Abstract design and
program translator: New
tools for software design

Abstract Design And Program Translator (ADAPT)
is an integrated set of tools and approaches for the
design and development of software systems. To-
gether they include a module specification lan-
guage and a system design language for specifying
module interfaces and interconnections. This pa-
per explains some of their major features and illus-
trates their use in the design of some examples—a
set of reusable software components and a gener-
alized editor system. Benefits of the ADAPT ap-
proach are discussed, emphasizing executable de-
sign and modifiability.

Discussed in this paper is a new approach to
software design that consists of two primary
tools: (1) a system definition language, called the
External Structure, which supports programming in
the large, and (2) a specification language, the
ADAPT programming language, for specifying the
semantics of individual modules. ADAPT is our
acronym for Abstract Design And Program Trans-
lator.

We discuss first general concepts of ADAPT and its
components. These concepts are then illustrated
using examples of module and system design. We
compare and contrast ADAPT methodology and cur-
rent practice and show ways of improving the
specification process in general and module and
system specification in particular. We conclude
with a discussion of experience, design tradeofTs,
analysis tools, and compatibility of ADAPT with
existing code.
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General concepts and components

ADAPT is based on the use of two languages. The
External Structure language provides for descrip-
tions of all modules contained within a system,
giving their allowable interfaces and the intercon-
nections between modules. The External Structure
allows the separate compilation of individual mod-
ules and becomes a repository of design information
at different stages in the design process.

The ADAPT specification language provides for
semantic specification of individual modules. It is
similar to such other data abstraction languages as
CLU,' Ada,’ MESA,*® and Euclid.* The specification
language has facilities for defining three kinds of
modules, corresponding to procedural, data, and
iterative (control) abstractions.

There are two fundamentally different approaches
to the specification of systems. In the first, the
specification——whether in English or some formal
or semiformal representation—and the implemen-
tation are separate. The problem in this case is
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showing the equivalence of the two representations.
This may be accomplished by proving program
correctness or by testing. Further, it is difficult to
keep these two descriptions synchronized during the
software life cycle. In the other approach, there is
only one specification, which is then transformed to
an executable program by a translator. This ensures
semantic equivalence. ADAPT follows the latter
approach, even though it has a separate language
for high-level system descriptions.

In the ADAPT approach, the tools include a transla-
tor that converts ADAPT programs to a target lan-
guage, currently PL/I. The translator reads in a
system specification written in the External Struc-
ture language and a module specification written in
the ADAPT specification language. The module
specification is processed with respect to the system
specification. Processing consists of strong type
checking, in addition to the translation to the target
language. A variety of outputs may be obtained to
assist in the design process.

The ADAPT language

ADAPT is an algorithmic language for defining the
detailed semantics of modules. In addition to con-
trol structures comparable to those of other high-
level languages, ADAPT provides facilities for han-
dling abstract data. The three kinds of modules
which can be defined are the following:

* PROCEDURE is like procedures in other languages,
but parameters may be user-defined data types, in
addition to the data types provided by the lan-
guage.

* CAPSULE is used to specify a data abstraction and
consists of an internal data representation and
operations (called encapsulated procedures or
iterators) that manipulate the internal represen-
tation.

e ITERATOR is used to specify how elements of an
abstract data collection are obtained so that
actions on the elements can be programmed inde-
pendently.

An ADAPT procedure or iterator can declare vari-
ables of built-in or user-defined data types, can
invoke operators of built-in or user-defined data
types, and can call procedures and invoke iterators.
There are no nested procedures, but a capsule can
have nonexported (local) procedures and iterators,
in addition to the exported operators of the data
type. There are no global variables.
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ADAPT supports the separate compilation of mod-
ules. References to externally defined names of data
type, procedures, and iterators are resolved by the
External Structure.

The ADAPT specification language
provides for semantic specification
of individual modules.

To describe the features of ADAPT, we note its
differences from such current languages as PL/I or
Pascal as we present the elements of the ADAPT
language.

Primitive types. We begin with the following primi-
tive data types and type constructors of ADAPT:

BOOL

INT is similar to the type integer of Pascal and to
FIXED BIN (31) of PL/I. BOOL is similar to type
boolean of Pascal, where the keywords TRUE and
FALSE in ADAPT correspond to Pascal’s true and
false. PL/1 uses bit strings to represent truth values.
STRING in ADAPT differs from Pascal and PL/I in
that in ADAPT it has unbounded length. CHAR is for
fixed-length strings and corresponds to PL/I CHAR-
ACTER. NULL is a type having the single literal
value NIL. NIL should not be confused with the
built-in function NULL in PL/I or the value nil in
Pascal, both of which represent a pointer pointing to
nothing. There are no explicit pointers in ADAPT.
All of the objects in these data types are immutable,
i.e., objects with values that never change.

Type constructors. A type constructor is a parame-
terized type definition. This is also referred to as a
generic type. A particular data type is obtained
when specific values are supplied for the parameters
as follows:

RECORD {sl:tl,...,sn:tn}
ONEOF  {sl:tl,...,sn:tn}
ARRAY {type-spec,size}
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The RECORD type is similar to a record in Pascal or
structure in PL/I. That is, one or more field names

Use of compound names resolves
conflicts among identical operation
names in different data types.

are specified, together with the data types asso-
ciated with each field, as in the following example:

DCL R RECORD{VALUE:BOOL,COUNT:INT}; /* Record declare */

. R.VALUE ... /* Access of Record component */

The ONEOF type is a discriminated union similar to
the variant record of Pascal. In ADAPT, any type
may be associated with a field name, whereas in
Pascal the variants are all record types. PL/I does
not have a counterpart to the ONEOF. The following
is an example of ONEOF declaration:

DCL U ONEOF{EMPTY:NULL ,NONEMPTY:STRING}

Access to the value of a ONEOF is through the
control structure SELECT TAG.

