
Reflections on 
VMIPass-Through: A 
facility for interactive 
networking 

by N. Mendelsohn 
M. H. Linehan 
W. J. Anzick 

VM/Pass-Through, an interactive networking facili- 
ty, has gained widespread acceptance within ISM 
and with ISM customers.  Pass-Through allows a 
single terminal access to many different com- 
puters, including those at distant locations. In 
building Pass-Through,  and in observing its grow- 
ing use,  we  have  had  an opportunity to study the 
practical implications of this facility and of our  ap- 
proach to  its design. 

This  paper is divided into two parts. The first, an in- 
troduction to Pass-Through networking, describes 
features of the system, supported configurations, 
and  use of Pass-Through within the ISM Corpora- 
tion. A brief history of Pass-Through’s development 
is also provided.  In  the second part of the  paper, 
Pass-Through is used to motivate a technical dis- 
cussion of interactive network technology and vir- 
tual machine  subsystems. Topics covered include 
appropriate use of the virtual machine environ- 
ment, choice of routing strategy, and performance 
considerations. Although the introductory portions 
of the paper  presume no prior knowledge of com- 
puter network or operating system technology, the 
subsequent technical discussions do depend on a 
basic understanding of these areas. 

V irtual  Machine  (VM) Pass-Through’ is a sim- 
ple Virtual  Machine/System  Product (VM/ 

sp)-based networking facility that provides remote 
terminal connections for time  sharing  and data 
query  applications.  Although  large VM/Pass- 
Through networks have been  used to connect 

IBM SYSTEMS JOURNAL, VOL 22, NOS 1/2. 1983 

hundreds of computers, typical installations com- 
prise only two or three processors. Because of this, 
Pass-Through  has been designed with particular 
attention  to  the needs of small installations, espe- 
cially those that may not have prior experience with 
computer networks. 

This  paper,  a retrospective on our seven years of 
experience with Pass-Through, has two main goals. 
The first is to provide a simple introduction to 
Pass-Through  networking.  We  describe  Pass- 
Through’s features,  examine typical installations, 
and  contrast Pass-Through with other more sophis- 
ticated networking facilities. The history of Pass- 
Through’s development and growth is also dis- 
cussed. In the second portion of the  paper, we use 
Pass-Through to motivate a discussion of technical 
issues related to  the implementation of interactive 
networking subsystems. We explore the choice of an 
appropriate subsystem environment, support of vir- 
tual  terminals, routing strategies,  and performance 
considerations. We also compare  the  implementa- 

0 Copyright 1983 by International Business Machines Corpora- 
tion. Copying in  printed form for private use is permitted without 
payment of royalty provided that ( 1 )  each reproduction is done 
without alteration and (2) the Journal reference and IBM 
copyright notice are included on the first page. The title and 
abstract, but  no other portions, of this paper may be copied or 
distributed royalty free without further permission by computer- 
based and other information-service systems. Permission to 
republish any other portion of this paper must be obtained from 
the Editor. 

MENDELSOHN, LINEHAN, AND ANZICK 63 



~~ ~ ~ ~ 

Figure 1 Interactive  networking using  Pass-Through 

tion of Pass-Through with that of more sophisti- 
cated networks and explain various compromises 
made  during  the development of Pass-Through. 
Readers whose primary  interest is in these  technical 
issues may wish to skip  directly  to the section 
headed “Architecture  and implementation of Pass- 
Through.” 

Background 

Pass-Through is one of the many facilities devel- 
oped to meet a growing demand for distributed 
computation  and  computer networking.’ Here we 
briefly summarize some related commercial and 
academic developments. 

Several companies, including IBM, have developed 
network architectures  to  organize the distribution of 
their customers’ comp~t ing .~ .~  Carefully planned 
and often complex in their  implementation,  these 
systems are designed to provide comprehensive 
frameworks for the interconnection of computer 
equipment. The architectures apply to  hardware as 
well as software,  and are often optimized for the 
needs of large, complex installations.  Interface  stan- 
dards provided by the  architectures  ensure that 
diverse equipment  and  software  applications  can 
cooperate successfully in a single network environ- 
ment. 

Ongoing university and  industrial research projects 
complement these  commercial  offering^.^" During 

64 MENDELSOHN.  LINEHAN, AND ANZICK 

the 1960s, a major effort sponsored by the United 
States Department of Defense led to the develop- 
ment of ARPANET,*”* the most famous of all 
research networks. A  high-performance system for 
interconnecting computers  throughout  the world, 
ARPANET provides a vital link among research 

Pass-Through  provides  interactive 
networking  facilities for users  of  the 

VM/SP operating  system. 

institutions  and is also  a  primary  test bed for the 
development of military telecommunications sys- 
tems. ARPANET is designed to provide subsecond 
response time for a wide variety of demanding 
network traffic, to adapt in sophisticated ways to 
changes in load, and  to survive major  disruptions in 
the  face of natural  catastrophe or war. ARPANET is 
a classic example of sophisticated, reliable, and 
efficient computer networking. 

In comparison with these sophisticated commercial 
and  academic networks, Pass-Through is a modest 
special-purpose facility. Pass-Through provides 
only interactive networking services and is opti- 
mized for use in small  installations. By specializing, 
Pass-Through avoids much of the complexity inher- 
ent in general-purpose networks; Pass-Through 
demonstrates that simple approaches  can be sur- 
prisingly effective for many purposes. 

What  Pass-Through does 

Pass-Through provides interactive networking facil- 
ities for users of the VM/SP operating system. With 
Pass-Through, vM/SP systems may be connected 
with other systems to  create  time-sharing networks. 
Frequently used  for remotely logging on, Pass- 
Through is also valuable in query applications and 
for remote  computer operation. 

Pass-Through enables a single VM/SP terminal  to 
access many different computers  running  a wide 
variety of software systems. Figure 1 shows a VM/SP 
display terminal with access to two remote corn- 

IBM SYSTEMS  JOURNAL,  VOL 22, NOS 1/2.  1983 



puters.  Input  entered by a user at  the  terminal is 
transferred by Pass-Through across the telecommu- 
nications links that connect the systems. This  input 
is processed by the  remote system, and response 
data  are transmitted back through the network to 
the original display unit. 

