
Modeling is a useful method to aid a planner in designing the
interconnection of a number of systems for distributed data process-
ing. In the implementation in this paper, a computer-based model
for sites using ctcs/vs is discussed. The model permits the system
dejinition to be adjusted, taking into account such aspects as the
number of sites, their interconnections, and workloads, so that a
satisfactory conjiguration can be obtained.

Modeling distributed processing across multiple cIcs/vs
sites

by R. D. Acker and P. H. Seaman

The subject of distributed data processing is one of intense current
interest.' Many organizations are examining the idea to understand
what benefits its implementation may provide in their circumstances.
General discussions of the concept and possible benefits are found in
References 2, 3, and 4.

One implementation of this concept occurs in CICS/VS (Customer
Information Control System/Virtual S t ~ r a g e) , ~ where several sites
geographically distributed from one another can interact across
communication links. A site in this context represents a separate
processing system with its own CICS/VS region (or regions) and
associated lines and terminals.

To assist in the design of such an assemblage of systems, a computer-
based model has been developed. By use of this model, a planner can
define a number of sites and their interconnections and assign
workloads to the various sites. Upon execution of the model, resource
utilizations and system responsiveness are estimated. The planner
can then adjust the system definition in an iterative study until a
satisfactory configuration is obtained.

This paper begins by discussing the model of a single-site CICS
system. Following the initial discussion, the new features in cIcs/vs
that support multisite operation are introduced. The addition of
representations of these features into the basic model is then

0 Copyright 1982 by International Business Machines Corporation. Copying in printed
form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM
copyright notice are included on the first page. The title and abstract, but no other
portions, of this paper may be copied or distributed royalty free without further
permission by computer-based and other information-service systems. Permission to
republish any other portion of this paper must be obtained from the Editor.

IBM SYST J VOL 21 N O 4 1982 ACKER AND SEAMAN 471

Figure 2 Transaction response time

4 RESPONSE TIME

TERMINAL

(THINK +
SUBSYSTEM

KEY IN +
DISPLAY)

INPUT

WAIT TXM
SETUP EMS GET F1 PROCESS PUT F2 EMS WRITE

RESPONSE TIME = HOST + LINE + TERMINAL

OUTPUT
LINE

terminal until the final response is received back at the terminal, and
may be diagrammed as shown in Figure 2.

Note that the part marked “Host” corresponds to the elapsed time of
a series of macros such as that specified for the transaction above.
The additional intervals surrounding this host time represent time
spent in actual line transmissions and terminal delays.

Two additional points should be emphasized here. First, although
transactions with only one input and one output are shown, the model
supports conversational transactions with multiple terminal interac-
tions. Second, the model does not depend on the sequence in which
the user specifies the macros. Usually the macros are specified in
execution order for clarity but any order of the same macros produces
the same answers. This is a result of the analytic nature of ANCICSVS,
which represents the bulk activity but glosses over much of the
detailed structure. This insensitivity to macro ordering presents a
problem for modeling distributed systems which, as we shall see, is
overcome by the development of transaction subroutines.

To understand how transaction response time is estimated, the model
calculation scheme is next examined. The calculation scheme consists
of the following steps:

Decomposition macro scan
DASD model
CPU model
Recomposition macro scan for host response
Line model
Output reports

During the decomposition scan, all the macros are examined in
conjunction with the specified traffic rates of their associated trans-

actions, and tables of elementary actions are built up pertaining to
the three submodels for DASD, CPU, and Lines. The DASD and CPU
submodels are then exercised, producing raw waiting times and unit
utilizations.

A second scan of the macros then reconstitutes all the individual
pieces, including internally stored path lengths, calculated service
times, and queuing delays, into a host response time for each
transaction. The line model is computed last because there are some
minor dependencies on the host response.

The output section gathers all the results and reports the estimated
transaction response times and the underlying unit performances. An
analysis is made of these unit operations, and any that exceed
specified limits, such as DASD utilization over 70 percent, are
highlighted for further investigation.

