
The  Information  Management  System, IMS, began in  the  mid-1960s 
as a batch-only  data base system  that  was  known  then  as  Data 
Language11 (DLII). IMS was  introduced  in  I969  as IMSI360, a program 
product for  the  Systeml360. As the  System1360 evolved into  System/ 
370,  including  support f o r  virtual  storage,  the  operating  system 
evolved into O S ~ V S I ,  O S / V S ~ ,  and then MVS. At  the  same  time, IMS 
evolved to  become IMSIVS. The  Information  Management  System 
has  continued to be adapted to new requirements,  especially  those of 
interactive, on-line operations  that  require  data  communications. 
Recent advances in  the  following categories Of IMSIVS functions are 
discussed  in  this  paper: Fast Path,  Data  Sharing,  System  Logging, 
Data  Base  Recovery  Control, on-line  changes in  system  environment, 
Intersystem  Communications, MVS Common  Services  Area  usage, 
and architectural  restructuring. 

IMS/VS: An evolving system 
by J. P. Strickland, P. P. Uhrowczik,  and V. L. Watts 

The Information  Management  System, IMS, has  undergone  continu- 
ous evolutionary development since its  initial  release in 1969. In 
1977, McGeel published a  description of IMS/VS that included the 
function provided up to  that  date.  That series of papers provides a 
good background for the  reader  to more fully appreciate  the present 
paper, which is intended to describe some of the enhancements  made 
to IMS/VS, with emphasis on its  last two releases. To understand the 
evolution of IMS/VS it is first necessary to  understand how system 
usage  has been developing over the last few years. A glossary of terms 
is given in the  Appendix. 

One of the most important developments in the usage of IMS/VS has 
been the  rapid  increase in data-communication-based  (on-line) appli- 
cations. The number of terminals per IMS/VS complex has been 
increasing continuously. In the last five years the median has 
increased from 150 terminals to 600 terminals per IMS complex. 
While in 1977 approximately  one percent of installations  reported 
more than 1000 terminals, now 47 percent of customers are in this 
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Figure 1 Single-mode and mixed-mode Fast Path processing 
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dependent segment to be used for journaling; (2) a single-segment 
Main  Storage  Data Base (MSDB); and (3) a new message-handling 
facility that does not use the normal IMS/VS message queuing. 

In a DEDB, the  dependent segment (called the  sequential-dependent 
segment) was designed to allow user journaling of transaction data. 
These segments, while related to specific root segments, are also 
retrievable in a  sequential  manner in their  order of insertion. They 
are inserted in a  Last-In-First-Out (LIFO) manner from the corre- 
sponding root and stored in the physical order in which they are 
created.  This optimizes the insertion of these  segments as well as their 
retrieval for later  batch processing in insert order.  Since data bases in 
this  type of environment tend to be large  and  the availability 
requirements very high, the concept of data base partitioning  (Areas) 
was introduced to allow DEDB data to be stored by key range in a 
number of different data sets  (Areas).  This  capability allows the  data 
base size to be up to 960 gigabytes when stored in the  maximum 
number of Areas (240). Different Areas may be stored on different 
device types to favor some  key ranges. In addition,  program schedul- 
ing has been disassociated from data base availability. Although one 
or more Areas may be unavailable due to reorganization or 1/0 error, 
applicatiqn programs using this data base can still be scheduled. If 
the program does access an unavailable Area,  an error status code is 
returned  to  the application program. 

A new pessage-handling facility (called Expedited Message Han- 
dling) provides an  alternate  technique  to  the  standard IMS/VS 
scheduling and  queuing process. However, a  Fast Path application 
program previously accessed only the  Fast  Path  type of data bases. As 
a  result, by 1977 there were two distinct types of transactions in 
IMS/VS, Full Function and  Fast  Path  transactions. An IMS/VS Full 
Function transaction could only access Full Function data bases and 
a  Fast  Path  transaction could only  process Fast Path  data bases. This 
was called single-mode processing; it is indicated by solid arrows in 
Figure 1. 

Following the introduction of these capabilities,  it was determined 
that for Fast Path to be of more general use, (1) the  separation of Full 
Function and  Fast  Path  transactions was too restrictive; (2) the DEDB 
structure had to be extended.  These needs have been addressed in 
Fast  Path  enhancements, first in 1978 and in IMS/VS 1.3.2 
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To  make  the Fast Path function more generally applicable, a Fast 
Path program can now access Full Function data bases, and Full 
Function programs can access Fast Path  data bases. This is termed 
“mixed mode”; it is indicated by the combination of dashed and solid 
arrows in Figure 1. 