Two simple methods, illustrated in Figures 2 and 3, 
are available for the  initiation of a  Pass-Through 

connection to  a  remote system. Once  a connection 
has been established, Pass-Through becomes trans- 
parent, reflecting every entry  to  the  remote system 
as though the  terminal were connected directly. 
Although a single entry may be relayed through 
several computers  to reach its  destination, Pass- 
Through handles the necessary indirect routing of 
data automatically. Upon completion of remote 
work, Pass-Through restores the original local envi- 

Figure 2 A typical Pass-Through session 

IBM SYSTEMS JOURNAL, VOL 22. NOS 112. 1983 MENDELSOHN. LINEHAN, AND ANZICK 65 



Figure 3 Initiating a Pass-Through session without logging onto a local system 

ronment.  A wide variety of computer users, includ- 
ing those without technical background, have found 
Pass-Through  to be a convenient and effective 
means of accessing remote systems. With only a few 
minutes of informal instruction, most new users 
become self-sufficient. 

Figure 2 illustrates a typical Pass-Through session. 
Work commences on the New York City system 

66 MENDELSOHN,  LINEHAN, AND ANZICK 

(NYC) with the  LOGON procedure. Following 
this, the user enters PASSTHRU  CHICAGO,  and 
is then connected to  the  Chicago system. Having 
completed the session, which includes LOGON, 
processing, and  LOGOFF, control returns  to  the 
New York session, which  is still active. 

Figure 3 is an example of using Pass-Through 
without logging onto the local system (NYC).  The 

IBM SYSTEMS JOURNAL, VOL 22, NOS 112, 1983 



user enters DIAL PVM-, and  the system responds 
with a menu of available systems. After selecting 
the Chicago  system, the user is presented with the 
CHI logon screen. At  the conclusion of the session, 
control  returns  to the Pass-Through selection 
screen. 

Many people may use Pass-Through  simultaneous- 
ly; from  any convenient VM/SP terminal,  each user 
may access any  computer in the network. Pass- 
Through  coordinates  the  resulting data traffic, 

Our experience has  been  that 
Pass-Through  can  usually be 

installed  and tested in  a  few hours. 

routing  each transmission to the  appropriate  desti- 
nation. 

A key feature of Pass-Through is its  transparency  to 
existing programs. Any program  written for use on 
a local terminal works equally well  when accessed 
remotely via Pass-Through.  Consequently, the ben- 
efits of Pass-Through  can be realized without any 
programming  effort. 

Pass-Through  supports only terminals in the IBM 
3270 family;I3 other VM/SP terminals may not  be 
used to access remote systems. Detailed  information 
on supported  terminal configurations may be found 
in the VM/Pass-Through facility guide  and  refer- 
ence  manual.' 

Pass-Through does not directly  support  the file 
transfer,  electronic correspondence, and  batch  job 
submission services commonly provided by more 
sophisticated networks, but  other  products  available 
from IBM, notably the  Remote Spooling Communi- 
cations  Subsystem (RSCS)'4''5 do provide such ser- 
vices and are frequently used  in conjunction with 
Pass-Through. The IBM Systems  Network  Archi- 
tecture (SNA) provides a  growth  path for customers 

Figure 4 Four VM/SP systems connected using 
Pass-Through 

who  wish to combine these  functions within a single 
netw01-k.~ 

In comparison with many other network facilities, 
Pass-Through is easy to install and  operate. No 
teleprocessing expertise is needed during  installa- 
tion of the Pass-Through  software,  and  the proce- 
dures  are simple. Our experience has been that 
Pass-Through  can usually be installed and  tested in 
a few hours. Most Pass-Through networks are  run 
without any  operator  intervention,  but when man- 
ual control is desired, the  entire network may be 
operated from any of the VM/SP systems. Pass- 
Through provides a  simple facility for relaying 
network control commands  to  any  machine in the 
network. Using this  technique, an operator located 
at  any  site may issue commands  to  change the 
network configuration, to send messages to network 
users, or to  query traffic on the network. The 
simplicity of the  installation,  operation,  and  mainte- 
nance procedures for Pass-Through seems to con- 
tribute significantly to  its  acceptance.  Many pro- 
spective users find it easier  to  try  Pass-Through 
than  to  undertake  a  detailed  study of its  potential. 

Typical configurations 

Figure 4 shows a  typical network of four VM/SP 
systems connected using Pass-Through.  Terminals 

MENDELSOHN, LINEHAN, AND ANZICK 67 IBM SYSTEMS JOURNAL, VOL 22, NOS 112. 1983 



are  attached to all  four  computers,  and  any  terminal 
may access any of the four systems. In order  to 
provide universal computer access without  requir- 
ing a separate telecommunications link between 

Within  individual IBM sites, 
Pass-Through  is  frequently  used to 
grant  access to several  computers 

from  a  single  terminal. 

each  pair of systems, the CHICAGOA and NEWYORK 
systems forward data from CHICAGOB and LOSAN- 
GEL. Also illustrated in this figure is the use of 
Pass-Through as a local terminal  switcher. If two or 
more processors are located in the  same computer 
center (e.g., CHICAGOA and CHICAGOB), the 
input/output  channels of the systems can  be 
directly  connected  to provide very fast  Pass- 
Through  data transfer.I6 In such an environment, 
Pass-Through  may  eliminate  the  considerable 
expense of cabling  each display terminal to several 
computers. 

Pass-Through itself runs only under VM/SP, but 
facilities are also provided for limited interconnec- 
tion with other systems. By emulating the IBM 3271 
and IBM 3274 display terminal  controllers,  Pass- 
Through allows VM/SP users to access the non- 
VM/SP systems in a  network.  Many IBM systems, 
such as OS/VS2, OS/VSl, DOS/VSE, TSO, CICS/VS, 
and IMS/VS, support the 3271 and 3274 terminal 
controllers  and  may  therefore  be connected to  Pass- 
Through. Because Pass-Through itself does not run 
on the non-VM systems, they cannot fully partici- 
pate in the Pass-Through  network. Display termi- 
nals connected to nOn-VM systems cannot access 
other  computers across Pass-Through networks, 
and non-VM systems cannot function as  the CHICA- 
GOA and NEWYORK systems in Figure 4, forward- 
ing data to other  machines. 

Figure 5 illustrates  a more elaborate  Pass-Through 
network consisting of  five VM/SP systems and two 
non-VM systems: a CICS/VS query  application  and 

68 MENDELSOHN,  LINEHAN, AND ANZICK 

an MVS/TSO time-sharing  system. The seven sys- 
tems are all available from terminals connected to 
any of the five VM systems. Since  Pass-Through 
routes data through  intermediate processors as nec- 
essary,  the line from Vancouver to  Chicago  may be 
eliminated without altering  the services available  to 
users. Seemingly redundant connections of this  sort 
are often valuable in improving the performance of 
the system. In this  instance, traffic from Chicago is 
delivered directly without passing through  either 
San Francisco or Portland. 

