
Modeling  is  a  useful  method  to aid a  planner  in designing the 
interconnection of  a  number  of  systems for  distributed  data process- 
ing. In the  implementation  in  this  paper,  a  computer-based  model 
for sites using ctcs/vs is  discussed.  The  model  permits  the  system 
dejinition to be adjusted,  taking  into account such  aspects  as  the 
number  of  sites,  their interconnections,  and workloads, so that  a 
satisfactory  conjiguration can be obtained. 

Modeling  distributed  processing  across  multiple cIcs/vs 
sites 

by R. D. Acker  and P. H. Seaman 

The subject of distributed  data processing is one of intense current 
interest.'  Many  organizations are examining the idea to understand 
what benefits its implementation  may provide in their  circumstances. 
General discussions of the concept and possible benefits are found in 
References 2, 3, and 4. 

One  implementation of this concept occurs in CICS/VS (Customer 
Information  Control  System/Virtual S t ~ r a g e ) , ~  where several sites 
geographically distributed from one  another  can  interact across 
communication links. A site in this  context  represents  a  separate 
processing system with its own CICS/VS region (or regions) and 
associated lines and  terminals. 

To assist in the design of such an assemblage of systems, a  computer- 
based model has been developed. By use of this model, a  planner  can 
define a number of sites  and  their  interconnections  and assign 
workloads to  the various sites. Upon execution of the model, resource 
utilizations and system responsiveness are  estimated.  The planner 
can then  adjust  the system definition in an  iterative  study  until  a 
satisfactory configuration is obtained. 

This paper begins by discussing the model of a single-site CICS 
system. Following the initial discussion, the new features in cIcs/vs 
that support  multisite  operation are introduced. The addition of 
representations of these  features  into  the basic model is then 
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Figure 2 Transaction  response time 
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terminal  until  the final response is received back at  the  terminal,  and 
may be diagrammed  as shown in Figure 2. 

Note  that  the  part marked  “Host” corresponds to the elapsed time of 
a series of macros such as  that specified for the transaction above. 
The additional  intervals  surrounding  this host time  represent  time 
spent in actual  line transmissions and  terminal  delays. 

Two additional points should be emphasized  here.  First,  although 
transactions with only one input  and one output  are shown, the model 
supports conversational transactions with multiple  terminal  interac- 
tions.  Second, the model does not depend on the sequence in which 
the user specifies the macros.  Usually the macros are specified in 
execution order for clarity  but  any  order of the  same macros produces 
the  same answers. This is a  result of the  analytic  nature of ANCICSVS, 
which represents the bulk activity  but glosses over much of the 
detailed  structure.  This insensitivity to  macro  ordering presents a 
problem for modeling distributed systems which, as we shall see, is 
overcome by the development of transaction  subroutines. 

To understand how transaction response time is estimated, the model 
calculation  scheme is next examined. The calculation  scheme consists 
of the following steps: 

Decomposition macro  scan 
DASD model 
CPU model 
Recomposition macro  scan for host response 
Line model 
Output reports 

During  the decomposition scan, all the macros are examined in 
conjunction with the specified traffic rates of their associated trans- 



actions,  and  tables of elementary  actions are built  up  pertaining to 
the  three submodels for DASD,  CPU, and Lines. The DASD and CPU 
submodels are then exercised, producing raw waiting times  and  unit 
utilizations. 

A second scan of the macros  then  reconstitutes  all the individual 
pieces, including internally  stored  path  lengths,  calculated service 
times, and  queuing  delays,  into  a host response time for each 
transaction.  The  line model is computed  last  because  there are some 
minor dependencies on the host response. 

The  output section gathers all the results  and  reports  the  estimated 
transaction response times  and the underlying unit  performances. An 
analysis is made of these  unit  operations,  and  any that exceed 
specified limits, such as DASD utilization over 70 percent, are 
highlighted for further investigation. 

