The Information Management System, IMS, began in the mid-1960s
as a batch-only data base system that was known then as Data
Language/I (DL/I). IMS was introduced in 1969 as IMS/360, a program
product for the System/360. As the System/360 evolved into System/
370, including support for virtual storage, the operating system
evolved into 0S/VS1, OS/VS2, and then MVS. At the same time, IMS
evolved to become IMS/VS. The Information Management System
has continued to be adapted to new requirements, especially those of
interactive, on-line operations that require data communications.
Recent advances in the following categories of IMS/VS functions are
discussed in this paper: Fast Path, Data Sharing, System Logging,
Data Base Recovery Control, on-line changes in system environment,
Intersystem Communications, MvS Common Services Area usage,
and architectural restructuring.

IMS/VS: An evolving system
by J. P. Strickland, P. P. Uhrowczik, and V. L. Watts

The Information Management System, IMS, has undergone continu-
ous evolutionary development since its initial release in 1969. In
1977, McGee' published a description of IMS/VS that included the
function provided up to that date. That series of papers provides a

good background for the reader to more fully appreciate the present
paper, which is intended to describe some of the enhancements made
to IMS/VS, with emphasis on its last two releases. To understand the
evolution of IMS/VS it is first necessary to understand how system
usage has been developing over the last few years. A glossary of terms
is given in the Appendix.

One of the most important developments in the usage of IMS/VS has
been the rapid increase in data-communication-based (on-line) appli-
cations. The number of terminals per IMS/VS complex has been
increasing continuously. In the last five years the median has
increased from 150 terminals to 600 terminals per IMS complex.
While in 1977 approximately one percent of installations reported
more than 1000 terminals, now 47 percent of customers are in this
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category. The largest numbers of which the authors are aware are
approximately 10 000 terminals on a single IMS/VS system and
18 000 in a network of IMS/VS systems. Transaction rates have
undergone similar increases. Besides increasing end-user dependency
on on-line communication services, these trends are changing the
manner in which a Master Terminal Operator (MTO) must react to
normal and abnormal situations and are requiring further decreases
in outage times.

A second major trend is the increasing length of time that on-line
IMS/VS is required to be operational without being shut down.
(On-line IMS/VS has been designated IMS;/vS—Data Communica-
tion or IMS/VS-DC.) Approximately twenty percent of on-line IMS/VS
users consider themselves to be in a continuous-operation mode. This
leaves them without adequate time to perform planned maintenance
or system changes, such as adding a new transaction.

As a result of the above requirements, there has been a growing
demand for IMS/VS to

Support increased capacity (transaction rates, number of termi-
nals, data base sizes, etc.)

Simplify operation (Master Terminal Operator decisions, system
restart, data base recovery, etc.)

Support uninterrupted operation (minimize the need for planned
shutdowns)

This paper describes some of the major functions that have been
developed and announced in the last few years to satisfy these needs.
The functions include the following:

Fast Path enhancements

Data Sharing

System Logging enhancements

Data Base Recovery Control

On-line changes of system environment
Intersystems Communications

MVS Common Services Area (CSA) relief
Architectural restructuring

Fast Path enhancements

When the Fast Path feature of IMS/VS was introduced in 1977, it was
primarily intended to solve specific problems related to environments
with large numbers of terminals entering simple transactions that
access simple data bases processed later by batch programs. For
example, banking is one of the industries with such characteristics.
These requirements resulted in the design of a series of new facilities:
(1) a Data Entry Data Base (DEDB) with a root segment and one
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Figure 1 Single-mode and mixed-mode Fast Path processing
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dependent segment to be used for journaling; (2) a single-segment
Main Storage Data Base (MSDB); and (3) a new message-handling
facility that does not use the normal IMS/VS message queuing.

In a DEDB, the dependent segment (called the sequential-dependent
segment) was designed to allow user journaling of transaction data.
These segments, while related to specific root segments, are also
retrievable in a sequential manner in their order of insertion. They
are inserted in a Last-In-First-Out (LIFO) manner from the corre-
sponding root and stored in the physical order in which they are
created. This optimizes the insertion of these segments as well as their
retrieval for later batch processing in insert order. Since data bases in
this type of environment tend to be large and the availability
requirements very high, the concept of data base partitioning (Areas)
was introduced to allow DEDB data to be stored by key range in a
number of different data sets (Areas). This capability allows the data
base size to be up to 960 gigabytes when stored in the maximum
number of Areas (240). Different Areas may be stored on different
device types to favor some key ranges. In addition, program schedul-
ing has been disassociated from data base availability. Although one
or more Areas may be unavailable due to reorganization or 1/0 error,

applicatign programs using this data base can still be scheduled. If
the program does access an unavailable Area, an error status code is
returned to the application program.

