This essay deals with a very down-to-earth topic: the things
computer programs or systems say to people—in particular, com-
puter messages for users. It is the product of the author’s experience
as a programmer and technical writer and editor. It puts together a
lot of common-sense insights into the philosophy of creating good
computer messages, how people think and feel around computers,
how to analyze the situations in which people need a message, what
to say in a message and how to say it, why imagination is invaluable
for creating and evaluating messages, what technical questions must
be answered in order to design and build a program or system that
can talk effectively to people.

How a computer should talk to people

by M. Dean

Something that makes a computer easy or hard for us to use is the
way it “talks” to us. Good messages help make it easy for us to use;
bad messages help make it hard.

One reason that some computer programs or systems contain bad
messages may be that “message” has come to mean a terse one-liner
that people are not expected to understand without an explanation.
In fact, there are guidelines for preparing documentation to explain
messages. And manuals are written to reveal what messages often do
not reveal—their meaning.

People want a computer to provide messages that explain themselves,
that say what they mean. In fact, psychologically, the meaning is the
message. A message whose meaning has to be explained does not
communicate—it fails as a message.

How do we ensure that a computer’s messages are useful to the people
who receive them?

From my five years as a programmer and systems engineer working
with customers, and from the last eleven years as a technical writer
and editor of software publications, I have learned some things about

© Copyright 1982 by International Business Machines Corporation. Copying in printed
form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM
copyright notice are included on the first page. The title and abstract, but no other
portions, of this paper may be copied or distributed royalty free without further
permission by computer-based and other information-service systems. Permission to
republish any other portion of this paper must be obtained from the Editor.

IBM SYST J o VOL 21 @ NO 4 » 1982




how a computer ought to talk to people. My main job as an editor is to
playact: to imagine myself as the computer user, to imagine how users
will respond to a program and its documentation. I try to expect what
users will expect and to notice the patterns they are likely to form (or
not be able to form). I try to spot passages people will probably have
to re-read, and I register any empathetic feelings of uncertainty.

My experiences have suggested somi¢ ideas about how to produce
good messages. In this essay, I formulate some conclusions and share
them with you. I hope you will find them useful.

I have noticed how programmers usually try to create good messages.
After their programs are practically finished, they get someone to
edit and reword the messages that have sprung up like weeds during
program or system development. Thus, they try to ensure that
essentially unplanned messages are concise, grammatical, consistent,
and understandable. But these qualities do not guarantee that the
messages are also relevant, specific, timely, and helpful. I have
concluded that you cannot edit and reword the second set of qualities
into messages that already exist.

To create messages with both sets of qualities, there are a number of
things that have to be done. In the rest of this essay, let us consider
them, roughly in the order they should be done:

Set human goals for messages.

Apply psychology in writing messages.

Write messages that accommodate intended users and their
situations.

Playact to evaluate the messages for usability before coding.

Edit the messages for appropriate language.

Design the computer program or system to produce the messages.
Test the messages along with the running code.

Set human goals for messages

People want the computer to accommodate them—not vice versa.
Accordingly, what messages should a particular program send? I
recommend that you answer that question before you build the
program; decide what messages to send, what information to put in
them, and how to present that information. To design a program
whose messages are relevant, specific, timely, and helpful, I believe
we must commit ourselves to

Being tolerant of “‘user errors.”

Helping people correct errors as easily as they make them.
Giving people control over the messages they receive.

Not making messages arbitrarily short.

Identifying the messages that people need.

IBM SYST J & VOL 21 & NO 4 & 1982




levels of
computer
reaction to
human input

Be tolerant of “user errors”

In their book on humanized input, Gilb and Weinberg' argue that
programs should correct user errors for which corrections are safe
and highly probable. I agree with the authors that programs should
be much more tolerant than they usually are of errors we make when
we try to communicate with a computer. Gilb and Weinberg identify
several levels of program reaction to human input:

Immediately usable input. The authors note that, of course, the
program goes ahead and processes such input.

Input that is usable after an obvious, or highly probable, correction.
The authors recommend that the program correct the input, option-
ally inform the person, then go ahead and process the corrected input.
(The program should probably ask for a go-ahead when processing
will have results that are difficult or impossible to undo.)

Input that is usable after an unreliable correction. The program
should correct the input, ask the person for a go-ahead or alteration,
then go ahead and process the corrected input (or not if the person
says not). (The person’s response might be to choose among possible
alternatives the program has identified, or reject them all, or propose
another alternative.)

Unusable input. When the input is unintelligible or clearly wrong and
uncorrectable, the program should tell the person why it cannot
proceed, and suggest something helpful.

Where the designer draws the line along this scale becomes a design
point for the program. I have noticed that often the line seems to be
drawn between “immediately usable” and “usable after obvious
correction.” That is, input not immediately usable is rejected for the
person to correct. For example, assume that the input to a program is
supposed to be a measurement rounded off to the nearest whole
number. Let us say we measured 10.3 and therefore entered “10.0”.
The program, instead of accepting “10.0, tells us

Incorrect syntax. Reenter the number.

The program does not even say how to make the syntax correct. It
probably has not investigated precisely what is “wrong” with “10.0”.
If it had, it might have ignored the “.0”.

I have heard two objections to undertaking to build error-correcting
programs: “It is often impossible to know what the user intended,”
and “Correcting user errors would double the amount of code.” These
objections are serious; the problems are difficult. But they are being
tackled. For example, three Carnegie-Mellon researchers have
described their attempts to build a “tool-independent system which

IBM SYST J & VOL 2t @ NO 4 o 1982




can serve as the user interface for a variety of functional subsys-
tems.”? After standard error-correcting program modules are writ-
ten, programmers will not have to do error-correction anew for each
program.