Description of CICS/VS support for multiple sites

Using this model of a single CICS site as a starting point, we expanded
it to include multiple interacting CICS sites. To explain how this
expansion was done, it is first necessary to understand the c I C S / v S
facility of Intersystem Communication (I s c) . The following is a
simplified view of ISC operation, touching only briefly on many of the
necessary details that permit it to work successfully, such as file
integrity and recovery features. Other features are ignored complete-
ly, such as the “NOCHECK” option. For a more complete description,
see Reference 5 .

The ISC facility implements communication between two or more
independent CICS sites and may be diagrammed as shown in Figure 3 .
This indicates that the sites have a peer relationship with one
a n ~ t h e r . ~ Although one site may be designated as the central control
site, there is nothing inherent in the structure of CICS to require this.
Further, there is normally a single level of communication. For
example, Site 2 in Figure 3 can talk to Site 4 by passing through Site
1, but if there is to be regular traffic between the two, a dedicated link
between them is preferred. (This preference is reflected in the model
by not representing “pass-through.”)

The communication between CICS sites is accomplished by means of
two new entities-the session and the mirror transaction.

A session is a concept defined in Systems Network Architecture’ and
implemented in ACF/VTAM (Advanced Communications Function
for the Virtual Telecommunications Access Method).’ It is the
logical means by which VTAM in one “node” (or CPU) establishes
contact with VTAM in another node within its environment and
maintains control of the information flowing between those two

IBM SYST J VOL 21 NO 4 1982 ACKER AND SEAMAN

nodes. There may be several sessions between any two VTAM nodes,
but a single user employs only one of them at a time. In our CICS
modeling world, a VTAM node is synonymous with a CICS site, and the
session user is a CIcS transaction.

Underlying the session is the physical communication link by which
the required messages are actually transmitted back and forth. This
link is precisely the same as the normal communication link between
terminals and any site processor, except the receiver is now another
CPU rather than a terminal.

A mirror transaction is the vehicle by which CICS interprets and acts
upon the remote requests that are presented to it by VTAM. After a
session is established between two CICS systems, the invoking transac-
tion in the “source” site requests operations to be carried out on its
behalf in the “target” site. The target ClCS system may then create a
special transaction, called a “mirror,” to carry out the request locally
and report the results. Although these mirrors produce activity
against local resources like any other transaction, they receive their
driving impetus from outside the local system. Therefore, the
performance of an interacting network of systems must be considered
as a whole and cannot be determined by examining each local system
by itself. I

Types of ISC operation

In the use of the Isc facility, there are three basic ways in which a
CICS transaction in one site can interact with a remote CICS site: user I

function shipping, asynchronous transaction processing, and distrib-
uted transaction processing. We shall define these three operations
here and later examine their impact on system performance using the
extended modeling capabilities.

user User function shipping involves a single data access to a remote file as
function shown in Figure 4. If a transaction in Site 1 requires data from a file
shipping resident at Site 2, it can be obtained via function shipping. The main

requirement is that the existence of the file at Site 2 must be defined
in the system file tables at Site 1.

Actual CICS code is not affected by a file’s location. Thus, if a file that
was at Site 1 is moved to Site 2 and this fact is duly recorded in the
system file tables, actual transaction code remains unchanged. When
a file request is executed in Site 1 requiring access to this file, CICS
will recognize the relocation, and an ISC operation will be initiated
instead of a simple file access. This operation will proceed as follows:
First a session is obtained from VTAM, establishing connection to the
proper CICS system, or target site. The file request is transmitted to
the target and incorporated into a mirror transaction assigned to
handle the request. The mirror is then dispatched as a normal

416 ACKER A N D SEAMAN IBM SYST J VOL 21 N O 4 1982

Figure 5 Asynchronous transaction processing

SITE 1:

"START TXN C

SITE 2

"START TXN E

is set up to handle the operation. However, once the specified
transaction is started in the target system, both the mirror and the
session are dropped, and the original transaction proceeds indepen-
dently of the remote transaction.

