Modeling is a useful method to aid a planner in designing the
interconnection of a number of systems for distributed data process-
ing. In the implementation in this paper, a computer-based model
for sites using CICS/VS is discussed. The model permits the system
definition to be adjusted, taking into account such aspects as the
number of sites, their interconnections, and workloads, so that a
satisfactory configuration can be obtained.

Modeling distributed processing across multiple CICS/VS
sites

by R. D. Acker and P. H. Seaman

The subject of distributed data processing is one of intense current
interest.' Many organizations are examining the idea to understand
what benefits its implementation may provide in their circumstances.
General discussions of the concept and possible benefits are found in
References 2, 3, and 4.

One implementation of this concept occurs in CICS;/VS (Customer
Information Control System/Virtual Storage),” where several sites
geographically distributed from one another can interact across
communication links. A site in this context represents a separate
processing system with its own CICS/VS region (or regions) and
associated lines and terminals.

To assist in the design of such an assemblage of systems, a computer-
based model has been developed. By use of this model, a planner can
define a number of sites and their interconnections and assign
workloads to the various sites. Upon execution of the model, resource
utilizations and system responsiveness are estimated. The planner
can then adjust the system definition in an iterative study until a
satisfactory configuration is obtained.

This paper begins by discussing the model of a single-site CICS
system. Following the initial discussion, the new features in CICS/VS
that support multisite operation are introduced. The addition of
representations of these features into the basic model is then

© Copyright 1982 by International Business Machines Corporation. Copying in printed
form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and 1BM
copyright notice are included on the first page. The title and abstract, but no other
portions, of this paper may be copied or distributed royalty free without further
permission by computer-based and other information-service systems. Permission to
republish any other portion of this paper must be obtained from the Editor.

IBM SYST J & VOL 21 & NO 4 & 1982 ACKER AND SEAMAN

Figure 1 Single-site schematic

|1 i

| E—
MODEM . . . MODEM
—

MODEM
|~ ccu

LINE CONTROL
SDLC/BSC/STSP

MODEMS
3863/3864/3865

D
CLUSTER CONTROL UNITS/TERMINALS B/‘i{rlCH BACKGROUND

LOCAL TERMINALS

PROGRAMMING SYSTEMS
VTAM/VTAME/BTAM 3310
DOS/VS, VS1, MVS 3330
CICs/VS 3340/3344
VSAM/BDAM/ISAM

3350
3370/3375
3380

3600/3650/3790/2770/3767/3276

described, after which the use of the enhanced model to study
networks of CICS sites is covered. Finally, a usability feature of the
model is discussed, which is intended to reduce input redundancy and
facilitate changes in multiple run studies.

Overview of single-site model

The basic CICS/VS model, called ANCICSVS, is an analytic design tool
which is used by IBM account teams to estimate the performance of
high-response, terminal-oriented systems based on the CICS/VS pro-
gram product. As indicated by the descriptor “analytic,” the model
employs equations that are analytically solvable, rather than the
technique of discrete simulation. This leads to solutions in a few
seconds of execution time per model run. ANCICSVS is written in APL
for use in an interactive environment. A number of simplifying
assumptions, such as CICS operating in a dedicated environment, are
not covered here, so users are advised to obtain further details to
understand whether or not their particular environment may be
represented.

The model encompasses both hardware and software considerations.
(See Figure 1.) Internal tables contain average path lengths and
operational characteristics that define numerous options and features
of CICS and the several operating systems that support it. Queuing
representations of the central processing unit (CPU), the direct access
storage device subsystem (DASD), and the communication line sub-
system (Lines) are included. Based on the system configuration and
the workload description specified by the user, the model incorporates
these major components into an integrated whole, reporting unit
utilizations and system response times for specified actions.

ACKER AND SEAMAN IBM SYST J VOL 21 @ NO 4 o {982

The user input to the model may be classified in the following
categories, which are listed in the order of entry:

CPU parameters

DASD configuration
File definitions
Transaction operations
Line configuration
Traffic rates

Each category except the CPU is repetitive, allowing multiple entities
of each kind to be defined. The input is entered manually, an entity
(record) at a time, for each category. The model provides range and
consistency checks upon each record as it is entered, permitting
immediate correction. Range checks relate to IBM hardware and CICS
characteristics. Consistency checks relate to a proper association of
the components of the system configuration.

