Reflections on
VM/Pass-Through: A
facility for interactive
networking

VM /Pass-Through, an interactive networking facili-
ty, has gained widespread acceptance within IBM
and with IBM customers. Pass-Through allows a
single terminal access to many different com-
puters, including those at distant locations. In
building Pass-Through, and in observing its grow-
ing use, we have had an opportunity to study the
practical implications of this facility and of our ap-
proach to its design.

This paper is divided into two parts. The first, an in-
troduction to Pass-Through networking, describes
features of the system, supported configurations,
and use of Pass-Through within the IBM Corpora-
tion. A brief history of Pass-Through’s development
is also provided. In the second part of the paper,
Pass-Through is used to motivate a technical dis-
cussion of interactive network technology and vir-
tual machine subsystems. Topics covered include
appropriate use of the virtual machine environ-
ment, choice of routing strategy, and performance
considerations. Although the introductory portions
of the paper presume no prior knowledge of com-
puter network or operating system technology, the
subsequent technical discussions do depend on a
basic understanding of these areas.

Virtual Machine (VM) Pass-Through' is a sim-
ple Virtual Machine/System Product (VM/
SP)-based networking facility that provides remote
terminal connections for time sharing and data
query applications. Although large VM/Pass-
Through networks have been used to connect

IBM SYSTEMS JOURNAL, VOL 22, NOS 1/2, 1983

by N. Mendelsohn
M. H. Linehan
W. J. Anzick

hundreds of computers, typical installations com-
prise only two or three processors. Because of this,
Pass-Through has been designed with particular
attention to the needs of small installations, espe-
cially those that may not have prior experience with
computer networks.

This paper, a retrospective on our seven years of
experience with Pass-Through, has two main goals.
The first is to provide a simple introduction to
Pass-Through networking. We describe Pass-
Through’s features, examine typical installations,
and contrast Pass-Through with other more sophis-
ticated networking facilities. The history of Pass-
Through’s development and growth is also dis-
cussed. In the second portion of the paper, we use
Pass-Through to motivate a discussion of technical
issues related to the implementation of interactive
networking subsystems. We explore the choice of an
appropriate subsystem environment, support of vir-
tual terminals, routing strategies, and performance
considerations. We also compare the implementa-

© Copyright 1983 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM
copyright notice are included on the first page. The title and
abstract, but no other portions, of this paper may be copied or
distributed royalty free without further permission by computer-
based and other information-service systems. Permission to
republish any other portion of this paper must be obtained from
the Editor.

MENDELSOHN, LINEHAN, AND ANZICK 63

Figure 1 Interactive networking using Pass-Through

tion of Pass-Through with that of more sophisti-
cated networks and explain various compromises
made during the development of Pass-Through.
Readers whose primary interest is in these technical
issues may wish to skip directly to the section
headed “Architecture and implementation of Pass-
Through.”

Background

Pass-Through is one of the many facilities devel-
oped to meet a growing demand for distributed
computation and computer networking.” Here we
briefly summarize some related commercial and
academic developments.

Several companies, including 1BM, have developed
network architectures to organize the distribution of
their customers’ computing.>* Carefully planned
and often complex in their implementation, these
systems are designed to provide comprehensive
frameworks for the interconnection of computer
equipment. The architectures apply to hardware as
well as software, and are often optimized for the
needs of large, complex installations. Interface stan-
dards provided by the architectures ensure that
diverse equipment and software applications can
cooperate successfully in a single network environ-
ment.

Ongoing university and industrial research projects
complement these commercial offerings.””” During

64 MENDELSOHN, LINEHAN, AND ANZICK

the 1960s, a major effort sponsored by the United
States Department of Defense led to the develop-
ment of ARPANET, !’ the most famous of all
research networks. A high-performance system for
interconnecting computers throughout the world,
ARPANET provides a vital link among research

Pass-Through provides interactive
networking facilities for users of the
VM/SP operating system.

institutions and is also a primary test bed for the
development of military telecommunications sys-
tems. ARPANET is designed to provide subsecond
response time for a wide variety of demanding
network traffic, to adapt in sophisticated ways to
changes in load, and to survive major disruptions in
the face of natural catastrophe or war. ARPANET is
a classic example of sophisticated, reliable, and
efficient computer networking.

In comparison with these sophisticated commercial
and academic networks, Pass-Through is a modest
special-purpose facility. Pass-Through provides
only interactive networking services and is opti-
mized for use in small instailations. By specializing,
Pass-Through avoids much of the complexity inher-
ent in general-purpose networks; Pass-Through
demonstrates that simple approaches can be sur-
prisingly effective for many purposes.

What Pass-Through does

Pass-Through provides interactive networking facil-
ities for users of the VM/SP operating system. With
Pass-Through, VM/SP systems may be connected
with other systems to create time-sharing networks.
Frequently used for remotely logging on, Pass-
Through is also valuable in query applications and
for remote computer operation.

Pass-Through enables a single VM/SP terminal to
access many different computers running a wide
variety of software systems. Figure 1 shows a VM/SP
display terminal with access to two remote com-

iBM SYSTEMS JOURNAL, VOL 22, NOS 1/2, 1983

puters. Input entered by a user at the terminal is
transferred by Pass-Through across the telecommu-
nications links that connect the systems. This input
is processed by the remote system, and response
data are transmitted back through the network to
the original display unit.

