  a  syntax  simi- 
lar  to  PL/I, with the  difference  that  a  procedure 
header in ADAPT has  the following form: 

proc-name : PROC ( s l : t l ,  . . . ,  s n : t n ) ;  

Here,  the  types of the  parameters  are specified 
in-line  and  are  thus  similar  to  Pascal.  A  major 
semantic  difference  between ADAPT procedures  and 
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those of conventional  languages is that ADAPT 
parameters  can  be of a  type  that is user-defined, in 
addition  to  the  primitive  data  types of the  lan- 
guage. 

Capsules. Capsules  are  implementations of user- 
defined data  types,  which we illustrate by the 
following example for complex  integers: 

COMPLEX:  CAPSULE  EXPORTS  (CREATE,ADD); 

E Q U A T E   R E P   R E C O R D I R E : I N T , I M : I N T I ;  

CREATE: PROC ( X : I N T , Y : I N T )  RETURNS ( * ) ;  

END  CREATE; 

ADD:  PRDC  (X:*,Y:*)   RETURNS ( * I ;  

END  ADD; 

END  COMPLEX; 

R E T U R N ( R E P * C R E A T E ( R E : X , I M : Y ) ) ;  

RETURN(REP*CREATE(RE:X.RE+Y.RE.IM:X.IM+Y.IM)); 

The first line is the  header, which  defines COMPLEX 
as  a  capsule,  and defines CREATE and ADD as  names 
of operations  (encapsulated  procedures)  to  be 
exported (i.e., made visible outside  the  capsule). 
The second  line (i.e., the EQUATE REP statement) 
defines the  internal  data  representation of the  cap- 
sule  to  be a record  with  two fields, RE and IM, both 
of type INT. 

The CREATE procedure  has two parameters of type 
INT,  which  are  the  components of the complex 
number  to  be  created.  The  asterisk (*) in the  header 
indicates  that  a  complex  number is to  be  returned  as 
the  result of invoking the CREATE procedure,  but 
that  the  object  produced  inside  the  procedure is a 
record (i.e., the REP object).  Therefore,  the  argu- 
ment of the RETURN statement is a  record  created 
with  its fields initialized by the  values of the  argu- 
ments X and Y. The  asterisk in a RETURNS clause 
represents  a  change of interpretation  from  concrete 
representation  (REP)  to  abstract  representation 
(COMPLEX). 

The ADD procedure  has  two  parameters  with  the 
asterisk  notation.  This  indicates  that  they  are  con- 
sidered  to  be  complex  numbers  outside of the proce- 
dure  and  records  inside  the  procedure.  The RETURN 
statement,  therefore,  creates  a  record  and  initializes 
its fields with  the sums of the  components of the 
arguments  to  the  procedure.  Here in a  parameter 
position, the  asterisk  represents  a  change of inter- 
pretation  from  the  abstract  to  the  concrete. 

Iterators. An  iterator is a  module  that  implements a 
form of control  abstraction.  It allows the  designer  to 
hide  the  details of sequencing  through an  aggregate 
data  abstraction by concealing  the  representation of 
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the  abstraction  and  the  sequencing  algorithm.  Like 
procedures,  iterators  may  be  encapsulated  within a 
data  abstraction, or they  may  exist  as  an  abstraction 
in their own right.  An  iterator  produces  the ele- 
ments of the  aggregate  object  one  at a time.  It 
therefore  must  retain  state  information  to  produce 
the next element  when  required.  The following 
example  illustrates  an  iterator  module: 

O N E L T O - N :   I T E R A T O R   ( N : I N T )   Y I E L D S   ( I N T I ;  
DCL I I N T ;  

DO WHILE ( I < = N ) ;  
I = 1 ;  

Y I E L D ( 1 ) :  
I = I  t 1 ;  

END  ONELTO-N; 
END; 

This  iterator  produces  the  integers  from 1 to N, 
where N is the  argument  supplied  to  the  iterator 
when  it is invoked. An  iterator is invoked using  a 
FOR statement,  as follows: 

D C L   A   A R R A Y ( I N T , l D I ;  
FOR J : I N T   I N   O N E L T O L N ( l O ) ;  

END; 
A ( J )  = 0; 

This  initializes  all  the  elements of A  to 0. 

The  External  Structure language 

Systems are  described by use of the  External  Struc- 
ture  language. In  this  language,  a  system is a 
collection of modules  and  their  allowable  intercon- 
nections. The definition of a  module  includes  the 
name of each  interface  (entry  point)  to  the  module, 
as well as  the  types of the  parameters  and  return 
value for the  interface (a functional  type). 

A  module in an  External  Structure is viewed as  an 
abstract  entity.  It is only by means of ADAPT 
specifications,  as discussed in the previous section, 
that  concrete  details  about a module  are given. 
Modules  may  be  procedures,  iterators, or data 
types.  For  procedures  and  iterators,  the  module 
interface definition is the  functional  type of the 
module.  For  these  modules,  there is only one  inter- 
face.  For  example,  the  integer MAX function is 
described  as follows: 

M A X ( I N T , I N T )  - >  I N 1  

Procedures  are not required  to  have a return  value, 
and  their  functional  type specification has  abbre- 
viated  syntax.  A WRITE procedure  to  transmit  a 
STRING to a printer  has  the following syntax: 

W R I T E ( S T R 1 N G )  

ITRAVERSE, an  iterator for a list of integers, is 
defined as follows: 

I T R A V E R S E   I T E R A T O R ( L I S T ( I N T 1 )  => I N T  

When  the  module is a  data  type,  it is described by a 
set of operators,  that is, by encapsulated  procedures 

Systems are described by use of the 
External Structure language. 

and  iterators.  This  set is called  the DEFINES list  for 
the  module.  A  data  type MESSAGE-QUEUE, where 
MESSAGE is another  data  type,  has  the following 
specification: 