The DEDB structure has been enhanced to include new segment types 
and  hierarchical levels; it now allows up to 15  levels of hierarchy  and 
127 segment types. One segment may be designated as a  sequential- 
dependent segment, with the  remaining ones as direct-dependent 
segments. The direct-dependent  segments have characteristics simi- 
lar  to  that of the  dependent segment in an IMS/VS Hierarchical 
Direct Access Method (HDAM) data base. Hence,  a DEDB is  now 
similar in function to  a HDAM data base, with the exclusion of support 
for logical relationships and secondary indexing. 

To help achieve a more uniform response time for transactions that 
are accessing DEDB data bases with long dependent segment chains,  a 
new subset pointer has been introduced.  With  this facility a  parent 
segment can point to more than one “first” segment in dependent 
segment type, and  the application program interface (the DL/I Call 
interface)  has been expanded to allow manipulation of each of the 
multiple pointers. The concept of Fast  Path DEDB subset pointers is 
shown in Figure 2. 

To satisfy increasing requirements for better system availability, we 
have relaxed the  earlier  requirement  to recover a data base that is in 
error as soon as the  error is detected. Two new capabilities have been 
added  to  the DEDB data base support:  (1) record deactivation and (2) 
data base replication. 

Record deactivation eliminates  the need for immediate data base 
recovery in case of write errors. In the event of a write error,  the  entire 
Area is no longer deactivated;  instead, only the VSAM Control 
Interval (CI) in error is made unavailable to  the application program. 
Although the  Area must be recovered eventually, the user may delay 
this action until a convenient time, since the information about which 
CIS have been deactivated is carried across system restarts. Applica- 
tion programs continue  to be scheduled, and  a  status code is returned 
to  the  programs if the unavailable CI is accessed. A  similar record 
deactivation capability  has also been added  to full function data 
bases. In this case, however, the information is not carried across 
system restarts, so that the user must still recover the  data base before 
the next system restart. 

Data base replication allows any  Area of a DEDB  to be written 
multiple times (i.e., multiple data sets for any A r k ) .  The system 
ensures that all the copies are maintained  as  exact  duplicates. When 
reading, the system reads  any of the available data sets. Data base 
replication is illustrated in Figure 3. 
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Figure 3 Fast  Path  data replication 

AREA 1 

AREA 2 

AREA 3 

The replication is started or reestablished by copying the  Area(s) via 
an on-line utility without stopping the  normal  transaction processing 
against  the DEDB. This technique can also be used to  migrate one or 
more Areas from one device to  another while the system is opera- 
tional. 

Frequently,  the question arises as to how much is gained by using the 
Fast  Path facility instead of using the Full Function IMS/vS facility. 
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If, for example, an  application  program is developed using Full 
Function (e.g., HDAM data bases and normal queued  scheduling)  and 
is contrasted with the  same application developed using Fast  Path 
(e.g., DEDB and Expedited Message  Handling),  the  path  length 
improvement for Fast  Path is approximately two to  four times. The 
application code path  length is excluded from this  comparison.  These 
differences are achieved by providing a limited set of system capabili- 
ties to  the application,  thus  reducing specific overhead activities. 

Data sharing 

A Data  Sharing facility was introduced  into IMS/VS in 198 1 to  satisfy 
three  primary  requirements: (1) Multiple IMS/VS-DC systems on 
multiple processors may share  the  same  data in a  manner  that is 
transparent  to  application  programs,  resulting in an increase in total 
(on-line) IMS/VS-DC capacity. (2) Improved batch processing allows 
the concurrent processing of batch  jobs using the  same  data bases as 
the on-line IMS/VS data bases, thus minimizing the effect of a  “batch 
window,” during which time  the  system is unavailable  to on-line 
users. (3)  The minimization of operational  errors,  thus preventing 
programs from erroneously accessing data bases that must be  recov- 
ered, backed out, or backed up. 

The IMS/VS Data  Sharing  facility  controls  the use of data bases 
across multiple on-line and/or  batch IMS/VS systems. The  data bases 
to be shared are registered  and controlled with the  Data Base 
Recovery Control (DBRC) facility of IMS/VS. Several levels of sharing 
are supported, varying from no sharing  to  multiple  concurrent 
updaters. 