Use of Pass-Through by the IBM Corporation 

The most complex Pass-Through network yet built 
connects over  two hundred thirty-five IBM System/ 
370 computers for use within the IBM Corporation. 
Diagrammed in Figure 6 ,  this network performs a 
variety of functions.  Pass-Through allows develop- 
ment teams located throughout the world to  share 
access to computer systems, facilitating cooperative 
projects involving programmers at many sites. A 
link between Poughkeepsie in New York and  Mont- 
pellier in France is used for load sharing.  Due to the 
difference in time of day between the two countries, 
prime-time work from France  may be done on 
under-utilized  machines in New  York.  This experi- 
mental project has resulted in significant savings 
over the  past  several  years. For  many IBM 
employees who use computers in their daily work, 
access to  Pass-Through  has been particularly valu- 
able when traveling.  Pass-Through allows travelers 
visiting IBM sites to remotely access systems at their 
home locations. This provides a convenient means of 
keeping in touch with colleagues and of reviewing 
electronic correspondence stored on the home sys- 
tems. 

Within individual IBM sites, Pass-Through is fre- 
quently used to grant access to several computers 
from  a single terminal.  Systems  programmers 
responsible for maintaining  internal IBM systems 
find Pass-Through  to be a convenient way to access 
the various computers for which they are responsi- 
ble. Pass-Through  can be valuable in remote  diag- 
nosis of systems problems, and has been used occa- 
sionally for diagnosing problems with the network 
itself. 

The IBM Pass-Through  Network  has been growing 
rapidly,  complementing the large RSCS/JES2 net- 
work (known informally as  VNET)  that provides file 
transfer  and  electronic correspondence services 

IBM SYSTEMS JOURNAL, VOL 22, NOS 112. 1983 



within IBM. Using multiplexing modems (special 
equipment that allows several independent data 
connections on a single telephone line), these two 
networks often share long-distance transmission 
facilities, and have together changed the  nature of 
daily communication among IBM sites. The IBM 
Pass-Through network, and  the many smaller  net- 
works from which it grew, have also provided a 
valuable test environment during  the development 
of the Pass-Through product. Using VNET and 

Pass-Through itself, we are able to stay in close 
touch with internal users, distributing  frequent 
releases of the Pass-Through software for evalua- 
tion and testing. 

Evolution of Pass-Through 

The program that evolved into Pass-Through was 
written in early 1975 to interconnect two particular 
systems within the IBM Corporation. In that config- 

Figure 5 Mlxed network of VM/SP and  non-VM systems 

IBM SYSTEMS JOURNAL, VOL 22, NOS 1/2. 1983 MENDELSOHN,  LINEHAN, AND ANZICK 69 



Figure 6 The IBM internal Pass-Through network on 
March 1, 1982; European systems not shown 

the widely used IBM 327 1 display controller.  Indeed, 
Pass-Through was adopted by many IBM locations 
during the years that followed, and various en- 
hancements were introduced. 

The details of the growing use of Pass-Through are 
not of great  interest,  but  it is worthwhile to  examine 
closely the  characteristics  that led to  its  acceptance. 

No requirements existed to run the 
Pass-Through  program  in  other 

environments, to support  complex 
networks, or even  to operate over 

more  than  a  single  link. 

uration, users of a VM/SP system were to log onto  a 
remote data base  system,  execute  queries,  and  then 
return  to work again on the local system. No 
requirements existed to  run the Pass-Through pro- 
gram in other  environments, to support complex 
networks, or even to  operate over more than a single 
link. The decision to  create Pass-Through  as  a 
product was still over four  years  away. 

The initial version of Pass-Through was designed, 
implemented,  and  tested  during six months of con- 
centrated work by one person. The result was a 
simple  terminal  emulation system with a  modular 
internal  structure.  Separate tasks (processes) were 
developed to  communicate with individual users and 
to  drive the teleprocessing link; services for buffer 
manipulation  and for other basic support  functions 
were provided in a  simple  but  general  manner.  A 
multitasking supervisor was also provided to coordi- 
nate activity within the system. Not yet known as 
Pass-Through, the system  entered production use in 
late spring of 1975. 

Other uses were soon found for this  program, which 
could make VM appear  to  other systems as a  stan- 
dard display cluster. Using Pass-Through,  one 
could potentially log onto  any system that supported 

Pass-Through not only provided a  valuable service, 
but  it was also easy to  install  and  test.  Installers 
were frequently  unaware that Pass-Through,  pack- 
aged as  an ordinary  program,  actually  contained  its 
own small  operating  system. Assuming that  an 
appropriate  hardware configuration was available, 
Pass-Through could be installed  and  tested in about 
a  day. 

Running in its own virtual  machine,  Pass-Through 
posed little threat  to  the integrity of the systems on 
which it  ran;  errors in the Pass-Through  program 
were likely to affect only persons actually using the 
remote connections. Since  it  simulated  a  standard 
device, Pass-Through was also unlikely to  cause 
failures of the remote systems to which it  connected. 
Other  characteristics of Pass-Through proved valu- 
able as extensions were developed. The simple mod- 
ular  internal  organization  created  an environment 
in which new function could easily be added. 

During the first few years, users of the remote 
connections found Pass-Through  to be a  simple  and 
reasonably reliable  means of accessing other sys- 
tems. In spite of some performance problems that 
were later resolved, Pass-Through allowed rapid 
switching among systems and often relieved users of 
the need to  wait for dedicated  terminals. By March 

IBM SYSTEMS JOURNAL, VOL 22, NOS 1/2. 1983 



of 1978, more than fifteen IBM sites were using 
Pass-Through for a  variety of purposes. 

The earliest version of Pass-Through  supported  a 
single link, and could create two-node networks 
only. With the advent of multiple link support, 
star-shaped networks became  common.  Realizing 
the need for more sophisticated configurations, we 
began work on a  major  functional  enhancement  to 
the system.  Facilities were added for communica- 
tion between Pass-Through  programs  running at  
different sites, and  a  routing service was also 
created  to  direct  information  through  large  and 
complex networks. As part of this effort, an 
enhancement to the VM/SP operating system display 
terminal  drivers was necessary. 

Gradually,  the  small networks grew 
together, resulting  in  a  single large 

network. 

When the new support  became  available,  informa- 
tion could, for the first time, be relayed through 
many intermediate nodes to reach a final destina- 
tion. All systems  became peers, playing equal roles 
in  moving data and allowing any  terminal to access 
any system in a  network.  Once  again, the simpler 
modular structure of the original system and the 
generality of the services available provided a  natu- 
ral environment for enhancement. 