Two simple methods, illustrated in Figures 2 and 3,
are available for the initiation of a Pass-Through

connection to a remote system. Once a connection
has been established, Pass-Through becomes trans-
parent, reflecting every entry to the remote system
as though the terminal were connected directly.
Although a single entry may be relayed through
several computers to reach its destination, Pass-
Through handles the necessary indirect routing of
data automatically. Upon completion of remote
work, Pass-Through restores the original local envi-

Figure 2 A typical Pass-Through session

LOGON USERID
ENTER PASSWORD
LOGON AT 282417
ChS $P RELEASE 1

n
PASETHAU CMICAGO
»

IBM SYSTEMS JOURNAL, VOL 22, NOS 1/2, 1983

LOGON ULERD

3 ENTER PASSWORD
LOGON AT 23:34:17
CTHS P RELEANE
A

J PAVETHRY CHICAGO

HYC KUNNING

YM/370 OMLINE

L2l
PR MR M
HHHMMMAR N
HHN L
M MMM

CHICAGO RUWMING

NYC RUNNWING

MENDELSOHN, LINEHAN, AND ANZICK §§

Figure 3 Initiating a Pass-Through session without logging onto a local system

X DL PV

WYC CP READ

YM 376 ONLINE

HHA
WM AN
HHHHH MW
HHK HrH
HHH A

CHICAGD RUNNING

PASS- THRY GRAFSOY

SELECT HODE BY POSITIONING

CURSOR AND SELECTING ENTER

L HEWYORK N CHICAOD
N SANFRAN 9 SAMTAFE

ronment. A wide variety of computer users, includ-
ing those without technical background, have found
Pass-Through to be a convenient and effective
means of accessing remote systems. With only a few
minutes of informal instruction, most new users
become self-sufficient.

Figure 2 illustrates a typical Pass-Through session.
Work commences on the New York City system

66 MENDELSOHN, LINEHAN, AND ANZICK

LOGOFF

(NYC) with the LOGON procedure. Following
this, the user enters PASSTHRU CHICAGO, and
is then connected to the Chicago system. Having
completed the session, which includes LOGON,
processing, and LOGOFF, control returns to the
New York session, which is still active.

Figure 3 is an example of using Pass-Through
without logging onto the local system (NYC). The

IBM SYSTEMS JOURNAL, VOL 22, NOS 1/2, 1983

user enters DIAL PVM__, and the system responds
with a menu of available systems. After selecting
the Chicago system, the user is presented with the
CHI logon screen. At the conclusion of the session,
control returns to the Pass-Through selection
screen.

Many people may use Pass-Through simultaneous-
ly; from any convenient VM/SP terminal, each user
may access any computer in the network. Pass-
Through coordinates the resulting data traffic,

Our experience has been that
Pass-Through can usually be
installed and tested in a few hours.

routing each transmission to the appropriate desti-
nation.

A key feature of Pass-Through is its transparency to
existing programs. Any program written for use on
a local terminal works equally well when accessed
remotely via Pass-Through. Consequently, the ben-
efits of Pass-Through can be realized without any
programming effort.

Pass-Through supports only terminals in the 1BM
3270 family;" other VM/SP terminals may not be
used to access remote systems. Detailed information
on supported terminal configurations may be found
in the vM/Pass-Through facility guide and refer-
ence manual.'

Pass-Through does not directly support the file
transfer, electronic correspondence, and batch job
submission services commonly provided by more
sophisticated networks, but other products available
from IBM, notably the Remote Spooling Communi-
cations Subsystem (RSCS)'*"* do provide such ser-
vices and are frequently used in conjunction with
Pass-Through. The IBM Systems Network Archi-
tecture (SNA) provides a growth path for customers

IBM SYSTEMS JOURNAL, VOL 22, NOS 1/2, 1983

Figure 4 Four VM/SP systems connected using
Pass-Through

 CHICAGOA

CHICAGOB

% ¥

NEWYORK LOSANGEL

who wish to combine these functions within a single
network.’

In comparison with many other network facilities,
Pass-Through is easy to install and operate. No
teleprocessing expertise is needed during installa-
tion of the Pass-Through software, and the proce-
dures are simple. Our experience has been that
Pass-Through can usually be installed and tested in
a few hours. Most Pass-Through networks are run
without any operator intervention, but when man-
ual control is desired, the entire network may be
operated from any of the VM/SP systems. Pass-
Through provides a simple facility for relaying
network control commands to any machine in the
network. Using this technique, an operator located
at any site may issue commands to change the
network configuration, to send messages to network
users, or to query traffic on the network. The
simplicity of the installation, operation, and mainte-
nance procedures for Pass-Through seems to con-
tribute significantly to its acceptance. Many pro-
spective users find it easier to try Pass-Through
than to undertake a detailed study of its potential.

Typical configurations

Figure 4 shows a typical network of four vM/SP
systems connected using Pass-Through. Terminals

MENDELSOHN, LINEHAN, AND ANZICK §7

are attached to all four computers, and any terminal
may access any of the four systems. In order to
provide universal computer access without requir-
ing a separate telecommunications link between

Within individual IBM sites,
Pass-Through is frequently used to
grant access to several computers

from a single terminal.

each pair of systems, the CHICAGOA and NEWYORK
systems forward data from CHICAGOB and LOSAN-
GEL. Also illustrated in this figure is the use of
Pass-Through as a local terminal switcher. If two or
more processors are located in the same computer
center (e.g., CHICAGOA and CHICAGOB), the
input/output channels of the systems can be
directly connected to provide very fast Pass-
Through data transfer.'® In such an environment,
Pass-Through may eliminate the considerable
expense of cabling each display terminal to several
computers.

Pass-Through itself runs only under VM/SP, but
facilities are also provided for limited interconnec-
tion with other systems. By emulating the IBM 3271
and 1BM 3274 display terminal controllers, Pass-
Through allows VM/SP users to access the non-
VM/SP systems in a network. Many IBM systems,
such as OS/VS2, 0S/VS1, DOS/VSE, TSO, CICS/VS,
and IMS/VS, support the 3271 and 3274 terminal
controllers and may therefore be connected to Pass-
Through. Because Pass-Through itself does not run
on the non-VM systems, they cannot fully partici-
pate in the Pass-Through network. Display termi-
nals connected to non-VM systems cannot access
other computers across Pass-Through networks,
and non-VM systems cannot function as the CHICA-
GOA and NEWYORK systems in Figure 4, forward-
ing data to other machines.