To understand the interaction among these model components, the
transaction category is examined in more detail. Each type of
transaction is defined, in addition to a set of parameters, by a
sequence of operations called “macros.” These operations resemble
actual CICS macro-instructions, whether macro-level or command-
level, as much as possible, so that a model transaction has a high
correspondence to actual CICS programs that process transactions in
a real system. The macro sequence for a typical model transaction
might look like this:

BMSI basic mapping services input

GUPD MASTER get data (w/update intent) from MASTER file
G PAYMENT get data from PAYMENT file

PROC 10000 process 10 000 instructions of application code
TSP AUX put data to auxiliary temporary storage file
PUPD MASTER update MASTER file

BMSO basic mapping services output

TCW 150 write 150 characters to terminal

END end transaction

The initial message that invokes this series of operations is defined in
the basic transaction parameters and is not part of the series above.
The final write macro sends a response back to the initiating
terminal. The files referenced in this series have previously been
defined in the File definition section, where all such concerns as
access method, location, and size are specified. The rate at which the
transaction is generated from various terminals in the system is
specified later in the Traffic rate section.

One of the principal model outputs is transaction response time. It
includes the interval of time from initial entry of the message at a

IBM SYST J ¢ VOL 21 @ NO 4 » 1982 ACKER AND SEAMAN

Figure 2 Transaction response time

RESPONSE TIME

LINE
TERMINAL OUTPUT
SUBSYSTEM

PROCESS
WAIT TXM [WAIT TXM

| l

RESPONSE TIME = HOST + LINE + TERMINAL

/1]

CPU & LINE USER
DASD MODEL INPUT
MODELS

terminal until the final response is received back at the terminal, and
may be diagrammed as shown in Figure 2.

Note that the part marked “Host” corresponds to the elapsed time of
a series of macros such as that specified for the transaction above.
The additional intervals surrounding this host time represent time
spent in actual line transmissions and terminal delays.

Two additional points should be emphasized here. First, although
transactions with only one input and one output are shown, the model
supports conversational transactions with multiple terminal interac-
tions. Second, the model does not depend on the sequence in which
the user specifies the macros. Usually the macros are specified in
execution order for clarity but any order of the same macros produces
the same answers. This is a result of the analytic nature of ANCICSVS,
which represents the bulk activity but glosses over much of the
detailed structure. This insensitivity to macro ordering presents a
problem for modeling distributed systems which, as we shall see, is
overcome by the development of transaction subroutines.

To understand how transaction response time is estimated, the model
calculation scheme is next examined. The calculation scheme consists
of the following steps:

Decomposition macro scan

DASD model

CPU model

Recomposition macro scan for host response
Line model

Output reports

During the decomposition scan, all the macros are examined in
conjunction with the specified traffic rates of their associated trans-

ACKER AND SEAMAN IBM SYST J e VOL 21 ® NO 4 » 982

actions, and tables of elementary actions are built up pertaining to
the three submodels for DASD, CPU, and Lines. The DASD and CPU
submodels are then exercised, producing raw waiting times and unit
utilizations.

A second scan of the macros then reconstitutes all the individual
pieces, including internally stored path lengths, calculated service
times, and queuing delays, into a host response time for each
transaction. The line model is computed last because there are some
minor dependencies on the host response.

The output section gathers all the results and reports the estimated
transaction response times and the underlying unit performances. An
analysis is made of these unit operations, and any that exceed
specified limits, such as DASD utilization over 70 percent, are
highlighted for further investigation.

Description of CICS/VS support for multiple sites

Using this model of a single CICS site as a starting point, we expanded
it to include multiple interacting CICS sites. To explain how this
expansion was done, it is first necessary to understand the CICS/VS
facility of Intersystem Communication (1SC). The following is a
simplified view of ISC operation, touching only briefly on many of the
necessary details that permit it to work successfully, such as file
integrity and recovery features. Other features are ignored complete-
ly, such as the “NOCHECK” option. For a more complete description,
see Reference 5.

