
In  recent years there  has been a growing need to  develop techniques 
and tools  for  computer  installation  capacity  planning.  This  paper 
presents  both  a  tool, in the form of an analytic queuing model, and a 
methodology for  performance  analysis and capacity planning. 
Although general in its  approach. the model  was  developed speciJi- 
cally for the cIcs/vs environment. 

by M. Deitch 

Two of the more common trends in data processing shops today are 
the increase in on-line applications  and the corresponding  increase in 
data processing budgets. As businesses place more and more of their 
critical  functions  under  control of on-line computer systems, capacity 
planning becomes an increasingly important  part of business plan- 
ning. In the past, many businesses were content  to look at  their data 
processing capacity needs once a year or less frequently.  Capacity 
was often measured in terms of using the CPU and  the DASD to their 
effective limits (i.e., 90 percent CPU utilization  and 40 percent DASD 
utilization).  With heavy reliance on terminal-based  systems  today, 
capacity limits must be redefined. Systems are not out of capacity 
when their resources reach  some peak utilization. Rather,  capacity is 
exceeded when the system is no longer capable of providing a 
minimum level of acceptable  performance. If this definition of 
capacity is accepted we can then approach the  job of capacity 
planning from a new perspective. One result of this view  is the need 
for a tool that  can predict  on-line system performance  as  a function of 
a business’s increasing workload. This  paper is a discussion of such a 
tool and  a methodology showing how it can be used to perform 
analysis  and  capacity  planning. 
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T, = average CICS response time 
t ,  = average CPU service time  required by a CICS transaction 
t ,  = average CPU service time  required by a  high-priority  transac- 

tion 
Ugt = CPU utilization by high-priority  transaction 
Uge = CPU utilization by combined CICS and  high-priority  transac- 

tions 

T, represents the  time CICS transactions wait to be served by the cpu 
(queuing  time) plus the  time  during which the transactions are being 
served by the CPU (service time). Missing from  Equation 1 are two 
important components of response time: the effect of page  faults 
within CICS and  the  time  to perform nonpaging disk 1 / 0 .  The 
following analysis shows how these effects can be factored  into 
Equation 1. Each  time  the CICS transaction experiences a  page  fault, 
the  entire C l c s  task  must wait until  the  page is retrieved from the 
page data  set.  This is typically accomplished by a single 2K or 4K 
disk I/O. The  time required  to resolve a  page  fault is termed  Page 
Delay Time, PDT.  If  we treat  the disk that contains the page data set 
as  the server and  a  page  fault  as  a  request for service, we can apply 
queuing  theory  again to solve for PDT. This  time we treat  the 
distribution of service time  as being a  general (G)  distribution rather 
than  a Poisson distribution,  and  denote the system M/G/ 1 .  The use 
of a  general service time  distribution  rather  than  a Poisson distribu- 
tion is based on empirical observations of disk service time  character- 
istics. 

From Reference 2 we obtain the following equation: 

where 

A ,  = page fault  rate within C l c s  
E ( ? : )  = second moment of service times for page I/OS (also called 

Up = average  utilization of disk pack containing  page data set 
t ,  = average 1/0 service time for the  page data set disk pack 

expected value of t i  

I f  the distribution of service times were truly  random (i.e., a 
Poisson distribution),  the second moment of service times for page 
I/OS would  be E(?: )  = 2t i .  

Experience  has shown, however, that disk I /o  service times have a 
smaller  variance  than  a Poisson distribution.  This  means that E ( t ’ )  
must  fall between t i  (zero  variance)  and 2ti, or explicitly, t 2  < E ( t , )  
5 2t i .  If we split the difference, we can  set E ( ? ; )  = 1 . 5 t i .  Thls leads to 
the following expression for Page Delay Time: 

5 
P -  
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But since Aptp = U p  (arrival  rate  times  service  time  equals  utiliza- 
tion), 

The  assumption  concerning  the  arrival  pattern  of  a CICS page  fault 
must  be  questioned  here. In truth  a  page  fault  cannot  occur  within 
CICS until  a previous CIcS page  fault  has been  resolved. This  means 
that  the  average  gap  between CICS page  faults  must  be  greater  than 
the  average  service  time for a  page  fault ( P D T ) .  