Data  Base/Area level and Block  level are  the two major types of data 
sharing provided. (Data  Base/Area level sharing is shown in Figure 
4.) In both cases, IMS/VS inhibits the use of a data base when that use 
could result in a processing integrity exposure or a data integrity 
exposure. A processing integrity  exposure exists when one  program 
reads  uncommitted  changes  made by another  program.  A data 
integrity exposure exists when  two or more programs are  updating 
the  same  data without proper control over concurrent usage. 

I 

I 
DL/I data base level and  Fast  Path  Area level data  sharing  are 
controlled by DBRC on the basis of information recorded in its 
Recovery Control (RECON) data set.  This level of sharing  permits 
only one  updater. 

Block  level data  sharing, shown in Figure 5, is controlled by both the 
DBRC and  the IMS/VS Resource Lock Manager (IRLM). This level of 
sharing  permits  multiple  concurrent  updaters. The IRLM provides 
global locking in an environment that consists of two MVS systems 
and  any  number of IMS/VS subsystems (on-line or batch). 

I 
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Figure 4 Data Base and  Area level sharing 

When IMS/VS data  sharing was first introduced, two lock managers 
were used. One lock manager was program isolation, which has 
existed in IMS/VS for a long time.  It controlled locking across multiple 
application  programs associated with a single on-line IMS/VS control 
region. The other lock manager was the IRLM, which controlled 
locking across  multiple IMS/VS subsystem images. 

In IMS/VS 1.3, the IRLM has been expanded  to  perform  program 
isolation locking as well as  data  sharing locking. This simplifies the 
locking protocols. A single IMS/VS now performs all its locking with 
either  the  Program Isolation Function or the IRLM. This  eliminates 
duplicate locking and the possibility of false  deadlocks. 

The IRLM uses ACF/VTAM to  perform  intersystem locking notifica- 
tion. IMS/vS  sharing minimizes intersystem  communication with a 
two-level lock hierarchy,  a  resource  name-hashing  scheme,  and  a 
request-batching  technique. 

The two-level  lock hierarchy involves obtaining  a data set lock when a 
data set is opened. Later,  as  data within the  data set are accessed, 
locks associated with the  data items are obtained. The lower-level 
data item locks are related in a  hierarchical  manner  to the  data set 
locks. When  a data set lock is held only by IMS/VSs executing within a 
single MVS, intersystem notification is not required before a lock  is 
granted on a data item within the  data  set. 
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Figure 6 IMS/VS logging prior 
to IMS/VS 1.3 
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in Figure 6 ,  showed some potential  limitations. For example,  due  to 
writing  short blocks in support of the  log-write-ahead  function of 
IMS/VS, the number of log tape volumes could become very large in a 
highly active  system. Also, the  amounts of time  required for different 
system restarts were different-due to  the need for tape mounting- 
and,  after MVS or hardware  failures,  the need to close the IMS/VS log 
tape from  a  storage  dump. 

Although some of these problems could have been solved by improv- 
ing the  tape/disk logging, it was clear that only a fully disk-oriented 
logging method with space  management, improved device integrity, 
and improved usability could resolve all of these conditions. The 
resulting design relies on DASD for all on-line logging. 

In IMS/VS 1.3 a completely new logging technique is being introduced. 
With  the new logging, shown in Figure 7 ,  all log data  are written  to  a 
series of DASD log data sets, called On-line Log Data  Sets (OLDS), in 
a  wraparound  fashion. The original  Dynamic Log and Restart  Data 
Sets  are no longer used for logging. Full blocking can be used for the 
OLDS through  the use of a new buffering technique. The technique is 
known as  the  Write Ahead Data  Set (WADS). In  general, the WADS 
contains  committed log records not yet written to the OLDS, thus 
eliminating the need for closing the log from  a  main  storage  dump 
before system restart in case of MVS, hardware, or power failures. 
Spare WADS data sets are supported which permit  continuous  opera- 
tion after a  write  error.  Once an OLDS buffer is full, it is written  to the 
OLDS, at which time  all  the WADS space used to  back  up the unwritten 
buffer is available for reuse. All restarting  can be done  from the OLDS 
and  the information in the WADS is automatically used to complete 
the OLDS. Dynamic  backout  (after an application  failure) is also done 
from the OLDS, unless the needed data  are contained in the OLDS 
buffers. When  an OLDS data set becomes full,  it is closed and  the next 
available OLDS data set is used. If a  write  error  occurs on an OLDS, the 
data set is closed and  the next available OLDS is used. Dual logging 
can be used for both OLDS and WADS. When  dual OLDSs are used, full 
or error conditions cause both data sets  to be closed, and  the operation 
continues on a new pair. 

