In recent years there has been a growing need to develop techniques
and tools for computer installation capacity planning. This paper
presents both a tool, in the form of an analytic queuing model, and a
methodology for performance analysis and capacity planning.
Although general in its approach, the model was developed specifi-
cally for the CICS/VS environment.

Analytic queuing model for CICS capacity planning
by M. Deitch

Two of the more common trends in data processing shops today are
the increase in on-line applications and the corresponding increase in
data processing budgets. As businesses place more and more of their
critical functions under control of on-line computer systems, capacity
planning becomes an increasingly important part of business plan-
ning. In the past, many businesses were content to look at their data
processing capacity needs once a year or less frequently. Capacity
was often measured in terms of using the CPU and the DASD to their
effective limits (i.e., 90 percent CPU utilization and 40 percent DASD
utilization). With heavy reliance on terminal-based systems today,
capacity limits must be redefined. Systems are not out of capacity
when their resources reach some peak utilization. Rather, capacity is
exceeded when the system is no longer capable of providing a
minimum level of acceptable performance. If this definition of
capacity is accepted we can then approach the job of capacity
planning from a new perspective. One result of this view is the need
for a tool that can predict on-line system performance as a function of
a business’s increasing workload. This paper is a discussion of such a
tool and a methodology showing how it can be used to perform
analysis and capacity planning.

© Copyright 1982 by International Business Machines Corporation. Copying in printed
form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM
copyright notice are included on the first page. The title and abstract, but no other
portions, of this paper may be copied or distributed royalty free without further
permission by computer-based and other information-service systems. Permission to
republish any other portion of this paper must be obtained from the Editor.

DEITCH IBM SYST J ® VOL 21 @ NO 4 » 1982

A queuing model for CICS and its assumptions

The model presented here is a mathematical analogy of essential
parts of a computing system. Known as an analytic model, it has been
found to be a useful method, since it can be programmed and used
over and over to study a varicty of data processing environments in a
short period of time.

The effectiveness of any such model depends on the assumptions that
are made to bridge the gap between the model and the system itself.
To the extent that the assumptions are realistic, the model tends to
mimic the real system and serve as a useful tool for predicting system
performance. With this background in mind, we examine the Cus-
tomer Information Control System/VS (CICS/VS) subsystem and
derive an analytic queuing model to predict system performance.

CICS is a collection of transactions contending for CPU service among
themselves and with other tasks that execute at a higher dispatching
priority. If we collect all the high-priority tasks (including operating
system overhead) together into one class of transactions and CICS into
another class of transactions, we have created a two-level priority
queuing system.

If a higher-priority transaction enters the system while a CICS
transaction is being serviced by the CPU, we assume that the
higher-priority task preempts the control that CICS has. We further
assume that the CICS transaction resumes executing at the point of
interruption after the completion of the higher-priority task. Such a
queuing system is said to be governed by a preemptive/resume
queuing discipline.

It is necessary to make some assumptions about the arrival pattern of
these transactions and about the distribution of CPU service requests.
We can then apply queuing theory to our model and derive equations
with which to compute average CICS response time. Assume first that
both the transaction interarrival times and their CPU service times
can be approximated by a Poisson (i.e., exponential) distribution.
These assumptions may be stated in shorthand queuing terminology
as an M/M/1 queuing system. The first M (after Markov) signifies
an exponential (or Poisson) distribution of interarrival times; the
second M (also after Markov) represents an exponential distribution
of transaction service requests; the 1 means that there is only one
server, the CPU, in our model. Using these assumptions and Equation
1 from Reference 1, we have the means for calculating the average
CICS response time:

thUgt
(1~ Uy - U,)

(1)

+

where

IBM SYST J © VOL 21 @ NO 4 e 1982 DEITCH

= average CICS response time
average CPU service time required by a CICS transaction
= average CPU service time required by a high-priority transac-
tion
U, = CPU utilization by high-priority transaction
U,. = CPU utilization by combined CICS and high-priority transac-
tions

T, represents the time CICS transactions wait to be served by the CPU
(queuing time) plus the time during which the transactions are being
served by the CPU (service time). Missing from Equation 1 are two
important components of response time: the effect of page faults
within CICS and the time to perform nonpaging disk 1/0. The
following analysis shows how these effects can be factored into
Equation 1. Each time the CICS transaction experiences a page fault,
the entire CICS task must wait until the page is retrieved from the
page data set. This is typically accomplished by a single 2K or 4K
disk 1/0. The time required to resolve a page fault is termed Page
Delay Time, PDT. If we treat the disk that contains the page data set
as the server and a page fault as a request for service, we can apply
queuing theory again to solve for PDT. This time we treat the
distribution of service time as being a general (G) distribution rather
than a Poisson distribution, and denote the system M/G/1. The use
of a general service time distribution rather than a Poisson distribu-
tion is based on empirical observations of disk service time character-
istics.

