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Network  Implementation Language (NIL) is a high- 
level Programming language currently  being  used 
for the implementation of prototype communica- 
tion systems. NIL is designed for writing executa- 
ble  architecture which can  be compiled into effi- 
cient  code for the  different machines and run-time 
environments of a family of communicating prod- 
ucts. NIL’S distinctive features include (1) high- 
level primitive type families supporting constructs 
needed for  concurrent systems, (2) facilities for de- 
composition of a system into modules which can 
be dynamically installed and  interconnected, (3) 
compile-time typestate  checking-a mechanism 
for enhancing language security without incurring 
large execution-time  overhead. 

N etwork Implementation  Language (NIL) is a 
high-level programming  language developed 

by the Distributed  Systems  Software Technology 
(DSST) Group at  IBM’S Thomas J. Watson  Research 
Center.  The language was originally developed to 
implement  experimental  software for new and pro- 
posed communications protocols. The logical details 
of protocol algorithms  had to be  programmed com- 
pletely and  correctly in order to demonstrate  and 
validate the prototypes; also, the  software structure 
and  layering of the prototypes had to be correct to 
ensure  that they could be expanded  into fully func- 
tioning systems.  Taking as a  starting point a  tech- 
nique for the formal specification of protocols,’ the 
DSST Group developed NIL as a  programming  lan- 
guage  that is (1) at  a  suitable level of abstraction for 
communications  architecture specification, (2) suf- 
ficiently general purpose to be suitable for program- 
ming the product-specific functions not defined as 
part of the  architecture, (3) effective for defining 

the  configuration  functions by which  processes 
are  initiated  and  terminated,  (4)  secure  enough to 
support  “open”  layered  systems,  and (5) compila- 
ble into  efficient code  for  complete software sys- 
tems.  The DSST Group  has also  developed  a  com- 
piler  for  executing NIL programs on the  System/ 
370 and is currently using NIL to  produce  the 
software for  some  communications  prototype  sys- 
tems. 

NIL is intended  to  support  generic systems designs 
that  are not “tuned” to any  particular  hardware 
or software execution environment.’ The aim is 
to provide portability not just among  different 
machines  but  among design points. Potentially  this 
characteristic of NIL software offers enormous 
advantages,  particularly in the field of communica- 
tions and  distributed processing. 

For example, in IBM’S Systems  Network  Architec- 
t ~ r e , ~  there  are protocols that must be shared 
between data processing hosts and multiplexor com- 
puters, or between multiplexor computers  and intel- 
ligent workstations. With  the use of conventional 
software  techniques,  the  communications code for 
such a  variety of systems is expensive to design and, 
furthermore, converting design into an implementa- 
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Figure 1 Definition of network routing example problem 
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Figure 2 Example: The message routing problem 
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source  programs would define the architecturally 
required  functions common to  all  implementations 
in the product family,  and would define the  inter- 
faces between those  functions  and  external environ- 
ments. A product implementation would  be gener- 
ated by combining the architecture-defined pro- 
grams with product-specific NIL programs  and by 
compiling them to produce  directly  executable code. 
In this way, both software development costs and 
the  “inertia” of software evolution can be reduced. 

Such  a methodology, while producing the greatest 
payoff in communications  software systems, is also 
likely to be valuable in other  domains, such as 
work-flow management  (“job  entry”) subsystems, 
operator  interfaces,  command  languages,  etc. 

Language design principles 

NIL attempts to meet  its goals by means of the 
following strategies. 

Representation-independent  data  description: Data 
in NIL is manipulated in a way that is completely 
independent of its physical organization  and access. 
The language  semantics exclude assumptions  about 
the representation of data from having an effect on 

Typical NIL systems are composed 
of independent  layers. 

tion requires individuals who are knowledgeable 
both in communications  architecture  and in the 
target  machine  environment.  Since the implementa- 
tions are controlled by distinct  product  organiza- 
tions  and  different  development  teams,  it is 
extremely difficult to improve or extend the proto- 
col algorithm  without forcing major modifications 
on some of the implementations.  When an  architec- 
tural modification is agreed on, products based 
on independent designs will have difficulty in im- 
plementing the modification simultaneously.  This 
leads  to  a profusion of subset  implementations  and 
an obligation to test  all possible combinations. 

These problems can be minimized if the  architec- 
turally defined functions  can be specified as a single 
product-independent  source system developed and 
tested within a  group specializing in communication 
protocols and  interfaces.  Ideally,  a  system of NIL 

the  correctness of a  program. The  particular repre- 
sentation compiled from  a given NIL source pro- 
gram is controlled by the compiler, assisted by 
pragma annotations to the NIL source.  Pragma 
annotations  can be  used by the compiler to choose 
an implementation whose performance best suits 
the design point. Selecting an  alternate implemen- 
tation affects only performance, not the meaning of 
the  program. 

Security: Typical NIL systems are composed of 
independent layers. Each  layer defines interfaces  to 
adjacent  layers while hiding the  internal  data  and 
algorithms  constituting  its  implementation. A sys- 
tem may contain  alternative  implementations of a 

1 12 PARR AND STROM IBM SYSTEMS JOURNAL,  VOL 22. NOS 112. 1983 



single layer  running  concurrently, e.g., X.25, Syn- 
chronous Data Link Control (SDLC), and user- 
defined data link controls. It is a design objective of 
NIL to facilitate  the coding of systems that allow 
user-supplied and system-supplied layer  implemen- 
tations  to coexist. NIL'S security  mechanisms  guar- 
antee  that a user-supplied module may  interact with 
other modules only through  their  interfaces,  and 
that each layer's private data shall remain  private, 
even in the  presence of programming  errors. 

NIL achieves its  security  guarantees  without  requir- 
ing expensive memory-protection hardware or run- 
time checks. This is possible chiefly because (1) NIL 
forbids direct  manipulation of pointers by source 
programs,  and (2) NIL supplements full type check- 
ing with typestate checking, which is a form of 
compile-time guarantee  that invalid operation 
sequences will not occur. 

Full set of system concepts: There is limited value 
in providing representation  independence or secu- 
rity in a high-level programming  language if the 
user is forced to  escape  into  an underlying operating 
system for essential services such as tasking, 
dynamic  introduction of  new code, and  the binding 
of ports between process instances. In NIL all  these 
services are provided through  language primitives 
whose semantics are consistent with a wide variety 
of underlying implementations.  It is particularly 
important to have the passing of access rights  to  a 
newly created NIL process instance performed 
explicitly by the  program  creating the new process. 
Each  program  has  statically defined interfaces,  but 
the connections made  to  those  interfaces are not 
fixed until that program is instantiated  during exec- 
ution. 