Help people correct errors as easily as they make them

In the auditorium in one of the buildings at IBM’s Poughkeepsie
location there is a lectern which can have the incline of its top surface,
or desk, electrically raised or lowered. There is only one button for a
speaker to push, and pushing it may either raise or lower the incline of
the desk. But the desk, once started, must go all the way before
reversing direction.

Once when I spoke at this lectern, I wanted the incline of the desk
raised, so I pushed the button. Of course, the desk started lowering. I
held the button down for ten seconds or so while the incline of the
desk was first lowered, then raised to about where I wanted it. But I
had “erred” by holding the button down a split second too long, so
that the desk was now a little higher than I wanted it.

I would have liked a second button to press for a split second of
corrective lowering. But, instead, I had to hold the one button down
for another ten seconds while it rose fully, then lowered to . . . about
where I wanted it!

Ideally, we should be able to correct an error with no more effort than
it took us to make the error in the first place. When a program cannot
let us correct an error literally as easily as making the error, it should
at least help us out. For example, we can usually modify what we said
more easily than resaying the whole thing, hence the popularity of
terminal keys that redisplay previous input. Why not design a
program to give back the input for modification and indicate some-
how where the modification seems to be needed? In any case, we can
show the input in error along with the message that refers to it.

Or perhaps a program can think of three things we may have meant.
Does the program engage us in a dialogue to find out which we meant,
if any? Possibly. Possibly not. It may be easier for us to resay
something short than to “discuss”™ the problem with the computer.

Give people control over the messages they receive

From interactive programs, different people want different amounts
of information, and the same people want different amounts at
different times.

Certain messages for information—defaults assumed and correc-
tions made by the program—are most useful when we are learning.
These messages lose their usefulness with repetition. We become so
familiar with a program after a while that we do not read the

IBM SYST J e VOL 21 ®» NO 4 e 1982

ease of
correction




messages anymore. Why doesn’t the program let us turn these
messages off and turn them back on when we want? And, because we
know the use of some parts of a program better than other parts, the
program might let us turn messages off selectively by program
function.

One reason for not letting us turn messages off is that occasionally an
unpredictable message shows up. But if we are ignoring messages, we
will not see it anyway unless the message strikes us as being different.
Maybe a program whose messages are turned off could alert us when
there is an unusual message, or deliver the message anyway. (“Un-
usual” is relative to the “usual” messages we have become insensitive
to; the program would have to remember what messages it has been
sending.)

Because message length varies and can be several lines long, it may be
impractical or even unacceptable to us for an interactive program to
always provide the entire message immediately. Our acceptance can
vary with the speed of our terminal and its method of display and with
our expertise. A program might let us choose a detail level for
messages generally (for example, it could give us the option of a short
form or a long form), then let us get more information when we need
it.

Techniques for doing this have become known as help facilities,
though their helpfulness is often limited because help panels usually
give general reference information rather than specific advice for the
given situation, and they obliterate the screen that contains the input
that is in error. 1

A solution would seem to call for “helps” to provide small increments
of additional information that (a) are specific and relevant to the
input that is in error and (b) can be displayed along with the input.

Do not make messages arbitrarily short

Though “brief™ and “concise” mean “no longer than necessary,” 1
often hear programmers talk as though they mean “no longer than
some arbitrary length.” But some useful messages simply will not fit
into 58 spaces—or whatever arbitrarily short limit—because to fit
them in, you have to omit something essential.

One solution is to provide a variable space for messages. When
necessary, it would expand temporarily to accommodate two or more
lines. A product at the lab where I work that has used this solution
lets messages take up to half the screen, but a programmer reported
to me that “actually, none is more than five or six lines long.”

For messages to survive an arbitrarily short limit (such as one line),
you need some way to provide additional information when it is

IBM SYST J & VOL 21 4 NO 4 ¢, 1982




necessary. How do you do that? What information do you provide in
the one line—a shorthand version of “everything”? a summary? a
salient detail? And what additional information can the person
request—a “longhand” repetition of the shorthand? the items that
were summarized? the rest of the details? Do you let the person know
when there is additional information, or can the person always
request it, whether there is any or not?

These are thorny questions of display design. For example, the
arbitrarily short message-display area may very well be too short for
the additional information. Surely we must not show a multiline
message a line at a time. People need to see it whole and, where
appropriate, along with the input or other information to which it
refers.

If we “solve” these thorny display problems by ignoring them and
stuffing all messages into an arbitrarily short space, we will create
many meaningless messages.

Identify the messages that people need

A program designed well for people provides messages to serve their
interests. Before you design the logic and start coding, you can
identify those interests; that is, you can define the “user interface.”

The usual procedure in creating programs is to design and document
the way the program is supposed to work and the way people are
supposed to behave. What the program was not designed to handle
becomes by default an exception, to be discovered during coding. I
have noticed that, unfortunately, ways devised ad hoc to handle these
exceptions tend to be for the convenience of the program and not that
of the people.

But when you design programs for human use, not only should you
define what happens when there are no errors, either in the program
or in what people do, but you should also anticipate the kinds of
mistakes people are apt to make, and plan how you will deal with
unpredictable program errors (and user errors that you could not
anticipate):

You can easily anticipate the messages that reflect error-free
operation. You should write those messages and document them in
your specifications.