From Reference 2 we obtain the following equation:

page fault rate within CICS

second moment of service times for page 1/0s (also called
expected value of 7

average utilization of disk pack containing page data set
average 1/0 service time for the page data set disk pack

If the distribution of service times were truly random (i.e., a
Poisson distribution), the second moment of service times for page
1/0s would be E(ti) = 2t'2),

Experience has shown, however, that disk 1/0 service times have a
smaller variance than a Poisson distribution. This means that E (¢;)
must fall between tf) (zero variance) and 2tf,, or explicitly, 1} = E(t,)
= Zti. If we split the difference, we can set E(ts) = 1.5t§. This leads to
the following expression for Page Delay Time:

DEITCH IBM SYST J @ VOL 21 & NO 4 « 1982

0.75A4 1
PDT = 1__p_p

p

4

But since 4 ¢, = U, (arrival rate times service time equals utiliza-
tion),

(2)

The assumption concerning the arrival pattern of a CICS page fault
must be questioned here. In truth a page fault cannot occur within
CICS until a previous CICS page fault has been resolved. This means
that the average gap between CICS page faults must be greater than
the average service time for a page fault (PDT).

This characteristic of CICS page faults will have the effect of reducing
the time that page faults are queued for service. Queue time is
denoted by the first term of Equation 2. We can approximate this
effect by making the following change. If we assume that U, is
defined as the utilization of the paging pack, excluding the utilization
caused by CICS paging, we will reduce the calculation for the queue
time component of PDT. Note also how in systems where page packs
are dedicated to CICS (i.e., U, = 0), Equation 2 simplifies to
PDT = 1. In other words, all queuing disappears when the pack is
used only for CICS paging.

We can now calculate the fraction of time that the CICS system must
wait because of page faults U, as follows:

U, = A4, x PDT (3)

If we lump utilization of the CPU by high-priority tasks U, with the
fraction of time the CPU is unavailable to CICS due to page faults U,
we have the total fraction of time in which the CPU is unavailable to
CICS, which can be used as the value of U, in Equation 1 as follows:

Uy=U, + U = (U, x U,) (4)

Notice that we reduce this sum by the product of U, and U to
eliminate the fraction of time that page faults and high-priority-
task-busy periods are overlapped. This modification of the U,, term in
Equation | must also be reflected in a new calculation of the CPU
utilization by the combined CICS and high-priority transactions U,.

This is shown later in this paper in Equation 7.

One remaining parameter in Equation 1 is high-priority service time
t,. Although we do not know this value, we can use the value of page
fault delay time as an approximation, that is, t, = PDT. This is used
because page fault delays comprise a large part of U,

Finally, we must account for the time each CICS transaction waits to
perform a disk 1/0. Using the same assumptions made in calculating
PDT, we arrive at the following equation for average disk 1/0 delay
time:

IBM SYST J & VOL 21 & NO 4 & 1982 DEITCH

0.75U,,

DDT -
-y,

(5)

where U, is the average disk pack utilization, and ¢, is the average
disk 1/0 service time. The average time a CICS transaction waits for
disk 1/0 must be

10 = IOR x DDT (6)

where IOR is the average number of disk 1/0s per CICS transaction.

The calculation of the CPU utilization by CICS and higher-priority
work U, is given as follows:

Ug = (t,x A) + U, (7

where A_is the average CICS transaction rate.

We now combine equations and express the model in terms of the
required parameters.