Very often the remote transaction, having completed its operation,
will start a third transaction at the original site. This procedure is
indicated in Figure 5 by TXN B starting TXN C via a mirror and
passing it final results. The third transaction, in turn, will transmit
the results to the terminal originating the request, thus completing
the request turnaround. Such an operation is very efficient in using
session and mirror resources. However, system integrity is loosely
controlled, which may not be tolerable in many cases.

distributed Distributed transaction processing (DTP) is the third method of
transaction interaction between CICS systems and is designed to avoid the
processing inefficiencies of function shipping, when employed for multiple

operations, as well as to alleviate the integrity problems in asynchro-
nous processing. It is illustrated in Figure 6 . It should be noted that no
mirrors are associated with DTP.

As in the case of asynchronous starts, a transaction in Site 1 calls a
second transaction in Site 2 to carry out some work. With DTP,

478 ACKER A N D S E A M A N IBM SYST J VOL 21 NO 4 1982

Table 1 Ways to organize input

Input Method A Input Method B

Define input categories,
CPUs, all sites
DASD, all sites
Files, all sites
Transactions, all sites
Lines, all sites
Traffic, all sites

If multiple sites,
Sessions

For each site successively,
CPU, for this site
DASD, for this site
Files, for this site
Transactions, for this site
Lines, for this site
Traffic, for this site

Sessions
If multiple sites,

Concurrent solution for all sites
Session/link model
CALL and START macros

multiple Multiple sites are the first consideration. When the input categories
sites were examined, there appeared to be two ways to organize the

input-(A) add a site identifier explicitly to each category definition
and define all entities in each category together, or (B) define
complete sites, one at a time, with the site identifier specified once
at the beginning of each site grouping and thereafter implied for
all categories within the site. The two methods are compared in
Table 1.

In either case the same array structure results internally. The ISc
arrays will differ from the basic CICS model arrays only in the extra
field per record specifying the site to which it belongs. Internal
calculations and output reporting require this extra field for purposes
of description and grouping. Input Method B was implemented on the
premise that it would be the more natural order for the user. Also,
Method B has less impact on users with one site only, who constitute a
majority.

After the multiple site definitions are complete, a new data category,

available between the sites. This category encompasses the character-
istics of the sessions and their associated communication links.

mirror Mirror transactions are the next feature to be considered. Since these
transactions are created internally by CICS, it seems reasonable to have them

automatically generated by’ the model. It does this whenever a
reference is encountered in the transaction macros of one site
referring to a file or transaction in another site. The proper path
lengths associated with the mirror operation, along with the
requested operation itself, are inserted in the mirror, and the rate of
the invoking macro is applied. Following this, the mirror appears to
the model like any other transaction.

480 ACKER A N D SEAMAN IBM SYST J VOL 21 NO 4 1982

In the case of asynchronous starts, however, the mirror transaction
plays a distinctly transient role, and for DTP one is not set up at all.
For purposes of the model in these cases, the overheads associated
with the ISC operation were merged together with the called transac-
tion, so that a single remote operation, including mirror support if
any, is reported. The rate for each called transaction is the sum of all
of the rates of the transactions which call it, wherever the calling
transactions reside in the system.

After the mirror operations are analyzed and the rates of occurrence
are determined in their respective sites in the network, the sites are
effectively decoupled as far as calculation is concerned. The transac-
tion response times for each site may then be solved independently of
the other sites. The calculation scheme discussed earlier for the
single-site case has been extended to cover the multiple-site case as
follows:

Global decomposition macro scan
DASD models
CPU models
Global recomposition macro scan for host response without session

Session/link model
Line models
Output reports per site

The decomposition macro scan was made global, examining the
macros for all transactions at all sites. This produces input for the
multiple DASD and CPU queuing models which are solved indepen-
dently, one at a time. A global recomposition scan then sums together
the pieces of each transaction to obtain a host response time,
excluding at this point any session times. A session/link model,
described below, is then invoked to compute the delay times across
the defined sessions in the system. Finally, the individual Line models
are calcuiated, and the output reports are generated for each site,
combining and summarizing the various calculated components.

The session/link model is an essential element of the multiple-site
calculation scheme. Like the three existing queuing models-for
CPU, DASD, and Lines, the session/link model derives its basic input
from the global decomposition scan of the input macros which now, in
addition to summarizing input to the other queuing models, accumu-
lates all the session activity between sites.

The link portion of the model employs the same algorithm as the
basic line model, using appropriate data lengths and protocol over-
heads to represent the ISC transmissions.