The ARRAY type in ADAPT has a fixed length
similar to Pascal. Dynamic arrays can be defined as
user-defined types, using the fixed-length ARRAY as
a building block. The syntax of subscripted vari-
ables is the same as PL/I. The following is an
example of the ARRAY type in ADAPT:

DCL A ARRAY{INT,100}; /* Array declare */

. A(28) ... /* Access of array component */

Initialization of data types. Instances of primitive
data types are given their values by the appearance
of literals of the proper form. Type constructors
must be initialized with a CREATE expression of the
following form:

type-spec*CREATE ( initialization-list )

Here, type-spec may be a RECORD, ONEOF, or
ARRAY type. The notation type-spec-CREATE (re-
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questing invocation of the CREATE operator for the
type-spec data type) is an example of a compound
name. This consists of a type designation, a dot (-)
and the operation (in this case CREATE). Use of
compound names resolves conflicts among identical
operation names in different data types.

For the RECORD type, the initialization list may be
empty or consist of one or more name:value pairs as
in the following example:

X = RECORD{VALUE :BOOL ,COUNT: INT}«CREATE(VALUE: TRUE,COUNT:0);

Any fields not initialized must subsequently be
assigned values. The ONEOF type must be initialized
with a proper tag:value pair, as shown in the follow-
ing example:

Y = ONEOF{EMPTY:NULL ,NONEMPTY:STRING}*CREATE(EMPTY:NIL);

The initialization list for the ARRAY type must be
empty, as in the following example:

7 = ARRAY{INT,100} «CREATE();

RECORDs and ARRAYs are instances of mutable
data, where individual components of the construc-
tion may be updated by program execution. The tag
field of the ONEOF constructor is immutable. Newly
created instances of mutable data are accessed
through an indirect reference.

Expressions. As in other languages, ADAPT expres-
sions are either operands or applications of allowa-
ble operators to operands. Operands may be literals
or variables (which may be simple identifiers or
selections from instances of constructor types).
When an operand object is created, it persists as
long as it is referenced in the program. Explicit
deallocation is not allowed. This is an object-
oriented model of data. There are no dangling
references in ADAPT, as there are in PL/1 or Pascal.
Operators are either external- or encapsulated-
function invocations, or they are either arithmetic
or relational infix operators. Encapsulated functions
are referred to by compound names, as in the
following examples:

= QUEUE*PUT(MYQUEUE ,QUEUESGET (HISQUEUE) ) ;
= X+STACK{INT}eTOP(MYSTK);

Y
z
Statements. ADAPT has conditional statements
(IF..THEN... and IF.. THEN...ELSE...), loop statements
(DO WHILE... and DO UNTIL...), a compound state-
ment (DO..END), and a SELECT statement. These
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behave as they do in PL/I. A LEAVE statement
differs from PL/I. In ADAPT a LEAVE statement
terminates execution of the enclosing loop (DO
WHILE... or DO UNTIL...), whereas in PL/I this may
also be used to terminate execution of an enclosing
compound (DO..END). ADAPT provides an assign-
ment statement, RETURN statement, and constructs
for function and procedure invocations. There is no
GO TO statement.

An EQUATE statement in ADAPT establishes a corre-

spondence between an identifier and either a literal
or a type specification. (The const and type declara-

When an operand object is created,
it persists as long as it is referenced
in the program.

tions of Pascal are similar to an EQUATE statement.)
In PL/1, similar effects require the use of the PL/I
Preprocessor. EQUATE is used in the following
example:

éQUATE SLOGAN "NOW IS THE TIME";
EQUATE REC RECORD{NAME:STRING,FLAG:BOOL};

Finally, ADAPT has a declaration statement that has
the same syntax as PL/I but can also be used to
declare variables of user-defined data types, as
shown in the following examples:

DECLARE STR STRING;  /* Declares STR to be an unbounded STRING */

DCL ST CHAR{10}; /* Declares ST to be a fixed length */
/* string of length 10 */
DCL STK MY_STACK{INT} /* Declares STK to be a user defined */
/* data type construction */

Procedures. ADAPT procedures have a syntax simi-
lar to PL/I, with the difference that a procedure
header in ADAPT has the following form:

proc-name : PROC (sl:tl,...,sn:tn);
Here, the types of the parameters are specified

in-line and are thus similar to Pascal. A major
semantic difference between ADAPT procedures and
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those of conventional languages is that ADAPT
parameters can be of a type that is user-defined, in
addition to the primitive data types of the lan-
guage.

Capsules. Capsules are implementations of user-
defined data types, which we illustrate by the
following example for complex integers:

COMPLEX: CAPSULE EXPORTS (CREATE,ADD);
EQUATE REP RECORD{RE:INT,IM:INT};

CREATE: PROC {X:INT,Y:INT) RETURNS (*);
RETURN(REP*CREATE(RE:X,IM:Y));
END CREATE;

ADD: PROC (X:*,Y:*) RETURNS (*);
RETURN(REPsCREATE(RE:X.RE+Y.RE,IM:X. IM+Y . IM)};
END ADD;

END COMPLEX;

The first line is the header, which defines COMPLEX
as a capsule, and defines CREATE and ADD as names
of operations (encapsulated procedures) to be
exported (i.e., made visible outside the capsule).
The second line (i.e., the EQUATE REP statement)
defines the internal data representation of the cap-
sule to be a record with two fields, RE and IM, both
of type INT.

The CREATE procedure has two parameters of type
INT, which are the components of the complex
number to be created. The asterisk (*) in the header
indicates that a complex number is to be returned as
the result of invoking the CREATE procedure, but
that the object produced inside the procedure is a
record (i.e., the REP object). Therefore, the argu-
ment of the RETURN statement is a record created
with its fields initialized by the values of the argu-
ments X and Y. The asterisk in a RETURNS clause
represents a change of interpretation from concrete
representation (REP) to abstract representation
(COMPLEX).

The ADD procedure has two parameters with the
asterisk notation. This indicates that they are con-
sidered to be complex numbers outside of the proce-
dure and records inside the procedure. The RETURN
statement, therefore, creates a record and initializes
its fields with the sums of the components of the
arguments to the procedure. Here in a parameter
position, the asterisk represents a change of inter-
pretation from the abstract to the concrete.