Description of CICS/VS support for multiple sites 

Using this model of a single CICS site  as a  starting  point, we expanded 
it to  include  multiple  interacting CICS sites. To explain how this 
expansion was done,  it is first necessary to understand the c I C S / v S  
facility of Intersystem  Communication ( I s c ) .  The following is a 
simplified view  of ISC operation,  touching only briefly on many of the 
necessary details that permit  it  to work successfully, such as file 
integrity  and recovery features.  Other  features  are ignored complete- 
ly, such as  the “NOCHECK” option. For a more complete  description, 
see Reference 5 .  

The ISC facility implements  communication between two or more 
independent CICS sites  and  may  be  diagrammed  as shown in Figure 3 .  
This  indicates that  the sites have a peer relationship with one 
a n ~ t h e r . ~  Although  one  site  may be designated  as the  central control 
site,  there is nothing inherent in the  structure of CICS to require  this. 
Further,  there is normally a single level of communication. For 
example, Site 2 in Figure 3 can  talk to Site 4 by passing through Site 
1, but if there is to be regular traffic between the two, a  dedicated link 
between them is preferred.  (This  preference is reflected in the model 
by not representing  “pass-through.”) 

The communication between CICS sites is accomplished by means of 
two new entities-the session and  the mirror  transaction. 

A session is a concept defined in Systems  Network  Architecture’  and 
implemented in ACF/VTAM (Advanced  Communications Function 
for the Virtual  Telecommunications Access Method).’  It is the 
logical means by which VTAM in one “node” (or CPU) establishes 
contact with VTAM in another node within its environment and 
maintains control of the information flowing between those two 
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nodes. There may be several sessions between any two VTAM nodes, 
but a single user employs only one of them at a  time. In our CICS 
modeling world, a VTAM node is synonymous with a CICS site,  and  the 
session user is a CIcS transaction. 

Underlying the session is the physical communication link by which 
the required messages are actually  transmitted back and  forth.  This 
link is precisely the  same  as  the normal communication link between 
terminals  and  any  site processor, except the receiver is  now another 
CPU rather  than  a  terminal. 

A mirror transaction is the vehicle by which CICS interprets  and  acts 
upon the  remote requests that  are presented to  it by VTAM. After  a 
session is established between two CICS systems, the invoking transac- 
tion in the “source” site requests operations to be carried  out on its 
behalf in the  “target”  site.  The  target ClCS system may then  create  a 
special transaction, called a  “mirror,” to carry  out  the request locally 
and report the results. Although these mirrors produce activity 
against local resources like any  other  transaction,  they receive their 
driving impetus from outside  the local system. Therefore,  the 
performance of an interacting network of systems must be considered 
as a whole and  cannot be determined by examining each local system 
by itself. I 

Types of ISC operation 

In the use of the Isc facility,  there are  three basic ways in which a 
CICS transaction in one site  can  interact with a  remote CICS site: user I 

function shipping, asynchronous transaction processing, and  distrib- 
uted transaction processing. We shall define these  three operations 
here  and  later  examine  their  impact on system performance using the 
extended modeling capabilities. 

user User function shipping involves a single data access to  a  remote file as 
function shown in Figure 4. If a  transaction in Site 1 requires data from a file 
shipping resident at  Site 2, it can be obtained via function shipping. The main 

requirement is that  the existence of the file at  Site 2 must be defined 
in the system file tables at  Site 1. 

Actual CICS code is not affected by a file’s location. Thus, if a file that 
was at  Site 1 is  moved to Site 2 and this fact is duly recorded in the 
system file tables,  actual  transaction code remains  unchanged. When 
a file request is executed in Site 1 requiring access to this file, CICS 
will recognize the relocation, and  an ISC operation will  be initiated 
instead of a simple file access. This operation will proceed as follows: 
First a session is obtained from VTAM, establishing connection to  the 
proper CICS system, or target  site.  The file request is transmitted  to 
the  target  and incorporated into  a  mirror  transaction assigned to 
handle  the request. The mirror is then dispatched as a normal 
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Figure 5 Asynchronous  transaction  processing 
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is set up to handle the operation. However, once the specified 
transaction is started in the  target system,  both the mirror  and the 
session are dropped,  and the original  transaction proceeds indepen- 
dently of the remote  transaction. 