Defining data without reference to its 
representation 

NIL'S approach to portability  can be illustrated by 
means of a simplified programming  problem. The 
message routing  layer of a  communications network 
node with multiple links must  determine for each 
message it receives which link, if any, to use for the 
next hop. In Figure  1,  Node  A  must  forward 
messages that it receives for destinations B, C, D, E, 
and  F.  They  can be forwarded  either on link TO-B 
or on link TO-C. This decision is made using the 
destination  address in the header of the received 
message and  the routing  tables saved in the node 
(Figure 2). This  algorithm  must be duplicated in 
every node of the network. However, particular 
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Figure 3 Routing table lookup in PL/I using  an array 
Implementation 

d c l  MSGPTR p o i n t e r ;  /" message t o  be  forwarded 
d c l  FOUND b i t ( l ) ;  /" terminates  scan  loop 
d c l  X i n t e   e r  / *  index for ar ray   scan 
d c l  I ROUTTAB ?lOj 

2 DEST i n t e g e r  , 
/" a r r a y  o f  I O  e n t r i e s  
/" a des t i na t i on   add ress  

2 QCBPTR p o i n t e r ;  /" link queue for t h i s   d e s t  

2 DEST FIELD i n t e g e r ,  /" des t i na t i on   add ress  
2 DATA-char(255)  var; /" message d a t a  

d c l  I MSG based, /" message d a t a   s t r u c t u r e  

FOUND = ' 0 ' 0 ;  
LOOP: do X = I t o  IO while(7FDUND); 

i f  ROUTTAB.DEST = MSGPTR->DEST FIELD 
then FOUND = 'I'B; 

- 

end; 
i f  FOUND 

t h e n   c a l l  ENQUEUE(MSGPTR,ROUTTAB(X-l).QCBPTR); 
e l s e  . . . /" e r r o r   a c t i o n   f o r  unknown address "/ 

implementations of the routing  tables  must reflect 
the requirements of the different network node 
machines.  A simple end-user workstation might 
communicate only with a fixed, predefined number 
of host applications; in these  circumstances an  array 
representation of the  routing  information would  be 
appropriate.  Alternatively,  a  high-performance 
message-forwarding node might be required  to keep 
track of thousands of final destinations  and  to 
dynamically respond to  information  about new des- 
tinations  and new routes. In  the  latter  context,  a 
hierarchical,  tree-based  organization of the  data 
would  be more  appropriate. 

If the routing  algorithm module is designed using a 
programming  language such as  Pascal or PL/I, both 
the declarations of the routing data and  the algo- 
rithms for access to  routing  tables necessarily 
reflect a decision as  to whether  to  organize the  data 
using arrays or trees. In Figure 3 and  Figure 4, 
sample codings of the two representations are 
shown. It is apparent  that even though  these code 
fragments implement the  same function,  there is 
hardly  a line of code in common among  them. There 
is little  chance of being able  to use one source-level 
definition of the  abstract algorithm  to  generate the 
other. 

The above example  illustrates  the loss  of portability 
through overspec8cation. If the properties of a 
data object are defined by relying on a  sample 
representation of it,  it will  be extremely difficult to 



Figure 4 Routing table lookup in PL/I using a sorted tree defined operations for accessing data in abstract 
tables: the verbs FIND,  INSERT, and DELETE. 

c” / NIL’S primitive abstractions are organized into  a set 
data of type  constructors called type  families. Each  type 
d c l  MSGPTR p o i n t e r ;  /: message t o  be  forwarded :/ d c l  FOUND b i t ( l ) ;  /’’ terminates  scan  loop / 
d c l  X p o i n t e r ;  /” cursor  fo r  t r e e  scan “/ to  the compiler implementer while at the  same  time 
d c l  ROOT p o i n t e r ;  /* l o c a t e s   r o u t i n g   t a b l e  :; d c l  1 TABLEREC based, /” t r e e  node r e c o r d  providing a simple set of rules by which the NIL 

2 DEST i n t e g e r ,  /: a d e s t i n a t i o n   a d d r e s s  ”/ 
2 QCBPTR p o i n t e r ,  /” l i n k  queue f o r   t h i s   d e s t  ”/ programmer may reason about his programs. For 
2 LEFT p o i n t e r ,  /“ t o   s m a l l e r   d e s t s   s u b t r e e  :/ 2 RIGHT p o i n t e r ;  /” t o   l a r g e r   d e s t s   s u b t r e e  example, message and table are NIL type families 
2 DEST F I E L D   i n t e g e r ,  /” d e s t i n a t i o n  address  :/ 

/: message d a t a  s t r u c t u r e  representing movable data records and extensible 
2 OATA-char(255)  var;  /” message d a t a  / collections of data associations, respectively. 

family is designed to provide considerable latitude 

d c l  I MSG based, 

code 

FOUND = ‘ 0 ’ 8 ;  
X = ROOT; 
LOOP: do while(7FOUND E X -= null); 

i f  MSGPTR->DEST FIELD = X - >  DEST 

e l s e  
then  FOUND = ? I ’ B ;  

i f  MSGPTR-’DEST FIELD < X->DEST 
then  X = X->LEFT; 
e l s e  X = X->RIGHT; 

i f  FOUND 
end; 

then  CALL ENQUEUE(MSGPTR,X ” QCBPTR); 
e l s e  . . .  /“ e r r o r   a c t i o n   f o r  unknown a d d r e s s .  “1 

Figure 5 Routing table lookup in NIL 

data 

I b l o c k  
f i n d  AROU i n  ROUTTAB key(HSGI .OEST~FIELD);  
send MSG1 to AROU.LINK; 

on(NOT_fOUND) . . .  
end b l o c k ;  

-- e r r o r  action for  unknown address 

__ 

show that implementations using an alternative 
representation are correct. 

The NIL program  for  the  routing  algorithm 
described above is insensitive to whether the  data is 
represented as  a  tree  or an  array. (See  Figure 5.) 
Either  the compiler will choose the  appropriate 
representation, or it will  offer the user a menu of 
choices which can be selected by specifying a  prag- 
ma. 

The type  constructor used to cover both array  and 
tree  structures is an  abstract  table associating a 
unique “link for next hop” with any valid “destina- 
tion address.”  There is a single set of language- 

Relationship of NIL to  data abstraction 
languages 

Every programming language provides a set of base 
data types and  data type  constructors. Data 
abstraction  language^^-^ concentrate on mecha- 
nisms for defining new types from more primitive 
ones. In practice, these languages have chosen the 
conventional  memory-oriented  types,  such as 
arrays,  as primitive types. In these languages the 
programmer  has  to define higher-level types appro- 
priate  to his needs using the memory-level con- 
structs. 

Although data type definition may be useful as a 
data-hiding  and program-decomposition mecha- 
nism, the  failure  to define suitable high-level types 
as  part of the programming language  has disadvan- 
tages: 

The design of a  type family such as NIL’S abstract 
table is  not  easy-the type family must have 
broad applicability and must be parameterizable 
to produce useful individual types; the  semantics 
defined for the  type should not excessively con- 
strain  future implementers. Individual users are 
more likely to develop specialized types with 
specific problem areas  and even with specific 
implementations in mind. 
The semantics of user-defined types are normally 
inherited from an encapsulated  implementation; 
any  additional information about  the  abstract 
specification of properties of the type is optional 
and usually omitted. 

Above the level of the NIL primitives, NIL and  other 
languages  supporting  abstraction have much in 
common. All these  languages  support  the decompo- 
sition of complex programs  into layers that hide 
their  internal  structure from adjacent layers and 
provide access only through narrow interfaces. 