The new version of Pass-Through gained rapid 
acceptance within IBM, and  many  small Pass- 
Through networks came into existence. Most of 
these were built of links installed by individual 
organizations that had immediate needs for com- 
munication services. Gradually,  the small networks 
grew together,  resulting in a single large  network. 
At no time was there  a  corporate  mandate  to build 
such a network; there was no centralized  planning 
or management. As a  courtesy, most sites relayed 
traffic on behalf of anyone who might need occa- 
sional use of their links. In this  informal  manner, we 

built the  large network that is  now in daily use by 
many hundreds of people. 

Pass-Through is the second IBM internal network to 
grow without  centralized  management or planning. 
The  Corporate  Job Network (the official name for 
VNET) is used to  transfer correspondence, computer 
files, and  other bulk data throughout  the world. 
This sprawling network now connects over  six 
hundred IBM System/370s,  and has an estimated 
growth rate of two systems per week. The develop- 
ment and growth of VNET, in many respects the 
archetype for Pass-Through, have been documented 
by Hendricks  and  Hartmann.14 

The elements necessary to  justify the release of 
Pass-Through as a product began to coalesce during 
1978. As experience within the  corporation revealed 
Pass-Through to be a  valuable tool for interactive 
networking, IBM prepared to release the first of its 
4300 series of processors. These inexpensive Sys- 
tem/370-compatible  machines were well suited for 
distributed  computing,  particularly  as  satellite 
processors for large  centralized hosts. 

The  Remote Spooling Communication  Subsystem 
(RSCS) met the need to move bulk data within these 
distributed systems, and  Pass-Through was seen to 
provide a  complementary  interactive networking 
function. It provided a sensible, inexpensive means 
of building an  interactive network, and opened a 
migration  path  into a more sophisticated,  compre- 
hensive S N A  network. The first release of the VM/ 
Pass-Through  Program  Product was announced on 
January 30, 1980. A second release announced in 
October 198 1 provided support for remote  printers, 
for larger display screens, and for the emulation of 
the IBM 3275 display terminal. 

Architecture and implementation of 
Pass-Through 

Although  a full discussion of the  internals of Pass- 
Through is beyond the scope of this  paper,  these 
sections explore technical topics of particular  inter- 
est and some of the approaches that distinguish 
Pass-Through from other networks. 

There  are several ways to build subsystems within a 
virtual  machine  environment.  One popular method 
is to build facilities of the subsystem into  the 
operating system kernel (the protected  Control Pro- 
gram or CP). Special  operations are then provided 
by which virtual  machines  may  interact with sub- 

MENDELSOHN, LINEHAN, AND ANz~cK 7 1 IEM SYSTEMS JOURNAL, VOL 22. NOS 1/2 ,  1983 



Figure 7 The Logical  Device Interface (LDI) kernel may be necessary, these should be held to an 
absolute minimum. There  are a  number of imDor- 

system functions. In  this respect, the subsystem 
represents an extension to  the  architecture of the 
virtual machine. If Pass-Through were constructed 
in such a  manner,  the  virtual machines created by 
VM/SP would be extended to include features for 
access to  their  remote  counterparts.  Although per- 
formance is theoretically better  than with any  other 
approach,  there are  the following major  disadvan- 
tages: 

The operating system kernel is  not protected from 
the subsystem, so subsystem problems may affect 
the  integrity of the  operating system. 
Installation involves changes to the control pro- 
gram,  thereby  disrupting the ongoing operation of 
the system. 
Poor isolation complicates the debugging of the 
subsystem. 
Extension of virtual  System/370s  to include a  full 
network function is contrary  to  the basic philoso- 
phy of VM/SP: the  functions provided to  each user 
are to be as close as possible to those described in 
the IBM System/370 Principles of Operation. 

On the basis of experience acquired in developing 
Pass-Through, we feel strongly that  the  appropriate 
environment for such subsystems is within a sepa- 
rate virtual  machine. Although some changes to the 

strongly that the appropriate 
environment for such  subsystems is 
within  a separate virtual  machine. 

Entire networks may be tested on a single physical 
processor by creating  a  separate  virtual  machine 
for each network node. 
New versions of the network software may be 
tested without change  to the system kernel. 
Switching between versions of the  software 
requires only that  the old  version be stopped and 
the new started. 
Excellent isolation is  possible  when more than one 
network is connected to  a single physical proces- 
sor. 

These  advantages outweigh the modest  per- 
formance  gain of a kernel-based implementation. 
The ability  to  install  Pass-Through on an opera- 
tional production system, incurring only slight risk 
to system integrity, is extremely valuable. We feel 
that others who are building subsystems, whether 
networking, data base, device support, or otherwise, 
should avoid kernel-based implementations when- 
ever  possible. 

IBM SYSTEMS JOURNAL, VOL 22, NOS 1/2, 1983 I 



Display terminal simulation 

Since Pass-Through was the first interactive net- 
work supported from within a  virtual machine, new 
interfaces  to  the CP kernel were necessary. Our  aim 
was not only to develop a minimum extension to  the 
kernel, but  also  to provide facilities that would  fit 
naturally within the VM/SP framework.  We devel- 
oped an  interface that allowed software in a  virtual 
machine to  simulate  a locally attached display 
terminal. The virtual  machine could simulate  any 
permissible data entry,  and could receive all device 
orders for the  simulated  terminal.  Figure 7 illus- 
trates  the role of the Logical  Device  Interface (LDI) 
in a Pass-Through network. 

Local users of VM/SP access the system in two 
modes: (1) the LOGON command is used to  create  a 
virtual machine, and (2) the DIAL command is used 
for attachment  to  an existing virtual machine. An 
important goal of the LDI was to extend both of 
these  capabilities  to users of Pass-Through.  This 
was achieved by intercepting  the lowest  level of 
terminal  control within CP. Remote Pass-Through 
terminals  and local terminals are supported by the 
same device management logic. Thus  a  remote 
terminal has exactly the  same  capabilities as a local 
terminal. Below the device management level, the 
LDI support provides interfaces  to  the network vir- 
tual machine, while ordinary physical device drivers 
continue  to issue channel  commands for locally 
attached  terminals. 

The LDI approach is a  natural  counterpart  to  the 
existing VM/SP virtual  device concept. (Virtual 
device support is a  standard  feature of the VM/SP 
operating system. No changes to VM/SP virtual 
device support were made  during  the development 
of Pass-Through.)  Virtual devices are used to pro- 
vide. device control, while logical devices provide 
device simulations. The LDI allows a  virtual 
machine (Pass-Through in this  case)  to  simulate  a 
terminal  to CP, so that CP can  operate as though a 
terminal were connected directly  to  the system. In 
Figure 7, the Pass-Through Virtual  Machine (PVM) 
receives the  real  terminal as a  virtual device on 
system A  and  creates  a logical device on system B. 
This logical device is transparent to most of CP and 
to applications  running in the CMS virtual machine. 
Any application that supports  a local terminal 
works equally well through  the logical device. Logi- 
cal  and  virtual devices are  thus distinct concepts 
that complement each other in creating  interactive 
networks. As a  natural extension to VM/SP, the LDI 

IEM  SYSTEMS  JOURNAL, VOL 22, NOS 112. 1983 

support  has also been  used  by others with a need to 
simulate  terminals from within a  virtual machine. 