A new message-handling facility (called Expedited Message Han-
dling) provides an alternate technique to the standard IMS/VS
scheduling and queuing process. However, a Fast Path application
program previously accessed only the Fast Path type of data bases. As
a result, by 1977 there were two distinct types of transactions in
IMS/VS, Full Function and Fast Path transactions. An IMS/VS Full
Function transaction could only access Full Function data bases and
a Fast Path transaction could only process Fast Path data bases. This
was called single-mode processing; it is indicated by solid arrows in
Figure 1.

Following the introduction of these capabilities, it was determined
that for Fast Path to be of more general use, (1) the separation of Full
Function and Fast Path transactions was too restrictive; (2) the DEDB
structure had to be extended. These needs have been addressed in
Fast Path enhancements, first in 1978 and in IMS/VS 1.3.2
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To make the Fast Path function more generally applicable, a Fast
Path program can now access Full Function data bases, and Full
Function programs can access Fast Path data bases. This is termed
“mixed mode”; it is indicated by the combination of dashed and solid
arrows in Figure 1.

The DEDB structure has been enhanced to include new segment types
and hierarchical levels; it now allows up to 15 levels of hierarchy and
127 segment types. One segment may be designated as a sequential-
dependent segment, with the remaining ones as direct-dependent
segments. The direct-dependent segments have characteristics simi-
lar to that of the dependent segment in an IMS;vS Hierarchical
Direct Access Method (HDAM) data base. Hence, a DEDB is now
similar in function to a HDAM data base, with the exclusion of support
for logical relationships and secondary indexing.

To help achieve a more uniform response time for transactions that
are accessing DEDB data bases with long dependent segment chains, a
new subset pointer has been introduced. With this facility a parent
segment can point to more than one “first” segment in dependent
segment type, and the application program interface (the DL/I Call
interface) has been expanded to allow manipulation of each of the
multiple pointers. The concept of Fast Path DEDB subset pointers is
shown in Figure 2.

To satisfy increasing requirements for better system availability, we
have relaxed the earlier requirement to recover a data base that is in
error as soon as the error is detected. Two new capabilities have been
added to the DEDB data base support: (1) record deactivation and (2)
data base replication.

Record deactivation eliminates the need for immediate data base
recovery in case of write errors. In the event of a write error, the entire
Area is no longer deactivated; instead, only the vSAM Control
Interval (CI) in error is made unavailable to the application program.
Although the Area must be recovered eventually, the user may delay
this action until a convenient time, since the information about which
CIs have been deactivated is carried across system restarts. Applica-
tion programs continue to be scheduled, and a status code is returned
to the programs if the unavailable CI is accessed. A similar record
deactivation capability has also been added to full function data
bases. In this case, however, the information is not carried across
system restarts, so that the user must still recover the data base before
the next system restart.

Data base replication allows any Area of a DEDB to be written
multiple times (i.e., multiple data sets for any Area). The system
ensures that all the copies are maintained as exact duplicates. When
reading, the system reads any of the available data sets. Data base
replication is illustrated in Figure 3.
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Figure 3 Fast Path data replication

The replication is started or reestablished by copying the Area(s) via
an on-line utility without stopping the normal transaction processing
against the DEDB. This technique can also be used to migrate one or
more Areas from one device to another while the system is opera-
tional.

Frequently, the question arises as to how much is gained by using the
Fast Path facility instead of using the Full Function IMS/VS facility.
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If, for example, an application program is developed using Full
Function (e.g., HDAM data bases and normal queued scheduling) and
is contrasted with the same application developed using Fast Path
(e.g., DEDB and Expedited Message Handling), the path length
improvement for Fast Path is approximately two to four times. The
application code path length is excluded from this comparison. These
differences are achieved by providing a limited set of system capabili-
ties to the application, thus reducing specific overhead activities.

Data sharing

A Data Sharing facility was introduced into IMS/VS in 1981 to satisfy
three primary requirements: (1) Multiple IMS/VS-DC systems on
multiple processors may share the same data in a manner that is
transparent to application programs, resulting in an increase in total
(on-line) IMS/VS-DC capacity. (2) Improved batch processing allows
the concurrent processing of batch jobs using the same data bases as
the on-line IMS/VS data bases, thus minimizing the effect of a “batch
window,” during which time the system is unavailable to on-line
users. (3) The minimization of operational errors, thus preventing
programs from erroneously accessing data bases that must be recov-
ered, backed out, or backed up.