(Some of the differences in NIL’S approach are 
discussed in a  later section covering run-time mech- 
anisms for binding adjacent  layers.) 

Other  data abstraction  languages differ from NIL 
chiefly in that 

Users are not required to  program at any  particu- 
lar level of abstraction;  they may choose to pro- 
gram using pointers and  other low-level primitive 
types, whereas in NIL, pointers are never directly 
visible. 

’ NIL specifies a complete set of operations, opera- 
tion sequence rules, and  semantics for a recom- 
mended set of type families for use in systems 
programming. 

System implementation using NIL is factored  into 
two phases. During the functional design phase, 
algorithms are coded in NIL, checked, and de- 
bugged. Functional design considers issues of modu- 
larity, extensibility, and  algorithmic complexity, 
but not data representation.  During  the optimiza- 

System implementation using NIL is 
factored into two phases. 

tion phase, appropriate data representations are 
selected so that  the system meets appropriate per- 
formance  criteria,  such as code size, system 
throughput, response time,  fault-tolerance,  etc. The 
choice of representation  can be made  either (a) 
automatically by the compiler, (b)  manually by 
selection of an  appropriate  pragma,  (c) by a poste- 
riori determination of the best pragma based upon 
instrumentation of the executing code, or (d) in the 
worst case, by augmenting  the compiler by adding 
support for an alternative  representation. 

The NIL type families 

There  are 15 predefined type families in NIL. These 
are briefly summarized below. 

integer - The  natural numbers. Individual im- 
plementations will vary in their  capacity to imple- 
ment all sizes of integers. 

boolean - The  truth values true and false, 
enumeration - Each  type defines a  discrete set 
of values with user-defined names. There is 
ordering defined, but no arithmetic. 
string - Sequences of elements, which may be of 
boolean or enumeration type. Strings may be 
copied, compared, or concatenated. Contiguous 
substrings may be extracted or overlaid. 
table - A set of zero or more row objects. Each 
row  is a set of fields  whose name  and type may be 
defined by the user. All  rows within a  table  are of 
the  same type. The user may define certain attri- 
butes to be keys (meaning that their values are 
unique within a  table),  and may define the collec- 
tion of rows to be ordered or unordered. Rows 
may be inspected, updated, inserted, or deleted. 
The  entire  table, or a selection (subset) of the 
table, may be enumerated. 
row - Used to access individual row objects 
within a  table. 
tableset - A collection of related tables, which 
are created or destroyed as a  unit.  Tables within a 
tableset may be related as follows: one of the 
tables may be the domain of an  attribute in 
another  table. For example, if one table is a 
PART-SUPPLIER relation,  and  another  a SUPPLIER- 
CITY relation, the domain of SUPPLIERS in the 
first relation may be constrained to come from the 
members of the SUPPLIER-CITY relation. 
variant - A collection of fields of user-defined 
name  and type, grouped into mutually exclusive 
cases. When a  variant is initialized, exactly one of 
these cases is initialized. A select block is avail- 
able to check the  current  case of a  variant by 
branching  to an appropriate case clause. Within 
each case clause, the  programmer may access 
fields within that case. 
message - A collection of fields,  whose names 
and types depend on the message type. Messages 
may be dynamically allocated and destroyed as a 
unit. Messages may be communicated between 
processes by sending a message to  a sendport and 
receiving it from the connected receiveport. 
interchange message - An object that can be 
accessed as  a collection of fields, but for  which a 
complete mapping into bit string  format  has been 
defined. Because interchange messages are bit 
strings, (1) they may be  used as a universal 
medium of exchange to I/O devices or  to  other 
programs outside the NIL environment, (2) they 
may be remapped as a different collection of fields 
having the  same  total bit string  length,  and (3) 
they are restricted  to contain those NIL types for 
which bit string mappings are defined, namely 
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Figure 6 An ADA example of language integrity failure 

" , ,  , ,  > ,  , ' , # I  > , ,  , 

task  body A i s  

T H I S  SESSION: SESSION: 
t y p e  SESSION is   access PROTOCOL-3; 

b e g i n  
THIS-SESSION:= new PROTOCOL-3; . . .  """""""""""""""""-. 

task  body B i s  
t y p e  R i s  access RCB; 
R 1 , R Z :  R ;  
b e g i n  

R I : =  .new RCB; 
R 2 : =  RI; 
RI.Fl:= . . .  

RZ.FI:= ... 
. . .  

scalars,  and for aggregates whose ultimate con- 
stituents  are scalars. 
call message - A collection of fields called pa- 
rameters. Call messages are used in synchronous 
communication  (subroutine  calls) to pass data 
from the caller  to the called procedure or process, 
and  to  return  data  to  the caller. 
call-interface - A  queue of call messages of 
homogeneous type. Each  call-interface is either  a 
callport, an acceptport, or a procedure. One or 
more callports is connected either to an acceptport 
or to a  procedure.  Then  calls are made over the 
callport. If the callport is connected to a proce- 
dure,  a new procedure  activation is created when 
the call is made  and  destroyed upon return to the 
caller. If the callport is connected to  an  accept- 
port, the call is queued. The caller waits until the 
acceptport owner dequeues  the  call, processes it, 
and  returns  it. 
send-interface - A  queue of messages of a  par- 
ticular message type with all fields initialized. 
Every send-interface object is declared to be 
either  a  sendport or a receiveport. Communica- 
tion is achieved by connecting  one or more send- 
ports to a receiveport. Messages sent over the 
sendport  may be received by the owner of the 
receiveport. 
catalog- Stored access rights defining the  abil- 
ity  to  connect  a  callport  to  a specific acceptport or 
procedure, or to connect a  sendport  to  a specific 
receiveport. 
component - A  dynamically loaded collection of 
processes and  procedures, as seen from the  creator 
of the  component. The owner of a component has 
no ability  to see objects belonging to  any modules 
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in the component. Owners may test for completion 
and completion status of a component and  may 
cancel a component. 

Motivation for  security 

The  term "security" is sometimes loosely applied to 
any  programming  language  and  run-time system 
with facilities for detecting  and  reporting  program 
errors. In this paper,  the  term is used with a more 
precise meaning specifically relevant to the reduc- 
tion of integration  and  testing  effort. Our use of the 
term is consistent with its use by Hoare in his 
Turing  Award L e ~ t u r e : ~  security is the principle 
that every syntactically incorrect program should be 
rejected by the compiler and that every syntacti- 
cally correct  program should give a result or an 
error message that was predictable  and  comprehen- 
sible in terms of the source  language  program 
itself. 

In NIL this  principle of security is extended by also 
requiring that no system of modules that has been 
demonstrated  to be working correctly  can be made 
to fail by executing in the presence of other modules 
that have no language-defined interface  to  the origi- 
nal system. 