Anticipating the mistakes people are likely to make is more
difficult. But by anticipating them, you can act to avoid them or to
minimize the disruption they entail. Classify these mistakes
according to a scheme like that of Gilb and Weinberg® and see
what messages are called for. Errors the program can correct call
for messages noting the correction, or asking for clarification or
go-ahead. Uncorrectable errors call for messages that say what is

IBM SYST J e VOL 21 ® NO 4 » 1982 DEAN

plan for
unpredictable
errors




basic
lessons

wrong, why, and what to do. You should write these messages and
document them in your specifications. (You probably cannot
anticipate all user errors. Some you will discover only during
coding. But if you have a strategy for responding to user errors, the
messages for unanticipated errors too can be relevant, specific,
timely, and helpful.)

Of course, you cannot predict all the system errors and adverse
conditions that can occur; they will result from the unique
complexity of your program’s logic. But you can establish in
advance a strategy for what the program will tell (a) users, (b)
people responsible for keeping the system available, and (c)
program diagnosticians responsible for investigating and fixing
errors.

Summary of setting human goals

We have discussed the need to set human goals for messages in order
to commit ourselves to being tolerant of ““user errors,” helping people
correct errors as easily as they make them, giving people control over
the messages they receive, not making messages arbitrarily short, and
identifying the messages that people need. Now, let us look at some
psychology for writing messages.

Apply psychology in writing messages

A message that is delivered to the right person on time can still fail for
many reasons: the words are unfamiliar, something is missing, there
is too much detail, the program’s point of view is not the same as the
person’s, the facts are vague. It is essential to learn as much as you
can about the people who will use your program. They may not share
your interests in computers and programming. Their vocabulary may
be smaller than yours or, if it is larger, they still may not know the
meaning of specialized words such as “byte.”

I have read a number of psychology textbooks and practical books
about how to read, how to study, how to remember, how to think
visually, how to solve problems. This reading has strengthened some
lessons of my own experience about how people think and feel:

Our expectations govern the way we react in various situations.
We need to see how all the pieces fit together.

We do not want to have to re-read something to figure out what it
means.

We learn about and use a computer more effectively when we feel
at ease.

As I see it, the job of the program designer and message writer is to

apply these principles to their designing and writing. The following

observations about how to do that are adapted from a recent article of
. 4

mine.

IBM SYST J e VOL 21 ® NO 4 e 1982




Anticipate people’s expectations

We are disposed by our expectations to act a certain way in a given
situation. When a message does not match our expectations, interfer-
ence results.

Expectations result from our past experiences and our future needs.
Our past experiences include our training (or our lack of training) in
the use of computers and computer vocabulary. They include our
previous use of a program, reading the manuals about it, receiving
previous messages. They include what we have just now been doing or
attending to.

Our past experiences also include our cultural backgrounds. One
implication of this is that American messages should not simply be
translated literally into Italian, or Japanese, or Pakistani. Cultural
differences may call for message redesign by someone who not only
knows how to use a foreign-language dictionary, but also understands
the two cultures in question.

Our future needs are what we would like to do next. They are
essentially our desire to accomplish the task for which we are using
the computer. A message that overlooks our practical situation forces
us to determine how it applies to what we are trying to do.

People who can easily write good messages do not necessarily know
how they do it. In an attempt to understand why these people are
successful, I have discovered that they are sensitive to three aspects of
a message when they are trying to make it match people’s expecta-
tions: (1) the meaning to be conveyed, (2) the information selected to

convey that meaning, and (3) the language chosen to present that
information.

For example, a sign at a botanical garden might need to convey to
people wandering off the path the meaning: “Do not pick the
flowers!” To convey this meaning, the sign might include the infor-
mation that “the plants are rare and hard to replace,” or that “pickers
are subject to a $500 fine.” As to language, the sign might actually
say:

The fiowers are not for picking. Picking can result in a $500 fine.
or

Do not pick the flowers, or you will be fined $500.

For a message to match people’s expectations:

The meaning to be conveyed must be relevant to their situation. If
it is not, either do not formulate the message at all, or else identify
the people to whom it is relevant. (The botanical garden really
only wants to dissuade potential pickers; it does not want to
distract nonpickers from enjoying the garden.)

IBM SYST J e VOL 21 e NO 4 e 1982

matching
expectations




o The information selected to convey the meaning must also be
relevant to the people’s background and needs. If it is not, add
what is required, and get rid of what is extra. (The information
about the rarity of the flowers might suffice for people simply
unaware of their value, but only the threat of a fine might dissuade
those who do not care whether or not the flowers are valuable.)
The language chosen to present the information must also be
appropriate. The words, and the way they are put together, must
be familiar. If they are not, change the vocabulary, rearrange,
rewrite. (A practiced writer can help here. If you have a relevant
meaning and have selected the needed information, a wordsmith
can help you find the appropriate language.)

A message that results from a person’s action must relate to that
action. But what about something like this: We have entered a
command whose operands are supposed to be separated by commas
and ended with a period, like items listed in a sentence. But we have
ended the list with a comma:

copy fromfile, tofile, truncate,
What is wrong with the following message?
Missing operand in the COPY command.

From the program’s point of view, this is one way to understand what
is wrong with the input. But we do not understand it that way; the
message does not conform to what we expect.

A message can make us act in a way that is different from usual by
changing our expectations. Unfortunately, the change can be for the

worse, as well as for the better. Because the message in the preceding
example mismatches our expectation (to end a list), it distracts us; we
may begin now to look for something missing. The following revision
allows for the fact that, despite the final comma, the input makes
sense and is reasonable:

“copy fromfile, tofile, truncate,” is interpreted as
‘‘copy fromfile, tofile, truncate.”
Proceed or modify? Type ‘‘p”’ or ‘‘m,” then press ENTER.