The IMS/vS Data Sharing facility controls the use of data bases
across multiple on-line and/or batch IMS/VS systems. The data bases
to be shared are registered and controlled with the Data Base
Recovery Control (DBRC) facility of IMS/VS. Several levels of sharing
are supported, varying from no sharing to multiple concurrent
updaters.

Data Base/Area level and Block level are the two major types of data
sharing provided. (Data Base/Area level sharing is shown in Figure
4.) In both cases, IMS/VS inhibits the use of a data base when that use
could result in a processing integrity exposure or a data integrity
exposure. A processing integrity exposure exists when one program
reads uncommitted changes made by another program. A data
integrity exposure exists when two or more programs are updating
the same data without proper control over concurrent usage.

DL/1 data base level and Fast Path Area level data sharing are
controlled by DBRC on the basis of information recorded in its
Recovery Control (RECON) data set. This level of sharing permits
only one updater.

Block level data sharing, shown in Figure S, is controlled by both the
DBRC and the IMS/VS Resource Lock Manager (IRLM). This level of
sharing permits multiple concurrent updaters. The IRLM provides
global locking in an environment that consists of two MVS systems
and any number of IMS/VS subsystems (on-line or batch).

IBM SYST J o VOL 21 @ NO 4 » 1982 STRICKLAND, UHROWCZIK, AND WATTS




Figure 4 Data Base and Area level sharing
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When IMS/VS data sharing was first introduced, two lock managers
were used. One lock manager was program isolation, which has
existed in IMS/ VS for a long time. It controlled locking across multiple
application programs associated with a single on-line IMS/VS control
region. The other lock manager was the IRLM, which controlied

locking across multiple IMS/VS subsystem images.

In IMS/VS 1.3, the IRLM has been expanded to perform program
isolation locking as well as data sharing locking. This simplifies the
locking protocols. A single IMS/VS now performs all its locking with
either the Program Isolation Function or the IRLM. This eliminates
duplicate locking and the possibility of false deadlocks.

The IRLM uses ACF/VTAM to perform intersystem locking notifica-
tion. IMS/VS sharing minimizes intersystem communication with a
two-level lock hierarchy, a resource name-hashing scheme, and a
request-batching technique.

The two-level lock hierarchy involves obtaining a data set lock when a
data set is opened. Later, as data within the data set are accessed,
locks associated with the data items are obtained. The lower-level
data item locks are related in a hierarchical manner to the data set
locks. When a data set lock is held only by IMS/vSs executing within a
single MVS, intersystem notification is not required before a lock is
granted on a data item within the data set.
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Figure S5 Block level data sharing
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The resource hashing scheme involves associating a hash value with
each resource name. The hash value is used to address a hash table,
and an entry in the hash table shows the current intersystem interest
in the corresponding group of resources. A system has interest when it
holds locks or has waiting lock requests for one or more resources in
the hash group. In cases where the hash table entry for a resource to
be locked shows previously declared interest by this system and no
interest by the other system, the lock can be granted without
intersystem notification.

The IRLM uses a request-batching technique to avoid communica-
tions on individual lock requests. Requests that require intersystem
notification are queued. The request queues are processed periodi-
cally (when a timer interval elapses), and required intersystem
notifications are communicated at that time.

These techniques of minimizing intersystem communications permit
a complete software-based implementation of the IMS;/vS Data
Sharing Facility; no specialized hardware is required.

System logging enhancement

With increasing transaction rates and need for easier and faster
system restart, the original IMS/VS tape-oriented logging, illustrated
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Figure 6

IMS/VS logging prior
toIMS/VS 1.3

in Figure 6, showed some potential limitations. For example, due to
writing short blocks in support of the log-write-ahead function of
IMS/VS, the number of log tape volumes could become very large in a
highly active system. Also, the amounts of time required for different
system restarts were different—due to the need for tape mounting—
and, after MVS or hardware failures, the need to close the IMS/VS log
tape from a storage dump.

Although some of these problems could have been solved by improv-
ing the tape/disk logging, it was clear that only a fully disk-oriented
logging method with space management, improved device integrity,
and improved usability could resolve all of these conditions. The
resulting design relies on DASD for all on-line logging.