TYPE  MESSAGELQUEUE 
D E F I N E S  

( CREATE ( )  - >  MESSAGE-OUEUE 
GET  (MESSAGELQUEUEj  - >  MESSAGE 
PUT  (MESSAGE_QUEUE,MESSAGE) 
18-EMPTY  (MESSAGE-QUEUE) - >  BOOL 1 

In addition  to  the  interface definitions, the  depen- 
dencies of the  module  are listed and  refer  to  the 
modules  which  are used (callable) by the  module 
being  described.  This list is called  a USING list.  As 
an  example, if module TAB requires a LIST of GABS, 
t h e  INPUT-STACK f ac i l i t y ,   and   t he  MES- 
SAGELQUEUE, this is written  as follows: 
TYPE  TAB 

D E F I N E S  

U S I N G  
( . . .  ) 

( L I S T { G A B I  

MESSAGELQUEUE 
I N P U T - S T A C K  

Although USING lists are  required for the  compila- 
tion of a  module,  they  can  be  deferred or abbre- 
viated at  the  early  stages of design.  This allows the 
designer  to  defer  representation decisions and 
allows the  module specification to guide  the  system 
specification. 

The  External  Structure  for  a  system consists of a set 
of descriptions of this  form for all  modules in the 
system.  This is used  when compiling  an ADAPT 
source  module,  which is said  to  be compiled with 
respect  to  a  particular  External  Structure. 
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Data types may be generic. In  this case,  they take 
other types as  parameters,  as  illustrated by the 
following notation: 

name1 inarne2, . . .  I 

This notation represents the instantiation of a ge- 
neric data type. The notation  further  represents  a 
binding of the generic data type with its  constituent 
data types, as illustrated by the following exam- 
ples: 

S E T I I N T I  
S E T I T A B L E I  
S E T I T R E E I S T R I N G I I  ( s e t  o f  t r e e s  o f  s t r l n g s ) .  

( s e t  o f  I n t e g e r s ) ,  
( s e t  o f  t a b l e s ) ,  

When processing a module specification, the  trans- 
lator  reads the External Structure  and  the ADAPT 

When processing a module 
specification, the translator reads 

the External Structure and the 
ADAPT source module. 

source module. The  translator verifies that all 
source module references are consistent with Exter- 
nal Structure specifications and  other  declarations 
within the module. At  the  same  time,  the code 
generator produces appropriate  target  language 
source code. Code  generation also exploits the 
External Structure because the  target language 
descriptions of the  run-time environment are 
adapted from the  appropriate  descriptions in the 
External Structure. Figure 1 shows the components 
and  interrelationships of ADAPT. 

External Structure graphs are an  additional  output 
that reduces each module to a simple “black box” 
and displays the interdependences of modules in a 
graphic  form. An example of an  External Structure 
graph for a  small system is  given in Figure 2. 

Examples 

Module design. We now present the specifications 
for SET and SEQ, two abstractions derived from the 
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built-in constructors of PDL.(‘ PDL was originally a 
procedural pseudo-code language  to which data 
abstractions were later  added. SET and SEQ, as well 
as STACK,  LIST, and QUEUE, are built-in abstrac- 
tions of PDL. 

First, we give ADAPT External Structure specifica- 
tions for SET and SEQ: 

T Y P E   8 E T i T : T Y P E I  
WHERE ( T H A S   i E 0 I T . T )  - >  BOOL) ) 
D E F I N E S  

( CREATE ( )  
I N S E R T   ( S E T I T I , T )  
D E L E T E   ( S E T l T I , T )  
EACH I T E R ( S E T I T I 1  => T 

- >  S E T I T I  

EMPTY ( S E T i T I )  - >  BOOL I 
U S I N G  

( FLEX  BOOL 1 

T Y P E   5 E O I T : T Y P E I  
D E F I N E S  

( CREATE 0 - >  S E Q I T I  
R E S E T   ( S E O i T i )  
READ (SE~ITI) - >  T 
W R I T E   ( S E Q I T I   , T )  
EMPTY ( S E Q ( T i )  - >  BOOL 1 

U S I N G  
( FLEX  BOOL ) 

We now present the ADAPT module specification 
source for SET: 

S E T :  
CAPSULE1T:TYPEI  

EXPORTS (CREATE, INSERT,DELETE,EACH,EMPTY)  
WHERE T H A S   ( E Q  PROC ( T , T )   R E T U R N S   ( B O O L ) ) ;  
EQUATE  REP RECORDISIZE:INT,ELT:FLEXIT)); 

SET is defined as  a generic type (capsule) with one 
type  parameter.  The EXPORTS list contains  the 
names of the operations that  are exported (made 
visible) outside  the  capsule. The WHERE clause 
requires that  the type parameter  T have an  opera- 
tion EQ that can  test the equality of two T objects. 
The REP declaration defines a RECORD as  the 
internal  (concrete)  representation of the capsule. 
This  declaration has a SIZE field for the  current size 
of the set  and  an ELT field for the set  elements. ELT 
is of type FLEX, an unbounded array. 

CREATE: 
PROC 0 RETURNS (*I; 
END CREATE; 

R E T U R N ( R E P - C R E A T E ( S I Z E : O , E L T : F L E X ( T I . C R E A T E ( ) ) ) ;  

The INSERT procedure is illustrated by the follow- 
ing example: 

I N S E R T .  
PROC I X : * , Y : T ) ;  

DCL I I N T :  
EQUATE F F L E X i T I ;  
DCL 2 F ;  
Z = X . E L T ;  
I = 1; 

A R C H I B A L D .   L E A V E N W O R T H .   A N D   P O W E R  



Figure 1 Components and interrelationships of ADAPT 

I 

/ 
ADAPT  CODE 

TYPE  CHECK GENERATE 
PROCESSOR  PROCESSOR PROCESSOR 

f"f 

PROCESS 

I = Itl; 
END; 

X . S I Z E  = X . S I Z E + l ;  
CALL  F .UPDATEIZ,X.SIZE,Y) ;  

END  INSERT: 

I F  T . E Q ( Z ( , Y )  THEN 

Z ( X . S I Z E )  = Y ;  
CALL  F .REF(Z,X.SIZE,Y) ;  

The first underlines indicate that Z(I) originally 
appeared in place of F.REF(Z,I) and  caused  a  type 
diagnostic. The second underlines  indicate that 
Z(X.SIZE)=Y originally appeared  and  caused  the 
same  diagnostic. However, when the  statement 
CALL  F.REF(Z,X.SIZE,Y) is substituted,  another  type 
diagnostic  occurs. 