Iterators. An iterator is a module that implements a
form of control abstraction. It allows the designer to
hide the details of sequencing through an aggregate
data abstraction by concealing the representation of
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the abstraction and the sequencing algorithm. Like
procedures, iterators may be encapsulated within a
data abstraction, or they may exist as an abstraction
in their own right. An iterator produces the ele-
ments of the aggregate object one at a time. It
therefore must retain state information to produce
the next element when required. The following
example illustrates an iterator module:

ONE_TO_N: ITERATOR (N:INT) YIELDS (INT);
DCL I INT;
1=1,
DO WHILE (I<=N);
YIELD(I);
I=1+1;

END;
END ONE_TO_N;

This iterator produces the integers from 1 to N,
where N is the argument supplied to the iterator
when it is invoked. An iterator is invoked using a
FOR statement, as follows:

DCL A ARRAY{INT,103};

FOR J:INT IN ONE_TO_N(10);
A(J) = 0;

END;

This initializes all the elements of A to 0.
The External Structure language

Systems are described by use of the External Struc-
ture language. In this language, a system is a
collection of modules and their allowable intercon-
nections. The definition of a module includes the
name of each interface (entry point) to the module,
as well as the types of the parameters and return
value for the interface (a functional type).

A module in an External Structure is viewed as an
abstract entity. It is only by means of ADAPT
specifications, as discussed in the previous section,
that concrete details about a module are given.
Modules may be procedures, iterators, or data
types. For procedures and iterators, the module
interface definition is the functional type of the
module. For these modules, there is only one inter-
face. For example, the integer MAX function is
described as follows:

MAX(INT,INT) -> INT

Procedures are not required to have a return value,
and their functional type specification has abbre-
viated syntax. A WRITE procedure to transmit a
STRING to a printer has the following syntax:

WRITE(STRING)
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ITRAVERSE, an iterator for a list of integers, is
defined as follows:

ITRAVERSE ITERATOR(LIST{INT}) => INT

When the module is a data type, it is described by a
set of operators, that is, by encapsulated procedures

Systems are described by use of the
External Structure language.

and iterators. This set is called the DEFINES list for
the module. A data type MESSAGE_QUEUE, where
MESSAGE is another data type, has the following
specification:

TYPE MESSAGE_QUEUE
DEFINES
( CREATE () -> MESSAGE_QUEUE
GET (MESSAGE_QUEUE) -> MESSAGE
PUT (MESSAGE_QUEUE ,MESSAGE )
IS_EMPTY (MESSAGE_QUEUE) ->» BOOL )

In addition to the interface definitions, the depen-
dencies of the module are listed and refer to the
modules which are used (callable) by the module
being described. This list is called a USING list. As
an example, if module TAB requires a LIST of GABs,
the INPUT_STACK facility, and the MES-
SAGE_QUEUE, this is written as follows:

TYPE TAB
DEFINES
(

USING
( LIST{GAB}
INPUT_STACK
MESSAGE_QUEUE )

Although USING lists are required for the compila-
tion of a module, they can be deferred or abbre-
viated at the early stages of design. This allows the
designer to defer representation decisions and
allows the module specification to guide the system
specification.

The External Structure for a system consists of a set
of descriptions of this form for all modules in the
system. This is used when compiling an ADAPT
source module, which is said to be compiled with
respect to a particular External Structure.

IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983




Data types may be generic. In this case, they take
other types as parameters, as illustrated by the
following notation:

namel f{name2, ... }

This notation represents the instantiation of a ge-
neric data type. The notation further represents a
binding of the generic data type with its constituent
data types, as illustrated by the following exam-
ples:

SET{INT}
SET{TABLE}
SET{TREE{STRING}}

(set of integers),
(set of tables),
(set of trees of strings).

When processing a module specification, the trans-
lator reads the External Structure and the ADAPT

When processing a module
specification, the translator reads
the External Structure and the
ADAPT source module.

source module. The translator verifies that all
source module references are consistent with Exter-
nal Structure specifications and other declarations
within the module. At the same time, the code
generator produces appropriate target language
source code. Code generation also exploits the
External Structure because the target language
descriptions of the run-time environment are
adapted from the appropriate descriptions in the
External Structure. Figure 1 shows the components
and interrelationships of ADAPT.

External Structure graphs are an additional output
that reduces each module to a simple ““black box”
and displays the interdependences of modules in a
graphic form. An example of an External Structure
graph for a small system is given in Figure 2.

Examples

Module design. We now present the specifications
for SET and SEQ, two abstractions derived from the
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built-in constructors of PDL.® PDL was originally a
procedural pseudo-code language to which data
abstractions were later added. SET and SEQ, as well
as STACK, LIST, and QUEUE, are built-in abstrac-
tions of PDL.

First, we give ADAPT External Structure specifica-
tions for SET and SEQ:

TYPE SET{T:TYPE}
WHERE (T HAS (EQ(T,T) -> BOOL) )

DEFINES
( CREATE () -> SET{T}
INSERT  (SET{T},T)
DELETE  (SETIT},T)
EACH ITER(SET{T}) =>T
EMPTY  (SET{T}) -> BOOL )
USING
( FLEX BOOL )
TYPE SEQ{T:TYPE}
DEFINES
( CREATE () -> SEQIT}
RESET  (SEQ{T})
READ (SEQ(T}) -> T
WRITE  (SEQ{T},T)
EMPTY  (SEQ{T}) -> BOOL )
USING
( FLEX BOOL )

We now present the ADAPT module specification
source for SET:

SET:
CAPSULE{T:TYPE}
EXPORTS (CREATE,INSERT,DELETE,EACH,EMPTY)
WHERE T HAS (EQ PROC (T,T) RETURNS (BOOL));
EQUATE REP RECORD{SIZE:INT,ELT:FLEX{T}};

SET is defined as a generic type (capsule) with one
type parameter. The EXPORTS list contains the
names of the operations that are exported (made
visible) outside the capsule. The WHERE clause
requires that the type parameter T have an opera-
tion EQ that can test the equality of two T objects.
The REP declaration defines a RECORD as the
internal (concrete) representation of the capsule.
This declaration has a SIZE field for the current size
of the set and an ELT field for the set elements. ELT
is of type FLEX, an unbounded array.