In IMS/VS 1.3 a completely new logging technique is being introduced.
With the new logging, shown in Figure 7, all log data are written to a
series of DASD log data sets, called On-line Log Data Sets (OLDS), in
a wraparound fashion. The original Dynamic Log and Restart Data
Sets are no longer used for logging. Full blocking can be used for the
OLDS through the use of a new buffering technique. The technique is
known as the Write Ahead Data Set (WADS). In general, the WADS
contains committed log records not yet written to the OLDS, thus
eliminating the need for closing the log from a main storage dump
before system restart in case of MVS, hardware, or power failures.
Spare WADS data sets are supported which permit continuous opera-
tion after a write error. Once an OLDS buffer is full, it is written to the
OLDS, at which time all the WADS space used to back up the unwritten
buffer is available for reuse. All restarting can be done from the OLDS
and the information in the WADS is automatically used to complete
the OLDS. Dynamic backout (after an application failure) is also done
from the OLDS, unless the needed data are contained in the OLDS
buffers. When an OLDS data set becomes full, it is closed and the next
available OLDS data set is used. If a write error occurs on an OLDS, the
data set is closed and the next available OLDS is used. Dual logging
can be used for both OLDS and WADS. When dual OLDSs are used, full
or error conditions cause both data sets to be closed, and the operation
continues on a new pair.

Since eventually all the OLDSs may become full, they must be
archived on tape, disk, or Mass Storage System (MSS). This archived
log, called the System Log Data Set (SLDS), is produced via an
archive utility that can be started either via a command or automati-
cally after a specified number of OLDSs become full. During archiv-
ing, the log data set can be further reblocked as well as split into
different data sets. One such data set, the Recovery Log Data Set
(RLDS), contains only the information necessary for the recovery of
data bases. Any additional splitting of log records into separate
output data sets may be selected by the user in the same archiving
run.
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Figure 7 IMS/VS 1.3 logging
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Although log information is eventually archived (presumably to a
medium slower than DASD), system restart should always be possible
from the DASD OLDS. Even if the message queue needs rebuilding,
one can ensure that the latest backup of the message queues is on the
OLDS. This can be done via two facilities provided in IMS/vS 1.1.5: (1)
Automated Operator Interface (AOI) and (2) on-line message queue
dump. The AOI facility allows the interception of system messages
(such as an OLDS switch) in a user exit. The exit can trigger the
execution of a user transaction that issues an MTO command to dump
the message queue without stopping the on-line IMS/VS system.
Incidentally, since the AOI exit can also examine all input from the
MTO terminal, the AOI can be used to develop commands tailored to
the installation.

A key element in IMS/VS 1.3 logging is the following technique used
for the log write-ahead of critical information. Log write-ahead is the
term for the process of ensuring that recovery information has
actually been written to a log data set (OLDS or WADS) before
performing an operation that must be recoverable. Examples of
IMS/VS operations that are recoverable are the following:
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Updating a data base

IMS/VS 1.3 acknowledging that it has received an input message
Acknowledging from an external destination that an output
message has been received from IMS/VS 1.3

Recognizing that an application program has reached a commit or
synchronization point

When an application program declares it has reached a commit point
and the commitment has occurred, all data base changes and message
queue changes made by the application since the previous commit
point now become available for access to other IMS/VS 1.3 applica-
tions. Conversely, changes made between commit points are visible
only to the application that is making the changes. In the event the
application or IMS/VS 1.3 terminates before the application reaches its
next commit point, the changes are discarded (or backed out) by the
system control function.

The IMS/VS DL/1 data base buffer handlers, with their look-aside and
deferred-write capabilities, have used log-write-ahead protocols for
some time. The overall protocols are the following:

*  When a DL/I module modifies the contents of a data base buffer, it

first creates a data base change log record and submits it to the log
manager. The log manager then places the log record in a buffer
and returns a token that identifies the position of the log record in
the buffer. This token is stored in the data base buffer control
block.
Later, when it is necessary to write the modified data base buffer
to the data base, the buffer handler makes a check-write call to the
log manager specifying the log token previously saved in the buffer
control block. The log manager checks to see whether the
requested log data have been written to the log data set. Logging
activity that has occurred since the data base buffer was modified
may have filled the log output buffer, resulting in writing to the
log data set. Otherwise, the check-write request causes the log
manager to write the log buffer.