OTHER 
BY 

PROCESSES 

INTERFA 
ENVIROf 
TEXT 

F LOADER 

EXECUTING 
ADAPT 

SYSTEM 
I PRODUCED 1 J 

D E L E T E :  
PROC ( X : * , Y : T ) ;  

DCL I I N T ;  
EOUATE F F L E X ( T 1 :  
OCL z F; 
Z = X . E L T ;  
I = 1; 

DO W H I L E   ( I < = X . S I Z E ) ;  
I F  T * E Q ( F * R E F ( Z , I ) , Y )   T H E N  

DO; 
CALL F . U P D A T E ( Z , I , F - R E F ( Z , X . S I Z E ) ) ;  
X . S I Z E  = X . S I Z E - 1 ;  
RETURN; 

END; 
END; 

END  DELETE: 

In  the following example, EACH is defined as  an 
iterator  that produces an object of type T. The 
statement YIELD directs the system to transfer 
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control to the environment that invokes EACH with 
the result of the expression following YIELD as  the 
produced object: 

EACH: 
I T E R   ( X : * )   Y I E L D S   ( T ) ;  

DCL I I N T ;  
E Q U A T E   F   F L E X ( T 1 ;  
DCL Z F ;  
2  = X.ELT;  
I = 1; 

DO W H I L E   ( I < = X . S I Z E ) ;  
Y I E L D ( F * R E F ( Z , I ) ) ;  
I = I + 1 ;  

END; 
END  EACH; 

The EMPTY procedure is illustrated by the following 
example: 

EMPTY: 
PROC ( X : * )  RETURNS  (BOOL) ;  

END  EMPTY; 
R E T U R N ( X . S I Z E = O ) ;  

END  SET; 

This ends the definition of SET. We now present the 
module definition for sequence (SEQ) as follows: 

SEQ: 
C A P S U L E   [ T : T Y P E I  

EXPORTS(CREATE,RESET,READ,WRITE,EMPTY) ;  
EQUATE  REP R E C O R D ( P T R : I N T , B D Y : I N T , E L T : F L E X ( T )  1 ;  

CREATE: 
PROC ( )  RETURNS ( * ) ;  

RETURN(REP.CREATE(PTR: 0 ,  
BDY:  0 ,  
E L T :  F L E X ( T l . C R E A T E 0 ) ) ;  

END  CREATE; 

RESET:  
PROC ( X : * ) ;  

END  RESET; 
X.PTR = 0; 

READ: 
PROC ( X : * )   R E T U R N S   ( T ) ;  

E D U A T E   F   F L E X I T ) :  
D?L 2  F; 
I F  X.PTR=X.BDY  THEN 

2  = X . E L T ;  
X .PTR = X.PTR+I :  

C A L L   E R R O R ( " E 0 F " ) ;  

END  READ; 
R E T U R N ( F * R E F ( Z , X . P T R ) ) ;  

PROC ( X : * ) ;  

RETURN(-); 

The first underlines  indicate that  the RETURNS(T) 
did not appear in the original program  and  caused  a 
diagnostic. The  return type  has been stated cor- 
rectly in the External Structure.  The second under- 
lines indicate that RETURN(X.PTR) appears in the 
original  program  and has caused a  type  diagnostic. 
The READ operation of SEQ in the  External  Struc- 
ture calls for a  return  type of T, whereas the 
expression X.PTR has the type INT. 

WRITE:  
PROC ( X : * , Y : T ) ;  

E Q U A T E   F   F L E X ( T 1 ;  

Figure 2 Example of an  External Structure graph for a 
small system 

I 
DCL  Z  F;  
Z = X . E L T ;  
X . P T R  = X . P T R + l ;  
CALL  F.UPDATE(Z,X.PTR,Y);  
X.BDY = X.PTR; 

END  WRITE; 

EMPTY: 
PROC ( X : * )   R E T U R N S   ( B O O L ) ;  

END  EMPTY; 
R E T U R N ( X . B D Y - 0 ) ;  

END  SEQ; 

System design. In  the following section, we  show an 
example of the design of the complete system of a 
small  text  editor in ADAPT. We cannot  include  the 
definition of the  entire editor because the original is 
about 250 lines. Shown here, however, are one 
procedure  and  three data types extracted from this 
system's External  Structure. 

E D I T O R   ( I N S T R E A M ( S T R I N G 1   , D I S P L A Y   , S C R E E N )  
U S I N G  

( I N S T R E A M r S T R I N G I   D I S P L A Y  SCREEN 
EDIT-ENVIRONMENT FILE LINE 
COMMAND A N I N T D  F I L E I D  
NULL  BOOL I N T  CHAR S T R I N G  
ARRAY(STRING,LO)  ) 

... 
T Y P E   F I L E  

D E F I N E S  
( /* F i l e   M a n i p u l a t i o n  * /  

CREATE ( F I L E I D )  - >  F I L E  
CURRENT ( F I L E )  - >  ONEOF{NORM:LINE,EMPTY:NULLl 
I N P U T   ( F I L E . I N S T R E A M I S T R I N G 1 )  - >  F I L E  
INSERT,REPLACE. 