Figure 5 illustrates a more elaborate Pass-Through
network consisting of five VM/SP systems and two
non-VM systems: a CICS/VS query application and

68 MENDELSOHN, LINEHAN, AND ANZICK

an MVS/TSO time-sharing system. The seven sys-
tems are all available from terminals connected to
any of the five VM systems. Since Pass-Through
routes data through intermediate processors as nec-
essary, the line from Vancouver to Chicago may be
eliminated without altering the services available to
users. Seemingly redundant connections of this sort
are often valuable in improving the performance of
the system. In this instance, traffic from Chicago is
delivered directly without passing through either
San Francisco or Portland.

Use of Pass-Through by the IBM Corporation

The most complex Pass-Through network yet built
connects over two hundred thirty-five IBM System/
370 computers for use within the IBM Corporation.
Diagrammed in Figure 6, this network performs a
variety of functions. Pass-Through allows develop-
ment teams located throughout the world to share
access to computer systems, facilitating cooperative
projects involving programmers at many sites. A
link between Poughkeepsie in New York and Mont-
pellier in France is used for load sharing. Due to the
difference in time of day between the two countries,
prime-time work from France may be done on
under-utilized machines in New York. This experi-
mental project has resulted in significant savings
over the past several years. For many IBM
employees who use computers in their daily work,
access to Pass-Through has been particularly valu-
able when traveling. Pass-Through allows travelers
visiting IBM sites to remotely access systems at their
home locations. This provides a convenient means of
keeping in touch with colleagues and of reviewing
electronic correspondence stored on the home sys-
tems.

Within individual 1BM sites, Pass-Through is fre-
quently used to grant access to several computers
from a single terminal. Systems programmers
responsible for maintaining internal IBM systems
find Pass-Through to be a convenient way to access
the various computers for which they are responsi-
ble. Pass-Through can be valuable in remote diag-
nosis of systems problems, and has been used occa-
sionally for diagnosing problems with the network
itself.

The 1BM Pass-Through Network has been growing
rapidly, complementing the large RSCS/JES2 net-
work (known informally as VNET) that provides file
transfer and electronic correspondence services

1BM SYSTEMS JOURNAL, VOL 22, NOS 1/2, 1983

within 1BM. Using multiplexing modems (special
equipment that allows several independent data
connections on a single telephone line), these two
networks often share long-distance transmission
facilities, and have together changed the nature of
daily communication among IBM sites. The IBM
Pass-Through network, and the many smaller net-
works from which it grew, have also provided a
valuable test environment during the development
of the Pass-Through product. Using VNET and

Pass-Through itself, we are able to stay in close
touch with internal users, distributing frequent
releases of the Pass-Through software for evalua-
tion and testing.

Evolution of Pass-Through
The program that evolved into Pass-Through was

written in early 1975 to interconnect two particular
systems within the IBM Corporation. In that config-

Figure 5 Mixed network of VM/SP and non-VM systems

VM
VANCOUV

IBM SYSTEMS JOURNAL, VOL 22, NOS 1/2, 1983

VM
CHICAGOB

CICS
8] HOUSTON

MENDELSOHN, LINEHAN, AND ANZICK 69

Figure 6 The IBM internal Pass-Through network on
March 1, 1982; European systems not shown

& 10R 2 SYSTEMS
% 370 9 SYSTEMS
¥ 10 OR MORE SYSTEMS

uration, users of a VM/SP system were to log onto a
remote data base system, execute queries, and then
return to work again on the local system. No
requirements existed to run the Pass-Through pro-
gram in other environments, to support complex
networks, or even to operate over more than a single
link. The decision to create Pass-Through as a
product was still over four years away.

The initial version of Pass-Through was designed,
implemented, and tested during six months of con-
centrated work by one person. The result was a
simple terminal emulation system with a modular
internal structure. Separate tasks (processes) were
developed to communicate with individual users and
to drive the teleprocessing link; services for buffer
manipulation and for other basic support functions
were provided in a simple but general manner. A
multitasking supervisor was also provided to coordi-
nate activity within the system. Not yet known as
Pass-Through, the system entered production use in
late spring of 1975.

Other uses were soon found for this program, which
could make VM appear to other systems as a stan-
dard display cluster. Using Pass-Through, one
could potentially log onto any system that supported

70 MENDELSOHN, LINEHAN, AND ANZICK

the widely used 1BM 3271 display controller. Indeed,
Pass-Through was adopted by many IBM locations
during the years that followed, and various en-
hancements were introduced.

The details of the growing use of Pass-Through are

not of great interest, but it is worthwhile to examine
closely the characteristics that led to its acceptance.

No requirements existed to run the
Pass-Through program in other
environments, to support complex
networks, or even to operate over
more than a single link.

Pass-Through not only provided a valuable service,
but it was also easy to install and test. Installers
were frequently unaware that Pass-Through, pack-
aged as an ordinary program, actually contained its
own small operating system. Assuming that an
appropriate hardware configuration was available,
Pass-Through could be installed and tested in about
a day.

Running in its own virtual machine, Pass-Through
posed little threat to the integrity of the systems on
which it ran; errors in the Pass-Through program
were likely to affect only persons actually using the
remote connections. Since it simulated a standard
device, Pass-Through was also unlikely to cause
failures of the remote systems to which it connected.
Other characteristics of Pass-Through proved valu-
able as extensions were developed. The simple mod-
ular internal organization created an environment
in which new function could easily be added.

During the first few years, users of the remote
connections found Pass-Through to be a simple and
reasonably reliable means of accessing other sys-
tems. In spite of some performance problems that
were later resolved, Pass-Through allowed rapid
switching among systems and often relieved users of
the need to wait for dedicated terminals. By March

1BM SYSTEMS JOURNAL, VOL 22, NOS 1/2, 1983

of 1978, more than fifteen IBM sites were using
Pass-Through for a variety of purposes.

The earliest version of Pass-Through supported a
single link, and could create two-node networks
only. With the advent of multiple link support,
star-shaped networks became common. Realizing
the need for more sophisticated configurations, we
began work on a major functional enhancement to
the system. Facilities were added for communica-
tion between Pass-Through programs running at
different sites, and a routing service was also
created to direct information through large and
complex networks. As part of this effort, an
enhancement to the VM/SP operating system display
terminal drivers was necessary.