The IMS/VS Fast Path data base manager achieves the log-write-
ahead function via a different logging and data base updating
technique. It saves all changes in storage until the application reaches
a commit point. At that time, data base change log records are
created and placed in the log buffers. The processing then waits until
the log buffers have been written to the log data sets. A check-write
request is not used to force the log write. A timer routine is used to
force the log write if other activity does not fill the log buffer in a
short period of time. Once the log buffers have been written, the Fast
Path processing resumes and makes the changes to the data bases.

In IMS/VS 1.3 the log-write-ahead protocols have been extended to
cover IMS/VS data communications message sending and receiving
operations.
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To maintain integrity and acceptable response times for both DL/1
and Fast Path processing, it is often necessary to write a log buffer
before it is filled. Previously, this resulted in writing truncated or
short blocks in the log data set. In IMS/VS 1.3, the Write Ahead Data
Set (WADS) has been added to avoid having to write short blocks to
the log. Once data are written to either the WADS or the log data set,
the log-write-ahead requirement is met and IMS/VS 1.3 may proceed
to update its recoverable resources.

Check-write requests and a log-timer routine cause partially filled log
buffers to be written to the WADS. The logging process continues to
add data to the buffer until it is full and then writes the buffer to the
log data set (OLDS). The same buffer may be written to the WADS
multiple times before the OLDS buffer is finally full. This sounds like
a simple process. However, the IMS/VS high data and processing
integrity requirements prohibit an implementation that overwrites
committed log data. Such an implementation runs the risk of losing
data in the event of failure during the write operation.

Also, in a very-high-transaction-rate environment it may be neces-
sary to write to the WADS frequently. A writing technique is used that
minimizes DASD rotational delay. Relatively small, fixed-length
records (approximately 2048 bytes) are recorded in the WADS. Each
record contains a one-byte hardware key field. The key value is zero
in all records. Records are written by a search-key-equal write data
channel program sequence. All records on a track meet the search key
criteria. Hence, a write operation begins after an average rotational
delay of one-half a record rather than the conventional delay of
one-half rotation.

The log buffer to the WADS write algorithm breaks a log buffer into
pieces. The size of each piece is 2048 bytes. In the case in which a
single 2048-byte piece of the buffer must be written multiple times,
two tracks in the WADS are used with the write alternating between
the two tracks. Once a complete (full) 2048-byte piece of the buffer
has been written to the WADS, that piece is not written again. The
WADS track containing the full 2048-byte piece cannot be reused
until the entire log buffer has been filled and written to the log data
set. In cases in which more than 2048 bytes of the buffer are to be
written to the WADS, a single channel program containing multiple-
search-key write data sequences is used to write the multiple pieces
during the same rotation of the DASD.

Data base recovery control

A persistent requirement in IMS/VS has been the need for ensuring
the integrity of data bases. In the past, the user was responsible for
some aspects of this integrity. For example, when recovering a data
base, the user was expected to ensure that all pertinent log informa-
tion was input to the IMS/VS data base recovery process.

IBM SYST J ® VOL 21 ® NO 4 e 1982 STRICKLAND, UHROWCZIK, AND WATTS




The logging of data base changes produces a series of log volumes in
which several volumes may contain changes to a specific data base,
say, data base A. Batch jobs produce a series of different log volumes,
some of which contain changes to data base A. In the past, the
user—not knowing which volumes contained the changes to A—
would usually submit all the log volumes. Although many users
mechanized this process, in many installations it remained a manual
process. This process was, at times, error prone: for example, by
omitting the logs from a batch run, or more frequently by selecting
more log volumes than was necessary. The solution was to record all
log volumes, along with an indication of which volumes contained
changes to specific data bases. This capability was provided with the
introduction of the Data Base Recovery Control (DBRC) facility.

The first release of DBRC provided for inventory control of all log
volumes and the automatic selection of the proper log volumes
{minimum set) for Log Change Accumulation or Data Base Recov-
ery utilities. The information to support this function was kept in a
Recovery Control (RECON) data set. The user designated the data
base(s) that were to be included in this process by registering the data
base name in RECON.

With the introduction of IMS/VS data sharing, IMS/VS also required a
central recording concerning the status of each shared data base (e.g.,
for recovery, backout, etc.), as well as the allowed level of data
sharing. Since the RECON data set already recorded information
-about data bases, it was a natural extension to the RECON structure to
support the data sharing needs as well. This included not only
additional information about data bases but also information about
cach executing on-line or batch IMS/VS subsystem.