( F I L E , L I N E )  - >  F I L E  
DELETE (FILE,ONEOF(ANINT:INT,DEFAULT:NULLl) - >  F I L E  
CHANGE ( F I L E , S T R I N G , S T R I N G ,  

ONEOF(ANINT:INT,DEFAULT:NULLI, 
ONEOF(ANINT:INT,DEFAULT:NULLI) - >  F I L E  

/ *  O t h e r  Operators * /  
S E T 1 0   ( F I L E , F I L E I D )  - >  F I L E  
G E T I D   ( F I L E )  - >  F I L E I D  
RENUM (FILE) - >  FILE 
TYPEOUT (FILE.ONEOFIANINT:INT,DEFAULT:NULLI,IO) 
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TOP,BOTTOM,SCROLL,SCROLLLUP 
/*  Positioning  Operators */ 

GOUP,GOOOWN,POINT 

FIN0,LOCATE 

( F I L E )  - >  F I L E  

(FILE,ONEOFlANINT:INT,OEFAULT:NULLl) - >  F I L E  

( F I L E , S T R I N G )  - >  F I L E  ) 
USING 

( O L I S T I L I N E I   L I N E   F I L E 1 0  IO 

NULL  INT  
INSTREAM{STRING)  ARRAY(STRING,PZ) 

BOOL STRING CHAR 1 ... 
TYPE  L INE 

DEFINES 
( CREATE ( S T R I N G )  - >  L I N E  

PREFIX,SUFFIX(LINE,STRING) - >  L I N E  
BEFORE,AFTER  (LINE,STRING,STRING) - >  L I N E  
A L T E R   ( L I N E , C H A R ( l I   , C H A R I l I ,  

CHANGE (LINE,STRING,STRING, 

I S I N , I N I T I A L , T E R M I N A L  

CURRENT ( L I N E )  - >  STRING 

ONEOF(ANINT:INT,OEFAULT:NULL)) - >  L I N E  

ONEOFIANINT:INT,DEFAULT:NULL)) - >  L I N E  

( L I N E , S T R I N G )  -> BOOL 

USING 
( NULL BOOL INT  STRING  CHAR(1I  

TYPE  DL IST   IT :TYPE)  
DEFINES 

( CREATE 0 - >  D L I S T ( T 1  
BEFORE,AFTER,REPLACE 

PREV,SUCC,START,FINISH 

ATSTART.ATFINISH 

( D L I S T I T I   , T I  - >  D L I S T I T I  

( D L I S T I T I )  - >  D L I S T I T I  

( D L I S T { T I )  - >  BOOL 

( D L I S T I T I )  - >  ONEOFINORM:T,EMPTY:NULLI 
DELETE (DLISTITI) - >  O L I S T I T I  
OBJ 
ISEMPTY ( D L I S T I T I )  - >  BOOL ) 

NULL BOOL ) 
USING 

... 
EDITOR is a procedure with no return value, a main 
procedure that  acts by causing certain side effects. 
The FILE data type  contains  operators for CREATE, 
INPUT, DELETE, and LOCATE among others. The 
informal semantics of these  operators are  as fol- 
lows: 

CREATE. Take a FILEID as a  parameter  and  return  a 
FILE, initialized to be empty. 

INPUT. Take  as  parameters a FILE and  an 
INSTREAM (of STRINGS). Successively  read 
STRINGS from the INSTREAM, inserting them  into 
the FILE (at  the  current location) as encountered. 
Continue  this process until an  empty STRING is 
encountered in the INSTREAM. 

DELETE. Take  as parameters  a FILE and  a ONEOF 
{ANINT:INT,DEFAULT:NULL], either an integer or 
the  default. If default,  delete one line from the FlLE 
at current location. If an INT with value n, delete n 
lines from the FILE, starting at  the  current location. 

LOCATE. Take  as  parameters a FILE and  a STRING. 
Starting with the  current location, begin advancing 
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in the FILE until a LINE is encountered that contains 
the STRING. 

In a  software production environment, it is appro- 
priate  to  add  the  text of these informal semantics  to 
the  External Structure source as in-line comments. 

The two other data types defined  in this  External 
Structure  are LINE and DLIST, which is a generic 

System  design  involves  system 
decomposition  and  component  and 

module specification. 

user-defined data type. LINE is the  abstraction for 
individual lines of the  aggregate FILE. As can be 
seen, operations are included for intra-LINE manip- 
ulation, each of which changes  a LINE in one way or 
another. DLIST, a  shortening of Doubly Linked List, 
is an abstraction that is  used by the FILE data type. 
FILE is to have an internal  representation that 
includes a doubly linked list of LINES, that is, a 
DLIST{LINE]. 

Associated with the system description of the EDI- 
TOR are  the implementation specifications for each 
module of the system. These specifications are 
written in the ADAPT language. A little  later in this 
paper we give a portion of the FILE specification. 

The USING lists for these modules may seem rather 
long. When represented graphically,  the EDITOR 
maps into  a multiplicity of interconnections, the 
graph of which we call “bushy.” The  graph for this 
system, which is shown  in Figure 3, represents  the 
most abstract form of an  External  Structure. The 
interface descriptions, both the  functional types of 
procedures and  the DEFINES lists for user-defined 
types, have all been left out.  Each module has been 
reduced to  a box. Only the USING lists for each 
module are displayed. Figure 3 is the  External 
Structure graph for the entire editor. The reader 
can see all the required modules of the EDITOR and 
obtain an idea of what is missing from the descrip- 
tion previously given. 
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Figure 3 Graph of the External Structure of an example editor 
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F I L E :  
CAPSULE 

EXPORTS 
( CREATE,INPUT,INSERT,REPLACE,GETFILE,DELETE,ALTER, 

CHANGE,OVERLAY,CURRENT,FRAME,SETID,GETlD,RENUM,TYPEOUT, 
TOP.BOTTOM.SCROLL.SCROLLUP.GOUP.GOUP.GODOWN.POINT.FINO.LOCATE ) ;  

EQUATE L I N E  ONEOF(ANINT:INT,DEFAULT:NULL); 