Below is another example of misdirection by a message. A “little
white lie” is the culprit; can you detect it?

DISPLAY not processed, because file DEPTROLE not found.
Use the correct name, or get authorization to see DEPTROLE.

The phrase “not found” is a distortion. For, as the message implies,
the file we want to display may have been found, but we do not have
the authority to look at it. This message would confuse some of us.

I have seen enough examples of such distortions in messages to think
they must be fairly common. We ought to make them less common.

DEAN IBM SYST J  VOL 21 o NO 4 o 1982




Help people fit the pieces together

People try to fit things together to make sense of them. We want to
form a single idea or pattern from all the pieces, the best pattern we
can form under the circumstances. To do this, we group pieces that
have affinities. For example, we often assume at first glance that
because one thing looks like another, the two things are really alike.
Or, we may overlook something extraneous:

The meaning of a message is the point the
the message makes

or invent something:

p gr m g

Raw facts are less important than the meaning they add up to. That
this is true we can see from the observation that other facts would do
as well, so long as they convey the same meaning. Do not just give
people raw facts and leave it to them to guess what the facts mean,
especially when people might guess wrong. (By the way, did you
make “pregrooming” out of “p gr m g”’?) For example, what might
this message mean?

You have been logged on 28 minutes.

It might mean that you are going to be forced off in two minutes,
unless you log off voluntarily. Of course, people who are aware that
they cannot stay logged on for more than 30 minutes may understand
that. But not everyone is aware of this curious practice.

Here are some proven ways to help people fit the pieces together:

Proceed from the general to the specific. For example, look at the
sentence that leads into these paragraphs (“Here are some proven
ways. . .”). It announces that the specifics to follow are instances of
“proven ways.” A message with an unannounced——or poorly
announced—list would confuse some people:

aBcoool [list of parameters]

People may not see the significance of the list, or how the items are
related. Here is the list again, with a headline to shed some light on
the significance of the list:

ABcoool Data could not be read.
[list of parameters]

Proceed in parallel, treating like ideas alike. That is, be consistent
within a message and among messages. Information presented one
way sets up an expectation that similar information will be presented
the same way in the future. For example, if I see several error
messages that first explain my error, then say what to do, I come to
expect the order: explanation followed by suggested action. A mes-
sage with the reverse order will thwart my expectations.

iIBM SYST J ® VOL 21 @ NO 4 » 1982

proven
methods
to fit
pieces




proven
ways to
avoid
re-reading

Indicate when an action is finished. People like to know that they
have been heard and what the result of their action was. They do not
want to be left hanging. Their input is not an isolated action. It is an
attempt to communicate, and it is not finished until they know they
have been successful. Do not leave them in limbo. Let them know
what is happening as a result of their action.

Do not force people to re-read

When we read, we have to make sense of words, phrases, clauses,
sentences, and paragraphs as we go along. We would like to get the
meaning of a message the first time through. But sometimes we
cannot, because we get overloaded by too many words or phrases
whose interconnections we cannot understand. Consequently we are
not able to fit them all together into a single idea; we have to
re-read:

The operand that has three positional parameters (‘‘a”’, “b”’, and
‘“c’’), any one, but only one, of which can be omitted by coding a
lone comma for it (“‘a,b,,”’, ““a,,c”’, or ‘‘,b,c”’), can itself be omitted

by. ..

There seems to be a very small limit (about five®) to the number of
words, phrases, and clauses whose meaning we can leave unresolved
at one time. If that number is exceeded before we figure out the
meaning of a sentence or a paragraph, we may have to re-read it to
put the pieces together.

When we re-read because too many unresolved items are dangling,
we try to combine some items; this reduces the number of items
we have to deal with. For example, a dozen binary digits
(“010011110101) are too many to remember in one pass. In
subsequent passes, we can group the bits (“0100 1111 0101”") and
represent each group with a single placeholder (“4F5”’). The infor-
mation content is the same, but more efficiently represented.

But why leave this sort of thing to our readers? As writers, we can do
it for them when it seems to pose a problem. Here are some proven
ways to help readers avoid having to re-read:

Write in terms of the familiar. Refer as much as possible to things
people know about, in terms they are used to seeing. They can
interpret and combine familiar things more readily than unfamiliar
ones. For example, if I have requested “convert osfile to dosfile,” the
progress message, “Constructing header labels,” may not mean much
if I am not familiar with the internal substeps of conversion. And if
much time has gone by, I may not remember I was converting. Better:
“Conversion in progress: step 2 of 5 complete (header labels have
been constructed).”

Provide concrete specifics. We are most comfortable with concrete
specifics; we immediately respond to things we can actually see,

DEAN IBM SYST J & VOL 21 & NO 4 ¢ 1982




touch, or hear, or can easily imagine. We may not be able to do this
for an abstract term (“performance degradation”). Or if we can, we
may imagine something different from what was meant. (We may
imagine that “performance degradation” means “errors in process-
ing,” whereas the writer intended “twice as long to respond.”) These
uncertainties prevent us from speedily resolving meanings and fitting
all the pieces together. So, write concretely and, when exactitude is
important, be precise.

Show the relationship among things. When we cannot see the
relationship among things, we cannot combine them to reduce the
number of items we have to deal with. When the relationship is not
evident, a single idea cannot emerge. For example, what is wrong
with this message?

No space available to sort; press the PF1 key.

You probably understand “no space available to sort” and you may
know which is the PF1 key, but you probably do not see the
connection. Will pressing the key get space, or cancel your sort
request, or what?