The 1SC facility implements communication between two or more
independent CICS sites and may be diagrammed as shown in Figure 3.
This indicates that the sites have a peer relationship with one
another.” Although one site may be designated as the central control
site, there is nothing inherent in the structure of CICS to require this.
Further, there is normally a single level of communication. For
example, Site 2 in Figure 3 can talk to Site 4 by passing through Site
1, but if there is to be regular traffic between the two, a dedicated link
between them is preferred. (This preference is reflected in the model
by not representing “‘pass-through.”)

The communication between CICS sites is accomplished by means of
two new entities—the session and the mirror transaction.

A session is a concept defined in Systems Network Architecture® and
implemented in ACF/VTAM (Advanced Communications Function
for the Virtual Telecommunications Access Method).” It is the
logical means by which VTAM in one ‘“node” (or CPU) establishes
contact with VTAM in another node within its environment and
maintains control of the information flowing between those two

IBM SYST J} & VOL 21 & NO 4 & 1982 ACKER AND SEAMAN

Figure 3 Multisite network

user
function
shipping

nodes. There may be several sessions between any two VTAM nodes,
but a single user employs only one of them at a time. In our CICS
modeling world, a VTAM node is synonymous with a CICS site, and the
session user is a CICS transaction.

Underlying the session is the physical communication link by which
the required messages are actually transmitted back and forth. This
link is precisely the same as the normal communication link between
terminals and any site processor, except the receiver is now another
CPU rather than a terminal.

A mirror transaction is the vehicle by which CICS interprets and acts
upon the remote requests that are presented to it by VTAM. After a
session is established between two CICS systems, the invoking transac-
tion in the “source” site requests operations to be carried out on its
behalf in the “target” site. The target CICS system may then create a
special transaction, called a “mirror,” to carry out the request locally
and report the results, Although these mirrors produce activity
against local resources like any other transaction, they receive their
driving impetus from outside the local system. Therefore, the
performance of an interacting network of systems must be considered
as a whole and cannot be determined by examining each local system
by itself.

Types of ISC operation

In the use of the ISC facility, there are three basic ways in which a
CICS transaction in one site can interact with a remote CICS site: user
function shipping, asynchronous transaction processing, and distrib-
uted transaction processing. We shall define these three operations
here and later examine their impact on system performance using the
extended modeling capabilities.

User function shipping involves a single data access to a remote file as
shown in Figure 4. If a transaction in Site 1 requires data from a file
resident at Site 2, it can be obtained via function shipping. The main
requirement is that the existence of the file at Site 2 must be defined
in the system file tables at Site 1.

Actual CICS code is not affected by a file’s location. Thus, if a file that
was at Site 1 is moved to Site 2 and this fact is duly recorded in the
system file tables, actual transaction code remains unchanged. When
a file request is executed in Site 1 requiring access to this file, CICS
will recognize the relocation, and an ISC operation will be initiated
instead of a simple file access. This operation will proceed as follows:
First a session is obtained from VTAM, establishing connection to the
proper CICS system, or target site. The file request is transmitted to
the target and incorporated into a mirror transaction assigned to
handle the request. The mirror is then dispatched as a normal

ACKER AND SEAMAN IBM SYST J @ VOL 21 @ NO 4 & 1982

Figure 4 User function shipping

SITE 1:

“SINGLE FILE REQUEST"

MIRROR A

transaction accessing the required file residing in Site 2. The

requested data is then packaged by VTAM and transmitted back to
Site 1. If all error checks are satisfied, the mirror in Site 2 may be
dropped and the session terminated.

However, to maintain file integrity when updating occurs, the session
is often held until a synchronization point is reached. At this time, all
file updates since the last “sync point” are definitely committed and
the operation logged. This function prolongs the session time consid-
erably and must be accounted for in any model.