Since eventually all  the OLDSs may become full,  they  must  be 
archived on tape,  disk, or Mass  Storage  System (MSS). This archived 
log, called the  System Log Data  Set (SLDS), is produced via an 
archive  utility that  can be started either via a  command or automati- 
cally after a specified number of OLDSS become full.  During  archiv- 
ing, the log data set  can  be further reblocked as well as split into 
different data sets.  One such data set, the Recovery Log Data  Set 
(RLDS), contains only the information necessary for the recovery of 
data bases. Any additional  splitting of log records  into  separate 
output  data sets  may  be selected by the user in the  same archiving 
run. 
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Figure 7 IMSIVS 1.3 logging 
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Updating  a data base 
IMS/VS 1.3 acknowledging that it  has received an  input message 
Acknowledging from an external  destination that  an  output 

Recognizing that an  application  program  has  reached  a  commit  or 
message has been  received from IMS/VS 1.3 

synchronization point 

When an application program declares it has  reached  a  commit point 
and  the commitment  has  occurred,  all data base changes  and message 
queue  changes  made by the application since the previous commit 
point now become available for access to  other IMS/VS 1.3 applica- 
tions. Conversely, changes  made between commit points are visible 
only to  the application that is making  the  changes.  In  the event the 
application  or IMS/VS 1.3 terminates before the  application reaches its 
next commit point, the  changes are discarded  (or backed out) by the 
system control function. 

The IMS/VS DL/I data base buffer handlers, with their look-aside and 
deferred-write  capabilities, have used log-write-ahead protocols for 
some time. The overall protocols are  the following: 

When  a DL/I module modifies the  contents of a data base buffer, it 
first creates  a  data base change log record and  submits  it  to  the log 
manager. The log manager  then places the log record in a buffer 
and  returns  a token that identifies the position of the log record in 
the buffer. This token is stored in the  data base buffer control 
block. 
Later, when it is necessary to write  the modified data base buffer 
to  the  data base, the buffer handler makes a check-write call to the 
log manager specifying the log token previously saved in the buffer 
control block. The log manager checks to see whether the 
requested log data have been written  to the log data set. Logging 
activity that has  occurred since the  data base buffer was  modified 
may have filled the log output buffer, resulting in writing to  the 
log data set.  Otherwise, the check-write request causes the log 
manager  to  write the log buffer. 

The IMS/VS Fast  Path data base manager achieves the log-write- 
ahead function via a different logging and  data base updating 
technique. It saves all  changes in storage  until the application reaches 
a commit point. At that time, data base change log records are 
created  and placed in the log buffers. The processing then waits until 
the log buffers have been written  to  the log data sets. A  check-write 
request is  not  used to force the log write. A  timer  routine is  used to 
force the log write if other  activity does not fill the log buffer in a 
short period of time.  Once  the log buffers have been written, the Fast 
Path processing resumes and makes the  changes  to  the data bases. 

In IMS/VS 1.3 the log-write-ahead protocols have been extended to 
cover IMS/vS data communications message sending and receiving 
operations. 
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To  maintain  integrity  and  acceptable response times for both DL/I 
and  Fast  Path processing, it is often necessary to write  a log buffer 
before it is filled. Previously, this resulted in writing truncated or 
short blocks in the log data  set. In IMS/VS 1.3, the  Write Ahead  Data 
Set (WADS) has been added  to avoid having to  write  short blocks to 
the log. Once data  are written to  either  the WADS or the log data set, 
the log-write-ahead requirement is met  and IMS/VS 1.3 may proceed 
to  update  its recoverable resources. 

Check-write requests and  a log-timer routine  cause  partially filled  log 
buffers to be written  to  the WADS. The logging process continues  to 
add data to  the buffer until it is full and then writes the buffer to  the 
log data set (OLDS). The same buffer may be written to the WADS 
multiple  times before the OLDS buffer is finally full.  This sounds like 
a simple process. However, the IMS/VS high data  and processing 
integrity  requirements prohibit an implementation that overwrites 
committed log data. Such an implementation  runs  the risk of losing 
data in the event of failure  during  the write operation. 

Also, in a  very-high-transaction-rate environment it may be neces- 
sary  to write to the WADS frequently. A writing technique is  used that 
minimizes DASD rotational  delay. Relatively small, fixed-length 
records (approximately 2048 bytes) are recorded in the WADS. Each 
record contains  a one-byte hardware key  field. The key value is zero 
in all records. Records are written by a search-key-equal write data 
channel program sequence. All records on a  track meet the  search key 
criteria. Hence, a write operation begins after  an average  rotational 
delay of one-half a record rather  than  the conventional delay of 
one-half rotation. 