Gradually, the small networks grew
together, resulting in a single large
network.

When the new support became available, informa-
tion could, for the first time, be relayed through
many intermediate nodes to reach a final destina-
tion. All systems became peers, playing equal roles
in moving data and allowing any terminal to access
any system in a network. Once again, the simpler
modular structure of the original system and the
generality of the services available provided a natu-
ral environment for enhancement.

The new version of Pass-Through gained rapid
acceptance within IBM, and many small Pass-
Through networks came into existence. Most of
these were built of links installed by individual
organizations that had immediate needs for com-
munication services. Gradually, the small networks
grew together, resulting in a single large network.
At no time was there a corporate mandate to build
such a network; there was no centralized planning
or management. As a courtesy, most sites relayed
traffic on behalf of anyone who might need occa-
sional use of their links. In this informal manner, we

IBM SYSTEMS JOURNAL, VOL 22, NOS 1/2, 1983

built the large network that is now in daily use by
many hundreds of people.

Pass-Through is the second IBM internal network to
grow without centralized management or planning.
The Corporate Job Network (the official name for
VNET) is used to transfer correspondence, computer
files, and other bulk data throughout the world.
This sprawling network now connects over six
hundred IBM System/370s, and has an estimated
growth rate of two systems per week. The develop-
ment and growth of VNET, in many respects the
archetype for Pass-Through, have been documented
by Hendricks and Hartmann."

The elements necessary to justify the release of
Pass-Through as a product began to coalesce during
1978. As experience within the corporation revealed
Pass-Through to be a valuable tool for interactive
networking, IBM prepared to release the first of its
4300 series of processors. These inexpensive Sys-
tem/370-compatible machines were well suited for
distributed computing, particularly as satellite
processors for large centralized hosts.

The Remote Spooling Communication Subsystem
(RSCS) met the need to move bulk data within these
distributed systems, and Pass-Through was seen to
provide a complementary interactive networking
function. It provided a sensible, inexpensive means
of building an interactive network, and opened a
migration path into a more sophisticated, compre-
hensive SNA network. The first release of the vM/
Pass-Through Program Product was announced on
January 30, 1980. A second release announced in
October 1981 provided support for remote printers,
for larger display screens, and for the emulation of
the IBM 3275 display terminal.

Architecture and implementation of
Pass-Through

Although a full discussion of the internals of Pass-
Through is beyond the scope of this paper, these
sections explore technical topics of particular inter-
est and some of the approaches that distinguish
Pass-Through from other networks.

There are several ways to build subsystems within a
virtual machine environment. One popular method
is to build facilities of the subsystem into the
operating system kernel (the protected Control Pro-
gram or CP). Special operations are then provided
by which virtual machines may interact with sub-

MENDELSOHN, LINEHAN, AND ANZICK 7 {

Figure 7 The Logical Device Interface (LDI)

PUM. By

VIRTUAL VIRTUAL Wi
MACHINE MACHINE MACHINE:

VM SYSTEM '"'B"

system functions. In this respect, the subsystem
represents an extension to the architecture of the
virtual machine. If Pass-Through were constructed
in such a manner, the virtual machines created by
VM/SP would be extended to include features for
access to their remote counterparts. Although per-
formance is theoretically better than with any other
approach, there are the following major disadvan-
tages:

e The operating system kernel is not protected from
the subsystem, so subsystem problems may affect
the integrity of the operating system.

e Installation involves changes to the control pro-
gram, thereby disrupting the ongoing operation of
the system.

» Poor isolation complicates the debugging of the
subsystem.

« Extension of virtual System/370s to include a full
network function is contrary to the basic philoso-
phy of VM/SP: the functions provided to each user
are to be as close as possible to those described in
the 1BM System/370 Principles of Operation.

On the basis of experience acquired in developing
Pass-Through, we feel strongly that the appropriate
environment for such subsystems is within a sepa-
rate virtual machine. Although some changes to the

72 MENDELSOHN, LINEHAN, AND ANZICK

kernel may be necessary, these should be held to an
absolute minimum. There are a number of impor-
tant advantages to our approach, among which are
the following:

» The subsystem is theoretically incapable of
jeopardizing the rest of the operating system.
Although this is not always true in practice, there
is very little risk that programs residing in the
Pass-Through Virtual Machine can interfere with
system users or their data.

e Installation and maintenance of Pass-Through
may be done while the rest of the system continues
to operate.

On the basis of experience acquired
in developing Pass-Through, we feel
strongly that the appropriate
environment for such subsystems is
within a separate virtual machine.

« Entire networks may be tested on a single physical
processor by creating a separate virtual machine
for each network node.

e New versions of the network software may be
tested without change to the system kernel.
Switching between versions of the software
requires only that the old version be stopped and
the new started.

* Excellent isolation is possible when more than one
network is connected to a single physical proces-
SOr.

These advantages outweigh the modest per-
formance gain of a kernel-based implementation.
The ability to install Pass-Through on an opera-
tional production system, incurring only slight risk
to system integrity, is extremely valuable. We feel
that others who are building subsystems, whether
networking, data base, device support, or otherwise,
should avoid kernel-based implementations when-
ever possible.

IBM SYSTEMS JOURNAL, VOL 22, NOS 1/2, 1983

Display terminal simulation

Since Pass-Through was the first interactive net-
work supported from within a virtual machine, new
interfaces to the CP kernel were necessary. Qur aim
was not only to develop a minimum extension to the
kernel, but also to provide facilities that would fit
naturally within the VM/SP framework. We devel-
oped an interface that allowed software in a virtual
machine to simulate a locally attached display
terminal. The virtual machine could simulate any
permissible data entry, and could receive all device
orders for the simulated terminal. Figure 7 illus-
trates the role of the Logical Device Interface (LDI)
in a Pass-Through network.