Routing strategies 

Support of multihop connections in large networks 
is a complex problem. (Multihop connections are 
those in which data must traverse several telecom- 
munications links before reaching a final destina- 
tion.) By optimizing for small configurations, Pass- 
Through avoids some of this complexity; Pass- 

Logical  and  virtual  devices are thus 
distinct  concepts that complement 
each  other  in  creating interactive 

networks. 

Through uses extremely simple routing algorithms 
that yield surprisingly effective results. 

Pass-Through is a  virtual-circuit network with 
static routing. Each network node is supplied with a 
simple table in a disk file that contains next-hop 
information for each possible destination. No indi- 
vidual node has  a  map of the  entire network. Each 
node knows  only  who its immediate neighbors are 
and which neighbors provide effective paths to more 
distant hosts. The tables are maintained  manually 
and  must be hand-checked  for  consistency. 
Although table  maintenance is a difficult chore on 
the  large IBM network, it is usually no problem on 
smaller network configurations. From the routing 
tables, virtual  circuit  paths may be determined for 
any desired connection. 

At  the time  a user requests a  Pass-Through session, 
a  set-up message begins a round trip to  the desired 
target system. Following the directions in the 
routing tables at each successive node, this message 
permanently establishes the  path  to be  used for the 
duration of the session. At  each node, data  struc- 
tures are created that monitor the  status of the 
session and  facilitate rapid routing of subsequent 
transmissions. 

MENDELSOHN,  LINEHAN,  AND  ANZICK 73 



Since  circuit  routing is static,  error-free connections 
are maintained  without end-to-end checking.  Soft 
transmission errors  are recovered by the low-level 
link protocols and are  transparent  at  the circuit 
level. Any hard  (unrecoverable)  errors on a link are 

We have  built  an  operational  network 
and  have  resolved  problems  as  they 

have  been  encountered. 

recognized unambiguously on both sides of the 
failure  and  trigger the disconnection of sessions. All 
virtual  circuit connections on failing links are  termi- 
nated prior to link reactivation.  Virtual  circuits 
provide error-free,  end-to-end connections until an 
intermediate link experiences an  unrecoverable 
error  (usually  a system stoppage at  an intermediate 
node). When such a  failure occurs, users are discon- 
nected from  Pass-Through  and are expected  to  retry 
their connections at a  later  time.  This is a modest 
inconvenience, since most unrecoverable  errors 
reflect problems that  take several minutes or more 
to resolve. 

Although  these  mechanisms are primitive, they 
have proved to be effective for our purposes. More 
complex approaches"  might provide dynamic  error 
recovery, improved performance,  or load balancing, 
but they would  be of value only when alternate 
paths were available.  Since  Pass-Through is fre- 
quently used to  support networks of simple topolo- 
gy, the gain  from the added complexity would  be 
limited in many cases. We feel that our  approach is 
an effective compromise, weighed against  the con- 
siderable complexities of implementing  and  debug- 
ging  an  adaptive  routing  scheme  and the possible 
overhead in associated  protocol^.'^ 

Admittedly,  formal  studies would be necessary to 
fully justify  this conclusion. We have not made 
elaborate  measurements of Pass-Through traffic, 
and have neither modeled nor simulated the possible 
impact of other networking algorithms on the per- 
formance of Pass-Through.  Instead, we have built 
an  operational network and have resolved problems 

74 MENDELSOHN, LINEHAN, AND ANZICK 

as they have been encountered. So far, this process 
has led  us to a simple strategy for routing  and  error 
recovery. It must, however, be clear that  the more 
complex approaches that we have eschewed are 
essential in other  circumstances. ARPANET, for 
example,  has  performance  and  reliability objectives 
that  far exceed those of Pass-Through, goals that 
can be achieved only by using very sophisticated 
technology. We do feel that Pass-Through  demon- 
strates  that alternative, less elaborate  approaches  to 
networking can  be effective in certain less demand- 
ing environments. 

Performance  considerations 

Performance of Pass-Through  must be considered 
from two separate perspectives: 

Pass-Through should be responsive for its users. 
Pass-Through should not place an unacceptable 
burden on its host systems. 

These are potentially conflicting goals. It is easy 
enough to  make  a  program responsive by allowing it 
unlimited access to system resources. Conversely, 
any  program  may  be limited in its  impact on overall 
system performance by sacrificing responsiveness. 
Analysis of these issues is further complicated by 
the variety of environments in which Pass-Through 
is to  be  operated. The  same program that causes 
negligible overhead on a  large processor may repre- 
sent  a significant burden  to  a  smaller system. 

Earlier  studies'* have underscored the importance 
of rapid response in interactive systems. In essence, 
these  studies conclude that  an interactive  system 
must respond to  short  commands in  well under  a 
second to avoid disrupting the users' patterns of 
interaction.  Although  some  installations  may 
choose to  run  Pass-Through over limited-speed 
communication lines, Pass-Through is intended  to 
add  delays of less than 500 milliseconds per hop 
under expected operating conditions. Such per- 
formance is particularly  important when Pass- 
Through is used as a local terminal  switcher. The 
high-speed data links commonly employed in these 
short-haul  applications are wasted if delays in the 
networking software are excessive. 

To clarify the difficulties that  arise in building a 
responsive, system, we consider the significant 
events that  transpire between the  time a user sends 
a  query  to  a  remote system and the  time a response 
arrives: 

IBM SYSTEMS JOURNAL, VOL 22. NOS 112. 1983 



1. Data  are entered for transmission to the remote 
system. The  entry is from a  terminal owned by 
the Pass-Through  Virtual  Machine (PVM). 

2. PVM enters  a  queue of virtual  machines  waiting 
to be run. PVM is effectively contending with 
other users of the system for access to  the CPU. 

The  high-speed data links commonly 
employed  in these short-haul 

applications are wasted  if  delays  in 
the  networking software are 

excessive. 

3. PVM is dispatched by VM/SP and begins to con- 
sume CPU time.  During  this period, PVM may be 
interrupted  repeatedly for page-in of system 
code and  data  areas. 