EQUATE  REP RECORD(NAME:FILEIo,DATA:OL~; 
EQUATE  DL  DLIST(L INE1;  

... 
CREATE: 

PROC ( X : F I L E I D )  RETURNS ( * ) ;  

END; 

INPUT: 

RETURN (REP.CREATE(NAME:X,DATA:DL.CREATEO)); 

PROC (X:FILE,Y:INSTREAM(STRING)) RETURNS ( F I L E ) ;  
EQUATE  INSTR  INSTREAM(STRING1; 
DCL TSTRING  STRING: 

TSTRING = I N S T R - N E X T ( Y ) ;  
DCL T L I N E   L I N E ;  

T L I N E  = LINEvCREATE(TSTR1NG);  
00 W H I L E   ( T S T R I N G ~ = " " ) ;  

X  = F I L E - I N S E R T ( X , T L I N E ) ;  
TSTRING = INSTR.NEXT(Y); 
T L I N E  = LINE.CREATE(TSTRING);  

ENO; 
RETURN ( X )  ; 

END; ... 
DELETE: 

PROC (X:*,Y:ONEOFIANlNT:INT,OEFAULT:NULL)) RETURNS ( * ) ;  
DCL COUNT I N T :  
SELECT  TAG ( Y j ;  

WHEN ( A N I N T )  COUNT = Y ;  
WHEN (DEFAULT) COUNT = 1; 

DO WHILE  (COUNT>O): 
END; 

X.DATA = D L - D E L E ? E ( X . D A T A ) ;  

END; 
RETURN ( X  1 ; 

COUNT = COUNT-1; 

END; ... 
I OCATF. - - - . . - . 

PROC ( X : F I L E , Y : S T R I N G )  RETURNS ( F I L E ) ;  
EQUATE  INT-D ONEOFIANINT:INT,DEFAULT:NULLl; 
DCL T L I N E  ONEOF(NORM:LINE,EMPTY:NULLl; 
DCL FOUND BOOL: 

DO UNTIL   (FOUND) ;  
SELECT  TAG  (TL INE) ;  

WHEN (NORM) 
I F  L I N E . I S I N ( T L I N E , Y )   T H E N  

FOUND = TRUE; 
WHEN (EMPTY 1 

FOUND = TRUE; 
END; 
I F  -FOUND THEN 

D O ;  
X = FILE.GODOWN(X,AONE); 
T L I N E  = F I L E - C U R R E N T I X ) ;  

END; 
END; 

RETURN ( X )  ; 
END; 

END; 

As previously described,  the EQUATE for the name 
REP defines the  internal  representation for objects 
of the given user-defined type, and  the  asterisk (*) is 
used to refer  to  a  change of interpretation in param- 
eter lists and RETURNS clauses. Note  that some 
FILE procedures do not change  interpretation for 
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FILE objects  but depend on other FILE operators  to 
do the  job. 

ADAPT methodology 

Software  modification is  costly in time  and 
resources, and  it  may also be frustrating  and  unre- 
warding to those who do the work. New design 
approaches  can improve this  situation.  Hiding data 
representations  during design, strong type checking 
during design, and  automated  control of system 
designs are key to  ameliorating  this issue. 

Current practice. System design involves system 
decomposition and component and module specifi- 
cation.  Components are themselves collections of 
modules. System decomposition today is often an 
informal process, with the various pieces and com- 
ponents of a system being referred to by name  and 
described using natural  language.  Interconnections 
between components are seldom controlled or 
restricted. 

Interface specifications may be recorded in many 
forms, and  the system being built is not generally 
checked against  these definitions. For the most part, 
the emphasis in this area has been on after-the-fact 
documentation of module interfaces. 

Module specification techniques in current  practice 
include  flowcharting, HIPO diagrams,  various 
pseudo-code notations,  and  a  number of structured 
stepwise refinement ~trategies.~" Module specifica- 
tion in its most detailed  form is commonly called 
programming  and is carried  out by use of a pro- 
gramming language. Programming  languages to- 
day allow unsafe data accesses, unchecked module 
interfaces,  and  unrestricted  intermodule connec- 
tions or coupling. The use of global variables is a 
generally  accepted  practice. A decision made in one 
module of a  software system often has unforeseen 
and sometimes undesirable consequences in mod- 
ules far removed from the point where  the decision 
was applied. 

Data specifications are normally recorded by giving 
explicit storage  maps, with the result of encouraging 
premature  implementation of system components. 
This  greatly reduces the flexibility needed in an 
evolving systems design. 

In addition, designs can have logical inconsistencies 
that may not be discovered until  late in the develop- 
ment cycle. The most astute and knowledgeable 
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designer cannot foresee all the consequences of his 
decisions in a complex system. Discovery of design 
errors may occur  after significant effort has been 
expended in implementation. The retrofitting of 
corrections to  these  errors is often expensive. 

Improving  current practice. The ADAPT approach 
improves this  picture of design in significant ways. 
Several improvements occur in both the  External 

The  most astute and  knowledgeable 
designer  cannot foresee all  the 

consequences  of  his  decisions  in  a 
complex  system. 

Structure  and  the ADAPT specification language. 
(1) Executable  semantics are provided for designs. 
(2) Data types may be defined by a user, and (3) 
generic  facilities  can improve reusability. 

In the  area of module specification, there  are four 
primary  improvements involved: (1) Incorrect 
accesses to data  are eliminated; (2) Module cou- 
pling is limited; (3) Specifications are  separated 
from representations;  and (4) Hidden  side effects 
due to global variables are eliminated. 

Regarding  system specification, four kinds of 
improvements have also been made: (1) Program- 
ming in the large is used for system specification; 
(2) Compliance of the system specification with 
module specifications is ensured; (3)  A  persistent 
abstract view  of a system is promoted; and (4) 
Separate compilations of modules are handled. 

Details on these  changes in the design picture are 
given in the  three sections that follow. 