Local users of VM/SP access the system in two
modes: (1) the LOGON command is used to create a
virtual machine, and (2) the DIAL command is used
for attachment to an existing virtual machine. An
important goal of the LDI was to extend both of
these capabilities to users of Pass-Through. This
was achieved by intercepting the lowest level of
terminal control within CP. Remote Pass-Through
terminals and local terminals are supported by the
same device management logic. Thus a remote
terminal has exactly the same capabilities as a local
terminal. Below the device management level, the
LDI support provides interfaces to the network vir-
tual machine, while ordinary physical device drivers
continue to issue channel commands for locally
attached terminals.

The LDI approach is a natural counterpart to the
existing VM/SP virtual device concept. (Virtual
device support is a standard feature of the VvM/SP
operating system. No changes to VM/SP virtual
device support were made during the development
of Pass-Through.) Virtual devices are used to pro-
vide device control, while logical devices provide
device simulations. The LDI allows a virtual
machine (Pass-Through in this case) to simulate a
terminal to CP, so that CP can operate as though a
terminal were connected directly to the system. In
Figure 7, the Pass-Through Virtual Machine (PVM)
receives the real terminal as a virtual device on
system A and creates a logical device on system B.
This logical device is transparent to most of CP and
to applications running in the CMS virtual machine.
Any application that supports a local terminal
works equally well through the logical device. Logi-
cal and virtual devices are thus distinct concepts
that complement each other in creating interactive
networks. As a natural extension to VM/SP, the LDI

IBM SYSTEMS JOURNAL, VOL 22, NOS 1/2, 1983

support has also been used by others with a need to
simulate terminals from within a virtual machine.

Routing strategies

Support of multihop connections in large networks
is a complex problem. (Multihop connections are
those in which data must traverse several telecom-
munications links before reaching a final destina-
tion.) By optimizing for small configurations, Pass-
Through avoids some of this complexity; Pass-

Logical and virtual devices are thus
distinct concepts that complement
each other in creating interactive
networks.

Through uses extremely simple routing algorithms
that yield surprisingly effective results.

Pass-Through is a virtual-circuit network with
static routing. Each network node is supplied with a
simple table in a disk file that contains next-hop
information for each possible destination. No indi-
vidual node has a map of the entire network. Each
node knows only who its immediate neighbors are
and which neighbors provide effective paths to more
distant hosts. The tables are maintained manually
and must be hand-checked for consistency.
Although table maintenance is a difficult chore on
the large IBM network, it is usually no problem on
smaller network configurations. From the routing
tables, virtual circuit paths may be determined for
any desired connection.

At the time a user requests a Pass-Through session,
a set-up message begins a round trip to the desired
target system. Following the directions in the
routing tables at each successive node, this message
permanently establishes the path to be used for the
duration of the session. At each node, data struc-
tures are created that monitor the status of the
session and facilitate rapid routing of subsequent
transmissions.

MENDELSOHN, LINEHAN, AND ANZICK 13

Since circuit routing is static, error-free connections
are maintained without end-to-end checking. Soft
transmission errors are recovered by the low-level
link protocols and are transparent at the circuit
level. Any hard (unrecoverable) errors on a link are

We have built an operational network
and have resolved problems as they
have been encountered.

recognized unambiguously on both sides of the
failure and trigger the disconnection of sessions. All
virtual circuit connections on failing links are termi-
nated prior to link reactivation. Virtual circuits
provide error-free, end-to-end connections until an
intermediate link experiences an unrecoverable
error (usually a system stoppage at an intermediate
node). When such a failure occurs, users are discon-
nected from Pass-Through and are expected to retry
their connections at a later time. This is a modest
inconvenience, since most unrecoverable errors
reflect problems that take several minutes or more
to resolve.

Although these mechanisms are primitive, they
have proved to be effective for our purposes. More
complex approaches'® might provide dynamic error
recovery, improved performance, or load balancing,
but they would be of value only when alternate
paths were available. Since Pass-Through is fre-
quently used to support networks of simple topolo-
gy, the gain from the added complexity would be
limited in many cases. We feel that our approach is
an effective compromise, weighed against the con-
siderable complexities of implementing and debug-
ging an adaptive routing scheme and the possible
overhead in associated protocols.'’

Admittedly, formal studies would be necessary to
fully justify this conclusion. We have not made
elaborate measurements of Pass-Through traffic,
and have neither modeled nor simulated the possible
impact of other networking algorithms on the per-
formance of Pass-Through. Instead, we have built
an operational network and have resolved problems

74 MENDELSOHN, LINEHAN, AND ANZICK

as they have been encountered. So far, this process
has led us to a simple strategy for routing and error
recovery. It must, however, be clear that the more
complex approaches that we have eschewed are
essential in other circumstances. ARPANET, for
example, has performance and reliability objectives
that far exceed those of Pass-Through, goals that
can be achieved only by using very sophisticated
technology. We do feel that Pass-Through demon-
strates that alternative, less elaborate approaches to
networking can be effective in certain less demand-
ing environments.

Performance considerations

Performance of Pass-Through must be considered
from two separate perspectives:

& Pass-Through should be responsive for its users.
» Pass-Through should not place an unacceptable
burden on its host systems.

These are potentially conflicting goals. It is easy
enough to make a program responsive by allowing it
unlimited access to system resources. Conversely,
any program may be limited in its impact on overall
system performance by sacrificing responsiveness.
Analysis of these issues is further complicated by
the variety of environments in which Pass-Through
is to be operated. The same program that causes
negligible overhead on a large processor may repre-
sent a significant burden to a smaller system.

Earlier studies'® have underscored the importance
of rapid response in interactive systems. In essence,
these studies conclude that an interactive system
must respond to short commands in well under a
second to avoid disrupting the users’ patterns of
interaction. Although some installations may
choose to run Pass-Through over limited-speed
communication lines, Pass-Through is intended to
add delays of less than 500 milliseconds per hop
under expected operating conditions. Such per-
formance is particularly important when Pass-
Through is used as a local terminal switcher. The
high-speed data links commonly employed in these
short-haul applications are wasted if delays in the
networking software are excessive.