Asynchronous transaction processing starts a named transaction in a
remote site from a local transaction, as shown in Figure 5. Once
initiated, the new transaction proceeds asynchronously relative to its
initiator. This is useful when a number of operations need to be
carried out at the remote site, and the response time requirement is
not of primary concern. The complete remote transaction operation
must be defined in the target system. Only the transaction name need
be transmitted with the start operation to initiate the remote transac-
tion, although additional data is usually included to particularize the
operation. A session is acquired to transmit the request, and a mirror

IBM SYST J @ VOL 21 @« NO 4 o 1982 ACKER AND SEAMAN

asynchronous
transaction
processing

distributed
transaction
processing

Figure 5 Asynchronous transaction processing

SITE 1:
CICS/VS

“START TXN C” ! “START TXN B"

is set up to handle the operation. However, once the specified
transaction is started in the target system, both the mirror and the
session are dropped, and the original transaction proceeds indepen-

dently of the remote transaction.

Very often the remote transaction, having completed its operation,
will start a third transaction at the original site. This procedure is
indicated in Figure 5 by TXN B starting TXN C via a mirror and
passing it final results. The third transaction, in turn, will transmit
the results to the terminal originating the request, thus completing
the request turnaround. Such an operation is very efficient in using
session and mirror resources. However, system integrity is loosely
controlled, which may not be tolerable in many cases.

Distributed transaction processing (DTP) is the third method of
interaction between CICS systems and is designed to avoid the
inefficiencies of function shipping, when employed for multiple
operations, as well as to alleviate the integrity problems in asynchro-
nous processing. It is illustrated in Figure 6. It should be noted that no
mirrors are associated with DTP.

As in the case of asynchronous starts, a transaction in Site 1 calls a
second transaction in Site 2 to carry out some work. With DTP,

ACKER AND SEAMAN IBM SYST J ¢qVOL 21 #4NO 4 #1982

Figure 6 Distributed transaction processing

“HOLD SESSION WHILE
TXN B EXECUTES”

CICS/VS

however, the session is held, and the delegated work is carried out
synchronously while the calling transaction waits. There may be

several transmissions back and forth across the session link while the
coupled transactions resolve the total problem. Although the session
may be held for a relatively long time and large amounts of data may
be transmitted over the link, DTP is often the most efficient method of
using ISC. The major cost lies not in resource consumption but in
application programming.

Representation of ISC in the model

Now let us see how these ISC operations have been incorporated into
the basic CICS model. A primary objective of this effort was to disturb
the original model structure as little as possible. Thus, the model user
not employing ISC was to experience minimal impact. Also, migration
of an existing pre-1SC model to one utilizing 1SC would be a simple
exercise.

The new model features include the following:

« Multiple sites
e Mirror transactions

IBM SYST J @ VOL 21 NO 4 ¢ 1982 ACKER AND SEAMAN 479

multiple
sites

mirror
transactions

Ways to organize input

Input Method A

Input Method B

Define input categories,

CPUs, all sites
DASD, all sites
Files, all sites
Transactions, all sites
Lines, all sites
Traffic, all sites

If multiple sites,

Sessions

For each site successively,

CPU, for this site
DASD, for this site

Files, for this site
Transactions, for this site
Lines, for this site
Traffic, for this site

If multiple sites,

Sessions

» Concurrent solution for all sites
* Session/link model
e CALL and START macros

Multiple sites are the first consideration. When the input categories
were examined, there appeared to be two ways to organize the
input—(A) add a site identifier explicitly to each category definition
and define all entities in each category together, or (B) define
complete sites, one at a time, with the site identifier specified once
at the beginning of each site grouping and thereafter implied for

all categories within the site. The two methods are compared in
Table 1.

In either case the same array structure results internally. The ISC
arrays will differ from the basic CICS model arrays only in the extra
field per record specifying the site to which it belongs. Internal

calculations and output reporting require this extra field for purposes
of description and grouping. Input Method B was implemented on the
premise that it would be the more natural order for the user. Also,
Method B has less impact on users with one site only, who constitute a
majority.

After the multiple site definitions are complete, a new data category,
called Session Configuration, is included to define the sessions
available between the sites. This category encompasses the character-
istics of the sessions and their associated communication links.