This  characteristic of ClCs page  faults will have  the effect of reducing 
the  time  that  page  faults  are  queued for service.  Queue  time is 
denoted by the first term of Equation 2. We  can  approximate  this 
effect by making  the following change. If we assume  that Up is 
defined as  the  utilization of the  paging  pack,  excluding  the  utilization 
caused by CICS paging, we will reduce  the  calculation for the  queue 
time  component of PDT. Note  also how in systems  where  page  packs 
are  dedicated  to CICS (i.e., Up = 0), Equation 2 simplifies to 
PDT = tp. In  other words, all  queuing  disappears  when  the  pack is 
used  only for CICS paging. 

We  can now calculate  the  fraction of time  that  the CICS system  must 
wait  because of page  faults Uf as follows: 

U, = A P  X PDT (3)  

If we lump  utilization of the CPU by high-priority  tasks CJ, with the 
fraction of time  the CPU is unavailable  to CICS due  to  page  faults U,, 
we have  the  total  fraction of time in which the cpu is unavailable  to 
CICS, which can  be used as  the  value of Ugt in Equation 1 as follows: 

ugt = u, + u, - ( U ,  x Uf) (4) 

Notice  that we reduce  this  sum by the  product of U,, and U, to 
eliminate  the  fraction of time  that  page  faults  and  high-priority- 
task-busy  periods are overlapped.  This modification of the Ugt term in 
Equation 1 must  also be reflected in a new calculation of the CPU 
utilization by the  combined CICS and  high-priority  transactions Uge. 
This is shown  later in this  paper in Equation 7. 

One  remaining  parameter in Equation 1 is high-priority  service  time 
t,. Although we do not know this  value, we can  use  the  value of page 
fault  delay  time  as  an  approximation,  that is, t ,  = PDT. This is used 
because  page  fault  delays  comprise  a  large  part of Ugt. 

Finally, we must  account  for  the  time  each CICS transaction  waits  to 
perform  a disk 1/0. Using the  same  assumptions  made in calculating 
PDT, we arrive  at  the following equation for average disk 1/0 delay 
time: 
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D D T = _ - t t ,  
Q.75Udt, 

I -  ud 

where U, is the  average disk pack  utilization,  and t ,  is the average 
disk I / o  service time.  The average  time a CICs transaction  waits for 
disk 1/0 must be 

IO = IOR X DDT ( 6 )  

where IOR is the average  number of disk I/Os per CICS transaction. 

The calculation of the CPU utilization by C I c s  and  higher-priority 
work U,, is  given as follows: 

Uge = ( t ,  x A,) + Ugt ( 7 )  

where A, is the  average CICS transaction  rate. 

We now combine equations  and express the model in terms of the 
required  parameters. 

From  Equation 2: 

From Equations 3 and 4: 

Ugt = U, + (A,  X P D T )  - (U, X A, X P D T )  (8) 

From Equation 7: 

Uge = ( t ,  x A,) + Ugt 
From Equation 1 and using the t ,  = PDT: 

These  equations reveal that  the average CICs response time T, is a 
function of the following parameters only: 

t ,  = average CPU service time per CICS transaction 
Up = average  page data set disk pack utilization (excluding utiliza- 

t ,  = average page data  set disk pack service time 
U,, = average disk pack  utilization 
t ,  = average disk pack service time 

Uh = average CPU utilization by tasks  running at a higher  priority 

A, = average  page  fault rate within C I c S  

tion caused by CICS paging) 

than CICS 
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A, = average CICS transaction rate 
ZOR = average  number of disk I/Os per CICS transaction 

Data  collection 

These  parameters  can be evaluated by examining  reports produced 
by several software data  gathering tools. CICS performance  and 
utilization data  are reported by two products, the CICS Performance 
Analyzer-I1 (PA-11)  and by the ClCS Performance Analysis Reporting 
System (CICSPARS).3 The information  reported by PA-I1 and CICS- 
PARS includes: 

CPU time consumed by CICS 
Total  number of transactions completed 
Average response time 
Total  number of page-in operations 

From  these  reports  and further  data reduction we can  obtain  such 
model input  parameters  as  the following: 

t, = CPU time consumed divided by total  number of transactions 
A ,  = total  number of page-in operations divided by report  interval 
A ,  = total  number of transactions divided by report  interval 

The remaining  parameters  can be obtained  from the disk subsystem 
reports produced by VSE/PT4 (for DOS/VSE5),  VSI/PT (for OS/VSl) ,  or 
from R M F ~  reports  (for MVS). Utilization of the CPU by high-priority 
tasks U, can be derived by analyzing the workload activity  reports in 
RMF. That technique, however, is not discussed in this  paper. 