When our readers feel secure—because we use familiar and concrete
terms and show the relationship among them-—they can speedily
resolve meanings and fit all the pieces together. They probably will
not have to re-read.

Put people at ease

We learn about and use a computer more effectively when we feel
secure and experience success with it. What helps us feel at ease with
a computer program or system?

For me and for most people that I have talked with, the most useful
thing is to have a reliable, stable concept of the program or system,
with little uncertainty about what it will do (it is predictable), or at
least a high expectation that it will not do us in (it is benevolent).

People are going to form some concept or other of our program. We
should help them form a helpful one. How?

The program should provide adequate information about itself, such
as defaults it is assuming, corrections it is making in input, and any
other assumptions it is making about the input (that is, about people’s
intent). Showing defaults that are assumed, for example, lets people
know what options govern an operation. This reminds them indirectly
that they will have to specify different options whenever they want
the operation to go differently. Showing corrections the program has
made can teach people how to prepare input correctly.

Friendliness also helps people feel at ease. And it is not difficult to be
“friendly.”® It does not require special gestures or mannerisms. Just

IBM SYST J & VOL 21 & NO 4 & 1982




provide a helpful message—one that lets people know what is
happening now so they can predict what will happen next, or one that
lets peopie actually control what will happen next by their response to
the message.

The main way we are unfriendly to other people is to ignore them.
Another way we are unfriendly is to give an obscure message, because
it can threaten people who are already insecure. They may think they
are incapable of understanding (when, in fact, the message cannot be
understood).

Various negative tones or actions are unfriendly: being manipulative,
not giving a second chance, talking down, using fashionabie slang,
blaming. We must not seem to blame the person. We should avoid
suggesting that the person is inadequate. Phrases like “you forgot”
may seem harmless, but what if a computer said this to you four or
five times in two minutes? Anyway, the person may disagree, so why
risk offense?

Nothing succeeds in overcoming uncertainty like success. Early
successes make for effective and efficient learning. They build our
confidence.

Ideally a program should make it hard for us to fail in using it, which
is another reason for Gilb and Weinberg’s recommendation to make
programs more tolerant of human mistakes.” If a program itself
corrects people’s mistakes, persons learning the program will experi-
ence fewer failures; they may feel more competent and learn more
quickly.

Summary of psychology for writing messages

We should make use of what we know about how people think and
feel when they use computers: Their expectations determine how they
react in various situations. They need to see how all the pieces fit
together. They do not want to re-read anything. They learn about and
use a computer better when they feel at ease. With this in mind, we
are ready to consider the actual writing of messages in particular
situations.

Write messages for the audience and the situation

How are we to discuss specific types of messages? What are the
“types”?

I have observed that programmers use terms such as the following
when they identify types of messages: confirmations, prompts, infor-
mation messages, warnings, interrogations, operator messages, and
error messages. These terms primarily reflect different purposes. The

IBM SYST J ® VOL 21 @ NO 4 ¢ 1982




sole exception is the “operator message,” which is an example of a
message categorized according to who gets it.

Categorizing messages by audience has its place; it indicates where
we should send them. For example, a program might generate more
than one message: one for the primary user and a related message for
a system administrator, console operator, system auditor, or program
diagnostician. Audience categorization also reminds us to notice
individual differences among people. For example, the reading ability
of one audience, or its familiarity with vocabulary, may be signifi-
cantly different from that of another audience. If so, we should
certainly write messages accordingly.

But I think that distinguishing by purpose is more helpful for writing
messages, because what we say in a message depends first on its
purpose. What is a particular message supposed to accomplish? Why
should a person receive it in the first place? This way of putting it
directs our attention to the need of the person who will receive the
message. First we identify the need, then figure out how to satisfy it.

I believe that people who interact with a program need messages of
the following types:

Report on the program’s reaction to input. Tells us (a) that process-
ing is finished and what the results are, (b) that progress is being
made, or (c) that input is rejected (for some reason beyond our
control).

Report on the program’s assumptions about input. Tells us, for
example, defaults the program has assumed, corrections the program
has made in our input, or the program’s interpretations of our
intention.

Report on a program error or adverse condition. Alerts us that our
processing is, or may be, adversely affected.

Request for a go-ahead. Gives us a chance to say, “No, do not do
that.”

Request to choose among alternatives. Lets us choose, for example,
among actions the program might take, options that will govern
processing, possible corrections to input, or possible interpretations of
ambiguous information.

Request for missing information. Lets us explicitly indicate informa-
tion the program is to use.

Request for correction or clarification of input. Gives us responsibil-
ity for correction when the program cannot understand input well
enough to interpret it confidently.

IBM SYST J & VOL 21 @ NO 4 « 1982

interactive
messages




In planning to write a message of any type, first analyze the person’s
precise information needs in the situation—what should the message
tell the person? What pieces of information must the person have?

Then, for each piece of information, identify a reliable source for the
person. Does the person already know the information? Does the
context supply it? Must the message supply it explicitly? Can the
person infer it from the message?

Not everyone can get the information from context or by inference.
To write a message, you must be aware of the differences among
individuals who will receive it: people new to the program versus
people quite familiar with it; people new to computers versus people
who have used them a lot. It is wise to be generously explicit in the
first draft of a message; it is much easier to subtract information from
a message later than to add it.

Now, for each type of message, let us see how we analyze the
information need and identify reliable sources.

Reports on the program’s reaction to input

A program should always acknowledge human input, so that people
are not left wondering whether the program heard them. Upon
receiving valid input, a program might: (a) process it and produce
results immediately, (b) have to delay processing it, or begin process-
ing it but take a long time, or (c¢) be unable to deal with it then. Let us
examine the messages for each of these three reactions.