Specification  improvements in general 

Executable semantics for design. ADAPT has been 
constructed  to show designers the consequences of 
their designs. For those associated with system 
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programming, it seems that  the  natural way to do 
this is to  execute the designs, that is, to generate  the 
outputs associated with particular  inputs. In ADAPT, 
this is accomplished by translating ADAPT source 
for the  External  Structure and module definitions 
into PL/I  code that can be compiled and  executed. 

User-defined types. Current programming  lan- 
guages provide data types biased toward particular 
machine  architecture, whereas designers should be 
developing solutions to problems in terms of data 
types that  are relevant to particular  applications. 
Therefore, ADAPT allows designers to specify their 
own data types. 

Full generic capability. A generic fype is a user- 
defined type  constructor. Thus a  generic type is a 
data type that requires  other data types as parame- 
ters to complete  its definitions. An example of a 
generic  type is a SEQUENCE of elements,  where the 
type of an  element is undetermined  until the 
sequence is declared or instantiated. Full generic 
facilities are provided in ADAPT, not only for data 
types but also for procedures  and  iterators.’ 

The use of generic  facilities  supports the production 
and  combination of reusable  software components.’ 
The generic facilities are  appropriate for customiz- 
ing and  tailoring  parts  from  generalized  routines. 

Module  specification  improvements 

Eliminating  incorrect accesses to data. The types of 
all  variables  and  parameters  must be declared in 
ADAPT. The compiler checks for type  agreement 
between formal  and  actual  parameters in procedure 
calls, between both sides of an assignment  state- 
ment,  etc.  This type checking finds a  substantial 
number of errors at compile time  that normally 
would not be detected  until  run  time. 

Changes in  module coupling. One of the  major 
problems encountered in the design and develop- 
ment of large systems is that modules interact on 
global data in unexpected ways. The key to success- 
ful program  structuring is that of maximizing mod- 
ule independence.”  This principle is not often fol- 
lowed in the design of large systems, where global 
control blocks are often referenced by hundreds of 
modules. Reference to the various kinds of module 
coupling can be found in Reference 10. ADAPT 
specifications allow for data-coupled modules. This 
eliminates  undesirable dependencies between other- 
wise unrelated modules. 
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Figure 4 Dynamics of the ADAPT design  process 

DATA PROCEDURE 

Separation  of  specification from representation. An 
important  principle of system  structuring is that of 
information  hiding,  a  design  technique for decom- 
posing systems  into  highly  independent  modules.” 
A way of characterizing  information  hiding is to  say 
that every module  hides  a  design  secret,  which is 
usually  the  format of a  particular  data  structure. 
The use of data  abstraction in the  design process 
causes a strong  separation  between  the specification 
and  implementation of individual  modules. The 
data  representation for these  modules is hidden 
within  their  implementations.  Only  the specifica- 
tion (allowable  accesses) is visible. Changes  within 
a  module  can  be  made  with  minimum  impact  to 
other  parts of the  system. 

Restricted side effects. Unrestricted  side  effects  can 
affect  module  independence  and  cause  changes  to 
program  objects  that  are difficult to  detect. ADAPT 
permits  modules  to  communicate  only by passing 
parameters.  There  are no global  variables in ADAPT. 
Side effects can be produced only by updating a 
data  object  that is shared  as  a  parameter  between 
modules. 

System  specification  improvements 

Programming in the  large. ADAPT identifies  new 
steps by which a designer  can  cause his conception 
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to evolve to a correct  design.  This evolution is 
something like the  debugging  that  programmers 
currently  do.  In ADAPT, through  use of the  External 
Structure,  design decisions are  expressed in a 
machinable  notation.  In  such  a  notation,  a  designer 
specifies a  system  decomposition by defining the 

The notation and tools used for the 
early stage of design can persist 

through the  life cycle of the system. 

system at  hand  as a set of modules.  Module  inter- 
connections  and  interface definitions are  added. 
The  designer  also  describes  the  activities  that  each 
module is to  perform. As he  expands  the  design,  the 
designer  may  change  the  system  structure,  thereby 
altering  interconnections or interfaces.  At  this 
abstract level of design,  the  goal is not  to  produce 
the  best  algorithm,  but  to  achieve  the  right  overall 
structure of the  system.  Programming in the  large 
for ADAPT involves definition of module decomposi- 
tion and  the  interconnections  and  interfaces for 
each  module. 

Ensuring  the  compliance  of  the  system  specification. 
System  decomposition  (programming in the  large) 
is an  intellectual  activity  distinct  from  module spec- 
ification, that is, programming in the  small  or 
simply p r ~ g r a m m i n g . ’ ~ ~ ’ ~  Since  software  design 
involves detailed  module specification as well as 
in-the-large  evaluation of system  structure,  natural 
support for the  design process should reflect this 
dichotomy of concerns. 

In ADAPT, we have a separate  language for descrip- 
tions in each  domain,  and we have  coupled  these 
descriptions.  The ADAPT tools work  to  keep  these 
two  perspectives in correct  alignment with each 
other.  Thus we have tools  for  effectively managing 
the  coupling of a  system  structure with a  set of 
independent  and  individually  produced  modules. 

Establishing  a  persistent  abstract view of  a system. 
Designs should be kept  up  to  date.  As  system 
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implementation,  augmentation,  and  debugging pro- 
ceed,  fundamental design documentation should be 
forced into  alignment with module programming 
and  changes, as suggested schematically in Figure 
4. This process may be compared with the  current or 
traditional process, as suggested in Figure 5. In 
Figures 4 and 5, the solid lines indicate  mandatory 
update steps, and  the broken lines indicate optional 
update  steps. 

With  the ADAPT package,  maintenance of a persis- 
tent system description controls  and guides this 
objective. Module  descriptions developed within a 
system are tightly coupled to a system description. 
The notation and tools  used for the early  stage of 
design can persist through the life cycle of the 
system. 