4. The Pass-Through  program processes the  data 
from the user and  puts  it in a  queue of data 
destined for the  appropriate outgoing communi- 
cation link. 

5 .  When the link becomes available, transmission 
of the  data begins. The  time required  to  transmit 
the  data depends  primarily on the speed of the 
communication link and on the  amount of data 
to be sent. 

6 .  Transmission completes. The remote system 
begins computation. 

7. The  remote  system begins transmitting a 
response. The  time required for transmission is 
again  determined by the length of the response 
and speed of the communication link. 

8. Transmission completes. PVM again  enters the 
queue of virtual  machines waiting for access to 
the CPU. 

9. Pass-Through  examines the  data, determines the 
display on which the response is to be presented, 
and writes the response. 

Much of the academic work devoted to  analysis of 
computer networks has focused on the  time required 
between events 4 and 5 ,  i.e., the delay in waiting for 
earlier transmissions to be completed so that  the 
data link may be used. Queuing theory" may be 
used along with modeling and  simulation  tech- 

IBM SYSTEMS JOURNAL, VOL 22. NOS 1 / 2 ,  1983 

niques to analyze  these  delays.  Results show that in 
a heavily used network where links are likely to 
saturate, these  queuing delays may be the limiting 
factor in network performance. On the basis of 
these analyses, networks such as ARPANET use 
sophisticated  techniques  to  reroute data around 
congested links." 

Although some large  Pass-Through networks have 
been built, the primary goal of Pass-Through is to 
provide a simple, cost-effective approach to the 
construction of modest networks.  Since  Pass- 
Through is intended for bursty transmissions of 
terminal traffic, but not for bulk transmission of 
files, sustained heavy data loads are unlikely. In 
analyzing the installations where Pass-Through is 
used, we find the following characteristics  to be 
fairly  representative: 

Network topologies are simple. Two-node net- 
works, three-node rings, and  simple  stars are 
common configurations. 
Even  slow data links are statistically unlikely to 
have long queues.  Data links are frequently idle. 

Pass-Through  has been designed so 
that  dispatching  delays  can  be 

minimized  in a well-run  installation. 

This suggests that efforts to build sophisticated 
adaptive flow control and  routing schemes would  be 
misplaced. If link delays are unacceptable,  the best 
cure for the problem is to invest in faster links. In 
analyzing the large  Pass-Through network within 
IBM, we find that user loads on the  data links are 
usually insignificant in determining responsiveness 
of the network.  Critical  factors are  the number of 
hops in a  route,  the speed of the  data links, and  the 
responsiveness of the systems supporting the links. 

This  last  factor often dominates network response 
for short transmissions, and it manifests itself in 
several ways. In the scenario above, there  are two 
events (2 and 8)  at which PVM waits to be 
dispatched by the VM/SP host. If the host system is 

MENDELSOHN, LINEHAN, AND ANZICK 75 



overburdened, a delay of several seconds may be 
encountered before PVM can even  begin to process 
the requested transmission. We have found that this 
dispatch delay tends  to be the limiting factor in 
determining  the  performance of Pass-Through in a 
heavily loaded environment. This delay is primarily 
a  characteristic of the host operating system dis- 
patching algorithms  and only indirectly of the Pass- 
Through  program itself. The problem is com- 
pounded when users access Pass-Through from 
their own CMS virtual machines. The number of 
virtual machine dispatches per interaction  then 
doubles from two to four. 

Pass-Through has been designed so that dispatching 
delays can be minimized in a well-run installation. 
The fundamental reason why all users of a com- 
puter  encounter  dispatch delays is that  the operat- 
ing system attempts  to  ensure  fair allocation of the 
computer's resources. If an individual were allowed 
free use of the machine, that person might unfairly 
monopolize the CPU, storage, or other system 
resources. To  mitigate  the problem, each user is 
forced to wait in line before using resources and is 
periodically returned  to  the back of the line for 
rescheduling. Since Pass-Through runs in an ordi- 
nary virtual machine, it  tends  to go through the 
same delays as any  other user in receiving access to 
the CPU. 

Finding that these delays are unacceptable, we 
recommend that Pass-Through be given high (or 
even absolute) priority in accessing the CPU. We 
believe this is justified primarily in  view  of the 
studies by Doherty." But what is the price for 
granting Pass-Through unlimited access to  the 
CPU? It is essentially negligible. Pass-Through is 
not a compute-bound program.  (Our informal stud- 
ies consistently show that  path length per interac- 
tion, which does depend somewhat on network 
configuration and available storage, is  not a prob- 
lem in most installations.) We do not believe that 
the overall  performance of most  systems is 
enhanced when Pass-Through is delayed in its 
access to  the CPU. In short, Pass-Through provides a 
vital service to its users, and  the consumption of 
resources by Pass-Through is essentially indepen- 
dent of its  dispatch  priority.  Interactive networks 
should generally receive service from the  operating 
system on a high-priority basis. 

Ironically, many networks that  are  far more sophis- 
ticated  than Pass-Through seem to be limited in 
performance by dispatching delays. Our observa- 

76 MENDELSOHN, LINEHAN. AND ANZICK 

tions have shown that users of TELNET (the ARPA- 
NET interactive networking facility) commonly 
experience host system delays that  far exceed those 
of the network itself. Similar  delays are also com- 
mon  in accessing other  high-performance networks, 
including high-speed local networks. Users  care 
little that a network backbone is highly responsive if 
access is delayed for other reasons. Although sched- 
uling remains  a significant problem on some heavily 
loaded systems, the  attention given to  this issue has 
significantly improved the responsiveness of Pass- 
Through. 

Although path  lengths for Pass-Through may be 
short enough to be considered negligible for many 
purposes, other  factors may affect the burden of 

If we expect Pass-Through to be 
given  rapid  access to the CPU, 

memory requirements for 
Pass-Through  must be low. 

Pass-Through on the host system. If Pass-Through 
places too much demand on computing resources, 
we may not fairly expect high-priority access to  the 
CPU. Use of the memory resource is a  particularly 
significant aspect of the burden of Pass-Through on 
its host. 

Pass-Through  runs under VM/SP, a paged virtual 
memory operating system. Although Pass-Through 
is granted  the illusion of nearly unlimited memory, 
excessive use of that resource may be detrimental  to 
system performance. A useful measure of the  short- 
term  virtual memory requirement of any program is 
given  by Denning's working-set theory.20 Informal- 
ly, the working set is the  group of pages in memory 
that a  program requires to execute for a brief 
period. Classical theories of virtual memory man- 
agement suggest that it is unwise to  run  a  program 
unless sufficient space is available to satisfy its 
short-term memory requirements, i.e., its working 
set. If  we expect Pass-Through to be given rapid 
access to  the CPU, memory requirements for Pass- 
Through must be  low. 