Mirror transactions are the next feature to be considered. Since these
are created internally by CICS, it seems reasonable to have them
automatically generated by' the model. It does this whenever a
reference is encountered in the transaction macros of one site
referring to a file or transaction in another site. The proper path
lengths associated with the mirror operation, along with the
requested operation itself, are inserted in the mirror, and the rate of
the invoking macro is applied. Following this, the mirror appears to
the model like any other transaction.

ACKER AND SEAMAN IBM SYST J e VOL 21 o NO 4 o 1982

In the case of asynchronous starts, however, the mirror transaction
plays a distinctly transient role, and for DTP one is not set up at all.
For purposes of the model in these cases, the overheads associated
with the ISC operation were merged together with the called transac-
tion, so that a single remote operation, including mirror support if
any, is reported. The rate for each called transaction is the sum of all
of the rates of the transactions which call it, wherever the calling
transactions reside in the system.

After the mirror operations are analyzed and the rates of occurrence
are determined in their respective sites in the network, the sites are
effectively decoupled as far as calculation is concerned. The transac-
tion response times for each site may then be solved independently of
the other sites. The calculation scheme discussed earlier for the
single-site case has been extended to cover the multiple-site case as
follows:

Global decomposition macro scan

DASD models

CPU models

Global recomposition macro scan for host response without session
times

Session/link model

Line models

Output reports per site

The decomposition macro scan was made global, examining the
macros for all transactions at all sites. This produces input for the
multiple DASD and CPU queuing models which are solved indepen-
dently, one at a time. A global recomposition scan then sums together

the pieces of each transaction to obtain a host response time,
excluding at this point any session times. A session/link model,
described below, is then invoked to compute the delay times across
the defined sessions in the system. Finally, the individual Line models
are calculated, and the output reports are generated for each site,
combining and summarizing the various calculated components.

The session/link model is an essential element of the multiple-site
calculation scheme. Like the three existing queuing models—for
CPU, DASD, and Lines, the session/link model derives its basit input
from the global decomposition scan of the input macros which now, in
addition to summarizing input to the other queuing models, accumu-
lates all the session activity between sites.

The link portion of the model employs the same algorithm as the
basic line model, using appropriate data lengths and protocol over-

heads to represent the ISC transmissions.

The session portion of the model is represented by a simple multi-
server queue, indicated in Figure 7. The actual system is much more

IBM SYST J ¢ VOL 21 ¢ NO 4 e 1982 ACKER AND SEAMAN

concurrent
solution

session/link
model

complex than this, but with all the many variables possibly affecting
the result and very little measurement data available, a more detailed
representation did not appear possible at this time. The utilization
limits are accurately shown in any case.

Figure 7 Multiqueue model of The multiple sessions between any two sites are represented by M

a session parallel servers with a single waiting line. With S standing for
average session hold (or service) time, and R for the rate of session
access, the average waiting time W for a session is given by the
standard formula for the multiserver queue:10

[l,l‘ W= f(R,S, M)

If this expression is applied to each pair of sites between which
sessions are defined, the session delay times, W + S, are obtained for
all ISC activity. These session delays are then accumulated by
transaction and added to the previously calculated session-free
transaction responses, as noted above.

The central calculation in the session model is session hold time, that
is, the average duration that each session is held to service an ISC
request. It consists of three pieces, expressed by

S = link transmissions + mirror response + recovery support

The first picce comprises the transmission times of the request back
and forth over the link, which are computed in the link portion of the
model mentioned above. The second piece represents the time
required by the transaction initiated by the session, whether a mirror
or DTP type. This response time is available from the session-free
transaction calculations. The third piece accounts for the additional
time the session is held to maintain system integrity.

For example, when updating a “protected” file, the session is held
until a “sync point” is reached, usually involving several operations in
the caliing transaction beyond the original ISC request. (See discus-
sion below on CALL macro for a technique to calculate this time.)
Often, the total span for the calling transaction is used to obtain a
rough but useful estimate of this time.