Since  the  External Structure supplies a  persistent 
view  of an entire  system,  it may be used as a project 
control facility.  It is the repository of design infor- 
mation at different  stages in the design process, and 
can be  used to provide system definition support for 
programmers  and development groups. 

Separate  compilation. The  separate compilation of 
individual modules is a problem that is common to 
all compilers. This is addressed in ADAPT by use of 
the  External Structure. We compile individual 
modules with respect to  the system description. As 
long as  the interface  to  a module and  its  intercon- 
nections do not change, the system description can 
be relied upon to supply all information needed 
about  that module, when compiling other modules. 

Experience in using ADAPT 

The ADAPT tools are intended to describe  and 
formalize the work that designers do today  without 
tools. The tools capture a  description of various 
activities of system design and  the  steps of the 
design process. They provide a terminology and 
notation for automating system descriptions used in 
this process. Even so, the use of the ADAPT package 
requires  practices that may be different from the 
current  practices of designers and  programmers  to 
whom these tools are new. We have identified 
certain  approaches that describe  practices  appropri- 
ate for using ADAPT. 

As in current  practice, the decomposition of a 
system should reflect the ideas around which the 
designer's innovation is described.  This is the key- 
stone of clean  design. Modules should be cohesive 
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and  limit  their coupling to  other modules. The 
addition of data and  iterator  abstractions  extends 
this notion of good decomposition into new domains. 
In addition, ADAPT'S controlled coupling, strong 
type checking, and  generic facilities change the 
designer's outlook in important ways by instituting 
the following requirements: 

A designer should view his system as  the collec- 
tion of modules of which the system is composed. 
Thus we say that  the system has been decomposed 
into  a  set of modules or components. 
The interface for a module must be completely 
defined before the design is complete  and  testa- 
ble. 
The interconnections for a system must be defined 
before the design is complete. 
A system should be constructed with minimal 
interconnection density.  Redundant or irrelevant 
accesses to modules should be eliminated. 
Cycles in the interconnection logic should be 
minimized. Cycles should be analyzed  carefully; 
these situations  can  represent  faulty system defi- 
nition. 

Other workers in the field of software  engineer- 
ing'0.'4,'5 have studied methodologies that govern the 

~ 

Figure 5 Current or traditional dynamics of the design 
process 
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Figure 6 Iterative refinement in ADAPT 
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construction of the USING relation for a  system. 
Parnas14 points out  that cycles in the USING relation 
are  the source of many difficulties. These  situations 
can  represent cyclic definition.I6 There  are pro- 
grams, however, that  are  naturally described with 
cycles in the USING relation. In redesign efforts, this 
has been an inevitable consequence of transliterat- 
ing data  structures where  back  pointers were used. 
In our experience, however, we were able  to elimi- 
nate cycles with a benefit to the design. 

Iterative  model. In using the  iterative model, a user 
successively refines his definition of a  system by 
shifting his attention  alternatively  from  a high-level 
abstract notion of his system  (correlated with the 
External  Structure)  to a low-level concrete view of 
his system  (correlated with the ADAPT language). 
Figure 6 shows this process. The iterative model also 
addresses  our  original  research objective of dealing 
with modifiability. Tracing most modifiability 
problems to  a  lack of coordination between a design 
specification and  a  semantic specification, the  itera- 
tive model supplies this  coordination. Even very late 
in the life cycle of a  software  product, there is an 
iterative model used in support of product  study, 
upgrades,  and modifications. 

Experienced users of ADAPT have reported the 
following approaches to using ADAPT: (1) They 
maintain two perspectives-the External  Structure 
domain  and the ADAPT domain; ( 2 )  They avoid 
preoccupation with either  domain, filling in details 
as needed in the domain being studied;  and (3) They 
alternate frequently between domains.  This is our 
iterative refinement, which occurs as  an interaction 
between the module interconnection  language  and 
the module specification language. 

Idea-dependency  model. Our most abstract experi- 
ence in using the ADAPT tools has been the idea- 
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dependency model.I6 Considering the design of a 
system strictly at  the first level of decomposition, a 
solution is decomposed into  a  set of interrelated 
ideas, which are either  operational or data ideas. 
For example, in designing an EDITOR, the ideas of 
FILE,  LINE, STRING, and INTERPRETER all seem 
naturally associated with the  concept of EDITOR. 
First,  a user lists all ideas associated with the 
problem.  Then, the  internal dependencies of these 
ideas are indicated. An idea dependency A --> B 
(i.e., A depends upon B) is indicated whenever the 
definition of the idea A must  make use of knowledge 
of the idea B. In the EDITOR example, we have FILE 
--> LINE, because the idea FILE is naturally  thought 
of as  an  aggregate of the idea LINE. 

In our experience with this model, users are quickly 
able to discuss the potential dependencies of ideas. 
Something they do not realize at first is  how easily 
these dependencies call form the foundation of a 
system description. The ideas are mapped into  an 
External  Structure  as  data  abstractions, proce- 
dures, or iterators.  The dependencies, of course, 
become an initial USING relation. 

The ADAPT  design  process. With  our  approach, we 
have been constantly reminded of system develop- 
ment models used by individuals in industry. For 
example, the simplistic view that design is most 
naturally  a top-down activity does not correspond to 
the common practice of design that involves exten- 
sions or  elaborations of an existing system.  Here 
there  are  natural cycles of incorporating lower-level 
material  into  a design. The cyclic nature of the 
design process is illustrated in Figure 7. 

In ADAPT, we have been able  to  isolate  the various 
tasks that go into projecting a design into  a  system. 
Using ADAPT, the steps that coordinate abstract 
descriptions of a system with a  concrete  realization 
are  mandatory,  as suggested in Figure 4. 

The dynamics of these design methodologies are not 
mutually  independent nor do  they exclude other 
possible models. They do, however, provide useful 
and  perhaps new ways to think  about  programming 
and systems design. We feel that users will  find 
these  descriptions  suited  to  the tools that we have 
described. 