To clarify the difficulties that arise in building a
responsive. system, we consider the significant
events that transpire between the time a user sends
a query to a remote system and the time a response
arrives:

IBM SYSTEMS JOURNAL, VOL 22, NOS 1/2, 1983

1. Data are entered for transmission to the remote
system. The entry is from a terminal owned by
the Pass-Through Virtual Machine (PVM).

2. PVM enters a queue of virtual machines waiting
to be run. PVM is effectively contending with
other users of the system for access to the CPU.

The high-speed data links commonly
employed in these short-haul
applications are wasted if delays in
the networking software are
excessive.

3. PVM is dispatched by VM/SP and begins to con-
sume CPU time. During this period, PVM may be
interrupted repeatedly for page-in of system
code and data areas.

4. The Pass-Through program processes the data
from the user and puts it in a queue of data
destined for the appropriate outgoing communi-
cation link.

5. When the link becomes available, transmission
of the data begins. The time required to transmit
the data depends primarily on the speed of the
communication link and on the amount of data
to be sent.

6. Transmission completes. The remote system
begins computation.

7. The remote system begins transmitting a
response. The time required for transmission is
again determined by the length of the response
and speed of the communication link.

8. Transmission completes. PYM again enters the
queue of virtual machines waiting for access to
the CPU.

9. Pass-Through examines the data, determines the
display on which the response is to be presented,
and writes the response.

Much of the academic work devoted to analysis of
computer networks has focused on the time required
between events 4 and 5, i.e., the delay in waiting for
earlier transmissions to be completed so that the
data link may be used. Queuing theory'® may be
used along with modeling and simulation tech-

IBM SYSTEMS JOURNAL, VOL 22, NOS 1/2, 1983

niques to analyze these delays. Results show that in
a heavily used network where links are likely to
saturate, these queuing delays may be the limiting
factor in network performance. On the basis of
these analyses, networks such as ARPANET use
sophisticated techniques to reroute data around
congested links.'°

Although some large Pass-Through networks have
been built, the primary goal of Pass-Through is to
provide a simple, cost-effective approach to the
construction of modest networks. Since Pass-
Through is intended for bursty transmissions of
terminal traffic, but not for bulk transmission of
files, sustained heavy data loads are unlikely. In
analyzing the installations where Pass-Through is
used, we find the following characteristics to be
fairly representative:

» Network topologies are simple. Two-node net-
works, three-node rings, and simple stars are
common configurations.

e Even slow data links are statistically unlikely to
have long queues. Data links are frequently idle.

Pass-Through has been designed so
that dispatching delays can be
minimized in a well-run installation.

This suggests that efforts to build sophisticated
adaptive flow control and routing schemes would be
misplaced. If link delays are unacceptable, the best
cure for the problem is to invest in faster links. In
analyzing the large Pass-Through network within
IBM, we find that user loads on the data links are
usually insignificant in determining responsiveness
of the network. Critical factors are the number of
hops in a route, the speed of the data links, and the
responsiveness of the systems supporting the links.

This last factor often dominates network response
for short transmissions, and it manifests itself in
several ways. In the scenario above, there are two
events (2 and 8) at which PVM waits to be
dispatched by the vM/SP host. If the host system is

MENDELSOHN, LINEHAN, AND ANZICK T8

overburdened, a delay of several seconds may be
encountered before PVM can even begin to process
the requested transmission. We have found that this
dispatch delay tends to be the limiting factor in
determining the performance of Pass-Through in a
heavily loaded environment. This delay is primarily
a characteristic of the host operating system dis-
patching algorithms and only indirectly of the Pass-
Through program itself. The problem is com-
pounded when users access Pass-Through from
their own CMS virtual machines. The number of
virtual machine dispatches per interaction then
doubles from two to four.

Pass-Through has been designed so that dispatching
delays can be minimized in a well-run installation.
The fundamental reason why all users of a com-
puter encounter dispatch delays is that the operat-
ing system attempts to ensure fair allocation of the
computer’s resources. If an individual were allowed
free use of the machine, that person might unfairly
monopolize the CPU, storage, or other system
resources. To mitigate the problem, each user is
forced to wait in line before using resources and is
periodically returned to the back of the line for
rescheduling. Since Pass-Through runs in an ordi-
nary virtual machine, it tends to go through the
same delays as any other user in receiving access to
the CPU.

Finding that these delays are unacceptable, we
recommend that Pass-Through be given high (or
even absolute) priority in accessing the CPU. We
believe this is justified primarily in view of the
studies by Doherty.'"® But what is the price for
granting Pass-Through unlimited access to the
CPU? It is essentially negligible. Pass-Through is
not a compute-bound program. (Our informal stud-
ies consistently show that path length per interac-
tion, which does depend somewhat on network
configuration and available storage, is not a prob-
lem in most installations.) We do not believe that
the overall performance of most systems is
enhanced when Pass-Through is delayed in its
access to the CPU. In short, Pass-Through provides a
vital service to its users, and the consumption of
resources by Pass-Through is essentially indepen-
dent of its dispatch priority. Interactive networks
should generally receive service from the operating
system on a high-priority basis.

Ironically, many networks that are far more sophis-
ticated than Pass-Through seem to be limited in
performance by dispatching delays. Our observa-

76 MENDELSOHN, LINEHAN, AND ANZICK

tions have shown that users of TELNET (the ARPA-
NET interactive networking facility) commonly
experience host system delays that far exceed those
of the network itself. Similar delays are also com-
mon in accessing other high-performance networks,
including high-speed local networks. Users care
little that a network backbone is highly responsive if
access is delayed for other reasons. Although sched-
uling remains a significant problem on some heavily
loaded systems, the attention given to this issue has
significantly improved the responsiveness of Pass-
Through.

Although path lengths for Pass-Through may be

short enough to be considered negligible for many
purposes, other factors may affect the burden of

If we expect Pass-Through to be
given rapid access to the CPU,
memory requirements for
Pass-Through must be low.