Whenever an IMS/VS subsystem accesses a data base that can be
shared, it must request authorization from DBRC to do so. DBRC
determines, from the information kept in the RECON, the allowed
level of sharing for the data base(s) and the executing subsystem
status.

IMS/VS 1.3 logging incorporates the recording of additional data
about IMS/VS logs: the status of OLDSs (in use, full, being archived,
etc.) and the creation of the SLDSs. The place for storing data is the
RECON. RECON, as used in IMS/VS 1.3, is shown in Figure 8. Note that
the previously mentioned Recovery Log Data Set (RLDS) is also
recorded in the RECON. When DBRC is used to control the recovery
process of data bases, it selects RLDSs first as input to recovery, since
they contain less log data than the SLDSs. If no RLDSs are available,
the SLDSs are selected as a second choice.

The increased importance of the RECON data set has motivated the

enhancement of its backup and recovery capabilities. In its original
design, dual RECONs were utilized, so that the loss of one RECON
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Figure 8 IMS/VS 1.3 usage of Recovery Control (RECON) data set
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would not allow the starting of another subsystem until duality was
restored off line. A third RECON may now be allocated. If one of the
active RECONS fails, duality is restored automatically by copying the
remaining active data set into the spare without stopping IMS/VS 1.3.

In summary, IMS/VS 1.3 DBRC offers the following levels of control:

Inventory and control of on-line logs (archiving and reuse)
Inventory of batch logs

Data base recovery control

Subsystem authorization control

These capabilities are listed in the order in which one might choose to
use them over time, and each increasing level of DBRC includes the
previous controls.

Finally, the RECON is also used by Fast Path. In addition to the data
sharing support of DEDBs, RECON is also used to keep information
about the multiple data sets of a DEDB Area (data replication).

On-line change of system environment
The increasing trend toward continuous operation has highlighted

the need to enhance two aspects of the early IMS/vS design. The
addition of IMS/VS objects, such as transactions and programs,
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required an IMS/VS system definition (SYSDEF) process. Also, a way
was needed to decrease the amount of system outage required to
introduce the new or changed definitions.

The IMS/VS 1.3-DC solution consists of (1) improving the granularity
and speed of the SYSDEF process and (2) allowing the introduction of
the changes into a running on-line IMS/VS system. The SYSDEF
performance is improved by

Reducing the number of SORTs by moving them from STAGE-2 to
STAGE-1

Improving the SORT algorithm

Providing a preprocessor to STAGE-1 to check name uniqueness of
the objects to be defined. In the past, this was done as part of
STAGE-1. Every name was checked against every other name,
resulting in an exponential processing time as a function of the
number of objects being defined.

The preprocessor approach is to sort the names before determining
uniqueness. This provides processing times linearly proportional to
the number of objects. The preprocessor can be run by itself to get a
source definition free of basic syntax errors and duplicate names
before using the IMS/VS 1.3 STAGE-1 and STAGE-2. If the preprocessor
is used, one may choose to bypass the name checking in STAGE-1. If
the preprocessor is not used, name checking in STAGE-! also follows a
linear relationship to the number of objects. Because of this linear
characteristic, time improvements are greater for a larger number of
objects than for a smaller number.

Early testing of the SYSDEF improvements indicates that running

STAGE-1 (with name checking) plus STAGE-2 is roughly comparable in
processing time to running the preprocessor plus STAGE-1 (without
name checking) plus STAGE-2. Because of this, the value of the
preprocessor is mainly in those cases where multiple STAGE-1 execu-
tions are performed to edit the SYSDEF source.

Although the improved performance of the IMS/VS system definition
(SYSDEF) process tended to make frequent IMS/VS generations more
acceptable, there still remained the problem of entering these
changes into a running on-line IMS/VS system.

The entering of the newly defined objects into an on-line IMS/VS
system is achieved by switching one or more libraries allocated to the
on-line IMS/VS-DC (the active libraries) with the corresponding
libraries containing the new definitions (the inactive libraries), as
shown in Figure 9. The system objects that can be changed in this
manner are the following:

e Data bases
e Application programs
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Figure 9 Inserting an IMS/VS system definition (SYSDEF) change while the
system is running
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When a SYSDEF is performed, as illustrated in Figure 9, the results go
to a set of staging libraries where the changes are held until all
desired changes have been accumulated and verified. A utility
program then determines which corresponding library is inactive (off
line) and copies the contents of the staging libraries. When the switch