The log buffer  to  the WADS write  algorithm  breaks  a log buffer into 
pieces. The size of each piece is 2048 bytes. In the  case in which a 
single 2048-byte piece of the buffer must be written multiple times, 
two tracks in the WADS are used with the write alternating between 
the two tracks.  Once  a complete (full) 2048-byte piece of the buffer 
has been written to  the WADS, that piece is not written  again. The 
WADS track containing the full 2048-byte piece cannot be reused 
until the  entire log buffer has been  filled and  written  to  the log data 
set. In cases in which more than 2048 bytes of the buffer are  to be 
written to  the WADS, a single channel  program  containing multiple- 
search-key write data sequences is used to  write the multiple pieces 
during  the  same rotation of the DASD. 

Data base  recovery  control 

A persistent requirement in IMS/VS has been the need  for ensuring 
the  integrity of data bases. In the  past,  the user was responsible for 
some aspects of this  integrity. For example, when recovering a data 
base, the user was expected to ensure that all pertinent log informa- 
tion  was input to the IMS/VS data base recovery process. 
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The logging of data base  changes produces a series of log volumes in 
which several volumes may  contain  changes  to  a specific data base, 
say, data base  A.  Batch  jobs  produce  a series of different log volumes, 
some of which contain  changes  to data base  A. In the past, the 
user-not knowing which volumes contained the changes  to A- 
would usually submit  all the log volumes. Although many users 
mechanized this process, in many  installations  it  remained  a  manual 
process. This process was, at times, error prone: for example, by 
omitting  the logs from a  batch  run, or more  frequently by selecting 
more log volumes than was necessary. The solution was to record all 
log volumes, along with an indication of which volumes contained 
changes  to specific data bases. This  capability was provided with the 
introduction of the  Data Base Recovery Control (DBRC) facility. 

The first release of DBRC provided for inventory control of all log 
volumes and  the  automatic selection of the proper log volumes 
(minimum  set) for Log Change  Accumulation or Data Base Recov- 
ery  utilities. The information  to  support  this  function was kept in a 
Recovery Control (RECON) data  set.  The user designated the  data 
base(s) that were to be included in this process by registering the  data 
base  name in RECON. 

With  the introduction of rMs/vs data  sharing, IMS/VS also required  a 
central recording concerning the  status of each  shared  data base (e.g., 
for recovery, backout,  etc.),  as well as  the allowed level of data 
sharing.  Since  the RECON data  set  already recorded information 
about  data bases, it was a natural extension to  the RECON structure  to 
support the  data  sharing needs as well. This included not only 
additional  information  about data bases but also information  about 
each  executing  on-line or batch IMS/VS subsystem. 

Whenever an IMS/VS subsystem accesses a data base that can be 
shared, it must  request  authorization  from DBRC to  do so. DBRC 
determines,  from the information kept in the RECON, the allowed 
level of sharing for the  data base(s)  and the executing subsystem 
status. 

IMS/VS 1.3 logging incorporates the recording of additional data 
about IMS/VS logs: the  status of OLDSs (in use, full, being archived, 
etc.)  and  the creation of the SLDSS. The place for storing data is the 
RECON.  RECON, as used in IMS/VS 1.3, is shown in Figure 8. Note  that 
the previously mentioned Recovery Log Data  Set (RLDS) is also 
recorded in the RECON. When DBRC is used to control the recovery 
process of data bases, it selects RLDSs first as input  to recovery, since 
they contain less  log data  than  the SLDSs. If  no RLDSs are available, 
the SLDSS are selected as  a second choice. 

The increased importance of the RECON data set  has motivated the 
enhancement  of  its  backup  and recovery capabilities. In its original 
design, dual RECONS were utilized, so that  the loss of one RECON 
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Figure 8 IMS/VS 1.3 usage of Recovery Control (RECON) data  set 

*AUTHORIZATION  FUNCTION 

would  not  allow the  starting of another subsystem until duality was 
restored off line. A  third RECON may now be allocated. If one of the 
active RECONS fails, duality is restored automatically by copying the 
remaining active data set into  the  spare without stopping IMS/VS 1.3. 

In summary, IMS/VS 1 .3  DBRC offers the following  levels of control: 

1. Inventory and control of on-line logs (archiving and reuse) 
2. Inventory of batch logs 
3. Data base recovery control 
4. Subsystem  authorization control 

I 

These  capabilities are listed in the  order in which one might choose to 
use them over time, and each increasing level of DBRC includes the 
previous controls. 