Consider the example of a  particular  computing  center  that  runs 
c I c s / V s  on an IBM System/370  and  an IBM 303  1  under control of the 
MVS operating  system. Both paging and CICS data bases reside on 
IBM 3350 disk drives  spread across two channel  and control unit 
paths. Two sets of parameters have been evaluated  and are desig- 
nated  here as Cases 1 and 2. Case 1 represents the environment when 
the 3031 contained  4  megabytes of real  storage.  Case 2 shows the 
model parameters for the  same installation after 2  megabytes of 
storage  had been added, i.e., to give a  total of 6 megabytes of real 
storage. 

Case 1 (4 megabytes of real  storage): 

t, = 0.23 second 
Up = 0.24 (i.e., 24 percent busy) 
t ,  = 0.039 second 

U, = 0.14 (i.e., 14 percent busy) 
t, = 0.029 second 

U, = 0.12 (i.e., 12  percent busy) 
A ,  = 6 page faults per second . 
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A ,  = 2.2 transactions per second 
IOR = 5 110s per transaction 

Using the model to calculate  the average CICS response time, T, was 
predicted  to be 2.33 seconds. 

Case  2 (6 megabytes of real storage): 
I 

tc = 0.23 second 
Up = 0.15  (i.e., 15 percent busy) 
t ,  = 0.035 second 

U, = 0.14  (i.e., 14 percent busy) 
t ,  = 0.027 second 

U ,  = 0.14 (i.e., 14 percent busy) 
A ,  = 2 page faults per second 
A ,  = 2.2 transactions per second 

I 

IOR = 5 110s per transaction 

From the model, the  predicted value of the  average CICS response 
time T, was found to be 0.99 second. 

I 

Thus  the model predicted  a 2.4-fold reduction in response time, i.e., 
from 2.33 to 0.99 seconds, with the addition of the  2  megabytes of 
real storage. The reason clearly lay in the  reduction in page fault  rate 
from 6 to 2. Except for the change in U p  and A, ,  all  other  parameters 
remained the  same or changed only slightly. There was good corre- 
spondence between the model’s prediction and  the performance as 
measured by PA-11. For example, the response time  measured by PA-I1 
for a peak hour each  day,  averaged for the week preceding the 
memory upgrade, was 2.9 seconds. The average response time for the 
week after memory was added was reported as 0.84 second. 

System tuning and  capacity planning 

Before discussing capacity  planning methodology, a  consideration of 
some of the differences between system tuning  and  capacity planning 
might be in order.  The individual who  is assigned to tune  a system 
generally has a  different perspective than  one who is doing capacity 
planning. The  tuner is typically seeking to improve performance by 
means that generally  do not require  hardware  upgrades.  Instead,  the 
tuner is concerned with balancing such system resources as storage, 
CPU, and disk subsystem, with the expectation of removing bottle- 
necks and  optimizing  performance. A typical system  tuning effort 
might involve the reallocation of disk files to remove contention on 
one disk pack that had been causing excessive disk service times. 
After  an initial system tuning,  further  tuning typically results in 
diminishing  returns.  Whereas  an  initial  tuning effort might  reduce 
the CICS response time by a second or more, continued  tuning might 
produce  reductions of only milliseconds. 
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Tuners often view the system as  a given, a  permanent  entity upon 
which they are free to make only minor adjustments.  Capacity 
planners are required to project current  computing systems and  their 
operations  into the  future,  and  to  relate  future computing  require- 
ments to  the expected growth of the business. Thus,  planners consider 
future workloads in terms of such things  as  adding  hardware or 
shifting work to off-hours. With such a view, the planner may ignore 
any ongoing tuning  activity  and  assume that  the  current system is the 
base from which to  make  forecasts. Of course, the  same person may 
be both tuner  and  planner in a  particular  computing  center. But by 
separating these functions  into  jobs with different perspectives, we 
can form a methodology to  aid both tuner  and  planner. 

Tracking systems 

Both tuner  and  planner  require  a good understanding of their  current 
computing  environment. For example, how busy are  the CPU and  the 
disk subsystem,  and who are  the users? Tuner  and  planner also need 
to know how the system is performing,  its response time  stability,  and 
whether minimum service levels are being met.  The planner, how- 
ever, must also be concerned with such trends as  the  rate of growth of 
the on-line transaction  load. 