IBM SYSTEMS JOURNAL,  VOL 22. NOS 112. 1983 



Holding down the working set for Pass-Through  has 
the following benefits related  to scheduling and 
performance: 

If a working set is small enough, the host operat- 
ing system may be able  to keep the  entire working 
set resident for long periods. Overhead for the 
paging of the working set is thus  reduced. 
If paging is necessary, delays are minimized for 
small working sets.  These  delays  result  from disk 
transfers necessary to free  space in memory, as 
well as  from those that bring in the Pass-Through 
working set. 
The path length of the operating  system logic for 
paging tends  to  dominate the CPU overhead for 
Pass-Through. Excessive use of memory thus 
translates  into  additional CPU time billed to Pass- 
Through. 

For all of these reasons, more effort has been spent 
on reducing the Pass-Through working set  than on 
directly minimizing path  length.  The two primary 

To minimize  the  working  set  for data 
buffers,  a  page-sensitive  buffer 

allocation  scheme  has been 
developed. 

uses of memory in Pass-Through are for data buf- 
fers and for program code. To minimize the working 
set for data buffers, a page-sensitive buffer alloca- 
tion scheme has been developed, whereby the mem- 
ory allocators in Pass-Through  always attempt  to 
allocate new buffers within pages that  already con- 
tain  active buffers. Two buffer sizes are used inter- 
nally: one-eighth page and full page. The page- 
sensitive scheme  allocates  up  to  eight  small buffers 
in a single page, and  clusters buffers within active 
pages, to  the  extent possible. In comparison with 
more commonly used methods,*’ we believe that this 
approach significantly lowers the working set for a 
heavily loaded Pass-Through  system.  When the last 
buffer in a given page is freed,  a special interface  to 
the host operating  system is used to  indicate that  the 
page is no longer in use and may be replaced. 

IBM SYSTEMS JOURNAL,  VOL 22, NOS 112, 1983 

Pass-Through  thus provides memory management 
hints  to  the host operating  sytem. 

In  order  to  further minimize working set  require- 
ments for the  Pass-Through  program,  re-entrant 

We  find path lengths  to be 
sufficiently low that  Pass-Through 

may safely be given  absolute 
dispatch  priority  in  most 

installations. 

code is  used wherever possible. The primary  exam- 
ples are line drivers, which issue device orders  to the 
communication lines, and  user-interface  tasks, 
which coordinate  interactions with the various 
users. By using the  same  re-entrant  drivers to drive 
multiple lines or multiple users, memory require- 
ments for program code are significantly reduced. 

In summary, we find that  the most important 
practical issues for the performance of simple  inter- 
active networks are not necessarily those that have 
received the widest attention. In many cases, net- 
work links are so lightly loaded that complex inter- 
actions between users in the  data link queues are 
rare. Simple topologies combined with high over- 
head per hop reduce the effectiveness of adaptive 
routing in these environments. We have chosen 
fixed, predetermined  routes as a  more  straightfor- 
ward approach. The speed of the  data links does set 
a lower bound on response time for a given interac- 
tion, and users of Pass-Through are expected to 
purchase data links with sufficient speed to provide 
acceptable  throughput. 

Operating system dispatch delays are  the  other 
significant factors that affect performance of Pass- 
Through.  We find path  lengths  to be sufficiently 
low that Pass-Through  may safely be given absolute 
dispatch priority in most installations.  Particular 
efforts have been made  to minimize the working set 
of Pass-Through,  thus  reducing the Pass-Through 
burden on main memory and associated overhead 
for paging. 

MENDELSOHN,  LINEHAN,  AND  ANZICK 77 



Concluding remarks 

VM/Pass-Through is a  simple networking facility 
that has  gained widespread acceptance within IBM 
and with IBM customers.  It allows a single terminal 
to access many  different  computers,  including  those 
at  distant locations. Pass-Through  has proved to be 
easy for most persons to use, and  it is easily installed 

Pass-Through  demonstrates  that 
significant networks may be built 

using  simple  technology. 

and  maintained.  These  factors, coupled with low 
overhead and good reliability,  underlie the popular- 
ity of Pass-Through. 

Pass-Through  demonstrates that significant net- 
works may  be  built using simple technology. 
Although  adaptive  routing  and  other  sophisticated 
techniques are known to be of value in large mesh 
networks, many practical networks exhibit  simpler 
topologies. We conclude that simple networking 
algorithms are more than  adequate in these  smaller 
networks. We have also studied issues affecting the 
performance of interactive  subsystems  operating in 
a virtual memory environment.  Dispatching  delays 
and excessive working set, rather  than simple  path 
length, are often found to  limit responsiveness. 

In designing Pass-Through  to meet the practical 
needs of its users, great  care was taken to lay an 
early  foundation for long-term  growth.  Simple, 
powerful internal  structures  became  the basis of an 
incremental  software development process. We 
have come to  accept  this as  an effective approach  to 
the development of many  types of large systems. 

The most striking  achievement of the Pass-Through 
system is clearly the  large  internal IBM network. In 
addition  to  its  practical influence on the daily work 
of many people, this network dramatically  demon- 
strates  the  potential of straightforward  approaches 
to networking software.  Sophisticated  algorithms 
might  enhance  the  capacity of this  large network, 

78 MENDELSOHN. LINEHAN.  AND ANZICK 

but  they would not otherwise improve the services 
that users have come  to value. If such performance 
is ever required, we will consider enhancement of 
Pass-Through or the adoption of other networking 
software. In the meantime, we hope that  our efforts 
with Pass-Through will inspire other innovative 
approaches  to networking and  software develop- 
ment. 

Cited references 

I .  IBM  Virtual Machine Facility 370: VMIPass-Through 
Facility  Guide  and  Reference, SC24-5208, available 
through IBM branch offices. 

2.  G. Glaser,  “The  centralization vs. decentralization issue: 
Arguments,  alternatives  and  guidelines,”  Data Base 2, No. 
3, 1-7 (1970). 

3. IBM Systems  Network  Architecture General Information, 
GA27-3202, available  through  IBM  branch offices. 

4. M.  Schwartz,  R.  R.  Boorstyn,  and  R.  L.  Pickholtz,  “Termi- 
nal  oriented  computer  communication  networks,” Proceed- 
ings of the  IEEE 60,  1408-1423 (November 1972). 