Finally, the RECON is also used  by Fast  Path. In addition  to  the data ’ sharing  support of DEDBs,  RECON is also used to keep information 
about  the multiple data sets of a DEDB Area  (data  replication). 

On-line change of system  environment 

’ The increasing trend toward continuous operation has highlighted 
the need to  enhance two aspects of the  early IMS/VS design. The 
addition of I M S / v S  objects,  such as transactions  and  programs, 
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required an IMS/VS system definition (SYSDEF) process. Also, a way 
was needed to decrease the  amount of system outage required to 
introduce  the new or changed definitions. 

The IMS/VS  1.3-DC solution consists of (1) improving the  granularity 
and speed of the SYSDEF process and (2) allowing the introduction of 
the  changes  into  a  running on-line IMS/VS system. The SYSDEF 
performance is improved by 

Reducing  the  number of SORTS by  moving them from STAGE-2 to 

Improving the SORT algorithm 
Providing a preprocessor to STAGE-I to check name uniqueness of 
the objects to be defined. In the  past,  this was done as part of 
STAGE-1. Every name was checked against every other name, 
resulting in an exponential processing time as a  function of the 
number of objects being defined. 

STAGE- 1 

The preprocessor approach is to  sort  the  names before determining 
uniqueness. This provides processing times linearly proportional to 
the  number of objects. The preprocessor can be run by itself to get a 
source definition free of basic syntax  errors  and  duplicate names 
before using the IMS/VS 1.3 STAGE-I and STAGE-2. If the preprocessor 
is used, one may choose to bypass the  name checking in STAGE-1. If 
the preprocessor is  not used, name checking in STAGE-I also follows a 
linear  relationship  to  the  number of objects. Because of this  linear 
characteristic,  time improvements are  greater for a  larger  number of 
objects  than for a  smaller  number. 

Early  testing of the SYSDEF improvements indicates that running 
STAGE-I (with name checking) plus STAGE-2 is roughly comparable in 
processing time  to  running  the preprocessor plus STAGE-1 (without 
name  checking) plus STAGE-2. Because of this,  the value of the 
preprocessor is mainly in those cases where multiple STAGE-I execu- 
tions are performed to  edit  the SYSDEF source. 

Although the improved performance of the IMS/VS system definition 
(SYSDEF) process tended to  make  frequent IMS/VS generations more 
acceptable,  there still remained the problem of entering  these 
changes  into  a  running on-line IMS/VS system. 

The entering of the newly defined objects into an on-line IMS/VS 
system is achieved by switching one or more libraries  allocated  to  the 
on-line IMS/VS-DC (the active  libraries) with the corresponding 
libraries containing the new definitions (the inactive libraries), as 
shown in Figure 9. The system objects that can be changed in this 
manner are  the following: 

Data bases 
Application programs 
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Figure 9 Inserting an IMS/VS system definition (SYSDEF) change while the 
system is running 
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Transactions 
Message Format Service (MFS) formats 
Security 
Fast  Path routing codes 

When a SYSDEF is performed, as  illustrated in Figure 9, the  results go 
to a set of staging  libraries where the  changes are held until  all 
desired changes have been accumulated  and verified. A utility 
program then  determines which corresponding library is inactive (off 
line) and copies the  contents of the  staging  libraries. When the switch 
from the active to  the inactive libraries is desired,  the MTO enters 
commands that indicate to IMS/VS the  intent to switch a  particular 
library or a set of libraries. The system determines which objects are 
being changed and which transactions are affected by the  change. 
For example, a  change to a data base definition affects all  transac- 
tions that reference that  data base. The system then  enters  a new 
quiesced state  that allows the affected transactions on the  queue  to be 
processed but no  new input for these  transactions  to be accepted. The 
activity for unaffected transactions continues normally. The determi- 
nation of which transactions are affected is based on internal 
knowledge (control blocks) of the relationships among data bases, 
application programs, and  transactions.  Therefore,  changes  to  any of 
these three objects result in a quiesced state for the affected transac- 
tion(s).  Since no such internal relationships exist for MFS blocks and 
program switches, IMS/VS cannot  determine  the affected transac- 
tions, and  the quiescing of the transactions in these cases is a user 
responsibility. 