Processing is finished. In this situation, people need to verify that the
results are what they intended, so they can complete the transaction
psychologically and go on to the next thing.

Sometimes the context provides this information well enough. For
example, when I tell a program that I want to use a certain text editor
to edit data, what immediately happens is this: The first nine lines of
my data appear on the screen, with a highlighted line across the top
that includes among other things the name of the data. Without
receiving a message, I have “gotten the message”; I can see that what
I requested has been done, and I know to proceed. But conceivably a
novice might not see this and might wait until it seemed safe to
proceed. In this case, “processing” is not so much finished as begun.
A message like this would help the novice:

Proceed with editing.

To end the editing session I enter “file.” 1 do not see what is
happening, but in a few seconds I receive a message, “R,” which in
itself is unilluminating. But, from reading the manual, I have learned
that “R” stands for “Ready.” And, because I have ended an editing
session many times (and my data has always been filed before), I take
“Ready” in this situation to mean that the data has been filed.

IBM SYST J 8 VOL 21 #,NO 4 #41982




Novices, however, would have no inkling of what “R” means. They
would have no confidence that their data had been saved. Conse-
quently they might edit the data again, to look and make sure.

Shouldn’t a message say what has happened? “R” or *“Ready”
neither says that something is done, nor identifies what. In the case I
have been describing, both novice and expert would be happier if they
received a message such as

[dataname] filed. Editing ended.

There is a delay. When no result is available immediately, people
need to know that their input has been accepted. Otherwise, they are
uncertain whether or not to repeat what they said. Even veteran
computer users become anxious when the computer stops reacting
immediately to their requests. They start pressing buttons and
“trying stuff.”

As a delay continues, people need to know that something construc-
tive is happening. Otherwise, they wonder whether or not to do
something to get things rolling.

A progress message would help, issued after x amount of time has
elapsed and the request still is not done. The optimum x for issuing a
progress message varies; James Martin suggests times for “interim
reports” in Design of Man-Computer Dialogues.*

A progress message should say that the program is doing the request,
or that a substep of the total process has been completed. It should
identify the request in terms familiar to the person who made it. It
should not mention a substep the person is not expected to know
about. Rather, for example,

Conversion in progress: step 1 of 5 complete.

This message lets the person know everything is okay and indicates
more waiting is likely (four more steps). The message does not name
step 1 (which might confuse someone who knows only that “conver-
sion” is being done, and not what substeps it involves).

An alternative to issuing unsolicited progress messages is to let people
interrupt to ask whether progress is being made. This alternative has
two advantages over unsolicited messages: it is easier to program, and
the computer is not slowed down by continually issuing progress
messages. A “What’s happening?” key could be provided for this.

The program cannot accept the input. When the program is having
its troubles and is not accepting even valid input, people need to know
this immediately in order to revise their expectations. People would
like enough information to decide whether they should wait for the
computer to straighten itself out, or go do something else.

IBM SYST J & VOL 21 e NO 4 » 1982




Because the rejection of valid input is inherently frustrating, a
generously informative message seems to be called for. Not an abrupt
“Not accepted,” or “Try anything but that.” The program designer
has an interest in reassuring users that the situation “really is not so
bad, and does not happen often.” Probably the best way to do this is to
give people positive, practical advice about what to do. Tell them
what will work (if anything), not just what will not work. Tell them
when things will be back to normal, or how they can find out. For
example:

Box busted. cE called. Will update status phone every half hour.
No estimate of when system will be back up.

Reports on the program’s assumptions about input

In using a certain program we may have a shaky concept of what is
happening now and no idea what will happen next. We may be
unaware of what the program is assuming about our input. A report
from the program can alert us by revealing a conflict between what
we think is going on and what the program thinks. A report can teach
by correcting or filling in our idea. It can reassure us by supporting
our idea. In this type of message the program might report on
defaults it is assuming, a correction it has made in our input, or its
interpretation of our intention.

A message about the program’s assumptions must not only state the
assumptions but also indicate that the program is acting on them.
Otherwise, people will be uncertain about the significance of the
message. For example, to show defaults assumed, a program might
echo the input, with defaults added:

Input: format journal
Echo: format journal APPEARANCE (STYLE 1COL DUPLEX NO) BIND (10)
DEVICE (3800N6) PROFILE (OURPROF) LIBRARY { OURLIB)

The meaning of the echo is not evident; it cannot be inferred logically
from the message. Only people who had learned the convention would
see the significance of the message: that the input (“format journal”),
with the defaults shown, is being processed. The following message
explicitly states this:

Processing FORMAT JOURNAL, with these defaults:
APPEARANCE (STYLE 1COL DUPLEX NO) BIND ( 10) DEVICE (3800N6)
PROFILE (OURPROF) LIBRARY (OURLIB)

Most of the defaults in this example are well represented, mnemoni-
cally, as defaults certainly should be. But even so, the message does
not provide a tutorial.

If you think people might disagree with a program assumption, the
program should state the assumption, then ask for a go-ahead. With
numerous defaults, as in the example above, people may well want to
change one of them. They should, of course, be able to do that without
having to resay their input.

IBM SYST J e VOL 21 @ NO 4 » 1982




(In the actual implementation from which I adapted the example, the
defaults are presented to me under the control of a text editor. To
change a default, I use the editor, then store the defaults away.)

Reports on a program error or adverse condition

A bug or an adverse system condition poses information needs not
only for users but also for operators and other support people, and for
whoever diagnoses program failures.