Many cases of unauthorized  interference between 
programs result from performing  operations on data 
in the wrong representation.  Type checking has 
widely become recognized as  the  means to overcome 
this form of security  failure. However, type check- 
ing alone is not sufficient to prevent the reading of 
uninitialized data and access to  dangling or unini- 
tialized pointers  and  entry  variables. The ADA pro- 
gram in Figure 6 illustrates how these  errors  can 
destroy  security.  Task  A is assumed  to  be  a  correctly 
written  task which may have been formally vali- 
dated.  Task B is an  incorrect  program executing 
anywhere in the  same system, which deallocates  a 
dynamic object and subsequently accesses it.  The 
error in Task B will not in general be detected by an 
ADA compiler and will cause  Task  A to behave in a 
completely unpredictable way. Although  Task  A 
has been shown to be "of itself"  correct,  it  cannot be 
trusted  to  execute  correctly unless certain  properties 
of all  other  software executing in the  same system 
are verified. 

Errors associated with the use of uninitialized data 
and with pointers aliasing data  are extremely  hard 
to  detect in a  programming  language that permits 
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direct  manipulation of pointers. Faced with this 
problem, most high-level programming  languages 
have resorted to some combination of the following 
remedies: 

Omitting  the language  constructs that  can give 
rise to the problems 
Requiring an elaborate or expensive run-time 
system-typically garbage collection or interpre- 
tive execution 
Abandoning language  security  and passing on the 
problems to  the compiler writer or user of the 
language 

NIL is a  secure programming language in the sense 
defined by Hoare. NIL programs may interact with 
each  other only via their defined interfaces,  and 
these interfaces do not include sharing of an 
abstract memory. The rules of NIL permit  secure 
implementations without the usual performance 
penalties. Specifically, NIL run-time environments 

. Need not perform garbage collection 
Need not explicitly check for uninitialized data 
before use 
Need not worry about  the possibility of concur- 
rent access to  a data item from within two 
processes 
Need not worry about  the possibility that a 
process may terminate or be canceled without 
freeing its resources 

It is extremely difficult to provide a single com- 
pletely general  security mechanism that can apply 
to  all program abstractions or to all uses of pointers. 
In providing security, NIL takes advantage of the 
fact that each  type family can be  given a set of 
security rules appropriate  to  the programming tech- 
nique which that type family embodies. We shall 
use the  semantics of the message type family in NIL 
to  illustrate  this point. 

How security is enforced in the NIL message  type 
family. A  standard technique in systems design is to 
communicate between processes via queues of mes- 
sages. A process  wishing to send information first 
allocates a message object, then fills its fields with 
information and sends the message off to a  queue 

I owned  by the process that is supposed to receive this 
~ information. That process may dequeue  the mes- 

sage at any  subsequent  time  and process its fields. 

Since messages may contain many fields, and copy- 
ing large  amounts of data is expensive, most effi- 
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cient implementations of message passing within a 
single physical memory allocate  the message object 
from a global heap  and perform send and receive by 
copying a pointer to  the sender’s message into  a 
queue owned by the receiver. A key requirement of 
this  implementation is that after  a process has  sent  a 
message to some other process, the sending process 
must lose the  capability to read  or  update  fields in 
the  message. If this restriction is  not enforced, it 
becomes extremely difficult to write correct pro- 
grams in a multiprocess environment, since sender 
and receiver may have concurrent access to  the 
same data. If the receiver then disposes of the 
message, the sender will have a  dangerous  “dan- 
gling reference.” Although a single message may 
become accessible to different processes at different 
times, at any one time  a message should be accessi- 
ble to at most one process. When a multiprocess 
system is coded  in an insecure language such as 

A message type is defined by giving 
a list of field  names  and  types. 

assembler, the restriction on message use is pre- 
served either by informal agreement among the 
programmers not to access messages after they have 
been sent or discarded or by a  run-time system that 
physically moves messages across address  space 
boundaries. 

The NIL message type family facilitates  the defini- 
tion of message objects with these characteristics.  A 
message type is  defined by giving a list of  field 
names and types. Each variable of that message 
type will have those fields. In a NIL program, 
message variables may be declared with a specific 
message type. A message variable is “initialized” by 
an ALLOCATE operation or a RECEIVE operation, 
receiving it from a  queue associated with some 
receive port; the RECEIVE waits until  a message 
object is available on that queue,  then dequeues it 
and makes it accessible via the message variable 
operand.  A message variable is “uninitialized” by a 
DISCARD operation, or by a SEND operation sending 
it  through  a  particular port to some other process. 
While a message variable is initialized (but not at  
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Figure 7 Examples of correct and incorrect 
message-handling code 

Segment A .  valid program 

-- HSGI-TYPE i s  a message type  def ined  e lsewhere  wi th   in teger   f ie ld  F 1  

-- APORT i s  a declared  variable  of  type  "sendport o f  MSGI_TVPE" 

block 
declare I MSG1 : %GI-TYPE) 

a l l o c a t e  HSG1; 
H S G I . F I  = 3 ;  
send M S G 1  t o  APORT; 

end block; 

Segment B .  invalid program 

-- HSGI_TYPE i s  a message type  defined elsewhere w i t h   i n t e g e r   f i e l d  F1 

-- APORT i s  a declared  variable  of  type  "sendport o f  HSGl-TYPE" 

. - - . . , , 1 end block;  
a l l o c a t e  MSG1: 

U 

any  other  time),  any message field qualified by that 
message variable  name may be read or updated. 
The advantage of offering an access-destroying, 
nonblocking SEND operation  and a  blocking 
RECEIVE is that copying a pointer to  the message 
data  and copying the  actual message data  are both 
valid implementations, indistinguishable from the 
perspective of the NIL programmer.  The imple- 
menter is therefore  free  to select whichever strategy 
is more efficient  in each case. Adopting other 
semantics for message communication tends  to 
force the more expensive data copying implementa- 
tion on all sending operations.* 

The restriction that gives the message type family 
its special flavor and  results in system-wide assur- 
ance that no message can be simultaneously accessi- 
ble to more than one process is the implied rule on 
the ordering of operations on each message vari- 
able.  To see that this restriction cannot be enforced 
by type checking rules alone, consider the two 
program  segments in Figure 7. 

Segment  A is a valid code segment allocating  a 
message, initializing its only  field and sending it  to 
some other process. Segment B differs from Seg- 
ment A only in that  the message operations are 
performed in the reverse order.  Segment B has 
correct  syntax,  and every operation has  operands of 
the  correct type. Therefore,  a conventional strong 
type checking compiler will  not reject it at compile 
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time. However, Segment B presents significant 
problems for a  secure  language implementation and 
in NIL would be rejected at  compile time. For a 
programming language to permit Segment B and 
still provide security,  the implementer would  be 
required to choose from one of these approaches: 

Detecting and  generating  a  run-time  error 
Forcing a message object to be allocated  and  sent 
even though no ALLOCATE operation was issued 
Treating  the SEND as a null operation in this case 

Following the SEND statement,  Segment B initial- 
izes a field in an uninitialized message. Once  again 
if the  program  has not  been rejected at compile 
time, nonobvious choices will have to be made by 
the  language designer either  to cope with the prob- 
lem as  an error at execution time or to invent 
semantics that make  all operations valid in all 
contexts. 