CREATE:
PROC () RETURNS (*);
RETURN(REP*CREATE(SIZE:0,ELT:FLEX{T}*CREATE()));
END CREATE;

The INSERT procedure is illustrated by the follow-
ing example:

INSERT:
PROC (X:*,Y:T);
DCL I INT;
EQUATE F FLEX{T};
DCL Z F4
7= X.ELT;
I1=1
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Figure 1 Components and interrelationships of ADAPT
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DO WHILE (I<=X.SIZE);
IF TeEQ(FeREF(Z,1),Y) THEN
RETURN;
I = 1+1;
END;

IF TeEQ(Z(I),Y) THEN

X.SIZE = X.SIZE+1;
CALL FeUPDATE(Z,X.SIZE,Y); Z(X.SIZE) = ¥;

CALL FeREF(Z,X.SIZE,Y);

END INSERT;

The first underlines indicate that Z(I) originally
appeared in place of F-REF(Z,]) and caused a type
diagnostic. The second underlines indicate that
Z(X.SIZE)=Y originally appeared and caused the
same diagnostic. However, when the statement
CALL F-REF(Z,X.SIZE,Y) is substituted, another type
diagnostic occurs.
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COMPILER
(PL/1)

INTERFACE

OBJECT
TEXT ENVIRONMENT
TEXT

LOADER

EXECUTING
ADAPT
PRODUCED
SYSTEM

DELETE:

PROC (X:*,Y:T);
OCL T INT,
EQUATE F FLEX{T};
DCL Z F;

7 = X.ELT;
1=1;

DO WHILE (I<=X.SIZE);
IF TeEQ(FeREF(Z,1),Y) THEN
DO,
CALL FeUPDATE(Z,I,FeREF(Z,X.SIZE));
X.SIZE = X.SIZE-1;
RETURN;
END;

END;
END DELETE;
In the following example, EACH is defined as an

iterator that produces an object of type T. The
statement YIELD directs the system to transfer
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control to the environment that invokes EACH with
the result of the expression following YIELD as the
produced object:

EACH:
ITER (X:*) YIELDS (T);
OCL I INT;
EQUATE F FLEX{T};
DCL Z F;
7 = X.ELT;
I1=1;

DO WHILE (I<=X.SIZE);
YIELD(FeREF(Z,1));
I = 141,
END;
END EACH;

The EMPTY procedure is illustrated by the following
example:

EMPTY:
PROC (X:*) RETURNS (BOOL);
RETURN(X.SIZE=0);
END EMPTY;

END SET;

This ends the definition of SET. We now present the
module definition for sequence (SEQ) as follows:

SEQ:

CAPSULE {T:TYPE}
EXPORTS{CREATE ,RESET ,READ ,WRITE ,EMPTY);
EQUATE REP RECORD{PTR:INT,BDY:INT,ELT:FLEX{T} 13

CREATE:
PROC () RETURNS (*);
RETURN{(REPsCREATE(PTR: 0,
BDY: 0,
ELT: FLEX{T}*CREATE()));
END CREATE;

RESET:
PROC (X:*);
X.PTR = 03
END RESET;

READ:

PROC (X:*) RETURNS (T);
EQUATE F FLEX{T};
DCL Z F;
IF X.PTR=X.BDY THEN

CALL ERROR("EOF"};

7 = X.ELT;
X.PTR = X.PTR+1;
RETURN(FsREF(7,X.PTR)};

END READ;

PROC (X:*);

RETURN(X.PTR);

The first underlines indicate that the RETURNS(T)
did not appear in the original program and caused a
diagnostic. The return type has been stated cor-
rectly in the External Structure. The second under-
lines indicate that RETURN(X.PTR) appears in the
original program and has caused a type diagnostic.
The READ operation of SEQ in the External Struc-
ture calls for a return type of T, whereas the
expression X.PTR has the type INT.

WRITE:
PROC (X:*,Y:T);
EQUATE F FLEX({T};
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Figure 2 Example of an External Structure graph for a
small system
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CALL FeUPDATE(Z,X.PTR,Y);
X.BDY = X.PTR;
END WRITE;

EMPTY:
PROC (X:*) RETURNS (BOOL);
RETURN{X.BDY=0);
END EMPTY;

END SEQ;

System design. In the following section, we show an
example of the design of the complete system of a
small text editor in ADAPT. We cannot include the
definition of the entire editor because the original is
about 250 lines. Shown here, however, are one
procedure and three data types extracted from this
system’s External Structure.

EDITOR (INSTREAM{STRING} ,DISPLAY,SCREEN)

USING
( INSTREAM{STRING} DISPLAY  SCREEN
EDIT_ENVIRONMENT FILE LINE
COMMAND  ANINTD FILEID
NULL BOOL INT CHAR STRING

ARRAY {STRING,20} )

TYPE FILE
DEFINES
( /* File Maniputation */
CREATE  (FILEID) -> FILE
CURRENT  (FILE) -> ONEOF {NORM:LINE,EMPTY:NULL}
INPUT (FILE,INSTREAM{STRING}) -> FILE
INSERT ,REPLACE
(FILE,LINE) -> FILE
DELETE  (FILE,ONEOF {ANINT:INT,DEFAULT:NULL}) -> FILE
CHANGE ~ (FILE,STRING,STRING,
ONEQF {ANINT: INT ,DEFAULT:NULL},
ONEQF {ANINT: INT,DEFAULT:NULL}) -> FILE

/* Qther Operators */

SETID (FILE,FILEID) -> FILE

GETID (FILE) -> FILEID

RENUM (FILE) -> FILE

TYPEQUT (FILE,ONEOF{ANINT:INT,DEFAULT:NULL},IO)
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/* Positioning Operators */
T0P,BOTTOM,SCROLL ,SCROLL_UP
(FILE) -> FILE
GOUP ,GODOWN , POINT
(FILE,ONEOF {ANINT: INT ,DEFAULT:NULL}) -> FILE
FIND,LOCATE
(FILE,STRING) -> FILE )

USING
( DLIST{LINE} LINE FILEID 10
INSTREAM{STRING} ARRAY {STRING,22}
NULL INT 800L STRING CHAR )
TYPE LINE
DEFINES
( CREATE (STRING) -> LINE