from the active to the inactive libraries is desired, the MTO enters
commands that indicate to IMS/VS the intent to switch a particular
library or a set of libraries. The system determines which objects are
being changed and which transactions are affected by the change.
For example, a change to a data base definition affects all transac-
tions that reference that data base. The system then enters a new
quiesced state that allows the affected transactions on the queue to be
processed but no new input for these transactions to be accepted. The
activity for unaffected transactions continues normally. The determi-
nation of which transactions are affected is based on internal
knowledge (control blocks) of the relationships among data bases,
application programs, and transactions. Therefore, changes to any of
these three objects result in a quiesced state for the affected transac-
tion(s). Since no such internal relationships exist for MFS blocks and
program switches, IMS/VS cannot determine the affected transac-
tions, and the quiescing of the transactions in these cases is a user
responsibility.

Once a switch is performed, internal control blocks in main storage
are refreshed or updated, and the new definitions remain in use in
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Figure 10 Intersystem communication
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future IMS/ VS restarts. The active libraries become inactive and can
be used as backup. The fallback, if desired, is achieved by the MTO
commands to switch back to a particular library or set of libraries, as
just described.

Intersystems communications

The introduction of the IMS/vS Multiple Systems Coupling (MSC)
facility allowed for connecting a series of on-line IMS/VS systems
using private IMS/VS-controlled protocols. There remained, however,
the need for terminals on a non-IMS/ VS system to use the applications
and data being used by the on-line IMS/VS system. An example of
such a system is CICS/vS. This capability is provided via the
Intersystem Communication (ISC) facility of IMS/VS.

Prior to ISC, IMS/VS SNA support of connection protocols fell into two
categories, host-to-device (e.g., LUl, LU2) and host-to-intelligent
controller (e.g., LUP) Logical Units. These protocols allowed termi-
nals and controllers to interact with IMS/VS without being aware of
the IMS/VS transaction protocols. However, none of these protocols
addressed the requirements of communication between transaction-
based systems. This requires communications among the applications
themselves. To address these requirements, a new communication
protocol (LU6) was defined. This protocol allows applications in such
transaction-oriented systems as IMS/VS and CICS/VS to establish
communication and exchange information. '

In its simplest form, the LU6 protocol allows terminals in one system

to access transactions and data in the other and receive replies. In
more advanced applications, it provides for the partitioning of a
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Figure i1 Intersystem communication
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single application into multiple transactions executing on two or more
transaction-processing systems. With this capability, the IMS/VS
application sees the connection as a Logical Terminal (LTERM).
Input messages and output replies are processed through the Input/
Output Program Control Block (IOPCB) just like normal terminal
input. The IMS/VS system supports the additional transaction
addressing necessary to route the reply back to an appropriate
transaction and/or terminal in the other Intersystem Communication
(ISC) system, as shown in Figure 10.

Program-initiated messages are processed through an alternate pro-
gram control block. The IMS/VS transaction, through facilities pro-
vided through the Message Format Service of IMS/VS-DC, can specify
a new transaction which will receive the reply from the other ISC
system, as shown in Figure 11.

MVS Common Services Area (CSA) relief

An on-line IMS/VS system consists of multiple related MVS address
spaces. Application programs reside in some of the address spaces
and IMS/VS control functions reside in the other address spaces. The
initial IMS/VS design for MVS reduced the cost of application address
space access to the DL/I data bases by placing most of the DL/I control
blocks, buffers, and code in the MVS Common Services Area (CSA).

IBM SYST J % VOL 21 & NO 4 %1982 STRICKLAND, UHROWCZIK, AND WATTS




In most cases, the access would be performed without address space
switching. The access would be performed under the application
program task structure, thus permitting parallel access from the
multiple concurrently executing applications.

System demands on CSA have increased with time, and IMS/vS
requires rather large contiguous pieces of CSA. This has created an
environment where it has become quite challenging to operate an
MVS in such a way as to permit the startup of a large on-line IMS/VS
system without disrupting other work.

The last few releases prior to IMS/VS 1.3 have included new options
that reduce the amount of CSA required. First, a Local Storage
Option (LSO) permits many of the DL/I control blocks and much of
the DL/1 code to be placed in the IMS/VS control address space rather
than in the MVS CSA storage. An MVS task exists in the control
address space for each application address space. DL/I processing on
behalf of a specific application address space is performed under its
assigned control address space task. This permits IMS/VS to continue
its parallel DL/1 operations when operating under the local storage
option. However, this technique does incur the overhead of cross
address space task switching as control passes between the applica-
tion and control address spaces for system services.

