Preface

From the earliest days of computing, the need for
effective software development tools and techniques
has been evident. Today’s vast backlog of applica-
tions represents unrealized significant savings in the
application of computing because of delays in devel-
oping the software. This issue of the /18M Systems
Journal presents tools and techniques that offer
gains in applications development productivity
while at the same time improving the quality of the
product produced by programming and systems
staffs.

In the current practice of producing software, sepa-
rate tools and processes are used in the design phase
and in the development phase. As a result, the
interpretation and translation of design specifica-
tions into executable code leave room for redun-
dancy and are subject to human error. Archibald,
Leavenworth, and Power describe ADAPT, a new
tool allowing for the integration of the design and
development processes. ADAPT provides a single and
consistent development language that can be used to
support the system design and decomposition pro-
cesses as well as the extension of component and
module specifications into executable code.

An additional dimension is added to the integration
of the systems design and programming processes
by Pazel, Malhotra, and Markowitz in their paper,
which describes the programming language EAS-E.
EAS-E provides both procedural and nonprocedural
support for the manipulation of data base and main
storage entities. The language is implemented with
the entity-attribute-set view that uniquely clarifies
data structure presentation.

Without specific guidelines for program module
design and decomposition, programmers may gen-
erate code that is difficult for others to debug and
maintain. Rogers describes a hierarchical architec-

168 Prerace

ture for program design that has improved the
maintainability of programs created at the IBM
Toronto Laboratory. He describes a four-level hier-
archy that can be applied to any program design,
and which, in addition to improving maintaina-
bility, simplifies the design process, resulting in a
shorter learning curve for new programmers.

An effective library system aids the program devel-
opment process by serving as a central repository for
source and object code, thus reducing the probabil-
ity of the existence of multiple incongruous versions
of the same program. The system described by
Prager provides control of update capability
through a “check-out” approach. In addition, the
system offers such unique features as automatic
module recompilation to ensure the integrity of text
and source files.

Programs that automatically generate, execute, and
evaluate test cases offer significant benefits but
have seen limited practical use. Bird and Munoz
describe the state of the art of automatic test case
generation and checking. Their paper also describes
the design and development of test case generation
programs for the PL/I compiler, for a Sort, and for a
Graphic Display Manager. In each case unique
design problems were overcome in the development
of these test case generators. The result of the use of
automatic test case generation can be code that has
been more fully exercised and therefore of a higher
reliability and quality standard than could be
achieved using manual testing procedures.

Although automated testing procedures offer great
promise, manual test and debugging procedures will
predominate for the foreseeable future. Maurer
presents the unique features of an aid developed to
support the development and testing of systems
using the Interactive System Productivity Facility.

IBM SYSTEMS JOURNAL, VOL. 22, NO. 3, 1983




The design considerations presented should serve as
a model for those developing and using similar test
and debugging systems.

In many applications of computing, the reliability of
the product produced by fallible human program-
mers must be assessed. Misra reviews the generally
accepted methods of statistical software reliability
prediction and presents a case study that illustrates
the applicability of one of the techniques. Although
the work is preliminary, the correlations with actual
experience are impressive. Extensions of this work
may be valuable in determining if the reliability of a
software product will be sufficient to meet critical
requirements, and to answer the question: “How
much testing is enough?”

Given that the development process yields a system
or program that functionally meets the user’s
requirements, the next critical hurdle is performance
criteria. In spite of the vast price/performance gains
experienced in our industry, the performance of a
single module or system may be subject to critical
inspection. Power presents a review of the design
criteria for a program that can aid in the identifica-
tion of performance problems: the execution ana-
lyzer. The author starts with a survey of the
approaches used in the development of such tools and
then illustrates his conclusions with specific exam-
ples from his own experience.

Even though the task of program and systems
development is most certainly still properly charac-
terized as an art, it is with the extension of such
tools as described here that the art will come closer
to being science.

The Systems Journal gratefully acknowledges the
participants, contributors, and organizers of the
IBM Programming Productivity Tools Symposium
held in November, 1982, from which many of the
papers presented in this issue have been derived.

John Lacy
Editor

IBM SYSTEMS JOURNAL, VOL. 22, NO. 3, 1983

prerace 169