The needs of these different audiences are very different:

Users, in order to adjust to adversity and form different expecta-
tions, need to know that their expectations are correct but, because
of a program error, cannot be fulfilled. They need to know whether
they can do anything to recover from the situation or correct it,
such as inform a support person (who is not on line for immediate
communication from the program). An example is the following:

BACKUP processing cannot continue, because of a severe
program error. Retry your BACKUP request after the operator
has restarted the program.

This message rightfully says nothing about program internals,
about which the audience presumably knows nothing (and needs
to know nothing).

People who take care of the system for users need to know the
extent of the problem and how urgently they need to act. They
naturally know more about the system’s resources than users do.
They need information for the task of restoring those resources to
users as soon as possible. Users are not aware (and normally need
not be aware) of what that task involves.

The people who support the users may or may not be on line. If
they are not, a message might be sent to a log available to them.
For example:

The common work area is full. User work areas are filling up.
Run the [name] utility, as described in the [product] Administra-
tion Guide.

Diagnosticians need details about events inside the program when
something goes wrong. To acquire those details they need indica-
tors that would be identified in the program’s diagnostic informa-
tion. A message to them (or to their log) should include as many of
those indicators as possible:

Internal error in module HAAWXYZ, function INSQUIRT. . .

This information would be useless and misleading to users and
their helpers.

This class of message is the hardest to anticipate. The program-
mers I work with say that these messages are numerous, although
they are rarely issued. They even include messages for errors

IBM SYST J ¢ VOL 21 ¢ NO 4 » 1982

different
needs for
different
people




inform
people

where the program does not know what is wrong or what to do.
Only a trained person can diagnose the problem.

Messages of this type are reports (rather than requests for user
response), even though they do “call for a response” in the sense that
the user may be advised to see a support person, and the support
person may be directed to investigate or to take some corrective
action. They are reports because user response cannot lead immedi-
ately to normal continuation of processing.

Requests for a go-ahead

A program should ask for a go-ahead when

The action about to be done will probably have results that cannot
be undone or will be hard to repair.

The program’s assumed default, error correction, or interpretation
likely conflicts with the person’s intention.

The side effects of processing are likely not what the person
intended.

In each of these cases, there is a chance the person will say, “No, do
not go ahead.” (If there is no chance the person will say no, a
statement of the program’s assumptions about input might be appro-
priate.)

In the situations listed, people need to know

What has already been done, if anything?

What action are people being asked to approve?

What are the consequences of saying yes, and of saying no?
How do people signify yes or no?

For example, if in processing input the program notices potential
undesirable consequences, it might pause to ask something like

READ request temporarily suspended because another user has
the record and may update it. Do you want to read the record
anyway?

Some problems with this message:

« It does not identify the record, and the identity of the record might
affect a person’s decision.
The message does not state either the consequences of reading the
record anyway, or the consequences of saying no. The conse-
quences of reading the record anyway are implied indirectly (if the
other user updates it, this user will not see the “latest” version).
But if this user says no, will the program wait until the other user
is through with the record? If so, how long? (Could the user
change a “no” to a “yes” later?) If the program does not wait,
what does it do?

IBM SYST J @ VOL 21 & NO 4 e 1982




o The message does not tell how to give an answer. All of a
program’s go-ahead messages should follow the same practice on
({3} [P I} 6 69 to. . 6N

this point. They might include “‘y’ or ‘n’” or “‘y .5 n
to...”

Requests to choose among alternatives

Listing alternatives shows people what is possible. The program
analyzes a situation into its practical components for people and
directs their attention to them. A program might give a choice among
alternative actions the program can take, or alternative options that
govern the requested processing, or alternative corrections of errone-
ous input, or alternative interpretations of ambiguous information.
People should be able to reject all the stated alternatives, possibly in
favor of another alternative, which they can specify.

In all of these situations, people need to know

What is being done, or has already been done?

Among what alternatives are people being given a choice?
Why are they being given a choice?

What are the consequences of each alternative?

What are the consequences of rejecting them all?

How do people signify their answer?

Let us look at an example of a request to choose among alternatives:

Choose the routine you want:

List project titles

Delete a project

Modify a project title

Resequence projects

Quit

Type a letter (), d, m, r, or q), then press ENTER.

The message has a headline that gives the significance of the list as
routines from which to choose. The message ends with a recapitula-
tion of what is to be done; it translates ‘“choose the routine” into
precise how-to instructions. (Note that the instructions are not
“Enter a letter”; “enter” is our jargon for “press the ENTER key.”
This may confuse the novice.) Alternative Q is a “none of the above,”

which efficiently lets people reject all of the “positive” alternatives.

This message leaves to the context and to inference the answers to
“What is being done?”” and “Why are people being given a choice?”
And we might say it leaves “to faith” the questions about conse-
quences. (The consequences do not seem to be harmful. However,
users might wonder whether there is any backing out from the choice
to delete, or modify, or resequence. Of course, there should be.)

IBM SYST J & VOL 21 & NO 4 & 1982

choosing
among
alternatives




problems
of syntax

Requests for missing information

The program may not understand the input well enough to ask for a
go-ahead, such as

Should | send the report to Jones?

or to give a choice among alternatives, such as

Do | send thé report to Jones, Smith, or Williams?

Yet it may be able to describe the missing information it needs:
To whom should | send the report?

When the program asks for missing information, people need to
know

What is being done, or has already been done?

What information are people being asked to give?

What will happen if they give it, and what will happen if they do
not?

How do they give it?