PREFIX,SUFFIX(LINE,STRING) -> LINE
BEFORE ,AFTER (LINE,STRING,STRING) -> LINE

ALTER (LINE,CHAR{1} ,CHAR{1},
ONEOF {ANINT : INT ,DEFAULT:NULL}) -> LINE
CHANGE (LINE,STRING,STRING,

ONEOF fANINT: INT,DEFAULT:NULL}) -> LINE
ISIN,INITIAL , TERMINAL
(LINE,STRING) -> BOOL

CURRENT (LINE} -> STRING )
USING
{ NULL BOOL INT STRING CHAR{1} )
TYPE DLIST {T:TYPE}
DEFINES
( CREATE () -> DLIST(T}

BEFORE ,AFTER ,REPLACE

(DLIST{T},T) -> DLIST(T}
PREV,SUCC,START,FINISH

(DLIST{T}} -> DLIST{T}
ATSTART ,ATFINISH

(DLIST{T}) -> BOOL

DELETE (DLIST{T}) -> DLIST{T}
0BJ (DLIST{T})} -> ONEOF{NORM:T,EMPTY:NULL}
ISEMPTY (DLIST{T}} -> BOOL )
USING
( NULL BOOL )

EDITOR is a procedure with no return value, a main
procedure that acts by causing certain side effects.
The FILE data type contains operators for CREATE,
INPUT, DELETE, and LOCATE among others. The
informal semantics of these operators are as fol-
lows:

CREATE. Take a FILEID as a parameter and return a
FILE, initialized to be empty.

INPUT. Take as parameters a FILE and an
INSTREAM (of STRINGs). Successively read
STRINGs from the INSTREAM, inserting them into
the FILE (at the current location) as encountered.
Continue this process until an empty STRING is
encountered in the INSTREAM.

DELETE. Take as parameters a FILE and a ONEOF
{ANINT:INT,DEFAULT:NULL}, either an integer or
the default. If default, delete one line from the FILE
at current location. If an INT with value n, delete n
lines from the FILE, starting at the current location.

LOCATE. Take as parameters a FILE and a STRING.
Starting with the current location, begin advancing
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in the FILE until a LINE is encountered that contains
the STRING.

In a software production environment, it is appro-
priate to add the text of these informal semantics to
the External Structure source as in-line comments.

The two other data types defined in this External
Structure are LINE and DLIST, which is a generic

System design involves system
decomposition and component and
module specification.

user-defined data type. LINE is the abstraction for
individual lines of the aggregate FILE. As can be
seen, operations are included for intra-LINE manip-
ulation, each of which changes a LINE in one way or
another. DLIST, a shortening of Doubly Linked List,
is an abstraction that is used by the FILE data type.
FILE is to have an internal representation that
includes a doubly linked list of LINEs, that is, a
DLIST{LINE}.

Associated with the system description of the EDI-
TOR are the implementation specifications for each
module of the system. These specifications are
written in the ADAPT language. A little later in this
paper we give a portion of the FILE specification.

The USING lists for these modules may seem rather
long. When represented graphically, the EDITOR
maps into a multiplicity of interconnections, the
graph of which we call “bushy.”” The graph for this
system, which is shown in Figure 3, represents the
most abstract form of an External Structure. The
interface descriptions, both the functional types of
procedures and the DEFINES lists for user-defined
types, have all been left out. Each module has been
reduced to a box. Only the USING lists for each
module are displayed. Figure 3 is the External
Structure graph for the entire editor. The reader
can see all the required modules of the EDITOR and
obtain an idea of what is missing from the descrip-
tion previously given.
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Figure 3 Graph of the External Structure of an example editor
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FILE:
CAPSULE
EXPORTS
( CREATE,INPUT,INSERT ,REPLACE ,GETFILE ,DELETE ,ALTER,
CHANGE ,OVERLAY ,CURRENT , FRAME ,SETID,GETID,RENUM,TYPEQUT,
TOP,BOTTOM,SCROLL ,SCROLL_UP,GOUP ,GODOWN ,POINT ,FIND,LOCATE
EQUATE LINE ONEOF {ANINT:INT,DEFAULT:NULL};
EQUATE DL DLIST{LINE};
EQUATE REP RECORD {NAME:FILEID,DATA:DL};

CREATE: :
PROC (X:FILEID) RETURNS (*);
RETURN (REPeCREATE (NAME : X,DATA:DL*CREATE()));
END;

INPUT:

PROC (X:FILE,Y:INSTREAM{STRING}) RETURNS (FILE);
EQUATE INSTR INSTREAM{STRING};
DCL TSTRING STRING;

DCL TLINE LINE;

TSTRING = INSTReNEXT(Y);

TLINE = LINE*CREATE{TSTRING);

DO WHILE (TSTRING-="");
X = FILEINSERT(X,TLINE);
TSTRING = INSTReNEXT(Y);
TLINE = LINE<CREATE(TSTRING);

END;

RETURN (X);

END;

DELETE:
PROC {X:+*,Y:ONEQF {ANINT: INT ,DEFAULT:NULL}) RETURNS (*);
DCL COUNT INT;
SELECT TAG (Y);
WHEN (ANINT)  COUNT = Y5
WHEN (DEFAULT) COUNT = 1;
END; .

DO WHILE (COUNT>0);
X.DATA = DLeDELETE(X.
COUNT = COUNT-1;

END;

RETURN (X);

END;

LOCATE:
PROC (X:FILE,Y:STRING) RETURNS (FILE);
EQUATE INT_D ONEOF {ANINT:INT,DEFAULT:NULL};
DCL TLINE ONEOF {NORM:LINE,EMPTY:NULL};
DCL FOUND BOOL;
DCL AONE INT_D;
TLINE = FILECURRENT(X);
FOUND = FALSE;
AONE = INT_DeCREATE(ANINT:1);

DO UNTIL (FOUND);
SELECT TAG (TLINE);
WHEN (NORM)
IF LINESISIN(TLINE,Y) THEN
FOUND = TRUE;
WHEN (EMPTY)
FOUND = TRUE;

END;
IF —FOUND THEN

X = FILE~GODOWN(X,AONE);
TLINE = FILEsCURRENT(X);
END;
END;
RETURN (X);
END;

END;

As previously described, the EQUATE for the name
REP defines the internal representation for objects
of the given user-defined type, and the asterisk (*) is
used to refer to a change of interpretation in param-
eter lists and RETURNS clauses. Note that some
FILE procedures do not change interpretation for
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FILE objects but depend on other FILE operators to
do the job.