The extended session time may also include several ISC calls to the
same remote site. This is possible in the model because the calls, by
invoking the “protect” option, all use the same session as if it were one
long service with no intermediate session waits to be calculated. In
fact, this mode of operation is often exploited in reality. If there are
several ISC calls in the transaction, the session is acquired once only at
the beginning and held for the duration of the transaction, thus
eliminating separate session acquisitions and their associated waits.

Using the resulting session hold times to calculate the session delays,

we may complete the response time calculations for transactions
including session activity. Fortunately, at this time, there is no

ACKER AND SEAMAN IBM SYST J @ VOL 21 &« NO 4 & 1982

requirement to model multilevel mirror operations, where mirrors
themselves generate ISC calls and further mirrors. Time-consuming
calculations involving iterative convergence would be required to
handle such a recursive environment. Although the ISC facility
handles multilevel mirrors, a situation sometimes referred to as a
“daisy-chain,” system designers are discouraged from using the
feature; hence, the model does not include it.

The CALL and START macros, which model entities representing CALL and
similar operations in the real system, are major contributors to ~ START macros
activity generated for the mirror transactions and the session model.

By embedding these macros in a modeled transaction, DTP and

asynchronous processing may be represented directly. The principal

argument of both types of macro is the name of the transaction to be

invoked. The rate associated with the calling macro is accumulated

by the called transaction, and session activity is set up. From that

point on, the invoked transactions operate like any other transaction.

During the second scan reconstituting transaction response times, a
significant difference between the START and CALL macros shows

up.

The START macro represents asynchronous operation. Thus, the total
time for the macro is the time required to perform an ISC start
operation, and no more. The timing of whatever is started has no
effect on the initiating transaction. This is illustrated in the following
example:

Site 1: TXNA —
START TXN B (response time for TXN A,
— not including TXN B)

Site 2: TXNB
(response time for TXN B)

In the case of the CALL macro, however, the total macro time includes
not only the ISC overhead for the call operation but the total response
time for the called transaction as well. And if the called transaction
contains CALLSs, the whole operation is recursive, as shown:

TXN A —

— (response time for TXN A,
CALL TXN B including TXN B + TXN C)

— (response time for TXN B,
CALLTXNC including TXN C)

(response time for TXN C)

IBM SYST] @ VOL 21 & NO 4 o 1982 ACKER AND SEAMAN 483

user
function
shipping

This inclusive relationship is incorporated in the model. It should not
be confused with the lack of recursion in the session model. Although
CALL recursion is employed in the session model, session recursion
stops at a single level. The reason is that higher-level embedded
sessions involve a complex queuing calculation at each step, whereas
call recursion is a simple linear accumulation of partial sums that are
already calculated.

When two transactions are in the same site, the CALL macro may be
used in a “subroutine” mode to isolate portions of one transaction and
report the duration of the activity independently in a second subtrans-
action. A typical application of this mode is to estimate session hold
times elongated by recovery operations—from request to “sync
point” release. This latter portion of the operation may be defined
separately as a subtransaction and called from the main transaction.
When used in this mode, a special transaction indicator is set to
inhibit the accumulation of otherwise normal CICS dispatching
overheads.

Use of the ISC features in the model

Given these model features, we can examine the three types of ISC
operation and see what the performance implications are.

User function shipping may be represented by Transaction A in Site
1, which occasionally (once out of 100 executions) references a file
located in Site 2:

Site 1: TXNA —

G FF2, .01

Site 2: FF2 file definition

The model confirms experience with actual systems that this type of
operation is quite costly both in terms of resource usage and
individual responsiveness. Although the path length to support the
access now occurs at the remote site, the ISC path length, including
VTAM operation, added to control the transfer of data, is roughly
twice this amount, incurred at both sites. And whereas a local access
may respond in 0.02 second, a remote access using ISC may take
upwards of 2 seconds. Function shipping should be limited to
low-volume, exceptional cases. Frequent reference to data dispersed
in scattered locations is impractical using this approach.

The major advantage to this mode of operation is that no additional
application code is required in the target system, such as is required

ACKER AND SEAMAN IBM SYST J @ VOL 21 @ NO 4 & 1982

for asynchronous processing and DTP. The operation of locating the
file and handling the ISC request is carried out automatically by
CICS.