Very often the  remote  transaction, having completed its  operation, 
will start a  third  transaction at  the original site.  This  procedure is 
indicated in Figure 5 by TXN B starting TXN C via a  mirror  and 
passing it final results. The  third  transaction, in turn, will transmit 
the results  to the terminal  originating the request,  thus  completing 
the request  turnaround.  Such  an  operation is very efficient in using 
session and  mirror resources. However, system  integrity is  loosely 
controlled, which may not be tolerable in many  cases. 

distributed Distributed  transaction processing (DTP) is the  third method of 
transaction interaction between CICS systems and is designed to avoid the 
processing inefficiencies of function shipping, when employed for multiple 

operations,  as well as  to  alleviate the integrity problems in asynchro- 
nous processing. It is illustrated in Figure 6 .  It should be noted that no 
mirrors are associated with DTP. 

As in the  case of asynchronous  starts,  a  transaction in Site 1 calls  a 
second transaction in Site 2 to  carry  out some work. With DTP, 
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Table 1 Ways to organize input 

Input  Method A Input  Method B 

Define  input categories, 
CPUs, all sites 
DASD, all sites 
Files, all sites 
Transactions,  all sites 
Lines, all sites 
Traffic,  all sites 

If multiple sites, 
Sessions 

For each site successively, 
CPU, for  this site 
DASD, for this site 
Files, for this site 
Transactions,  for  this site 
Lines, for this site 
Traffic,  for  this site 

Sessions 
If multiple sites, 

Concurrent solution for all  sites 
Session/link model 
CALL and START macros 

multiple Multiple  sites are  the first consideration.  When the input  categories 
sites were examined,  there  appeared  to be two ways to organize the 

input-(A) add  a  site identifier explicitly to  each  category definition 
and define all entities in each  category  together, or (B) define 
complete sites, one at a  time, with the  site identifier specified once 
at the beginning of each  site  grouping  and  thereafter implied for 
all  categories within the site. The two methods are compared in 
Table 1. 

In either  case the  same  array  structure results  internally. The ISc 
arrays will differ from the basic CICS model arrays only in the extra 
field per record specifying the  site to which it belongs. Internal 
calculations  and  output  reporting  require  this  extra field for purposes 
of description and  grouping.  Input  Method B was implemented on the 
premise that it would  be the more natural  order for the user. Also, 
Method B has less impact on users with one  site only, who constitute  a 
majority. 

After  the multiple  site definitions are complete,  a new data category, 

available between the sites.  This  category encompasses the  character- 
istics of the sessions and  their associated communication links. 

mirror Mirror  transactions are the next feature  to  be considered. Since  these 
transactions are created  internally by CICS, it seems reasonable  to have them 

automatically  generated by’ the model. It does this whenever a 
reference is encountered in the  transaction  macros of one  site 
referring  to  a file or transaction in another  site.  The proper path 
lengths associated with the mirror  operation,  along with the 
requested operation itself, are inserted in the mirror,  and the  rate of 
the invoking macro is applied. Following this, the mirror  appears  to 
the model like any  other  transaction. 
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In the  case of asynchronous starts, however, the  mirror  transaction 
plays a distinctly transient role, and for DTP one is  not set up at all. 
For purposes of the model in these cases, the overheads associated 
with the ISC operation were merged together with the called transac- 
tion, so that a single remote  operation, including mirror  support if 
any, is reported. The  rate for each called transaction is the sum of all 
of the  rates of the  transactions which call it, wherever the calling 
transactions reside in the system. 

After  the  mirror  operations are analyzed and  the  rates of occurrence 
are determined in their respective sites in the network, the sites are 
effectively decoupled as  far  as calculation is concerned. The transac- 
tion response times for each site may then be  solved independently of 
the  other sites. The calculation scheme discussed earlier for the 
single-site case has been extended to cover the multiple-site case as 
follows: 

Global decomposition macro  scan 
DASD models 
CPU models 
Global recomposition macro  scan for host response without session 

Session/link model 
Line models 
Output  reports per site 

The decomposition macro  scan was made global, examining the 
macros for all transactions at all sites. This produces input for the 
multiple DASD and CPU queuing models which are solved indepen- 
dently, one at a  time.  A global recomposition scan  then sums together 
the pieces of each transaction  to  obtain  a host response time, 
excluding at  this point any session times. A session/link model, 
described below, is then invoked to compute  the delay times across 
the defined  sessions in the system. Finally, the individual Line models 
are calcuiated,  and  the  output  reports are generated for each site, 
combining and  summarizing  the various calculated components. 