ADAPT methodology

Software modification is costly in time and
resources, and it may also be frustrating and unre-
warding to those who do the work. New design
approaches can improve this situation. Hiding data
representations during design, strong type checking
during design, and automated control of system
designs are key to ameliorating this issue.

Current practice. System design involves system
decomposition and component and module specifi-
cation. Components are themselves collections of
modules. System decomposition today is often an
informal process, with the various pieces and com-
ponents of a system being referred to by name and
described using natural language. Interconnections
between components are seldom controlled or
restricted.

Interface specifications may be recorded in many
forms, and the system being built is not generally
checked against these definitions. For the most part,
the emphasis in this area has been on after-the-fact
documentation of module interfaces.

Module specification techniques in current practice
include flowcharting, HIPO diagrams, various
pseudo-code notations, and a number of structured
stepwise refinement strategies.”’ Module specifica-
tion in its most detailed form is commonly called
programming and is carried out by use of a pro-
gramming language. Programming languages to-
day allow unsafe data accesses, unchecked module
interfaces, and unrestricted intermodule connec-
tions or coupling. The use of global variables is a
generally accepted practice. A decision made in one
module of a software system often has unforeseen
and sometimes undesirable consequences in mod-
ules far removed from the point where the decision
was applied.

Data specifications are normally recorded by giving
explicit storage maps, with the result of encouraging
premature implementation of system components.
This greatly reduces the flexibility needed in an
evolving systems design.

In addition, designs can have logical inconsistencies

that may not be discovered until late in the develop-
ment cycle. The most astute and knowledgeable
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designer cannot foresee all the consequences of his
decisions in a complex system. Discovery of design
errors may occur after significant effort has been
expended in implementation. The retrofitting of
corrections to these errors is often expensive.

Improving current practice. The ADAPT approach

improves this picture of design in significant ways.
Several improvements occur in both the External

The most astute and knowledgeable
designer cannot foresee all the
consequences of his decisions in a
complex system.

Structure and the ADAPT specification language.
(1) Executable semantics are provided for designs.
(2) Data types may be defined by a user, and (3)
generic facilities can improve reusability.

In the area of module specification, there are four
primary improvements involved: (1) Incorrect
accesses to data are eliminated; (2) Module cou-
pling is limited; (3) Specifications are separated
from representations; and (4) Hidden side effects
due to global variables are eliminated.

Regarding system specification, four kinds of
improvements have also been made: (1) Program-
ming in the large is used for system specification;
(2) Compliance of the system specification with
module specifications is ensured; (3) A persistent
abstract view of a system is promoted; and (4)
Separate compilations of modules are handled.

Details on these changes in the design picture are
given in the three sections that follow.

Specification improvements in general
Executable semantics for design. ADAPT has been

constructed to show designers the consequences of
their designs. For those associated with system
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programming, it seems that the natural way to do
this is to execute the designs, that is, to generate the
outputs associated with particular inputs. In ADAPT,
this is accomplished by translating ADAPT source
for the External Structure and module definitions
into PL/I code that can be compiled and executed.

User-defined types. Current programming lan-
guages provide data types biased toward particular
machine architecture, whereas designers should be
developing solutions to problems in terms of data
types that are relevant to particular applications.
Therefore, ADAPT allows designers to specify their
own data types.

Full generic capability. A generic type is a user-
defined type constructor. Thus a generic type is a
data type that requires other data types as parame-
ters to complete its definitions. An example of a
generic type is a SEQUENCE of elements, where the
type of an element is undetermined until the
sequence is declared or instantiated. Full generic
facilities are provided in ADAPT, not only for data
types but also for procedures and iterators.®

The use of generic facilities supports the production
and combination of reusable software components.’
The generic facilities are appropriate for customiz-
ing and tailoring parts from generalized routines.

Module specification improvements

Eliminating incorrect accesses to data. The types of
all variables and parameters must be declared in
ADAPT. The compiler checks for type agreement
between formal and actual parameters in procedure
calls, between both sides of an assignment state-
ment, etc. This type checking finds a substantial
number of errors at compile time that normally
would not be detected until run time.

Changes in module coupling. One of the major
problems encountered in the design and develop-
ment of large systems is that modules interact on
global data in unexpected ways. The key to success-
ful program structuring is that of maximizing mod-
ule independence.'® This principle is not often fol-
lowed in the design of large systems, where global
control blocks are often referenced by hundreds of
modules. Reference to the various kinds of module
coupling can be found in Reference 10. ADAPT
specifications allow for data-coupled modules. This
eliminates undesirable dependencies between other-
wise unrelated modules. :
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Figure 4 Dynamics of the ADAPT design process
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Separation of specification from representation. An
important principle of system structuring is that of
information hiding, a design technique for decom-
posing systems into highly independent modules.'
A way of characterizing information hiding is to say
that every module hides a design secret, which is
usually the format of a particular data structure.
The use of data abstraction in the design process
causes a strong separation between the specification
and implementation of individual modules. The
data representation for these modules is hidden
within their implementations. Only the specifica-
tion (allowable accesses) is visible. Changes within
a module can be made with minimum impact to
other parts of the system.

Restricted side effects. Unrestricted side effects can
affect module independence and cause changes to
program objects that are difficult to detect. ADAPT
permits modules to communicate only by passing
parameters. There are no global variables in ADAPT.
Side effects can be produced only by updating a
data object that is shared as a parameter between
modules.

System specification improvements

Programming in the large. ADAPT identifies new
steps by which a designer can cause his conception
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to evolve to a correct design. This evolution is
something like the debugging that programmers
currently do. In ADAPT, through use of the External
Structure, design decisions are expressed in a
machinable notation. In such a notation, a designer
specifies a system decomposition by defining the

The notation and tools used for the
early stage of design can persist
through the life cycle of the system.

system at hand as a set of modules. Module inter-
connections and interface definitions are added.
The designer also describes the activities that each
module is to perform. As he expands the design, the
designer may change the system structure, thereby
altering interconnections or interfaces. At this
abstract level of design, the goal is not to produce
the best algorithm, but to achieve the right overall
structure of the system. Programming in the large
for ADAPT involves definition of module decomposi-
tion and the interconnections and interfaces for
each module.