The  program segments in Figure 7 show that  the 
operations on messages have simple obvious mean- 
ings only  when they are performed in the  correct 
order. The N I L  philosophy  is that both the semantics 
of the programming language  and  the  run-time 
system which supports  it  can be drastically simpli- 
fied  if rules for correct sequences of operations are 
given as  part of the  language definition and 
enforced at  compile time-or to be more precise, at  
a  time when individual modules are processed one at 
a time, without the "compiler" having access to  the 
complete system in which the modules will run. 
Even in an  interpretive implementation of NIL, 

Separate compilation is an  essential 
property  for software systems. 

"compilation" will occur,  taking  the form of a check 
of each module before any  statements from that 
module are interpreted. N I L  emphasizes the special 
role of compilation in this sense, because separate 
compilation is an essential property for software 
systems. 
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Typestate as a general mechanism  for 
security 

The compilation technique used in NIL to check the 
sequences of operations on variables is called type- 
state analysis. For each user-defined data type, the 
NIL compiler will construct  a state machine whose 
states (called typestates) determine which subset of 
the defined operations on objects of the  type are 
currently  permitted. During compilation of a pro- 
gram,  a  typestate machine is maintained for every 
declared variable,  tracking its typestate from state- 
ment to  statement in the  program. 

The typestates of message variable MSGl intro- 
duced in Figure 7 are 

s1 = MSGl uninitialized 
MSG1.Fi unaccessible 

s2 = MSGl initialized 
MSGl.F1 uninitialized 

s3 = MSGl initialized 
MSG1.Fl initialized 

and  the  typestate  transition  graph for this  variable 
is 

si s3 

INITIALIZE F1 

UNlNlTlALlZE Fi 

RECEIVE 

SEND 

Every valid sequence of operations on a message 
variable corresponds to  a valid transition sequence 
on the above graph. In reading  this  diagram,  it must 
be remembered that typestate is a  property of 
variables and not of values; when a message is sent, 
the message value continues to hold its fields and 
flows to some other process, whereas the message 
variable on which the send was performed becomes 
“uninitialized” since the sender has lost access 
rights  to that message. Note also that a SEND 
operation is permitted only when the fields in a 
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Figure 8 Example of a typestate error 

Segment c 

block 
declare ( X :  integer 

MSGI: MSGI-TYPE j 
X = AFUNC; - -  initializes X 

CI: if X = 1 
then 

end i f ;  
allocate MSGI; 

c2: . . .  ; 

C3: i f  X = I I MSGl.Fl = 3; 
then 

send MSG1 to APORT: 
end if; 

end block; 

/ I  
l l  

message are all  initialized,  and  similarly  the 
RECEIVE operation assumes that it will always 
receive a fully initialized message. It is technically 
possible to relax this  pair of restrictions. However, 
preventing processes from exchanging partially ini- 
tialized messages simplifies coding and fosters the 
design of systems with clearer  interfaces. 

Given typestate  transition  graphs for every declared 
variable in a module, a complete checking algo- 
rithm  can  be defined.’ Although run-time checking 
of typestate is  possible, it  carries  a performance 
overhead  and  prevents  code  generation  from 
exploiting typestate knowledge. Compile-time de- 
termination of typestate is not  possible for general 
programs. In NIL, a compile-time determination of 
typestate becomes practical because of the addition 
of the following critical  requirement:  the  typestate 
of all variables must be a program invariant at 
every statement in a  program; i.e., the  typestate of a 
variable at a given statement must be independent 
of  how that  statement was reached. The NIL type 
families, control structures,  and exception-handling 
mechanisms are designed specifically to  ensure that 
the  invariance of typestates  can be maintained 
without loss of power or flexibility for the  program- 
mer. The typestate  invariance principle is an impor- 
tant new program  structuring concept that gives 
NIL its  unique flavor. 

Program  Segment C in Figure 8 illustrates  the 
effect of requiring the  typestate of variables to be a 
program  invariant. Even though all  paths  through 
the program are meaningful, this segment would  be 
rejected by a NIL compiler as having a  typestate 
error even  if  Block C2 does not alter  the value of 
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Figure 9 The typestate error example corrected 

block 
declare ( X :  integer 

X = AFUNC; -- iniTializes X 
MSGI: MSGl TYbE ) 

then 
allocate MSGI; 
call  BODY  OF  C2; 
MSG1 .FI ”3;-  
send MSGl to  APORT; 

call  BODY-OF-C2; 
else 

end  if; 

I end  block; 

Figure 10 Routing table lookup with an exception flow 

El:  block 
E 2 :  block 

declare ( AROW : row in ROUTTAB ) 

send MSG1 to  AROW.LINK; 
find AROW i n  ROUTTAB  key(MSGl.DEST-FIELD); 

:I ioiate MSGZ;  
MSG2.FI = 3 ;  
send MSG2 to  APORT; 

on(NOT-FOUND) . . . 
end E 2 ;  

-- error  action  for  unknown  address 

 DEPLETION) 
- -  recovery  action  from  allocate  failure 
-- AROW  will  be  uninitialized  and  use  counts -- in ROUTTAB  cleared  at  this po in t  

end  El; 

variable X .  The problem is that  the compiler has  to 
decide on a  typestate for variable MSGl on entry  to 
Block C2 so that it  can  determine  whether access to 
MSGI.FI should be  permitted inside that block. To 
ensure that  the  typestate of MSG1 at  that point does 
not depend on the  path  taken  through  the preceding 
IF  BLOCK,  the compiler will actually  generate  a 
DISCARD operation on MSGl at  the end of the then 
path  and issue a  warning message on the listing. 
Automatically  generated typestate coercion opera- 
tions may be  generated at  any point where  control 
flows converge and will always  force  objects  to the 
“least  initialized” of the  states on the different 
flows. When Block C2 is later  encountered, MSGl is 
therefore in the uninitialized  typestate (SI), and 
hence, the access to MSG1.FI is a  typestate  error. 
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A correct NIL implementation of the intentions of 
the program in Figure 8 is given in Figure 9. The 
correction is to collapse the two IF blocks with the 
same  test  into  a single IF block. We claim that  the 
resulting  program is more readable because it does 
not rely on inferring that  an identical  test is repeat- 
ed. Also, the correct version is more  robust because 
it prevents some program  maintainer who only 
partially  understands the system design from insert- 
ing code  into Block C2 which would alter  the value 
of X and hence invalidate  the  original  program 
logic. 

Typestate  coercions and exception handling. The 
typestate coercions mentioned in the preceding 
example become beneficial in the presence of excep- 
tion flows. One consequence of the level of abstrac- 
tion of the NIL type families is that many of the 
defined operations  can  raise exceptions. The lan- 
guage  reference  manual defines for each  operation 
the names of the exceptions that may  be  raised, as 
well as  the effect on the values and  typestates of 
each  operand.  When  an exception is raised, control 
flows outward  through  the  static block structure  to 
the  nearest exception handler which lists that excep- 
tion name. If no handler is found in the  current 
procedure, the exception name is converted to  an 
exception name known by the  caller of the proce- 
dure  as  part of its  call  interface. 