From Equation 2:

075U,
-0,

PDT -

From Equation 5:

0.7
ppr - 21Uy

1 - U,
From Equations 3 and 4:
Uy =U, + (4, x PDT) — (U, x A, x PDT)
From Equation 7:
U=, xA4)+ U,
From Equation 1 and using the ¢t, = PDT:

t PDT x U,

<

T, - + + IOR x DDT
R TR 7 R *

These equations reveal that the average CICS response time T, is a
function of the following parameters only:

t, = average CPU service time per CICS transaction
U, = average page data set disk pack utilization (excluding utiliza-
tion caused by CICS paging)
= average page data set disk pack service time
= average disk pack utilization
t, = average disk pack service time
U, = average CPU utilization by tasks running at a higher priority
than CICS
A, = average page fault rate within CICS

458 DEITCH IBM SYST J & VOL 21 ¢ NO 4 & 1982

A, = average CICS transaction rate
IOR = average number of disk I1/0s per CICS transaction

Data collection

These parameters can be evaluated by examining reports produced
by several software data gathering tools. CICS performance and
utilization data are reported by two products, the CICS Performance
Analyzer-II (PA-11) and by the CICS Performance Analysis Reporting
System (CICSPARS).” The information reported by PA-II and CICS-
PARS includes:

CPU time consumed by CICS

Total number of transactions completed
Average response time

Total number of page-in operations

From these reports and further data reduction we can obtain such
model input parameters as the following:

t, = CPU time consumed divided by total number of transactions
A, = total number of page-in operations divided by report interval
A_ = total number of transactions divided by report interval

The remaining parameters can be obtained from the disk subsystem
reports produced by VSE/PT* (for DOS/VSE’), VS1/PT (for 0S/VS1), or
from RMF® reports (for MVS). Utilization of the CPU by high-priority
tasks U, can be derived by analyzing the workload activity reports in
RMF. That technique, however, is not discussed in this paper.

Consider the example of a particular computing center that runs
CICS/VS on an IBM System/370 and an IBM 3031 under control of the
MVS operating system. Both paging and CICS data bases reside on
IBM 3350 disk drives spread across two channel and control unit
paths. Two sets of parameters have been evaluated and are desig-
nated here as Cases 1 and 2. Case 1 represents the environment when
the 3031 contained 4 megabytes of real storage. Case 2 shows the
model parameters for the same installation after 2 megabytes of
storage had been added, i.e., to give a total of 6 megabytes of real
storage.

Case 1 (4 megabytes of real storage):

t, = 0.23 second
U, = 0.24 (i.e,, 24 percent busy)
t, = 0.039 second
U, = 0.14 (i.e., 14 percent busy)
ty = 0.029 second
U, = 0.12 (i.e., 12 percent busy)
A, = 6 page faults per second

IBM SYST J & VOL 21 @ NO 4 & 1982 DEITCH

example

459

A_ = 2.2 transactions per second
IOR = 5 1/0s per transaction

Using the model to calculate the average CICS response time, T, was
predicted to be 2.33 seconds.

Case 2 (6 megabytes of real storage):

t. = 0.23 second
U, = 0.15 (i.e., 15 percent busy)
t, = 0.035 second
U, = 0.14 (i.e., 14 percent busy)
t, = 0.027 second
U, = 0.14 (i.e., 14 percent busy)
A, = 2 page faults per second
A, = 2.2 transactions per second
IOR = 5 1/0s per transaction

From the model, the predicted value of the average CICS response
time 7, was found to be 0.99 second.

Thus the model predicted a 2.4-fold reduction in response time, i.¢.,
from 2.33 to 0.99 seconds, with the addition of the 2 megabytes of
real storage. The reason clearly lay in the reduction in page fault rate
from 6 to 2. Except for the change in U, and A, all other parameters
remained the same or changed only slightly. There was good corre-
spondence between the model’s prediction and the performance as
measured by PA-11. For example, the response time measured by PA-II
for a peak hour each day, averaged for the week preceding the
memory upgrade, was 2.9 seconds. The average response time for the
week after memory was added was reported as 0.84 second.

System tuning and capacity planning

Before discussing capacity planning methodology, a consideration of
some of the differences between system tuning and capacity planning
might be in order. The individual who is assigned to tune a system
generally has a different perspective than one who is doing capacity
planning. The tuner is typically seeking to improve performance by
means that generally do not require hardware upgrades. Instead, the
tuner is concerned with balancing such system resources as storage,
CPU, and disk subsystem, with the expectation of removing bottle-
necks and optimizing performance. A typical system tuning effort
might involve the reallocation of disk files to remove contention on
one disk pack that had been causing excessive disk service times.
After an initial system tuning, further tuning typically results in
diminishing returns. Whereas an initial tuning effort might reduce
the CICS response time by a second or more, continued tuning might
produce reductions of only milliseconds.