Ensuring the compliance of the system specification.
System decomposition (programming in the large)
1s an intellectual activity distinct from module spec-
ification, that is, programming in the small or
simply programming.'>"* Since software design
involves detailed module specification as well as
in-the-large evaluation of system structure, natural
support for the design process should reflect this
dichotomy of concerns.

In ADAPT, we have a separate language for descrip-
tions in each domain, and we have coupled these
descriptions. The ADAPT tools work to keep these
two perspectives in correct alignment with each
other. Thus we have tools for effectively managing
the coupling of a system structure with a set of
independent and individually produced modules.

Establishing a persistent abstract view of a system.
Designs should be kept up to date. As system
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implementation, augmentation, and debugging pro-
ceed, fundamental design documentation should be
forced into alignment with module programming
and changes, as suggested schematically in Figure
4. This process may be compared with the current or
traditional process, as suggested in Figure 5. In
Figures 4 and 5, the solid lines indicate mandatory
update steps, and the broken lines indicate optional
update steps.

With the ADAPT package, maintenance of a persis-
tent system description controls and guides this
objective. Module descriptions developed within a
system are tightly coupled to a system description.
The notation and tools used for the early stage of
design can persist through the life cycle of the
system.

Since the External Structure supplies a persistent
view of an entire system, it may be used as a project
control facility. It is the repository of design infor-
mation at different stages in the design process, and
can be used to provide system definition support for
programmers and development groups.

Separate compilation. The separate compilation of
individual modules is a problem that is common to
all compilers. This is addressed in ADAPT by use of
the External Structure. We compile individual
modules with respect to the system description. As
long as the interface to a module and its intercon-
nections do not change, the system description can
be relied upon to supply all information needed
about that module, when compiling other modules.

Experience in using ADAPT

The ADAPT tools are intended to describe and
formalize the work that designers do today without
tools. The tools capture a description of various
activities of system design and the steps of the
design process. They provide a terminology and
notation for automating system descriptions used in
this process. Even so, the use of the ADAPT package
requires practices that may be different from the
current practices of designers and programmers to
whom these tools are new. We have identified
certain approaches that describe practices appropri-
ate for using ADAPT.

As in current practice, the decomposition of a
system should reflect the ideas around which the
designer’s innovation is described. This is the key-
stone of clean design. Modules should be cohesive
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and limit their coupling to other modules. The
addition of data and iterator abstractions extends
this notion of good decomposition into new domains.
In addition, ADAPT’s controlled coupling, strong
type checking, and generic facilities change the
designer’s outlook in important ways by instituting
the following requirements:

* A designer should view his system as the collec-
tion of modules of which the system is composed.
Thus we say that the system has been decomposed
into a set of modules or components.

e The interface for a module must be completely
defined before the design is complete and testa-
ble.

¢ The interconnections for a system must be defined
before the design is complete.

¢ A system should be constructed with minimal
interconnection density. Redundant or irrelevant
accesses to modules should be eliminated.

e Cycles in the interconnection logic should be
minimized. Cycles should be analyzed carefully;
these situations can represent faulty system defi-
nition.

Other workers in the field of software engineer-

ing'®'*!% have studied methodologies that govern the

Figure 5 Current or traditional dynamics of the design
process
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Figure 6 Iterative refinement in ADAPT

A SYSTEM A SYSTEM

ABSTRACT
VIEW OF
ASYSTEM |

CONCRETE
VIEW OF
AMODULE

CONCRETE
VIEW OF
A MODULE

TIME
—_—>rr

construction of the USING relation for a system.
Parnas'* points out that cycles in the USING relation
are the source of many difficulties. These situations
can represent cyclic definition.'® There are pro-
grams, however, that are naturally described with
cycles in the USING relation. In redesign efforts, this
has been an inevitable consequence of transliterat-
ing data structures where back pointers were used.
In our experience, however, we were able to elimi-
nate cycles with a benefit to the design.

Iterative model. In using the iterative model, a user
successively refines his definition of a system by
shifting his attention alternatively from a high-level
abstract notion of his system (correlated with the
External Structure) to a low-level concrete view of
his system (correlated with the ADAPT language).
Figure 6 shows this process. The iterative model also
addresses our original research objective of dealing
with modifiability. Tracing most modifiability
problems to a lack of coordination between a design
specification and a semantic specification, the itera-
tive model supplies this coordination. Even very late
in the life cycle of a software product, there is an
iterative model used in support of product study,
upgrades, and modifications.

Experienced users of ADAPT have reported the
following approaches to using ADAPT: (1) They
maintain two perspectives—the External Structure
domain and the ADAPT domain; (2) They avoid
preoccupation with either domain, filling in details
as needed in the domain being studied; and (3) They
alternate frequently between domains. This is our
iterative refinement, which occurs as an interaction
between the module interconnection language and
the module specification language.

Idea-dependency model. Our most abstract experi-
ence in using the ADAPT tools has been the idea-
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dependency model.'® Considering the design of a

system strictly at the first level of decomposition, a
solution is decomposed into a set of interrelated
ideas, which are either operational or data ideas.
For example, in designing an EDITOR, the ideas of
FILE, LINE, STRING, and INTERPRETER all seem
naturally associated with the concept of EDITOR.
First, a user lists all ideas associated with the
problem. Then, the internal dependencies of these
ideas are indicated. An idea dependency A --> B
(i.e., A depends upon B) is indicated whenever the
definition of the idea A must make use of knowledge
of the idea B. In the EDITOR example, we have FILE
--> LINE, because the idea FILE is naturally thought
of as an aggregate of the idea LINE.

In our experience with this model, users are quickly
able to discuss the potential dependencies of ideas.
Something they do not realize at first is how easily
these dependencies can form the foundation of a
system description. The ideas are mapped into an
External. Structure as data abstractions, proce-
dures, or iterators. The dependencies, of course,
become an initial USING relation.