Asynchronous transaction processing is a possibility where a number
of functions are to be performed at the remote site and the immediacy
of response is not critical. Policy updating for insurance company
branch offices is a typical application shown below.

Site 1 represents the home office, with all the policy files and the
program for TXN B, which performs the required updating. Site 2
represents a branch office and includes the programs for two transac-
tion types, A and C. TXN A generates new data, initiates the update
operation, and transmits the data to be incorporated in the update.
TXN C, started by the successful conclusion of TXN B, serves as
confirmation to the branch that the update has been completed and
updates the branch office records.

HOME (Site 1): Policy files
TXNB: —
— (update policy files)

START TXN C, 500 (transmit results back)

BRANCH (Site 2):
TXNA: — (gather data for updating)
START TXN B, 250 (transmit data for updating)
TXNC: — (update branch files)
— (confirm completion)

Traffic rate: TXN A—300/hr

This mode of operation is shown by the model to be quite efficient.
The ISC/VTAM path length employed is more or less equivalent to the
overhead of a single function shipping request, but in this case it is
charged only once against the activity of the whole transaction
started, which may include a number of file references. Session usage
is low because only one interaction is required to initiate a series of
actions. This ‘supposes the proper error recovery procedures are
included; for example, what happens when TXN B fails and TXN C is
never started?

Further studies are possible to determine the proper functions and
amount of work to be processed by the branches versus the home
office, based on the sizes and capabilities of their respective proces-
SOrS.

Distributed transaction processing is a prime candidate when on-line

processing is required with full control ensuring that all of several
actions are completed, and the whole operation must be expedited in

IBM SYST J e VOL 21 « NO 4 » 1982 ACKER AND SEAMAN

asynchronous
transaction
processing

distributed
transaction
processing

4385

the most efficient manner. An application might occur in commercial
banking where a branch refreshes active records periodically from a
central master file.

CENTRAL (Site 1): Master files
TXNB: — (extract data from master
— files and transmit to
branch)

BRANCH (Site 2):
TXNA: —
CALL TXN B, 500

Traffic rate: TXN A-200/hr

Here the response time for TXN A at Site 2 includes the time required
to execute TXN B, which in turn depends on how responsive the
processing is in Site 1, considering all the other activity taking place
there. As with function shipping, this type of operation is expensive
unless prorated over a number of file references. For example, if three
or more remote accesses are required, it is probably more efficient to
use DTP rather than user function shipping. However, the critical
resource in this form of intercommunication is likely to be the session
itself, which is tied up during the whole operation of the remote
transaction.

With the model, alternate possibilities can be studied to compare
performance. This will permit planners to choose among the options
with greater knowledge of the consequences and confidence that the
final design will perform as specified.

Repetitive data handling in the model

Computer systems that are distributed over multiple sites tend to be
repetitive by their very nature. For example, the processors that
support a group of branch offices tend to be copies of one another,
with the same transaction types being processed against similar files,
differing mainly in specific record content or in frequency of use.
Because of this similarity between sites, much of the input data
required to represent such a system is repetitive.

Another related consequence of modeling a distributed system is the
need to move entities about, attempting to balance workloads with
resources available. Because of the site-oriented input structure
(Input Method B discussed above), this move operation is not as
simple as it might have been for Method A.

To ease the input and editing burden in these cases, the concept of
“generic input” is required. This means that the user enters the basic

ACKER AND SEAMAN IBM SYST J & VOL 21 & NO 4 & 1982

data into the model only once, and thereafter, by means of simple
commands, is able to move the data about, reproduce it, and edit it as
required.

The categories of input that can usefully employ generic data are

e File definitions
e Transaction operations
e Entire sites

Because they may reference generically defined entities, macros
referring to files, as well as START and CALL macros, must be
included in the processing of the generic data.

An important objective of generic processing is the automatic genera-
tion of distinct names for entities of a given type, without undue user
involvement. To this end, four types of names are recognized—
global, particular, local, and distributed. These name types may be
defined as follows:

Global—complete, remaining unchanged as the entity is moved
about.