DEITCH IBM SYST J ¢gVOL 21 ¢,NO 4 ,1982

Tuners often view the system as a given, a permanent entity upon
which they are free to make only minor adjustments. Capacity
planners are required to project current computing systems and their
operations into the future, and to relate future computing require-
ments to the expected growth of the business. Thus, planners consider
future workloads in terms of such things as adding hardware or
shifting work to off-hours. With such a view, the planner may ignore
any ongoing tuning activity and assume that the current system is the
base from which to make forecasts. Of course, the same person may
be both tuner and planner in a particular computing center. But by
separating these functions into jobs with different perspectives, we
can form a methodology to aid both tuner and planner.

Tracking systems

Both tuner and planner require a good understanding of their current
computing environment. For example, how busy are the CPU and the
disk subsystem, and who are the users? Tuner and planner also need
to know how the system is performing, its response time stability, and
whether minimum service levels are being met. The planner, how-
ever, must also be concerned with such trends as the rate of growth of
the on-line transaction load.

These requirements point up the need for a tracking system that can
monitor the key system parameters. The performance model helps in
determining which parameters should be tracked. Since the model
identifies the parameters that determine performance, we can begin
by tracking these key parameters. As noted earlier, these parameters
are reported within CICSPARS or PA-II together with either VSE/PT or

RMF. Ideally, the reported parameters should be tracked for the
identified peak hour each day, a function that can be automated to
great advantage.

One of the advantages of a tracking system is that it allows an
installation to identify easily its average operating environment. The
average values of the parameters are referred to as their nominal
values. The next section describes how the model can be used
together with nominal values to identify performance bottlenecks.

Influence coefficients

The tuner’s job is to identify the bottlenecks that are degrading
system performance and eliminate them if possible. In a CICS
environment, the analytic queuing model discussed in this paper can

be used to derive a starting point.

Here we introduce influence coefficients, which relate a relative
change in a dependent variable to a small fixed change in an

IBM SYST J @ VOL 21 « NO 4 & 1982 DEITCH

Table 1 {influence coefficients

Parameters

Case 1: Four
megabytes
real storage

Nominal value 0.23 0.24 0.039 0.14 0.029 0.12 6.0 2.2 5.0

Influence 4,983 0.560 2.252 0.009 0.070 0.708 2.145 4.120 0.070
coefficient
(x100)

Case 2: Six
megabytes
real storage

Nominal value 0.23 0.15 0.035 0.14 0.027 0.14 2.0 2.2 5.0

Influence 2.352 0.035 0.255 0.019 0.153 0413 0.218 1.527 0.153
coefficient
(x100)

independent variable. Let us define /C(T,/A,) as the influence
coefficient for page fault rate 4 on CICS response time T, or IC(A)
for short. In mathematical terms, the influence coefficient for page
fault rate is expressed as follows:

T —T

1C(4,) = ===

<n

Here T, is the nominal value of response time, and T, is the value of
response time calculated by the model when A is increased by one
percent. All values of the model input parameters are at their nominal
value, except for A, which is set to 1.01 A,.

Thus /C(A,) represents the fraction of change in response time
caused by a one-percent increase in the value of CICS page fault rate.
Since the model gives the expression for T, as a function of several
independent parameters, we can easily calculate influence coeffi-
cients for each parameter around some nominal point. If we use the
values shown in Case 1 and Case 2 (from the previous example) as
nominal values, we can calculate the corresponding influence coeffi-
cients shown in Table 1.

Notice how influence coefficients change as the nominal values
change. Case 1 shows that CPU time per CICS transaction £, which is
also a measure of average path length, has the largest effect on
response time. This indicates that a starting point for tuning is
reducing the CICS path lengths. Other candidates, in order of
importance, are transaction rate A, page service time ¢, and page
fault rate 4.