Once  a switch is performed, internal control blocks in main storage 
are refreshed or updated,  and  the new definitions remain in use in 
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Figure 10 Intersystem  communication 

TRANSMISSION 

future IMS/VS restarts.  The active  libraries become inactive and  can 
be used as backup. The fallback, if desired, is achieved by the MTO 
commands to switch back to  a  particular  library or set of libraries, as 
just described. 

lntersystems  communications 

The introduction of the IMS/VS Multiple  Systems Coupling (MSC) 
facility allowed for connecting a series of on-line IMS/VS systems 
using private IMS/VS-controlled protocols. There  remained, however, 
the need  for terminals on a non-IMS/VS system to use the applications 
and  data being used by the on-line IMS/VS system. An example of 
such  a system is CICS/VS. This  capability is provided via the 
Intersystem  Communication (ISC) facility of IMS/VS. 

Prior to ISC, IMS/VS SNA support of connection protocols fell into two 
categories, host-to-device (e.g., Lu1,  L U ~ )  and host-to-intelligent 
controller (e.g., LUP) Logical Units.  These protocols allowed termi- 
nals and controllers to  interact with IMS/VS without being aware of 
the IMS/VS transaction protocols. However, none of these protocols 
addressed the  requirements of communication between transaction- 
based systems. This requires communications among the applications 
themselves. To address these requirements,  a new communication 
protocol (LU6) was defined. This protocol allows applications in such 
transaction-oriented systems as IMS/VS and ClCS/vS to establish 
communication and  exchange  information. 

In its simplest form,  the LU6 protocol allows terminals in one system 
to access transactions  and data in the  other  and receive replies. In 
more advanced applications,  it provides for the  partitioning of a 
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Figure I 1  Intersystem  communication 
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single application into multiple transactions executing on two or more 
transaction-processing systems. With this capability,  the IMS/vS 
application sees the connection as a Logical Terminal (LTERM). 
Input messages and  output replies are processed through  the Input/ 
Output  Program Control Block (IOPCB) just like normal terminal 
input. The IMS/VS system supports  the  additional  transaction 
addressing necessary to  route  the reply back to an  appropriate 
transaction and/or terminal in the  other  Intersystem  Communication 
(ISC) system, as shown in Figure 10. 

Program-initiated messages are processed through  an  alternate pro- 
gram control block. The IMS/VS transaction,  through facilities pro- 
vided through  the Message Format Service of IMS/VS-DC, can specify 
a new transaction which will receive the reply from the  other ISC 
system, as shown in Figure 1 1. 

MVS Common Services Area  (CSA) relief 

An on-line IMS/VS system consists of multiple related MVS address 
spaces. Application programs reside in some of the address spaces 
and IMS/VS control functions reside in the  other  address spaces. The 
initial IMS/VS design for MVS reduced the cost of application address 
space access to  the DL/I data bases by placing most of the DL/I control 
blocks, buffers, and code in the MVS Common Services Area (CSA). 

IBM SYST J VOL 21 NO 4 1982 STRICKLAND. UHROWCZIK. AND WATTS 507 



In most cases, the access would  be performed without address  space 
switching. The access would  be performed under the application 
program  task  structure,  thus  permitting parallel access from the 
multiple concurrently executing applications. 

System  demands on CSA have increased with time,  and IMS/vS  
requires rather  large contiguous pieces of CSA. This  has  created  an 
environment where it has become quite challenging to  operate  an 
MVS in such a way as to  permit  the startup of a  large on-line IMS/VS 
system without disrupting  other work. 

The last few releases prior to IMS/VS 1.3 have included new options 
that reduce the  amount of CSA required.  First,  a Local Storage 
Option (LSO) permits many of the DL/I control blocks and much of 
the DL/I code to be placed in the lMS/VS control address  space  rather 
than in the MVS CSA storage. An MVS task exists in the control 
address  space for each application address space. DL/I processing on 
behalf of a specific application address  space is performed under its 
assigned control address  space  task.  This  permits IMS/VS to  continue 
its parallel DL/I operations when operating  under  the local storage 
option. However, this  technique does incur the overhead of cross 
address  space  task switching as control passes between the  applica- 
tion and control address spaces for system services. 

With  the advent of MVS cross-memory functions, IMS/VS 1.2 offers 
the Cross Address Space Local Storage Option (xLSO), which 
utilizes these MVS functions. In  this case, the DL/I blocks and code 
also reside in the IMS/VS control address space. The MVS cross- 
memory program call function is  used to access the DL/I code and 
data resident in the IMS/vS  control address  space while executing 
under  a  task belonging to an IMS/VS application  address space. 
Again,  this  maintains  the parallel DL/I capability while eliminating 
most of the overhead of the cross address  space  task switching 
incurred by the LSO option. 