Figure 10 contains  an  example of exception flow 
and  an  automatically  generated  typestate coercion 
to clean up after  it.  One of the defined exceptions of 
the ALLOCATE operation  is DEPLETION. The tempo- 
rary  variable AROW used to access the routing  table 
has Block E2 as  its scope. s o  if the DEPLETION 
exception causes control to flow from the ALLO- 
CATE operation to the DEPLETION exception han- 
dler,  a DISCARD operation will be coerced on AROW. 
This  automatically  generated  operation is necessary 
since some implementations of ROUTTAB may have 
unpacked records or set use-counts when AROW was 
initialized to  a  particular row in this  table.  In  other 
table  implementations,  discarding  a row variable 
may have no execution time effects (discarding  a 
row variable does not delete the underlying row 
object from the table-it merely makes  it unacces- 
sible until  some  subsequent FIND retrieves it). 

The effect of typestate coercions is to provide auto- 
matically  generated recovery code after  an excep- 
tion, which will “clean  up”  to the  state expected by 
the recovery handler.  Writing  this recovery code 
explicitly after every possible exception would clut- 
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ter up the normal  path  through  algorithms  and 
make the system design hard  to  read.  Graceful 
backout  from exceptions also tends  to be extremely 
difficult to program  correctly without automated 
assistance. It should be noted that  the NIL recov- 
ery-forcing uninitialization of program  objects  as 
necessary to  enter  a common exception handler-is 
considerably simpler than  the problem of backing 
off a  partially completed transaction, in which case 
all value changes caused by the transaction have to 
be reversed. See Reference 10 for a  classic  paper on 
this more difficult topic. 

The general aliasing  problem: other aspects 
of typestate 

So far in this  paper,  typestate  mechanisms have 
been described and  illustrated  entirely in terms of 

The effect of typestate coercions  is 
to provide  automatically generated 
recovery code after an exception. 

message allocation.  Each of the  different NIL type 
families has  its own set of typestate  transition  rules 
achieving security in a slightly different way. For 
each  family, it must be shown that  the  typestate of 
variables of the family can  always be statically 
determined,  and at  the  same time shown that  the 
typestate  restrictions are powerful enough to ensure 
that a wide range of implementations of the family 
is possible. 

The typestates of variables with no contained fields 
(e.g., integers, booleans, etc.) are 

unaccessible - The variable is a field inside a 
compound variable which is itself either  uninitial- 
ized or unaccessible. 
uninitialized - The variable  has no defined Val- 
ue. 
initialized - A defined value exists, which may 
be read, modified, or destroyed. 
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constant - The variable’s value may be read  but 
not modified: in this state it is safe for an imple- 
mentation  to choose to share  the variable’s storage 
with that of other  variables of the  same value. 
Because updating is not permitted,  this  potential 
for aliasing  cannot be detected. 
permanent - The variable  may  be  read or 
updated,  but not destroyed. Fields in compound 
objects that  are required  to be  in an all-initialized 
state will have this  typestate. 

The possible typestates of a compound variable are 
generated by defining the  structure  tree showing the 
relationship of all fields  in the  variable,  and labeling 
each node in the  tree with one of the five basic 
typestates. 

The  particular type families used in NIL and  the 
associated typestate rules combine to achieve a  total 
separation of the  variable spaces of each module. 
Specifically, 

9 There is no detectable aliasing-within a module, 
every distinct  variable  name  has an independent 
value. Changes  to  one  variable have no effect on 
values of other  variables. 
There is no sharing-every variable is local to 
some module. Values of accessible variables of a 
process cannot be altered by actions of other 
processes. The only way in  which a process sees 
the interaction of other processes is via the ability 
to receive messages and  accept  calls on ports. 

Aliasing and  sharing impede modularity, since 
understanding how a  particular module can be 
affected from the  outside  requires the analysis of 
not only that module but also of all  others coresident 
in the system. Sharing and  aliasing are endemic in 
languages that permit uncontrolled pointer copying 
or that allow modules to  inherit  shared access to 
variables in statically  containing scopes. NIL 
resolves these problems by 

Avoiding shared scopes 
Having  a limited set of type families and  thereby 
avoiding direct visibility of pointers 
Using typestate  to prevent references  to fields in 
messages already  sent away or not yet allocated 
Forbidding  a  variable from being bound to two 
different  formal  parameters of a single procedure 
ca!l unless the formal  parameters were declared 
as read-only (CONSTANT typestate) 
Using a  combination of compile-time and  run- 
time  checking  to guarantee  that two different row 
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Figure 11 Functional layers in a communications 
architecture 

I E x p l i c i t   R o u t e  I 

"? L i n k  manager 

. I I  

I I 
Physica l  medium 1.1 

Figure 12 Examples of options within a layered 
architecture 

"""""""""_""""""""""""""" 
SESSION " 

f I i p - f   l o p  
LAYER: duplex  duplex duplex 

c o n t e n t i o n  , 

"""_""""""""""""""""""""" 
VIRTUAL 

LAYER: 
back- level  

"""_""""_"""""""""""""""" 11) 

variables may not access the  same row of the same 
table, unless they are both requesting read-only 
access 

In summary, by combining type families that hide 
direct memory access operations with a new pro- 
gramming  language concept-typestate invariants, 
NIL succeeds in providing security and  a more 
tightly constrained interaction of modules than 
heretofore possible. 

Support for open systems:  Access control 

Communications systems tend to be  long-lived and 
must frequently have their function extended to 
support new protocol algorithms, new communica- 
tions media, and new execution environments. 
Hence,  it is important for NIL to  support  the design 
of modular systems. The fact that a NIL system is 
portable increases the need for modularity since 
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some users of the software will want to omit some 
functions and  add  others of their own. 

The role of modularity in a communications system 
is  best illustrated with reference to  a communica- 
tions architecture such as Systems Network  Archi- 
tecture (SNA).  SNA partitions  the communications 
function into  distinct layers. A simplified diagram 
of SNA layering is given in Figure 11: the Logical 
Unit (LU) layer represents a communications end 
user; the session layer captures end-to-end commu- 
nications protocols; the  Virtual  Route layer defines 
logical pipes between pairs of end points in a 
network; the Explicit Route layer is aware of actual 
intermediate nodes in the logical path;  and  the link 
manager is responsible for driving the link at each 
step in the  path. 

According to  the NIL methodology, implementa- 
tions of SNA products should reflect this layering in 
their  internal  structure.  The  architecture provides a 
useful organization of the various communication 
functions, and end users can write software inter- 
facing to the communications layers-thus insulat- 
ing themselves from the  details of lower layers. 