The session/link model is an essential element of the multiple-site 
calculation scheme. Like the  three existing queuing models-for 
CPU, DASD, and Lines, the session/link model derives its basic input 
from the global decomposition scan of the input macros which  now, in 
addition  to  summarizing  input  to  the  other  queuing models, accumu- 
lates  all  the session activity between sites. 

The link portion of the model employs the  same  algorithm as  the 
basic line model, using appropriate data lengths and protocol over- 
heads to represent the ISC transmissions. 

The session portion of the model  is represented by a simple multi- 
server queue, indicated in Figure 7.  The  actual system is much more 

times 
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complex than  this,  but with all  the many variables possibly affecting 
the result and very little  measurement data available,  a more detailed 
representation did not appear possible at  this  time. The utilization 
limits are accurately shown in any case. 

The multiple sessions between any two sites are represented by M 
parallel servers with a single waiting line. With S standing for 
average session  hold (or service) time,  and R for the  rate of session 
access, the average waiting time W for a session is given by the 
standard formula for the multiserver queue:” 

W = f ( R ,  S ,  M )  

If this expression is applied to  each pair of sites between which 
sessions are defined, the session delay times, W + S,  are obtained for 
all ISC activity. These session delays are then  accumulated by 
transaction  and  added to the previously calculated session-free 
transaction responses, as noted above. 

The central calculation in the session  model is session  hold time, that 
is, the  average  duration that each session is held to service an ISC 
request. It consists of three pieces, expressed by 

S = link transmissions + mirror response + recovery support 

The first piece comprises the transmission times of the request back 
and  forth over the link, which are computed in the link portion of the 
model mentioned above. The second piece represents  the  time 
required by the  transaction  initiated by the session, whether a  mirror 
or DTP type. This response time is available from the session-free 
transaction calculations. The  third piece accounts for the  additional 
time  the session  is  held to maintain system integrity. 

For example, when updating  a  “protected” file, the session  is  held 
until a “sync point” is reached, usually involving several operations in 
the calling transaction beyond the original ISc request.  (See discus- 
sion below on CALL macro for a  technique  to  calculate  this  time.) 
Often,  the  total  span for the calling transaction is  used to obtain  a 
rough but useful estimate of this  time. 

The extended session time may also include several ISC calls to  the 
same  remote  site.  This is possible  in the model because the calls, by 
invoking the  “protect” option, all use the  same session as if it were one 
long service with no intermediate session waits to be calculated. In 
fact,  this mode of operation is often exploited in reality. If there  are 
several ISC calls in the  transaction,  the session is acquired once only at 
the beginning and held  for the  duration of the  transaction,  thus 
eliminating  separate session acquisitions and  their associated waits. 

Using the resulting session  hold times to calculate  the session delays, 
we may complete the response time  calculations for transactions 
including session activity. Fortunately, at this  time,  there is no 
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This inclusive relationship is incorporated in the model. It should not 
be confused with the lack of recursion in the session model. Although 
CALL recursion is employed in the session model, session recursion 
stops at a single level. The reason is that higher-level embedded 
sessions  involve a complex queuing calculation at  each step, whereas 
call recursion is a simple linear  accumulation of partial  sums that  are 
already  calculated. 

When two transactions are in the  same site, the CALL macro may be 
used in a  “subroutine” mode to isolate portions of one transaction  and 
report the  duration of the activity independently in a second subtrans- 
action. A typical application of this mode is to  estimate session  hold 
times elongated by recovery operations-from request to “sync 
point” release. This  latter portion of the  operation may be  defined 
separately  as  a  subtransaction  and called from the main transaction. 
When used in this mode, a special transaction  indicator is set to 
inhibit  the  accumulation of otherwise normal CICS dispatching 
overheads. 

Use of the ISC features in the model 

Given these model features, we can  examine  the  three types of I S c  
operation and see what  the performance implications are. 