Particular—complete but defined by the move command, not an
unalterable part of the entity.

Local—a prefix only, completed by the automatic appendage of the
site identifier, which is changed as the entity is moved from site to
site.

Distributed—a prefix only, similar to a local name, with an append-
age specifying a distribution of site identifiers.

A global name might be used for a specific file that is to be moved
from one site to another while comparing the effect of its location on
overall system performance. A particular name could be useful when
copying a transaction, with all its attendant macros, from one site to
another and renaming it. A local name is extremely useful when a
similar entity occurs at nearly every site, such as a Customer file. A
distributed name is used in macro references to address an array of
local names: for instance, a reference at Site 1 to Customer file,
resulting in 90 percent of the accesses to the file residing at Site 1 and
10 percent to the file at Site 2, with a comparable distribution at
Site 2.

The copy and move commands, utilizing these new varieties of names,
comprise a new input category, embracing the previous categories in
a meta-language concerning the model itself.

ANCICSVS requires that each entity within an input category have a
unique name even though it may be similar to a name at a different

IBM SYST J » VOL 21 @ NO 4 e 1982 ACKER AND SEAMAN

site. Therefore, the replication of any entity requires that a new name
be specified or that the name be designated as a local name. This type
of name implies that there is a root part of the name subscripted by
the site identifier. Replication of an entity with a local name implies
automatic change of the site identifier.

Macros referencing data files or transactions, whether or not
included in a transaction being copied from one site to another,
require a further consideration. The names of the entity referenced in
the macro can be global, local, or distributed. The third type of name
implies that the macro employing it will be repeated within its
transaction so that the referenced name can take on all specific local
names for which sites have been defined. This type of replication is
carried out automatically after the site-to-site copying of entities has
been accomplished.

The generic technique minimizes original data entry and expands it
across sites to meet a total input data requirement. This technique
includes the flexibility of editing the data after expansion, so that
small amounts of nonrepetitive information may be incorporated.

Conclusion

The systems planner can now represent a total CICS solution,
incorporating multiple sites, using the new features of ANCICSVS that
were described. With the ease of changing resource allocations and
the rapid execution of the model, many variations can be studied in a
short time. The results of these runs can then be weighed with other

business considerations to provide the basis for informed executive
decisions.

CITED REFERENCES

\. Proceedings: The 2nd International Conference of Distributed Computing Sys-
tems, sponsored by INRIA (France), IEEE (New York), et al., Paris, France
(April 8-10, 1981).

. A. L. Scherr, “Distributed data processing,” IBM Systems Journal 17, No. 4,
324-343 (1978).

. H. Lorin, “Distributed processing: An assessment,” IBM Systems Journal 18, No.
4,582-603 (1979).

. J.R. Buchanan and R. G. Linowes, “Understanding distributed data processing,”
Harvard Business Review, 143—-153 (July—August 1980).

. Customer Information Control System/Virtual Storage: General Information
Manual, GC33-0155, IBM Corporation; available through IBM branch offices.

. P.H. Seaman, “Modeling considerations for predicting performance of CICS/VS
systems,” {BM Systems Journal 19, No. 1, 68—80 (1980).

. R. J. Cypser, Communications Architecture for Distributed Systems, Addison-
Wesley Publishing Co., Reading, MA (1978).

. J. H. McFadyen, “Systems Network Architecture: An overview,” IBM Systems
Journal 15, No. 1,4-23 (1976).

. Advanced Communications Function for VTAM: General Information Manual,
GC38-0254, IBM Corporation; available through IBM branch offices.

488 ACKER AND SEAMAN IBM SYST J @ VOL 21 & NO 4 @ 1982

10. L. Kleinrock, Queueing Systems, Vol. 1, John Wiley & Sons, Inc., New York
(1975), p. 102.

The authors are located at the IBM Aids Development Center,
South Road, Poughkeepsie, NY 12602.

Reprint Order No. G321-5177.

IBM SYST J ® VOL 21 ® NO 4 ¢ 1982 ACKER AND SEAMAN 489