If one looks in detail at each individual layer in an 
architecture,  a finer structure becomes visible. Fig- 
ure 12 illustrates how within the SNA session layer 
there  are several permissible "flavors" of a session, 
and within the  virtual  route  layer options exist 
either for historical reasons or because particular 
products wish to extend or to subset the  standard 
virtual  route functions. Any particular communica- 

Communications  systems  must 
frequently be functionally extended. 

tions thread must choose  which  flavor of protocol to 
use at each  layer. The decomposition of communi- 
cations function into layers derives its usefulness 
from the  fact that  the choices of which  flavor to use 
at each  layer are independent.  The two end users of 
a communication thread will have to  coordinate 
their choices so that  at each layer they have agreed 
on matching protocol sets,  but they should in gen- 
eral be able to make  any session type work  over any 
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logical routing protocols using any physical link 
medium. The problem of selecting a  total protocol 
between end users is factored in this way into  a 
small number of independent choices. 

The features of NIL that support  this  sort of layered 
and open design are 

The security mechanism, which permits user- 
written layer options to coexist with “system- 
supplied” options without the risk that  an errone- 
ous user-written layer will corrupt  the  private 
data of other layers, and without reliance on 
special hardware. 
The strong typing of interfaces allows the pro- 
grammer  to specify how a  particular  layer com- 

Access control  in NIL allows the 
creator of a  layer  process to 

determine its potential set of port 
bindings. 

municates with adjacent layers, without requiring 
him to know any of the  internals of those adjacent 
layers. 
The dynamic binding concept, which permits 
layer options to be added or removed and con- 
nected to  their  adjacent layers, while the system is 
running. The combination of statically typed 
interfaces  and  dynamic binding supports execu- 
tion time selection from among a set of “plug- 
compatible” modules. 
The access  control functions of NIL, which allow 
the  creator of a layer process to determine that 
layer’s access rights by restricting  its potential set 
of port bindings. 

In an implementation of a layered communications 
architecture,  the  software components that  are most 
critical in getting  any choice of function at one layer 
to  operate with any choice of function in adjacent 
layers are  the management functions responsible 
for creating new process instances  and binding their 
ports to other already-existing software compo- 
nents. This  management function is often the most 
complex part of a reconfigurable system. We shall 
illustrate why  with an example of a simplified 
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Figure 13 Virtual route to half-session interface 

F / 
Virtual Route  Half-session 
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SESSION-MGR 

call: DELETE-HS 
/ 

manager  to  create half-sessions in a communica- 
tions system. 

A half-session (HS) is the collection of functions at 
one end of a communications thread which, when 
balanced by a  matching half-session at  the  other 
end, implements the session protocols. A new half- 
session  is created when a  particular end user (LU) 
requests a new communications path  to some other 
LU. We may assume that there is one process per 
network node called SESSION-MGR responsible for 
creating new half-sessions. That process, on being 
presented with a new session request from an L u  in 
its node, will select a  particular logical path (VR) to 
the  correct  destination on  which the session  will 
flow. SESSION-MGR will also determine  the  type of 
half-session to install since we assume that several 
session  flavors are available. It then  creates new 
instances of the processes and procedures for that 
session type. Now before these new programs can 
start executing, they  must be  bound to  the  particu- 
lar LU component that requested the session and  the 
particular VR component over  which the session  will 
flow. The binding actions will typically comprise 

Connecting sendports  to receiveports across the 
layer interface so that messages can be sent 
between adjacent layers 
Connecting call interfaces across the  layer so that 
synchronous requests can be made  to  adjacent 
layers 
Possibly binding the newly installed program to 
node-wide services 
Initializing  other local variables in the newly 
installed programs 

The  nature of the connection between an  arbitrary 
VR process and  an  arbitrary half-session process  is 
illustrated in Figure 13. We  are assuming that 
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half-sessions belong to  a single VR at any  time,  and 
have one message queue in each  direction between it 
and  the VR, while a VR must  be  capable of “fan-in” 
of data from  many half-sessions and “fan-out’’ of 
data into  many half-sessions. 

In Figure 13, it is shown that all flavors of half- 
session and  virtual  route control protocols must 
share a common interface. Specifically, each HS has 
a  sendport over which it sends messages (called PIUS 
or “path  information  units” in SNA) to a VR queue 
which we call “HSS-TO-VR.” For  each half-session 
using the VR, the VR will have a  sendport  to that 
half-session’s receive queue, which we may  call 
“VR-TO-HS.” Since  the number of half-sessions per 
VR varies during  the life of the VR, the VR supplies 
procedures  to  be invoked to  add  and  delete  half- 
sessions. 

If a  language is to  support the writing of a session 
manager,  it  must (1) allow new bindings between 
half-session and VR processes to be created  without 
exposing the private data  structures of either VRS or 

Every  NIL  module can be compiled 
and  proofread  in  isolation. 

half-sessions, and  (2) allow calls  to the  add  and 
delete  functions even though the specific code being 
executed is not known until the VR identity is 
established at run-time. 

In an assembly language or PL/S implementation, 
the binding actions are done by giving SES- 
SION-MGR access to  control blocks in all  three 
involved components and having it  initialize point- 
ers  to  make the desired connections. This  approach 
relies on the self-discipline of SESSION-MGR to 
access only the intended  variables in these  control 
blocks. In  practice,  it  usually  results in the  manager 
having considerable  awareness of which flavors of 
each of the  three layers are  actually running. It is 
then not surprising that SESSION-MGR becomes 
complex since  it has to be able  to bind all  possible 
flavors of VR with all  possible  flavors of half- 
session. The  architectural decomposition of func- 
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tions into  layers will go to  waste if management 
modules in the implementation have to consider all 
possible combinations of function in adjacent 
layers. 

Higher-level (but  still memory-model) languages 
such as Pascal  and ADA, although  they  make  many 
advances in other  areas,  actually  make  the problem 
of implementing the SESSION-MGR module for the 
above example more difficult rather  than  easier. 
When CALL statements or abstract SEND operations 
appear in a  program,  these  languages have a prop- 
erty  that requires an answer to be given at compile 
time to the question of which program will  be 
executed in response to  that command.  But SES- 
SION-MGR’s problem is that it  must  establish  a 
binding so that code in a VR component can send 
messages up  to  the half-session component without 
knowing which of the possible session algorithms is 
actually  running for that half-session. It is the 
exclusion of procedure-valued variables  and the 
interpretation of abstract operations on the basis of 
type  alone in these  languages which creates  the 
problem. In practice,  communications systems writ- 
ten in languages  such  as ADA will probably “es- 
cape”  and use an  underlying  operating system prim- 
itive whose semantics are not defined in program- 
ming language  terms to make  dynamic connections. 
Because of the need for escapes, the languages with 
static binding cannot offer strong  guarantees of 
security. 