DEITCH IBM SYST J » VOL 21 ® NO 4 o 1982

Another factor to be considered is the possibility of reducing these
parameters and by how much. It may be very difficult to reduce path
lengths by a significant amount, whereas reducing page fault delays
can be accomplished simply and by relatively large amounts. Page
fault delays might be reduced by adding page data set disk packs, by
moving a disk pack to a less utilized channel, or by reducing the
multiprogramming level of the system. In MVS, there are techniques
for providing a real storage fence around CICS to reduce page
faulting.

Case 2 shows that as storage is added, the influence coefficient for
page faulting A4 is reduced from 2.145 to 0.218. This indicates the
sensitivity of influence coeflicients to nominal values. Another obser-
vation on Case 2 is the lack of large influence coefficient values, a
mark of a relatively stable system. If performance is thought of as
floating on an exponential curve, performance in Case 2 appears to be
sitting on the flat part of the curve.

As the characteristics of an installation change, the nominal values
change, and the influence coefficient values change. An advantage of
the model is that we can constantly recalculate the values of the
influence coefficients to identify changes in performance sensitivity.
With this information, the tuner can focus on those activities that
promise the greatest return on investment in the system.

We expand our analysis through the use of Table 2. Influence
coefficients are a measure of how sensitive a dependent parameter is
to each independent parameter. In mathematical terms, the influence
coeflicient for parameter X, on dependent parameter Y is defined as

follows: IC(X,) is equal to the percentage change in U when X, is
increased by one percent.

If Y = f(X,, X,, - + -, X,), then for a given set of nominal values for
our independent parameters (X, through X,;) we can calculate a
nominal value of Y. The calculation of IC(X,) is accomplished by
raising the value of X, to 1.01.X, and calculating a new value of ¥,
called Y’, and so on for all the independent parameters Y’
=f(1.01X,X,, - - -, X,). Then IC(X,|) = (Y" — Y)/Y x 100, that
is, the percentage change in Y caused by a one-percent change in X|.
This calculation can be repeated to fill in the /C values for the
remaining parameters (X, through X;).

Note that for each calculation all values of X are kept at their
nominal value except the parameter whose IC is being calculated.
Table 2 shows the influence coefficients calculated for four different
sets of model nominal parameters. The top row for each set represents
the nominal values and the bottom row the influence coefficients for
each parameter. Average response times as predicted by the model
are given in the last column.

IBM SYST J ¢ VOL 21 NO 4 » 1982 DEITCH

Tabie 2

Influence coefficients calculated for four sets of nominal values

Environment

Four megabytes
real memory

Nominal
value and
influence
coefficient

Nominal
value

Influence
coefficient
value

Six megabytes
real memory
{environment
after the
addition of

2 megabytes
of real memory

Nominal
value

Influence
coefficient
value

IORATE
(Number of
physical
disk 1/Os
per transaction)

PGSRV
(Service
time—
seconds—
per paging 1/0)

PGBUSY
(Average
fraction of
time a
paging disk
pack is busy)

DSKSRV
{Average
service
time—seconds—
for CICS
disks—
nonpaging)

0.0290

0.0698

December 1982
(best case)

December 1982
(worst case)

Nominal
value

Influence
coefficien
value

Nominal
value

Influence
coeflicient
value

example
installation

Capacity planning methodology

We now consider ways in which the model can be used for capacity
planning. As defined earlier, capacity is exceeded when the system
cannot deliver a specified minimum level of performance. In a CICS
environment this minimum is usually specified as a maximum
average response time. Thus we must first establish a maximum
acceptable response time.

The technique employed by one installation is the use of the tracking
system discussed earlier in this paper. On days when user feedback
indicated unacceptable performance, the planner would place a red
“x” next to the day’s entry. After tracking performance this way for
several weeks, the planner was then able to quantify acceptable and

unacceptable performance in terms of reported average response

DEITCH IBM SYST J VOL 21 » NO 4 » 1982

DSK BUSY SYS ov CPUR PF TRATE RESP
{Average {Average fraction (Average (Page-fault (Transaction rate {Average
Sfraction of of time the CPU CPU time— rate—average = —average number response time
time a CICS is busy running seconds—required number of page of transactions —seconds—
disk is busy tasks at higher by a CICS Sfaults per per second predicted by
—nonpaging) priority than transaction) second experienced the model)
CICS) experienced by CICS)
by CICS)

0.1200 6.0000

0.7078 2.1450

0.2200 3.3000

30.2474 29.0460

time. The tracking of average CICS response time over a peak hour
each day led to a performance value that could be expressed in the
same units as that calculated by the model.