Optimization and related issues 

Design  tradeoffs. Experience with ADAPT allows us 
to  evaluate  certain  pragmatic  questions. Two areas 
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of special concern are  the following: (1) the per- 
formance of generated code, and (2) our  ability  to 
integrate  this code with programs produced by 
other processes. Since we have tools for supporting 
the ADAPT model of software design, we can  analyze 
the  advantages  and problems that occur. 

There is a tradeoff to be acknowledged between the 
distinct goals of generating  high-performance code 
as opposed to production of system designs that  are 
easy to  maintain  and  can use reusable  components. 
We want to preserve as much of the original design 

Since ADAPT does not allow  global 
variables,  procedure  calls  could 

require  long  parameter  lists. 

of a system as is reasonable, while adjusting selec- 
tively those areas where the  greatest improvement is 
realized. 

Properties of ADAPT-generated  code. By compari- 
son with conventional code, ADAPT code  tends  to 
have more procedure  calls.  Some of these proce- 
dures  are small  and provide trivial accesses to fields 
of abstract  data. In conventional code, these proce- 
dures would  be explicit in-line references-effi- 
cient,  but difficult to modify or reuse. 

ADAPT data  structures usually develop into rela- 
tively deep  hierarchical  structures with a high fre- 
quency of indirect references to other  hierarchical 
data  structures. By comparison, conventional data 
structures have a  flatter  structure (that is, fewer 
data blocks with more component fields) and 
require fewer pointer-chasing  operations. 

Since ADAPT does not allow global variables, proce- 
dure calls could require long parameter lists. This is 
a consequence in current  programming  languages. 
However, we have not observed this when using 
ADAPT. Instead of large collections of independent 
data items being passed around as  parameters,  data 
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Figure 7 Cyclic nature of the design process in general 
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items  tend  to become organized  into  hierarchically 
structured  data types. 

Analysis tools. Optimization  can be inhibited by a 
heavy use of procedure  calls  and  indirect data 
references. What does this cost in overall terms? 
Our approach is to  measure  the cost with tools 
designed for that purpose. Our data  are limited,  but 
two things are clear: (1) For many purposes such as 
design verification and low-demand applications, 
the use of directly  generated ADAPT code is accept- 
able;  and (2) Performance analysis is an effective 
method for identifying the  appropriate sections of a 
system for optimization.  With  appropriate  analyti- 
cal tools, we can identify where significant improve- 
ment can be accomplished. 

Optimization strategy. Current practice  encourages 
the uniform optimization of all code, with little 
regard  to  its  relative benefits and costs. Preserving 
the original system design has a value, and  this 
value should be weighed against the benefit of 
specific optimizations. 

In-line expansion of selected procedures can dra- 
matically improve performance. As an example, in 
one system of 266 procedures, in-line expansion of 
13 procedures improved overall system performance 
by 42 percent. 
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A key problem with in-line expansion is the tradeoff 
between performance  and  maintainability.  In-line 
expansion of an operator of a data  abstraction 
requires exposing, in some way, its  otherwise hidden 
data representation. Future work with representa- 
tion-hiding methodologies should recognize this  and 
provide tools for the control of such expansions. 

Compatibility  with existing code. Even though  a 
system can be written  entirely in ADAPT, we must 
also be able to work with an immense body of 
existing software  written in many languages  and 
designed with other methodologies. As these sys- 
tems are modified and  enhanced, we have the 
opportunity to introduce  our new techniques  incre- 
mentally.  To do this  requires the interfacing of 
ADAPT code with other code. This  interfacing 
requires two additional  mechanisms in the non- 
ADAPT code: (1 ) a  more  elaborate  call facility to 
accommodate ADAPT environment  requirements, 
and (2) a  pseudo-data-abstraction facility to allow 
accessing existing control blocks. These  interface 
modules are simply convenient step-across mod- 
ules. 

Concluding remarks 

The  Abstract Design And Program  Translator 
(ADAPT) offers a  number of benefits for the con- 
struction of reliable  software. In the  area of abstrac- 
tion specifically, data  abstraction,  as well as some 
types of control abstractions,  can be conveniently 
added  to high-level programming with the benefit of 
increased expressiveness. Extending  abstraction 
structures in this way allows for the specification of 
entire systems at  the  abstract level. 

The use of automated tools can be propagated in a 
natural fashion into  some of the more abstract  areas 
of software  system  design.  Automating  and  extend- 
ing the ideas of programming in the  large  has 
enabled us to discuss meaningfully the viewing of 
systems in their  entirety. 

Both programming in the large  and specification 
facilities for a broad and useful set of abstractions 
(e.g., data, procedural,  and  iterative)  can be sup- 
ported by a common execution facility,  thereby 
allowing designers to test designs as they are being 
worked on at  the conceptual level. The coupling of 
these two specification areas  greatly improves sys- 
tem modifiability. 
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ADAPT solves the problem of synchronizing design 
documentation, which is maintained in machine- 
readable  form, with module specifications during 
the iterative refinement of design and  throughout 
the software life cycle. The  External  Structure 
provides this capability by serving as a repository of 
interface design and system decomposition deci- 
sions. The ability  to  execute specifications during 
the early  stages  encourages  rapid prototyping and 
improves design correctness. The use of strong  type 
checking during design improves the system specifi- 
cation process, and  many  errors are caught at  the 
earliest  stages of design. The facility for specifica- 
tion of generic types and  procedures  encourages the 
definition of generalized  abstractions  that  can be 
customized for special cases and  permits the con- 
struction of reusable  software  components. 

Problems that may be encountered with these 
approaches  include the education of personnel pre- 
viously trained in other  approaches, solving per- 
formance problems associated with designs ex- 
pressed in a very high-level notation,  and incorpo- 
rating systems designed with tools such as ADAPT 
into  an environment which has been developed 
along  other lines. Though  these  areas have been 
addressed  as part of our  research,  there is still much 
work to be done. 
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