In NIL the problem is solved  by providing both 
facilities for abstraction  and  a  complete  set of 
language primitives that support  all essential opera- 
tions such as dynamic connections. Processes with 
private local memory and the ability  to  accept 
synchronous calls from other  programs allow arbi- 
trary abstractions to be defined and  implemented. 
At  the  same time,  the  sendport, receiveport, call- 
port,  and  acceptport type families permit  programs 
to have statically defined interfaces for ports which 
can be dynamically connected to ports with match- 
ing interfaces in other  program instances-a type 
compatibility check being made at connection time. 
Every NIL module can be compiled and proofread in 
isolation without knowing which other modules it is 
going to be connected to. The  language operations 
in NIL that provide the creation  and binding func- 
tions are 

publish - Makes  a receiveport (queue of mes- 
sages) or acceptport  (queue of rendezvous calls) 
available in a  catalog for other  program  instances 
to connect to. 
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connect - Connects  a  sendport or callport vari- 
able  to  a receiveport or acceptport of matching 
type using a published entry in a  catalog. 
create - Creates  a new instance of a  named 
module (possibly loading the code),  exchanges 
some  creation  parameters,  and  then (if no excep- 
tions have been raised) allows the  creator to 
continue  and the  created module to start execut- 
ing independently with  its own private memory 
only; all  sharing of objects is achieved by estab- 
lishing bindings during  the  exchange of creation 
parameters.  The installed module has access to 
these  parameters for the  duration of its "installa- 
tion" phase. 

Figure  14 shows how the  part of the SESSION-MGR 
program responsible for creating  a new half-session 
would  be written in NIL. This  program  sketch  deals 
only with the creation of the half-session and its 

It is the integration of these system 
building  constructs  into  a  secure 
high-level  programming  language 
that  is the basis for NIL'S claim to 
support  modular system  design. 

connection to a  virtual route-the connection to a 
logical unit is similar  and is omitted.  It is assumed 
that SESSION-MGR maintains  a  table of half- 
sessions. A new  row in that  table will be created for 
the new half-session. By some means, the program 
will have initialized THIS-VR to identify  the  par- 
ticular  virtual  route on which the session will 
flow. THIS-VR.CATI is a field of type catalog in 
THIS-VR. This  catalog will contain an  entry with 
key "HSS-TO-VR" which is the receiveport on 
which the virtual  route receives messages from all 
its half-sessions. THIS-VR.ADD-HS is a second field 
of type  callport. When a  call is made on this  port, 
the  virtual  route will connect to the port it will use to 
send messages to the newly created half-session 
(Figure 15). 

Figure 14 Code in SESSION-MGR to create new 
half-session 

d .  ' 

HS-FLAVOUR-A: module  in ter facel lNTF1 TYPE) -- t h i s   i n t e r f a c e  maker formal  parameters EXPORT  CAT -- and VR-CAT a c c e s s i b l e   d u r i n g   p u b l i s h  and  init-phase. 

HAIN: process 
Static * -  t h e  p o r t s  to and  from VR a re   dec la red   he re  

( MSG5 TO VR : HSCl TYPE r e n d p o r t  
MSGSIFR6H_VR:  HSGi-TYPE r e c e i v e p o r t )  

p u b l i s h  phase -- t h i s  "phase" i s   e x e c u t e d  when an i n s t a n c e  o f  MAIN -- i s  c r e a t e d ;  i t  has access to t h e  creat ion  parameters.  

pub1 i s h  HSGS-FROM-VR i n  HS_FLAVOUR_A.EXPORT_CAT key("VR_TO_HS"); 

1 -- b u i i d s  a "potential" connection i n  EXPORT-CAT for -- t h e   r e c e i v e p o r t  from VR i n t o   t h i s   h a l f   s e s s i o n  

i n i t  phase -- t h i s  "phase" i s  executed just a f t e r   t h e   p u b l i s h  -- phase  and  has access to t h e  module c rea t i on   pa ramete rs  

connect MSGS_TO_UR i n  HS_FLAWOUR_A.VR_CAT key("HSS_TO-VR"); 

-- actually Connects the   sendpor t  out O f  t h e   h a l f -  -- session to a p o t e n t i a l   c o n n e c t i o n   i n  VR-CAT 
.:' 

main  phase 
-- code  executed a f t e r  c r e a t i o n   i s  c m p l e t e  -- to hand le   the  s e s s i o n   t r a f f i c  i 

end  HAIN; 
end HS-FLAVOUR-A: 

. . .  

Figure 15 Code in half-session to bind to a virtual route 

SESSION_HGR: 

b l o c k  
d e c l a r e  (NEW-HS: row i n  HALF_SESSIONS) I allocate NEW HS i n  HALF  SESSIONS key(1HIS  HSID): -- s t a r t  a new e n t F y   i n   t h e  HALF_SESSIONS t a b l e  

I c r e a t e  NEW HS.tOHPI 
module( "HS FLAVOUR A " , i n t e r f a c e ( l N T F l  TYPE) 

(NEQ-HS.EXPURT, THIS_VR.CATl) 1; 
" "HS  FLAVOUR PI" i s  a s t r i n g   e x p r e s s i o n  naming t h e  rnodule 
-- to fie i n r t a i l e d  ( i n  general not a m a n i f e s t   c o n s t a n t .  -- INTFI TYPE i s  t h e   t y p e  o f  t h e   l i s t   o f  create parameters. 
- -  ActuaT  parameters a r e  ( i )  NEW HS.EXPORT i n   w h i c h   t h e  
-- h a l f - s e s s i o n  will p u b l i s h   p o t e n t i a l  connections ( i i )  -- T H I S  VR.CATI which passes p o t e n t i a l   c o n n e c t i o n s   i n f o  -- t h e  V i r t u a l  route 

call THIS-VR.ADD_HSINEW_HS.EXPORT); 

-- t h i s  call w i l l  cause VR to d e f i n e  a new sendoor t   f o r  -- f e e d i n g  messages to t h i s   h a l f   r e s r i o n .  VR wi'll 1 -- "VR_TO_HS" i n  NEW_HS.EXPORT. 

.. connect" t h i s   s e n d p o r t  to p o t e n t i a l  connection 

i n s e r t  NEW H S .  
- -  new eAtry i n  HALF-SESSIONS t a b l e   i s   c o m p l e t e  

e n i  SESSION_HCR 

/ 

Each of these  operations has typestate effects and 
possible exceptions defined by the NIL language 
reference. It is the  integration of these system 
building constructs  into  a  secure high-level pro- 
gramming  language that is the basis for NIL'S claim 
to support  modular system design. 

Concluding remarks 

Experience with NIL. A draft NIL reference  manual 
is available" describing  all  the  type families, the 
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operations on them,  the exceptions which may be 
raised by these operations, and  their  typestate 
effects. A compiler for the full language is in use at 
the IBM Thomas J. Watson  Research  Center;  this 
compiler generates PL/S code which can be executed 
in run-time systems under o s / v S 2  (MvS), and  the 
Conversational Monitor  System (CMS). In the  lan- 
guage tool area, work is under way to  generalize 

‘ pragma  support in the compiler and  to explore an 
interpretive execution scheme so that NIL systems 
can run on small machines. NIL is being used by its 
developers to implement prototype systems for SNA 
intermediate network node functions and for a set of 
higher-level intelligent workstation protocols. Al- 
though several thousand lines of NIL source code 
have been written  and  tested,  it is not yet possible to 
offer any quantification of the software productivity 
gain achieved. 

Other  related  work. The ideas in NIL are in many 
ways influenced by current  trends in high-level 
programming languages, particularly ADA, Pascal, 

Halim, F. N. Parr, J. A. Pershing, R. E. Strom,  and 
S. Yemini. 
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