User function shipping may be represented by Transaction A in Site 
1, which occasionally (once out of 100 executions) references a file 
located in Site 2: 

Site 1: T X N A  - 
- 

G FF2, .01 
- 

Site 2: FF2 file definition 

The model confirms experience with actual systems that this  type of 
operation is quite costly both in terms of resource usage and 
individual responsiveness. Although the  path length to  support  the 
access now occurs at the  remote site, the ISC path  length, including 
VTAM operation,  added to control the  transfer of data, is roughly 
twice this  amount,  incurred at  both sites. And whereas a local access 
may respond in 0.02 second, a  remote access using ISC may take 
upwards of 2 seconds. Function shipping should be limited to 
low-volume, exceptional cases. Frequent reference to data dispersed 
in scattered locations is impractical using this  approach. 

The major  advantage  to  this mode of operation is that no additional 
application code is required in the  target system, such as is required 
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the most  efficient manner. An application might occur in commercial 
banking where a  branch  refreshes  active records periodically from a 
central  master file. 

CENTRAL (Site 1): Master files 
T X N B :  - (extract  data from master 

- f i les   and  t ransmit   to  
branch) 

- 

BRANCH (Site 2): 
T X N A :  - 

CALL  TXN B, 500 
- 

Traffic rate: TXN A-200/hr 

Here  the response time for TXN  A at  Site 2 includes the  time required 
to execute TXN B, which in turn  depends on  how responsive the 
processing is in Site 1, considering all the  other  activity  taking place 
there. As with function shipping,  this type of operation is expensive 
unless prorated over a  number of  file references. For  example, if three 
or more remote accesses are required, it is probably more efficient to 
use DTP rather  than user function shipping. However, the critical 
resource in this form of intercommunication is likely to be the session 
itself, which is tied up during  the whole operation of the  remote 
transaction. 

With  the model, alternate possibilities can  be  studied  to  compare 
performance.  This will permit  planners  to choose among the options 
with greater knowledge of the consequences and confidence that  the 
final design will perform as specified. 

Repetitive data handling  in the model 

Computer systems that  are distributed over multiple  sites  tend  to be 
repetitive by their very nature. For example, the processors that 
support  a  group of branch offices tend to  be copies of one  another, 
with the  same transaction types being processed against  similar files, 
differing mainly in specific record content or in frequency of use. 
Because of this  similarity between sites, much of the input data 
required to represent such a system is repetitive. 

Another  related consequence of modeling a  distributed system is the 
need to move entities  about,  attempting  to  balance workloads with 
resources available. Because of the site-oriented  input  structure 
(Input Method  B discussed above), this move operation is not as 
simple  as  it  might have been for Method  A. 

To ease the input  and  editing  burden in these cases, the concept of 
“generic  input” is required.  This  means that  the user enters the basic 
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site.  Therefore,  the replication of any  entity  requires that a new name 
be specified or that  the name be designated  as  a local name.  This type 
of name implies that  there is a root part of the  name subscripted by 
the site identifier. Replication of an entity with a local name implies 
automatic  change of the  site identifier. 

Macros referencing data files or transactions,  whether or not 
included in a  transaction being copied from one  site to another, 
require  a  further  consideration. The names of the entity  referenced in 
the macro can be global, local, or distributed.  The  third type of name 
implies that  the macro employing it will be repeated within its 
transaction so that  the referenced  name  can take on all specific local 
names for which sites have been defined. This  type of replication is 
carried  out  automatically after  the site-to-site copying of entities has 
been accomplished. 

The generic  technique minimizes original data  entry and  expands  it 
across sites  to  meet  a  total  input data requirement.  This  technique 
includes the flexibility of editing  the data  after expansion, so that 
small  amounts of nonrepetitive information  may be incorporated. 

Conclusion 

The systems planner  can now represent  a  total CICS solution, 
incorporating  multiple sites, using the new features of ANCICSVS that 
were described.  With the ease of changing  resource allocations and 
the rapid execution of the model, many variations  can be studied in a 
short  time. The results of these runs can  then be weighed with other 
business considerations to provide the basis for informed executive 
decisions. 
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