The session portion of the model is represented by a simple multi-
server queue, indicated in Figure 7. The actual system is much more

times

IBM SYST J VOL 21 NO 4 1982 A C K E R A N D S E A M A N

Figure 7 Multiqueue model of
a session

“t
W

482

complex than this, but with all the many variables possibly affecting
the result and very little measurement data available, a more detailed
representation did not appear possible at this time. The utilization
limits are accurately shown in any case.

The multiple sessions between any two sites are represented by M
parallel servers with a single waiting line. With S standing for
average session hold (or service) time, and R for the rate of session
access, the average waiting time W for a session is given by the
standard formula for the multiserver queue:”

W = f (R , S , M)

If this expression is applied to each pair of sites between which
sessions are defined, the session delay times, W + S, are obtained for
all ISC activity. These session delays are then accumulated by
transaction and added to the previously calculated session-free
transaction responses, as noted above.

The central calculation in the session model is session hold time, that
is, the average duration that each session is held to service an ISC
request. It consists of three pieces, expressed by

S = link transmissions + mirror response + recovery support

The first piece comprises the transmission times of the request back
and forth over the link, which are computed in the link portion of the
model mentioned above. The second piece represents the time
required by the transaction initiated by the session, whether a mirror
or DTP type. This response time is available from the session-free
transaction calculations. The third piece accounts for the additional
time the session is held to maintain system integrity.

For example, when updating a “protected” file, the session is held
until a “sync point” is reached, usually involving several operations in
the calling transaction beyond the original ISc request. (See discus-
sion below on CALL macro for a technique to calculate this time.)
Often, the total span for the calling transaction is used to obtain a
rough but useful estimate of this time.

The extended session time may also include several ISC calls to the
same remote site. This is possible in the model because the calls, by
invoking the “protect” option, all use the same session as if it were one
long service with no intermediate session waits to be calculated. In
fact, this mode of operation is often exploited in reality. If there are
several ISC calls in the transaction, the session is acquired once only at
the beginning and held for the duration of the transaction, thus
eliminating separate session acquisitions and their associated waits.

Using the resulting session hold times to calculate the session delays,
we may complete the response time calculations for transactions
including session activity. Fortunately, at this time, there is no

ACKER AND SEAMAN IBM SYST J VOL 21 N O 4 1982

user
function
shipping

484

This inclusive relationship is incorporated in the model. It should not
be confused with the lack of recursion in the session model. Although
CALL recursion is employed in the session model, session recursion
stops at a single level. The reason is that higher-level embedded
sessions involve a complex queuing calculation at each step, whereas
call recursion is a simple linear accumulation of partial sums that are
already calculated.

When two transactions are in the same site, the CALL macro may be
used in a “subroutine” mode to isolate portions of one transaction and
report the duration of the activity independently in a second subtrans-
action. A typical application of this mode is to estimate session hold
times elongated by recovery operations-from request to “sync
point” release. This latter portion of the operation may be defined
separately as a subtransaction and called from the main transaction.
When used in this mode, a special transaction indicator is set to
inhibit the accumulation of otherwise normal CICS dispatching
overheads.

Use of the ISC features in the model

Given these model features, we can examine the three types of I S c
operation and see what the performance implications are.

User function shipping may be represented by Transaction A in Site
1, which occasionally (once out of 100 executions) references a file
located in Site 2:

Site 1: T X N A -
-

G FF2, .01
-

Site 2: FF2 file definition

The model confirms experience with actual systems that this type of
operation is quite costly both in terms of resource usage and
individual responsiveness. Although the path length to support the
access now occurs at the remote site, the ISC path length, including
VTAM operation, added to control the transfer of data, is roughly
twice this amount, incurred at both sites. And whereas a local access
may respond in 0.02 second, a remote access using ISC may take
upwards of 2 seconds. Function shipping should be limited to
low-volume, exceptional cases. Frequent reference to data dispersed
in scattered locations is impractical using this approach.

The major advantage to this mode of operation is that no additional
application code is required in the target system, such as is required

ACKER AND SEAMAN IBM SYST J VOL 21 NO 4 1982

the most efficient manner. An application might occur in commercial
banking where a branch refreshes active records periodically from a
central master file.