With the advent of MVS cross-memory functions, IMS/VS 1.2 offers
the Cross Address Space Local Storage Option (XLSO), which
utilizes these MVS functions. In this case, the DL/I blocks and code
also reside in the IMS/VS control address space. The MVS cross-
memory program call function is used to access the DL/I code and

data resident in the IMS/VS control address space while executing
under a task belonging to an IMS/VS application address space.
Again, this maintains the parallel DL/1 capability while eliminating
most of the overhead of the cross address space task switching
incurred by the LSO option.

In IMS/VS 1.3 the IRLM has been expanded to support an option that
places most of its lock control structure and code in local storage in a
sepdrate address space. With this option, the cross address space
program call function is used for transferring control from an IMS/VS
to the IRLM. Use of the IRLM with this option has the effect of
removing the program isolation lock tables from the iMS/VS control
address space and placing them in the IRLM address space. This is
true because when IRLM is used, the Program Isolation Function is
not used. In this case, the design goes beyond solving the CSA problem
and reduces the growth of virtual storage demand. Splitting the
IMS/ VS control function across multiple address spaces, as is the case
when the lock tables move from control address space into IRLM
address space, is one technique that is being used to reduce the
demands placed on the control address space as individual user
configurations continue to grow.
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Architectural restructuring

In the past, IMS/VS provided parallelism in its control region by the
use of two techniques. The first was a dispatching capability to
manage IMS/VS-created subtasks with less overhead than the gener-
alized MVS or VS/1 operating system dispatchers. The second tech-
nique was multiple Task Control Blocks (TCBs) to allow some work to
be performed under other TCBs.

IMS/VS 1.3 provides improvements to both techniques. In prior
releases of IMS/VS, initialization of IMS/VS had to be executed under
a different environment than that provided for IMS/VS execution. The
execution environment is now provided very early during initializa-
tion, allowing most of IMS/VS initialization to run under the normal
IMS/VS control. This removes the distinction between initialization
and execution, allowing functions that were formerly available only
during startup to be invoked at any time. With this capability, control
blocks become more dynamic. For example, the number of service-
able dependent address spaces is not fixed at startup time, but can be
increased and decreased during normal operation up to a new limit of
255 for a single on-line IMS/VS system.

The second area of improvement is in the handling of the TCB
structure. In addition to providing more parallelism, the new
approach simplifies the adding of new TCBs if and when the need
arises. The TCB structure is defined by a table. The addition of a
definitional entry into the table is most of the work required to add a
new TCB.

Concluding remarks

The evolution of IMS/VS described in this paper has been achieved
while preserving the application program interface for both data base
and terminal I/0 requests. An application program written in the late
1960s for the then IMS/360 continues to run on the most recent
IMS/VS release. This continuity has been the overriding objective
throughout this evolution.

The new facilities of IMS/VS are mainly the result of the rapid
increase in the use of on-line applications by its users and the growing
need for continuous operations. These trends are expected to continue
in the years ahead, and the new IMS/VS facilities provide a solid base
for continuing evolution in that direction.
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Appendix: Glossary of terms

ACF/VTAM Advanced Communications Function/Virtual Tele-
communications Access Method
A0l Automated Operator Interface
C1  Control Interval
cics/vs  Customer Information Control System/Virtual Stor-
age
csA Common Services Area
DASD Direct Access Storage Device
DBRC Data Base Recovery Control
DEDB Data Entry Data Base
DL/1 Data Language/I
HDAM Hierarchical Direct Access Method
IMS Information Management System
IMS/VS Information Management System/Virtual Storage
IMS/VS-DC Information Management System/Virtual Storage—
Data Communication
10PCB  Input/Output Program Control Block
IRLM IMS/VS Resource Lock Manager
ISC Intersystem Communication facility
LIFO Last In First Out
LSO Logical Storage Option
LTERM Logical Terminal
LU Logical Unit
MFS Message Format Service
MSC Multiple Systems Coupling
MSDB Main Storage Data Base
MTO Master Terminal Operator
MVS Multiple Virtual Storage
OLDS On-Line Log Data Set
RECON Recovery Control
RLDS Recovery Log Data Set
SLDS System Log Data Set
SYSDEF IMS/VS System Definition
TCB Task Control Block
vS1 Operating System/Virtual Storage 1
VSAM Virtual Storage Access Method
WADS Write Ahead Data Set
XLSO Cross Address Space Local Storage Option
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