These  requirements point up  the need for a  tracking system that  can 
monitor the key system parameters.  The performance model helps in 
determining which parameters should be tracked.  Since  the model 
identifies the  parameters  that  determine performance, we can begin 
by tracking  these key parameters. As noted earlier,  these  parameters 
are reported within CICSPARS or PA-I1 together with either VSE/PT or 
RMF. Ideally,  the  reported  parameters should be tracked for the 
identified peak hour each  day,  a  function that  can be automated  to 
great  advantage. 

One of the  advantages of a  tracking system is that it allows an 
installation  to identify easily its  average  operating  environment. The 
average values of the  parameters  are referred  to as their nominal 
values. The next section describes how the model can be  used 
together with nominal values to identify performance bottlenecks. 

Influence coefficients 

The tuner’s job is to identify the bottlenecks that  are degrading 
system performance  and  eliminate  them if possible. In a CICS 
environment, the  analytic queuing model discussed in this  paper  can 
be  used to derive a  starting point. 

Here we introduce influence coeficients, which relate  a relative 
change in a  dependent  variable to a  small fixed change in an 



Table 1 Influence coefficients 

Parameters 

fc U p  t ,  U,, t ,  Uh A ,  A, IOR 

Case 1: Four 
megabytes 
real storage 

Nominalvalue 0.23  0.24  0.039  0.14  0.029  0.12 6.0 2.2 5.0 

Influence 4.983  0.560  2.252  0.009  0.070  0.708 2.145 4.120  0.070 
coefficient 
( x  100) 

Case 2: Six 
megabytes 
real storage 

Nominalvalue 0.23 0.15 0.035  0.14  0.027  0.14 2.0 2.2 5.0 

Influence 2.352  0.035  0.255  0.019  0.153 0.413 0.218 1.527 0.153 
coefficient 
( x  100) 

independent  variable. Let us define IC(T, /A,)  as  the influence 
coefficient for page  fault  rate A, on CICS response time T,, or IC(AO)  
for short. In  mathematical  terms,  the influence coefficient for page 
fault  rate is expressed as follows: 

Here Tcn is the nominal value of response time,  and T, is the value of 
response time  calculated by the model when A, is increased by one 
percent. All values of the model input  parameters  are  at  their nominal 
value, except for A,, which is set  to 1.01 A,,. 

Thus IC (Ap)  represents the fraction of change in response time 
caused by a  one-percent  increase in the value of CICS page  fault  rate. 
Since  the model gives the expression for T, as a function of several 
independent  parameters, we can easily calculate influence coeffi- 
cients for each  parameter  around some nominal point. If we use the 
values shown in Case 1 and  Case 2 (from  the previous example)  as 
nominal values, we can  calculate  the corresponding influence coeffi- 
cients shown in Table 1. 

Notice how influence coefficients change  as the nominal values 
change.  Case 1 shows that CPU time per CICS transaction t,, which  is 
also a  measure of average  path  length,  has the largest effect on 
response time.  This  indicates that a  starting point for tuning is 
reducing the CICS path  lengths.  Other  candidates, in order of 



Another  factor to be considered is the possibility of reducing  these 
parameters and by  how much. It may be  very difficult to reduce  path 
lengths by a significant amount, whereas reducing page fault  delays 
can be accomplished simply and by relatively large  amounts.  Page 
fault  delays might be reduced by adding page data set disk packs, by 
moving a disk pack to a less utilized channel, or by reducing  the 
multiprogramming level of the  system. In MVS, there  are techniques 
for providing a real storage fence around CICS to reduce  page 
faulting. 

I 

, Case 2 shows that  as  storage is added,  the influence coefficient for 
page faulting A P  is reduced from 2.145 to 0.21 8. This  indicates  the 
sensitivity of influence coefficients to nominal values. Another obser- 
vation on Case 2 is the lack of large influence coefficient values, a 
mark of a relatively stable  system. If performance is thought of as 
floating on an exponential curve, performance in Case 2 appears  to be 
sitting on the flat part of the  curve. , 
As the  characteristics of an  installation  change, the nominal values 
change,  and  the influence coefficient values change. An advantage of 
the model is that we can  constantly  recalculate  the values of the 
influence coefficients to identify changes in performance sensitivity. 
With  this  information, the  tuner can focus on those activities that 
promise the  greatest  return on investment in the system. 