Pass-Through on the host system. If Pass-Through
places too much demand on computing resources,
we may not fairly expect high-priority access to the
CPU. Use of the memory resource is a particularly
significant aspect of the burden of Pass-Through on
its host.

Pass-Through runs under VM/SP, a paged virtual
memory operating system. Although Pass-Through
is granted the illusion of nearly unlimited memory,
excessive use of that resource may be detrimental to
system performance. A useful measure of the short-
term virtual memory requirement of any program is
given by Denning’s working-set theory.” Informal-
ly, the working set is the group of pages in memory
that a program requires to execute for a brief
period. Classical theories of virtual memory man-
agement suggest that it is unwise to run a program
unless sufficient space is available to satisfy its
short-term memory requirements, i.e., its working
set. If we expect Pass-Through to be given rapid
access to the CPU, memory requirements for Pass-
Through must be low.

IBM SYSTEMS JOURNAL, VOL 22, NOS 1/2, 1983

Holding down the working set for Pass-Through has
the following benefits related to scheduling and
performance:

« If a working set is small enough, the host operat-
ing system may be able to keep the entire working
set resident for long periods. Overhead for the
paging of the working set is thus reduced.

» If paging is necessary, delays are minimized for
small working sets. These delays result from disk
transfers necessary to free space in memory, as
well as from those that bring in the Pass-Through
working set.

» The path length of the operating system logic for
paging tends to dominate the CPU overhead for
Pass-Through. Excessive use of memory thus
translates into additional CPU time billed to Pass-
Through.

For all of these reasons, more effort has been spent

on reducing the Pass-Through working set than on
directly minimizing path length. The two primary

To minimize the working set for data
buffers, a page-sensitive buffer
allocation scheme has been
developed.

uses of memory in Pass-Through are for data buf-
fers and for program code. To minimize the working
set for data buffers, a page-sensitive buffer alloca-
tion scheme has been developed, whereby the mem-
ory allocators in Pass-Through always attempt to
allocate new buffers within pages that already con-
tain active buffers. Two buffer sizes are used inter-
nally: one-eighth page and full page. The page-
sensitive scheme allocates up to eight small buffers
in a single page, and clusters buffers within active
pages, to the extent possible. In comparison with
more commonly used methods,”' we believe that this
approach significantly lowers the working set for a
heavily loaded Pass-Through system. When the last
buffer in a given page is freed, a special interface to
the host operating system is used to indicate that the
page is no longer in use and may be replaced.

IBM SYSTEMS JOURNAL, VOL 22, NOS 1/2, 1983

Pass-Through thus provides memory management
hints to the host operating sytem.

In order to further minimize working set require-
ments for the Pass-Through program, re-entrant

We find path lengths to be
sufficiently low that Pass-Through
may safely be given absolute
dispatch priority in most
installations.

code is used wherever possible. The primary exam-
ples are line drivers, which issue device orders to the
communication lines, and user-interface tasks,
which coordinate interactions with the various
users. By using the same re-entrant drivers to drive
multiple lines or multiple users, memory require-
ments for program code are significantly reduced.

In summary, we find that the most important
practical issues for the performance of simple inter-
active networks are not necessarily those that have
received the widest attention. In many cases, net-
work links are so lightly loaded that complex inter-
actions between users in the data link queues are
rare. Simple topologies combined with high over-
head per hop reduce the effectiveness of adaptive
routing in these environments. We have chosen
fixed, predetermined routes as a more straightfor-
ward approach. The speed of the data links does set
a lower bound on response time for a given interac-
tion, and users of Pass-Through are expected to
purchase data links with sufficient speed to provide
acceptable throughput.

Operating system dispatch delays are the other
significant factors that affect performance of Pass-
Through. We find path lengths to be sufficiently
low that Pass-Through may safely be given absolute
dispatch priority in most installations. Particular
efforts have been made to minimize the working set
of Pass-Through, thus reducing the Pass-Through
burden on main memory and associated overhead
for paging.

MENDELSOHN, LINEHAN, AND ANZICK 77

Concluding remarks

vM/Pass-Through is a simple networking facility
that has gained widespread acceptance within 1BM
and with IBM customers. It allows a single terminal
to access many different computers, including those
at distant locations. Pass-Through has proved to be
easy for most persons to use, and it is easily installed

Pass-Through demonstrates that
significant networks may be built
using simple technology.

and maintained. These factors, coupled with low
overhead and good reliability, underlie the popular-
ity of Pass-Through.

Pass-Through demonstrates that significant net-
works may be built using simple technology.
Although adaptive routing and other sophisticated
techniques are known to be of value in large mesh
networks, many practical networks exhibit simpler
topologies. We conclude that simple networking
algorithms are more than adequate in these smaller
networks. We have also studied issues affecting the
performance of interactive subsystems operating in
a virtual memory environment. Dispatching delays
and excessive working set, rather than simple path
length, are often found to limit responsiveness.

In designing Pass-Through to meet the practical
needs of its users, great care was taken to lay an
early foundation for long-term growth. Simple,
powerful internal structures became the basis of an
incremental software development process. We
have come to accept this as an effective approach to
the development of many types of large systems.

The most striking achievement of the Pass-Through
system is clearly the large internal IBM network. In
addition to its practical influence on the daily work
of many people, this network dramatically demon-
strates the potential of straightforward approaches
to networking software. Sophisticated algorithms
might enhance the capacity of this large network,

78 MENDELSOHN, LINEHAN, AND ANZICK

but they would not otherwise improve the services
that users have come to value. If such performance
is ever required, we will consider enhancement of
Pass-Through or the adoption of other networking
software. In the meantime, we hope that our efforts
with Pass-Through will inspire other innovative
approaches to networking and software develop-
ment.

Cited references

1. IBM Virtual Machine Facility 370: VM/Pass-Through
Facility Guide and Reference, SC24-5208, available
through IBM branch offices.)