5 .  D.  C.  Wood,  “A  survey of the  capabilities of 8 packet 
switching networks,” Computer  Networks:  Text and Refer- 
ences for a  Tutorial, M. Abrams,  R.  P. Blanc, and I. W. 
Cotton,  Editors, IEEE, Long  Beach, CA (1978). pp. 2-44 to 
2-50. 

6 .  N. Abramson,  “The  ALOHA  System-Another  alternative 
for  computer  communications,”  AFIPS Conference Pro- 
ceedings. Fall Joint Computer Conference 37, 281-285 
(1  970). 

7. R. Binder, N.  Abramson, F. Kuo,  A.  Okinaka,  and D. Wax, 
“ALOHA packet  broadcasting-A  retrospect,”  AFIPS 
Conference Proceedings, National  Computer Conference 

8. L. G. Roberts  and B. D.  Wessler,  “Computer  network 
development  to  achieve  resource  sharing,”  AFIPS Confer- 
ence Proceedings,  Spring Joint Computer Conference 36, 
543-549  (1970). 

9. H.  Frank,  R.  E.  Kahn,  and  L.  Kleinrock,  “Computer  com- 
munication  network  design-Experience  with  theory  and 
practice,”  AFIPS Conference Proceedings.  Spring Joint 
Computer Conference 40,255-268  (1972). 

10. F.  E.  Heart,  R.  E.  Kahn, S. M. Ornstein,  W.  R.  Crowther, 
and  D.  C.  Walden,  “The  interface  message processor for the 
ARPA network,” AFIPS Conference Proceedings,  Spring 
Joint Computer Conference 36,561-567  (1970). 

11. M.  N. Mimno, B. P. Cosell, D. C.  Walden, S. C.  Butterfield, 
and J. B. Levin, “Terminal  access  to  the  ARPA  network: 
Experience  and  improvements,”  Computer  Networks:  Text 
and References for a  Tutorial,  M.  Abrams,  R. P. Blanc,  and 
I. W.  Cotton,  Editors,  IEEE,  Long  Beach,  CA (1978), pp. 

12. L. G. Roberts,  “Data by the packet,”  Computer  Networks: 
Text and References for a  Tutorial,  M.  Abrams,  R.  P. 
Blanc,  and  I. W. Cotton,  Editors,  IEEE,  Long  Beach,  CA 

13. IBM 3270 Information  Display  System  Component 
Description, GA27-2749-9, available  through  IBM  branch 
offices. 

14. E.  C.  Hendricks  and  T.  C.  Hartmann,  “Evolution of a  virtual 
machine  subsystem,” IBM Systems Journal 18, No. I ,  
111-142(1979). 

44,203-215  (1975). 

5-36 to 5-40. 

(1978), pp. 7-4 to 7-9. 

IBM SYSTEMS JOURNAL, VOL 22. NOS 112, 1983 



15. IBM Virtual Machine Facilityf370:  Remote  Spooling  Com- 
munications Subsystem  Networking  Program Reference 
and Operations  Manual, SH24-5005-1,  available  through 
IBM  branch offices. 

16. Systemf370  Special Feature: Channel-to-Channel Adapter, 
GA22-6983,  available  through  IBM  branch offices. 

17. L. Kleinrock,  W.  Naylor,  and  H.  Opderbeck,  “A  study of 
line overhead in the  ARPANET,” Communications of the 
ACM19,  No. 1,3-127  (January  1976). 

18. W. J. Doherty  and  R.  P. Kelisky, “Managing VMfCMS 
systems for user effectiveness,” IBM Sysrems Journal 18, 

19. L.  Kleinrock, Queueing Systems,  Volume 2: Computer 
Applications, John Wiley & Sons,  Inc.,  New  York, N Y  
(1  976). 

20. P. J. Denning,  “The working set model for  program  behav- 
ior,” Communications of the  ACM 11, No. 5, 323-333 
(May  1968). 

21. D. E. Knuth, The  Art of Computer  Programming,  Volume 
1. Fundamental Algorithms, Addison-Wesley  Publishing 
Co., Inc.,  Reading, MA (1968). 

NO. 1, 143-163  (1979). 

Reprint  Order No. (3321-5183. 

Noah Mendelsohn IBM National  Accounts  Division, Scienti’c 
Center. 1530 Page Mill  Road,  P.O.  Box  10500,  Palo  Alto. 
California  94304. After receiving his S.B.  degree in physics from 
MIT in 1974,  Mr.  Mendelsohn  joined  the ISM Advanced 
Systems  Development Division. His work with  IBM  has  included 
research on distributed  systems,  computer  networking,  and user 
interfaces.  In  1978, Mr. Mendelsohn moved to  the  IBM  Scien- 
tific Center a t  Palo  Alto,  where  he  participated  for  two  years in 
joint  research  with  Stanford  University.  In  1980, he returned  to 
the  university  as  a  student  and received his M S .  degree in 
computer  science in 1982.  While at  Stanford,  Mr. Mendelsohn 
did  research  on  compilers  and  taught  undergraduate  classes in 
computer  science. He recently  rejoined  IBM at Palo  Alto. 

Mark H. Linehan IBM Research  Division,  Thomas J .  Watson 
Research  Center,  P.O. Box 218, Yorktown  Heights,  New  York 
10598. Mr.  Linehan  joined  IBM in 1974  after receiving a  B.A. 
degree  in  political  science from Case  Western  Reserve  Universi- 
ty. He held various  assignments  as  a  VM/370  systems  program- 
mer before joining  the  Thomas J. Watson  Research  Center in 
1979. For the  past  three  years he has worked on VM  display 
terminal  support  and on user minidisk  management  systems.  He 
is currently  a  member of the  Technical  Planning  Staff in the 
Research Division. 

William J. Anzick IBM Research  Division,  Thomas J .  Watson 
Research  Center,  P.O.  Box 218, Yorktown  Heights,  New  York 
10598. Mr.  Anzick is an advisory systems  programmer in the 
Computer  Services  Department of the  Thomas  J.  Watson 
Research  Center.  He  joined  IBM  in  1968  as  a  senior  systems 
programmer in Harrison, New York. He has worked in software 
support for systems  ranging  from  the  1130  through the 1401, 
1410,  and  Systemf360  and  Systemf370.  The  software  support 
has  included  such  operating  systems as  BPS,  DOS,  OSfPCP, 
OS/MVT,  and  VM/370.  Mr.  Anzick  has been active in telecom- 
munications on VM/370  since  1974.  Since  joining  the  Research 
Division, Mr. Anzick  has  been  responsible for the development 
and  enhancement of the  VM/Pass-Through  Program  Product. 

IBM SYSTEMS JOURNAL. VOL 22. NOS 1/2, 1983 MENDELSOHN, LINEHAN. AND ANZICK 79 