I 

We expand our analysis  through  the use of Table 2. Influence 
coefficients are a  measure of  how sensitive a  dependent  parameter is 
to each  independent  parameter. In  mathematical  terms,  the influence 
coefficient for parameter X ,  on dependent  parameter Y is defined as 
follows: I C ( X , )  is equal  to the percentage  change in U when X ,  is 
increased by one percent. 

If Y = f ( X , ,  X,, -, X,), then for a given set of nominal values for 
our  independent  parameters ( X ,  through X,) we can  calculate  a 
nominal value of Y. The calculation of ZC(X, )  is accomplished by 
raising the value of X ,  to 1 .OIX, and  calculating  a new value of Y, 
called Y',  and so  on for all the independent  parameters Y' 
=f( l .OlX, ,X, , .  . . , X , ) . T h e n I C ( X , ) = ( Y "  Y ) / Y x  100,that 
is, the  percentage  change in Y caused by a  one-percent  change in X , .  
This  calculation  can be repeated to fill in the IC values for the 
remaining  parameters ( X ,  through X,). I 

Note  that for each calculation all values of X are kept at their 
nominal value except the  parameter whose IC is being calculated. 
Table 2 shows the influence coefficients calculated for four different 

the nominal values and  the bottom row the influence coefficients for 
1 sets of model nominal parameters.  The  top row for each  set  represents 



Table 2 Influence coefficients  calculated for  four sets of nominal values 

Environment Nominal  IORATE  PGSR V PGBUSY DSKSR V 
value and (Number of (Service  (Average  (Average 
injuence  physical  time-  fraction of service 

coefficient disk 110s seconds- time a time-seconds- 
per  transaction)  per paging IfO) paging disk for ClCS 

pack is busy)  disks- 
nonpaging) 

Four megabytes 
real  memory 

Six megabytes 
real  memory 
(environment 
after the 
addition of 
2 megabytes 
of real  memory 

Nominal 5.0000  0.0390  0.2400  0.0290 
value 

Influence 0.0698  2.2523  0.5598  0.0698 
coefficient 
value 

Nominal 5.0000  0.0350  0.1500  0.0270 
value 

Influence 0.2021 0.21 10  0.0290  0.2021 
coefficient 
value 

December 1982 
(best case) 

Nominal 5.0000 0.0350  0.1 500 0.0270 
value 

Influence 0.0867  0.5392  0.0739  0.0867 
coefficien 
value 

December 1982 
(worst case) 

Nominal 5 .OOO 0.0350  0.1500  0.0270 
value 

Influence 0.0203  3.3467  0.448 1 0.0230 
coefficient 
value 

Capacity planning  methodology 

We now consider ways in which the model can be  used for capacity 
planning. As defined earlier,  capacity is exceeded when the system 
cannot deliver a specified minimum level of performance. In a CICS 
environment this minimum is usually specified as a  maximum 
average response time.  Thus we must first establish a maximum 
acceptable response time. 

example The technique employed by one installation is the use of the  tracking 
installation system discussed earlier in this  paper.  On  days when user feedback 

indicated unacceptable  performance,  the  planner would place a red 
“x” next to  the day’s entry.  After  tracking  performance  this way for 
several weeks, the  planner was then able  to  quantify  acceptable  and 
unacceptable  performance in terms of reported average response 



DSK BUSY 
(Average 

fraction  of 
time  a CICS 
disk  is  busy 

"nonpaging) 

SYS ov CPUR 
(Average  fraction (Average 
of  time  the CPU CPU time- 
is  busy running seconds-required 
tasks at higher by  a  CICS 
priority  than 

CICSJ 
transaction) 

0.1400 

0.0085 

0.1200 0.2300 

0.7078 4.9830 

0.1400 

0.0256 

0.1400 0.2000 

0.3245 1.7785 

0.1400 

0.01 10 

0.1400 0.2000 

0.9376 5.7274 

0.1400 

0.0026 

0.1400 0.2200 

3.9979 30.2474 

PF TRATE  RESP 
(Page-fault (Transaction rate (Average 

rate-average -average number response time 
number of page of transactions "seconds- 

faults per per second predicted by 
second experienced the  model) 

experienced by  CICS) 
by CICS) 

~- " 

6.0000 2.2000 2.3327 

- 

2.0000  2.2000 0.7495 

0.1713 1.0105 I 

rime. I ne rracKlng or average clcs response tlme over a peak  hour 
each  day led to a performance  value  that could be expressed in the 
same  units as that  calculated by the  model. I 
The  planner  then  projected  the  installation's  workload  (expressed  as 
transaction  rate)  into  the next  twelve months.  Projections  were  based 
on the  introduction of new CKS applications as well as a factor for 
estimated  growth  applied  to  existing  applications.  The  growth  rate 
was attributed  to  additional  terminals  and a growing  familiarity  with 
existing  applications.  Once  again,  the  planner used the  tracking 
system  to  highlight  trends in transaction  rate  growth  and used this 
information  to  make  the  projections. 