The planner then projected the installation’s workload (expressed as
transaction rate) into the next twelve months. Projections were based
on the introduction of new CICS applications as well as a factor for
estimated growth applied to existing applications. The growth rate
was attributed to additional terminals and a growing familiarity with
existing applications. Once again, the planner used the tracking
system to highlight trends in transaction rate growth and used this
information to make the projections.

Finally, the model was used to estimate average response times for
cach of the next twelve months. All model inputs were kept constant

IBM SYST J) & VOL 21 & NO 4 & 1982 DEITCH

analysis
of example

Table 3 CICS capacity planning model projections for example installation

Month A, T, CPU
1982 CICS CICS percentage
transactions response utilization
per second time by CICS
(seconds) B
Best Worst
Best Worst case case
case case

January 2.22 0.76 1.02
February 2.36 0.81 1.13
March 2.39 0.82 1.16
April 2.53 0.89 1.31
May 2.64 0.95 1.47
June 2.67 0.97 1.52
July 3.01 1.26 2.59
August 3.04 1.30 2.77
September 3.09 1.36 3.14
October 3.21 1.56 4.67
November 3.26 1.66 5.89
December 3.35 1.88 11.37

Example installation assumptions:

1, (CPU time per CICS transaction—seconds)
A, (page fault rate—faults per second)

at their nominal values, except for transaction rate. This appeared to
be a very optimistic outlook, since other model parameters probably
would have increased as well. In fact, this approach was treated as a
best-case scenaria. The planner later modified two key model param-
eters to reflect a worst-case scenario. These parameters were ¢, and
A, (CPU time per CICS transaction and page fault rate). The selection
of these parameters and the amount they were increased was based on
trends and variations shown by the tracking system.

The tracking system had shown that the value of 4 varied between
1.5 and 2.5 page faults per second, with rare outliers reaching 3 page
faults per second. Therefore, a worst case was defined with 4,
running at an average of 3 page faults per second. The rationale for
not changing disk subsystem parameters was the belief that ongoing
tuning activity would keep these parameters relatively constant.

Transaction rates and best- and worst-case assumptions are shown in
Table 3 for the example installation. The calculated response times
and CPU utilization by CICS are also shown.

The projected response times were plotted as a function of time
(month) for 1982, as shown in Figure 1. Perpendiculars through the
intersections of the maximum acceptable response time and the best-
and worst-case performance lines show the months at which capacity
is exceeded for the two cases. The worst-case intersection projects

DEITCH IBM SYST J @ VOL 21 « NO 4 e 1982

1 Example of monthly projections of CPU response time

i
Q
c
=
[

L))

RESPONSE TIME VS. TIME OF YEAR

WORST CASE

RESPONSE TIME (SECONDS)

BEST CASE
-

MAXIMUM ACCEPTABLE RESPONSE TIME —- -

CAPACITY CAPACITY
EXCEEDED FXCEEDED
(WORST CASE) (BEST CASE)

—1 |
J N D

MONTHLY PROJECTIONS FOR 1982

that capacity is expected to be strained by June and exceeded by
October (best case). The interval between the best and worst case
may be looked upon as the time when action must be taken. That
interval can also be considered as a buffer that smooths out the errors
introduced by errors in the assumptions. If performance is critical to
a business, corrective action should be taken before the worst-case
intersection. If performance is less critical, action may be delayed
until the best-case intersection.

Having identified the limits of capacity, it remains for us to examine
alternatives to correct the capacity problem. One possibility is to
examine the influence coefficients at the points of intersection.
Another approach is to list the options available to increase capacity,
which might be the following:

« Install a faster CPU

& Add real memory

~ Install faster disk drives

« Add more disk drives and channels

These capacity-planning-like options are more costly and thus receive
more attention from upper management than the choices the tuner
examined. Besides requiring capital outlay, these options may require
a significant waiting period for delivery of the equipment. For these
reasons, decisions must be made relatively early and must be based on
sound analysis.