CENTRAL (Site 1): Master files
T X N B : - (extract data from master

- f i les and t ransmit to
branch)

-

BRANCH (Site 2):
T X N A : -

CALL TXN B, 500
-

Traffic rate: TXN A-200/hr

Here the response time for TXN A at Site 2 includes the time required
to execute TXN B, which in turn depends on how responsive the
processing is in Site 1, considering all the other activity taking place
there. As with function shipping, this type of operation is expensive
unless prorated over a number of file references. For example, if three
or more remote accesses are required, it is probably more efficient to
use DTP rather than user function shipping. However, the critical
resource in this form of intercommunication is likely to be the session
itself, which is tied up during the whole operation of the remote
transaction.

With the model, alternate possibilities can be studied to compare
performance. This will permit planners to choose among the options
with greater knowledge of the consequences and confidence that the
final design will perform as specified.

Repetitive data handling in the model

Computer systems that are distributed over multiple sites tend to be
repetitive by their very nature. For example, the processors that
support a group of branch offices tend to be copies of one another,
with the same transaction types being processed against similar files,
differing mainly in specific record content or in frequency of use.
Because of this similarity between sites, much of the input data
required to represent such a system is repetitive.

Another related consequence of modeling a distributed system is the
need to move entities about, attempting to balance workloads with
resources available. Because of the site-oriented input structure
(Input Method B discussed above), this move operation is not as
simple as it might have been for Method A.

To ease the input and editing burden in these cases, the concept of
“generic input” is required. This means that the user enters the basic

486 ACKER AND SEAMAN IBM SYST J VOL 21 NO 4 1982

~~

site. Therefore, the replication of any entity requires that a new name
be specified or that the name be designated as a local name. This type
of name implies that there is a root part of the name subscripted by
the site identifier. Replication of an entity with a local name implies
automatic change of the site identifier.

Macros referencing data files or transactions, whether or not
included in a transaction being copied from one site to another,
require a further consideration. The names of the entity referenced in
the macro can be global, local, or distributed. The third type of name
implies that the macro employing it will be repeated within its
transaction so that the referenced name can take on all specific local
names for which sites have been defined. This type of replication is
carried out automatically after the site-to-site copying of entities has
been accomplished.

The generic technique minimizes original data entry and expands it
across sites to meet a total input data requirement. This technique
includes the flexibility of editing the data after expansion, so that
small amounts of nonrepetitive information may be incorporated.

Conclusion

The systems planner can now represent a total CICS solution,
incorporating multiple sites, using the new features of ANCICSVS that
were described. With the ease of changing resource allocations and
the rapid execution of the model, many variations can be studied in a
short time. The results of these runs can then be weighed with other
business considerations to provide the basis for informed executive
decisions.

CITED REFERENCES
1 . Proceedings: The 2nd International Conference of Distributed Computing Sys-

tems, sponsored by INRIA (France), IEEE (New York), et al., Paris, France
(April 8-10, 1981).

2. A. L. Scherr, “Distributed data processing,” IBM Systems Journal 17, NO. 4,
324-343 (1978).

3. H. Lorin, “Distributed processing: An assessment,” IBMSystems Journal 18, NO.
4,582-603 (1979).

4. J. R. Buchanan and R. G. Linowes, “Understanding distributed data processing,”
Harvard Business Review, 143- 153 (July-August 1980).

5. Customer Information Control SystemlVirtual Storage: General Information
.Manual, GC33-0155, IBM Corporation; available through IBM branch offices.

6. P. H. Seaman, “Modeling considerations for predicting performance of CICS/VS
systems,” IBMSystems Journal 19, No. I , 68-80 (1980).

7. R. J. Cypser, Communications Architecture for Distributed Systems, Addison-
Wesley Publishing Co., Reading, MA (1978).

8. J. H. McFadyen, “Systems Network Architecture: An overview,” IBM Systems
Journal 15, No. 1.4-23 (1976).

9. Advanced Communications Function for VTAM: General Information Manual.
GC38-0254, IBM Corporation; available through IBM branch offices.

ACKER A N D SEAMAN IBM SYST J VOL 21 NO 4 1982 488