In IMS/VS 1.3 the IRLM has been expanded to  support an option that 
pldces most of its lock control structure  and code in local storage in a 
sefiarate  address space. With  this option, the cross address  space 
program call function is used for transferring control from an IMS/VS 
to  the IRLM. Use of the IRLM with this option has the effect of 
removing the  program isolation lock tables from the IMS/VS control 
address  space  and placing them in the IRLM address  space.  This is 
true because when IRLM is used, the  Program Isolation Function is 
not used. In  this  case,  the design goes beyond solving the CSA problem 
and reduces the growth of virtual  storage  demand.  Splitting  the 
IMS/VS control function across multiple address spaces, as is the  case 
when the lock tables move from control address  space  into IRLM 
address space, is one technique that is being used to reduce the 
demands placed on the control address  space as individual user 
configurations continue to grow. 
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Architectural  restructuring 

In the past, IMS/VS provided parallelism in its control region by the 
use of two techniques. The first was a  dispatching  capability  to 
manage IMS/VS-created subtasks with less overhead than  the  gener- 
alized MVS or VS/I operating system dispatchers. The second tech- 
nique was multiple Task  Control Blocks (TCBS) to allow some work to 
be performed under other TCBs. 

IMS/VS 1.3 provides improvements to both techniques. In prior 
releases of  IMS/VS, initialization of IMS/VS had to be executed under 
a different environment than that provided for IMS/VS execution. The 
execution environment is now provided very early  during  initializa- 
tion, allowing most of IMS/vS initialization to run under the normal 
IMS/VS control. This removes the distinction between initialization 
and execution, allowing functions that were formerly available only 
during startup to be  invoked at any  time.  With  this  capability, control 
blocks become more dynamic. For example, the number of service- 
able  dependent  address spaces is not  fixed at  startup time, but  can be 
increased and decreased during normal operation up  to  a new limit of 
255 for a single on-line IMS/VS system. 

The second area of improvement is in the  handling of the TCB 
structure. In addition to providing more parallelism, the new 
approach simplifies the  adding of  new TCBS if and when the need 
arises. The TCB structure is  defined by a  table. The addition of a 
definitional entry  into  the  table is most of the work required to  add  a 
new TCB. 

Concluding remarks 

The evolution of  IMS/VS described in this paper has been achieved 
while preserving the application program  interface for both data base 
and  terminal 1/0 requests. An application program written in the  late 
1960s for the  then IMS/360 continues to run on the most recent 
IMS/VS release. This  continuity  has been the overriding objective 
throughout this evolution. 

The new facilities of  IMS/VS are mainly the result of the rapid 
increase in the use of on-line applications by its users and  the growing 
need for continuous operations. These  trends are expected to  continue 
in the years ahead,  and  the new  IMS/VS facilities provide a solid base 
for continuing evolution in that direction. 
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Appendix: Glossary of terms 

ACF/  VTAM 

AOI 
CI 

CICS/VS 

CSA 
DASD 
DBRC 
DEDB 

DL/I 
HDAM 

IMS 
IMS/VS 

IMS/VS-DC 

IOPCB 
IRLM 

ISC 
LIFO 
LSO 

LTERM 
LU 

M  FS 
MSC 

MSDB 
MTO 
MVS 

OLDS 
RECON 

RLDS 
SLDS 

SYSDEF 
TCB 
vs 1 

VSAM 
WADS 
XLSO 

Advanced Communications  Function/Virtual  Tele- 
communications Access Method 
Automated  Operator  Interface 
Control  Interval 
Customer  Information  Control  System/Virtual  Stor- 
age 
Common Services Area 
Direct Access Storage Device 
Data Base Recovery Control 
Data  Entry  Data Base 
Data  Language/I 
Hierarchical  Direct Access Method 
Information  Management  System 
lnformation  Management  System/Virtual Storage 
Information  Management  System/Virtual  Storage- 
Data Communication 
Input/Output  Program Control Block 
IMS/VS Resource Lock Manager 
Intersystem  Communication  facility 
Last In First Out 
Logical Storage Option 
Logical Terminal 
Logical Unit 
Message  Format  Service 
Multiple  Systems Coupling 
Main  Storage  Data Base 
Master  Terminal  Operator 
Multiple  Virtual  Storage 
On-Line Log Data  Set 
Recovery Control 
Recovery Log Data  Set 
System Log Data  Set 
IMS/VS System Definition 
Task  Control Block 
Operating  System/Virtual  Storage 1 
Virtual Storage Access Method 
Write Ahead Data  Set 
Cross  Address  Space Local Storage Option 
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