By translating these options into model input parameters we can use
the model to examine each option. For example, a CPU of approxi-

IBM SYST J & VOL 2] & NO 4 & 1982 DEITCH

corrective
action

Figure 2 Comparative alternatives from a system planning point of view

NO CHANGE

FASTER DISK
SUBSYSTEM

RESPONSE TIME

ADDED
STORAGE

FASTER
CPU

MAXIMUM
ACCEPTABLE

TRANSACTION RATE

mately twice the speed of the installed machine would be expected to
reduce the CPU time per CICS transaction ¢, by one-half. We can also
project a reduction in the high-priority task utilization U,, although
less accurately. A change from IBM 3350 disk drives to IBM 3380
drives with data streaming would certainly reduce both disk pack
utilization values Up, U, and disk service times L These can be
approximated using the specifications of the new devices and by
analyzing the measured values from the tracking system. Additional
memory can be modeled by a sharp reduction in the CICS page fault
rate 4.

When these options are modeled, the results can be displayed as
shown in Figure 2. These curves are produced by setting nominal
values for each parameter, according to the option being studied, and
then varying the transaction rates over a given interval. The value of
this kind of display is that it shows clearly the relative performance
and additional capacity obtained from each option. In this example, a
faster CPU provides the best performance characteristics, but is also
the more expensive option. Using this technique, we can combine the
effects of multiple options and plot the combined effect to determine
whether a combined solution can produce the required response
time-transaction rate performance.

DEITCH IBM SYST J o VOL 21 @ NO 4 o 1982

Concluding remarks

The following are the key points of the methodology discussed in this
paper:

Install tools such as PA-1I or CICSPARS and VSE/PT, or RMF to
collect performance and utilization data.

Begin to track the key utilization and performance data, based on
model parameters.

Establish criteria for acceptable performance, in terms of peak-
hour average response time.

Project future workloads in terms of CICS transaction rates. Use
the tracking system to analyze trends and variations.

Use the model to identify times when capacity is exceeded, both
best and worst cases.

Use the model to examine alternatives to upgrade the system.

The value of the model is that it provides a tool that can be used
within an installation as an ongoing process. Although the methodol-
ogy presented here is fairly rigid, it is intended merely as a starting
point. Each installation may have to tailor its capacity planning
function to the availability and expertise of its personnel. The
availability of a performance prediction model should encourage
many installations to take a more active role in the important job of
capacity planning.

Many of the ideas in this paper have been automated in a Field
Developed Program (FDP) written by the author. This FDP is entitled
Capacity Planning/Performance Analysis for CICS (5798-DKF).

ACKNOWLEDGMENTS

Much thanks to Joseph E. Flanagan, instructor at the IBM Systems
Research Institute, for his knowledge and wit in making queuing
theory so easy to understand. Thanks also to the staff of the
performance analysis and capacity planning class at the IBM Infor-
mation Systems Management Institute, Los Angeles. Many of the
ideas presented in this paper have been derived from concepts taught
in that excellent course.

CITED REFERENCES

1. L. Kleinrock, Queueing Systems, Volume II: Computer Applications, John Wiley
& Sons, Inc., New York (1976), p. 125.

2. L. Kleinrock, Queueing Systems, Volume II: Computer Applications, John Wiley
& Sons, Inc., New York (1976), p. 16.

3. CICSPARS Program Description and Operations Manual, SB21-2495; available
through IBM branch offices.
CICS Performance Analysis Reporting System (CICSPARS) program number:
5798-DAB.

. VSE/PT, Program Description/Operations Manual, SH20-2171; available

through IBM branch offices.
VSE/Performance Tool (VSE/PT) program number: 5796-PLQ.

IBM SYST J o VOL 21 ® NO 4 * 1982 DEITCH

. VSI/PT Program Description and Operations Manual, SH20-1837; available
through IBM branch offices.

VS1/Performance Tool (VS1/PT) program number: 5796-PLG.

. RMF Version 2, General Information Manual, GC28-0921; RMF Version 3,
General Information Manual, GC28-1115; available through IBM branch offices.
RMF Version 2 (for MVS/370) program number: 5740-XY4.

RMF Version 3 (for MVS/XA) program number: 5665-274.

The author is located at the IBM Corporation, Two Jericho Plaza,
Jericho, NY 11753.

Reprint Order No. G321-5176.

470 DEITCH IBM SYST J © VOL 21 ® NO 4 e 1982