The ADAPT design process. With our approach, we
have been constantly reminded of system develop-
ment models used by individuals in industry. For
example, the simplistic view that design is most
naturally a top-down activity does not correspond to
the common practice of design that involves exten-
sions or elaborations of an existing system. Here
there are natural cycles of incorporating lower-level
material into a design. The cyclic nature of the
design process is illustrated in Figure 7.

In ADAPT, we have been able to isolate the various
tasks that go into projecting a design into a system.
Using ADAPT, the steps that coordinate abstract
descriptions of a system with a concrete realization
are mandatory, as suggested in Figure 4.

The dynamics of these design methodologies are not
mutually independent nor do they exclude other
possible models. They do, however, provide useful
and perhaps new ways to think about programming
and systems design. We feel that users will find
these descriptions suited to the tools that we have
described.

Optimization and related issues

Design tradeoffs. Experience with ADAPT allows us
to evaluate certain pragmatic questions. Two areas

IBM SYSTEMS JOURNAL, VOL 22, NO 3, 1983




of special concern are the following: (1) the per-
formance of generated code, and (2) our ability to
integrate this code with programs produced by
other processes. Since we have tools for supporting
the ADAPT model of software design, we can analyze
the advantages and problems that occur.

There is a tradeoff to be acknowledged between the
distinct goals of generating high-performance code
as opposed to production of system designs that are
easy to maintain and can use reusable components.
We want to preserve as much of the original design

Since ADAPT does not allow global
variables, procedure calls could
require long parameter lists.

of a system as is reasonable, while adjusting selec-
tively those areas where the greatest improvement is
realized.

Properties of ADAPT-generated code. By compari-
son with conventional code, ADAPT code tends to
have more procedure calls. Some of these proce-
dures are small and provide trivial accesses to fields
of abstract data. In conventional code, these proce-
dures would be explicit in-line references—efti-
cient, but difficult to modify or reuse.

ADAPT data structures usually develop into rela-
tively deep hierarchical structures with a high fre-
quency of indirect references to other hierarchical
data structures. By comparison, conventional data
structures have a flatter structure (that is, fewer
data blocks with more component fields) and
require fewer pointer-chasing operations.

Since ADAPT does not allow global variables, proce-
dure calls could require long parameter lists. This is
a consequence in current programming languages.
However, we have not observed this when using
ADAPT. Instead of large collections of independent
data items being passed around as parameters, data
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Figure 7 Cyclic nature of the design process in general
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items tend to become organized into hierarchically
structured data types.

Analysis tools. Optimization can be inhibited by a
heavy use of procedure calls and indirect data
references. What does this cost in overall terms?
Our approach is to measure the cost with tools
designed for that purpose. Our data are limited, but
two things are clear: (1) For many purposes such as
design verification and low-demand applications,
the use of directly generated ADAPT code is accept-
able; and (2) Performance analysis is an effective
method for identifying the appropriate sections of a
system for optimization. With appropriate analyti-
cal tools, we can identify where significant improve-
ment can be accomplished.

Optimization strategy. Current practice encourages
the uniform optimization of all code, with little
regard to its relative benefits and costs. Preserving
the original system design has a value, and this
value should be weighed against the benefit of
specific optimizations.

In-line expansion of selected procedures can dra-
matically improve performance. As an example, in
one system of 266 procedures, in-line expansion of
13 procedures improved overall system performance
by 42 percent.
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A key problem with in-line expansion is the tradeoff
between performance and maintainability. In-line
expansion of an operator of a data abstraction
requires exposing, in some ways, its otherwise hidden
data representation. Future work with representa-
tion-hiding methodologies should recognize this and
provide tools for the control of such expansions.

Compatibility with existing code. Even though a
system can be written entirely in ADAPT, we must
also be able to work with an immense body of
existing software written in many languages and
designed with other methodologies. As these sys-
tems are modified and enhanced, we have the
opportunity to introduce our new techniques incre-
mentally. To do this requires the interfacing of
ADAPT code with other code. This interfacing
requires two additional mechanisms in the non-
ADAPT code: (1) a more elaborate call facility to
accommodate ADAPT environment requirements,
and (2) a pseudo-data-abstraction facility to allow
accessing existing control blocks. These interface
modules are simply convenient step-across mod-
ules.

Concluding remarks

The Abstract Design And Program Translator
(ADAPT) offers a number of benefits for the con-
struction of reliable software. In the area of abstrac-
tion specifically, data abstraction, as well as some
types of control abstractions, can be conveniently
added to high-level programming with the benefit of
increased expressiveness. Extending abstraction
structures in this way allows for the specification of
entire systems at the abstract level.

The use of automated tools can be propagated in a
natural fashion into some of the more abstract areas
of software system design. Automating and extend-
ing the ideas of programming in the large has
enabled us to discuss meaningfully the viewing of
systems in their entirety.

Both programming in the large and specification
facilities for a broad and useful set of abstractions
(e.g., data, procedural, and iterative) can be sup-
ported by a common execution facility, thereby
allowing designers to test designs as they are being
worked on at the conceptual level. The coupling of
these two specification areas greatly improves sys-
tem modifiability.
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ADAPT solves the problem of synchronizing design
documentation, which is maintained in machine-
readable form, with module specifications during
the iterative refinement of design and throughout
the software life cycle. The External Structure
provides this capability by serving as a repository of
interface design and system decomposition deci-
sions. The ability to execute specifications during
the early stages encourages rapid prototyping and
improves design correctness. The use of strong type
checking during design improves the system specifi-
cation process, and many errors are caught at the
earliest stages of design. The facility for specifica-
tion of generic types and procedures encourages the
definition of generalized abstractions that can be
customized for special cases and permits the con-
struction of reusable software components.

Problems that may be encountered with these
approaches include the education of personnel pre-
viously trained in other approaches, solving per-
formance problems associated with designs ex-
pressed in a very high-level notation, and incorpo-
rating systems designed with tools such as ADAPT
into an environment which has been developed
along other lines. Though these areas have been
addressed as part of our research, there is still much
work to be done.
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