2. G. Glaser, “The centralization vs. decentralization issue:
Arguments, alternatives and guidelines,” Data Base 2, No.
3, 1-7(1970).

3. IBM Systems Network Architecture General Information,
GA27-3202, available through IBM branch offices.

4. M. Schwartz, R. R. Boorstyn, and R. L. Pickholtz, “Termi-
nal oriented computer communication networks,” Proceed-
ings of the IEEE 60, 1408—1423 (November 1972).

5. D. C. Wood, “A survey of the capabilities of 8 packet
switching networks,” Computer Networks: Text and Refer-
ences for a Tutorial, M. Abrams, R. P. Blanc, and 1. W.
Cotton, Editors, IEEE, Long Beach, CA (1978), pp. 2—-44 to
2-50.

6. N. Abramson, “The ALOHA System-—Another alternative
for computer communications,” AFIPS Conference Pro-
ceedings, Fall Joint Computer Conference 37, 281-285
(1970).

7. R. Binder, N. Abramson, F. Kuo, A. Okinaka, and D. Wax,
“ALOHA packet broadcasting—A retrospect,” AFIPS
Conference Proceedings, National Computer Conference
44, 203-215 (1975).

8. L. G. Roberts and B. D. Wessler, “Computer network
development to achieve resource sharing,” AFIPS Confer-
ence Proceedings, Spring Joint Computer Conference 36,
543-549 (1970).

9. H. Frank, R. E. Kahn, and L. Kleinrock, “Computer com-
munication network design—Experience with theory and
practice,” AFIPS Conference Proceedings, Spring Joint
Computer Conference 40, 255268 (1972).

10. F. E. Heart, R. E. Kahn, S. M. Ornstein, W. R. Crowther,
and D. C. Walden, “The interface message processor for the
ARPA network,” AFIPS Conference Proceedings, Spring
Joint Computer Conference 36, 561-567 (1970).

11. M. N. Mimno, B. P. Cosell, D. C, Walden, S. C. Butterfield,
and J. B. Levin, “Terminal access to the ARPA network:
Experience and improvements,” Computer Networks: Text
and References for a Tutorial, M. Abrams, R. P. Blanc, and
I. W. Cotton, Editors, IEEE, Long Beach, CA (1978), pp.
5-36 to 5-40.

12. L. G. Roberts, “Data by the packet,” Computer Networks:
Text and References for a Tutorial, M. Abrams, R. P.
Bianc, and 1. W. Cotton, Editors, IEEE, Long Beach, CA
(1978), pp. 74 to 7-9.

13. IBM 3270 Information Display System Component
Description, GA27-2749-9, available through IBM branch
offices.

14. E. C. Hendricks and T. C. Hartmann, “Evolution of a virtual
machine subsystem,” IBM Systems Journal 18, No. 1,
111-142 (1979).

IBM SYSTEMS JOURNAL, VOL 22, NOS 1/2, 1983

15. IBM Virtual Machine Facility/370: Remote Spooling Com-
munications Subsystem Networking Program Reference
and Operations Manual, SH24-5005-1, available through
IBM branch offices.

16. System/370 Special Feature: Channel-to-Channel Adapter,
GA22-6983, available through IBM branch offices.

17. L. Kleinrock, W. Naylor, and H. Opderbeck, “A study of
line overhead in the ARPANET,” Communications of the
ACM 19, No. 1, 3-127 (January 1976).

18. W. J. Doherty and R. P. Kelisky, “Managing VM /CMS
systems for user effectiveness,” IBM Systems Journal 18,
No. 1, 143-163 (1979).

19. L. Kleinrock, Queueing Systems, Volume 2: Computer
Applications, John Wiley & Sons, Inc., New York, NY
(1976).

20. P. J. Denning, “The working set model for program behav-
ior,” Communications of the ACM 11, No. 5, 323-333
(May 1968).

21. D. E. Knuth, The Art of Computer Programming, Volume
1, Fundamental Algorithms, Addison-Wesley Publishing
Co., Inc., Reading, MA (1968).

Reprint Order No. G321-5183.

Noah Mendelsohn /BM National Accounts Division, Scientific
Center, 1530 Page Mill Road, P.O. Box 10500, Palo Alto,
California 94304. After receiving his S.B. degree in physics from
MIT in 1974, Mr. Mendelsohn joined the IBM Advanced
Systems Development Division. His work with IBM has included
research on distributed systems, computer networking, and user
interfaces. In 1978, Mr. Mendelsohn moved to the IBM Scien-
tific Center at Palo Alto, where he participated for two years in
joint research with Stanford University. In 1980, he returned to
the university as a student and received his M.S. degree in
computer science in 1982. While at Stanford, Mr. Mendelsohn
did research on compilers and taught undergraduate classes in
computer science. He recently rejoined IBM at Palo Alto.

Mark H. Linehan /BM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598. Mr. Linehan joined IBM in 1974 after receiving a B.A.
degree in political science from Case Western Reserve Universi-
ty. He held various assignments as a VM /370 systems program-
mer before joining the Thomas J. Watson Research Center in
1979. For the past three years he has worked on VM display
terminal support and on user minidisk management systems. He
is currently a member of the Technical Planning Staff in the
Research Division.

William J. Anzick IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598. Mr. Anzick is an advisory systems programmer in the
Computer Services Department of the Thomas J. Watson
Research Center. He joined IBM in 1968 as a senior systems
programmer in Harrison, New York. He has worked in software
support for systems ranging from the 1130 through the 1401,
1410, and System/360 and System/370. The software support
has included such operating systems as BPS, DOS, OS/PCP,
OS/MVT, and VM/370. Mr. Anzick has been active in telecom-
munications on VM /370 since 1974. Since joining the Research
Division, Mr. Anzick has been responsible for the development
and enhancement of the VM /Pass-Through Program Product.

IBM SYSTEMS JOURNAL, VOL 22, NOS 1/2, 1983

MENDELSOHN, LINEHAN, AND ANZICK 7O