Finally,  the model  was used to  estimate  average response times for 
each of the next  twelve months. All model inputs  were  kept  constant 
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Figure 1 Example of monthly projections of CPU response  time 
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that capacity is expected to be strained by June  and exceeded by 
October  (best  case). The interval between the best and worst case 
may be  looked  upon as the  time when action must be taken. That 
interval can also be considered as a buffer that smooths out  the  errors 
introduced by errors in the assumptions. If performance is critical to 
a business, corrective action should be taken before the worst-case 
intersection. If performance is less critical,  action may be delayed 
until the best-case intersection. 

Having identified the limits of capacity,  it  remains for us to  examine 
alternatives  to  correct  the  capacity problem. One possibility is to 
examine  the influence coefficients at the points of intersection. 
Another  approach is to list the options available to increase  capacity, 
which might be the following: 

Install  a  faster CPU 
Add real memory 
Install  faster disk drives 
Add more disk drives and  channels 

These  capacity-planning-like options are more costly and  thus receive 
more attention from upper management  than  the choices the  tuner 
examined. Besides requiring capital  outlay,  these options may require 
a significant waiting period for delivery of the  equipment. For these 
reasons, decisions must be made relatively early  and must be  based on 
sound analysis. 

By translating these options into model input parameters we can use 
the model to examine each option. For example, a CPU of approxi- 
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Figure 2 Comparative  alternatives from a system planning point of view 
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mately twice the speed of the installed  machine would  be expected to 
reduce  the CPU time  per CICS transaction t ,  by one-half. We  can  also 
project a  reduction in the high-priority  task  utilization U,, although 
less accurately. A change from IBM 3350 disk drives to IBM 3380 
drives with data  streaming would certainly  reduce both disk pack 
utilization values Up, U, and disk service times t,, td .  These  can be 
approximated using the specifications of the new devices and by 
analyzing the measured values from the  tracking  system.  Additional 
memory can be modeled by a sharp reduction in the CICS page fault 
rate A,. 

When  these options are modeled, the results  can  be displayed as 
shown in Figure 2 .  These  curves are produced by setting nominal 
values for each  parameter,  according  to  the option being studied,  and 
then varying the transaction  rates over a given interval. The value of 
this kind of display is that it shows clearly the relative  performance 
and  additional  capacity  obtained from each  option. In this  example,  a 
faster CPU provides the best performance  characteristics,  but is also 
the more expensive option. Using this  technique, we can  combine the 
effects of multiple options and plot the combined effect to  determine 
whether  a combined solution can produce the  required response 
time-transaction rate performance. 
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Concluding remarks 

The following are  the key points of the methodology discussed in this 
paper: 

Install tools such as PA-I1 or CICSPARS and VSE/PT, or RMF to 

Begin to  track  the key utilization and  performance data, based on 

Establish criteria for acceptable performance, in terms of peak- 

Project  future workloads in terms of CICS transaction  rates.  Use 

Use the model to identify times when capacity is exceeded, both 

Use the model to  examine  alternatives to upgrade  the system. 

The value of the model  is that it provides a tool that can be used 
within an installation as an ongoing process. Although the methodol- 
ogy presented here is fairly rigid, it is intended merely as  a  starting 
point. Each installation may have to  tailor  its  capacity planning 
function to  the availability and expertise of its personnel. The 
availability of a performance prediction model should encourage 
many installations to  take a more active role in the  important  job of 
capacity planning. 

Many of the ideas in this paper have been automated in a Field 
Developed Program (FDP) written by the  author.  This FDP is entitled 

collect performance and utilization data. 

model parameters. 

hour average response time. 

the  tracking system to  analyze  trends  and  variations. 

best and worst cases. 

l Capacity Planninglperformance Analysis for CICS (5798-DKF). 
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