Because people may be unable, or unwilling, to give information, they
should always have the opportunity not to give it. The consequences
of not giving it might be for the program to drop the transaction, to
make do without the information, or to provide a default. Or, perhaps
people can query the program for possible answers (in this case, the
program might have requested a choice among alternatives in the
first place).

Requests for correction or clarification of input

These are out-and-out “error messages.” They should be issued only
as a last resort. If a program can confidently correct or clarify the
input, then no message of this type is needed. Or, with less confidence,
the program might ask for a go-ahead. Or, it might give a choice
among two or three alternative corrections or clarifications it can
identify.

But sometimes the program does not understand the meaning of the
input well enough to interpret it confidently. It cannot even confi-
dently phrase its difficulty as a request for missing information. The
program’s only recourse is to discuss syntax or other conventions of
how people give input. Programmers do not usually think of this as a
last resort. They are comfortable with syntax; it is the way they view a
large part of their professional world.

But nonprogrammers are often uncomfortable with syntax, even the
syntax of their native language. They are impatient, for example,
with the explanation that in the sentence, “The audience applauded
the pianist and I,” the pronoun should be “me,” not “1,”” because the
verb takes a pronoun in the accusative case, not in the nominative.

IBM SYST J e VOL 21 ® NO 4 e 1982




If possible, phrase messages in terms of meaning rather than in terms
of syntax. For example, we enter “display,” thinking the computer
will display the file we have just been working on. Here the program
asks for correction in terms of syntax:

Missing operand in the DISPLAY command; add the name of the
file.

The program talks of syntax even though it seems to “understand”
what is going on and could have asked more naturally, in terms of
meaning:

What file do you want to display?

This is not an error message! It is friendlier because it does not
suggest that we failed to supply an operand.

As much as anything, I am recommending that we issue fewer error
messages, and instead issue messages that request a go-ahead, or give
a choice among alternatives, or ask for missing information.

But when none of those choices is possible, and the program must ask
for correction or clarification of input, people need to know

What is being done, or has already been done?

What is wrong with, or unclear about, the input?
What will happen if people do not correct or clarify it?
How do they correct or clarify it?

A particular problem in writing this type of message seems to be
deciding how explicit to be. For example:

COMPARE is not processed, because record 101 does not have the
same number of characters as record 247. Make the number of
characters equal.

Probably anyone could infer the corrective action from the explana-
tion, or the explanation from the corrective action. In fact, if the
results of a comparison are usually displayed, people can probably
infer from getting the message, with no display, that no comparison
was done. Therefore, how about

The number of characters inrecord 101 is unequal to the number in
record 247.

or

Make record 101 and record 247 have the same number of
characters.

The first of these is negative. People process positive sentences
significantly faster than they process negative sentences.” Thus, the
second version may be the better choice.

IBM SYST J o VOL 21 e NO 4 » 1982

fewer
error
messages




Ideally, the program should identify the precise one thing wrong with,
or unclear about, the input. Having identified one error, the program
can issue a specific message.

When it cannot possibly identify only one error, the message should
state each possibility (so long as there are no more than three) and
clearly associate each possible error with its corresponding corrective
action. (Why three? I cannot prove what the limit should be, but even
five possible causes seem to me to be excessive in a message. When
the number of possibilities exceeds three, it seems to me to be time not
just to write the message differently, but to redesign the program.)

Summary of how to write messages

To determine what information to put in a message in a given
situation, we first analyze what things people will need to know, then
we determine whether they already know or can learn those things
from the context. If not, the message must provide them, either
explicitly or implicitly.

In deciding whether people can learn from the context or by inference
from the message, we must respect novices as well as people familiar
with our program. Novices do not get the same meanings from a
context as experts do, nor do they infer as readily.

Playact to evaluate messages for usability before cod-
ing

After goals are set and messages written, we are ready to evaluate
messages before we finish designing the program or system and begin
coding. We would like to spot weaknesses in messages early enough to
keep them out of the program in the first place.

Evaluating messages for usability is not the same as evaluating them
for program function. Rather, it is to determine whether each
message is relevant, specific, timely, and helpful. All of these
qualities are relative to the people who receive a message and to the
context in which they receive it. We cannot reliably evaluate
messages for usability unless we consider the following: Who is the
person receiving them—how experienced? how familiar with termi-
nology? what reading ability? What is the person trying to do? How
does the person understand the situation?

Before we start coding we are primarily interested in

What messages are going to be sent? Are they the right messages?
Will users need additional ones?

Do messages give the right information? Are they specific
enough?

IBM SYST J e VOL 21 ¢ NO 4 e 1982




To evaluate at this stage, we are going to have to rely a lot on
playacting. We can playact entirely from a script, like actors sitting
around and reading their parts at the first rehearsal. Or we can build
a prototype of the program to make playacting a bit more realistic, as
when the actors practice scenes on stage without having the script in
their hands any longer.

Playacting from a script is not new—we have scenarios and walk-
throughs. We can even have someone ‘“play the program™ and
interact with someone else playing the user. This method is cheaper
than building a prototype and can be very effective. We should do it,
whatever else we do.

If we build a prototype or a driver, we can simulate program reactions
to anticipated human input (so no one has to “play the program”).

You should seriously consider finding people like those you expect
will use the program and having them “use” the prototype. If real
users might have big surprises for you, wouldn’t you rather be
surprised while you are designing the program than after you have
worked hard to get the program working?

It may be easier to test a working program than to test a model, but it
is harder to fix bad things in a working program than it is to fix them
in a model.

Human factors departments have the facilities for testing prototypes.
For one project 1 worked on, the human factors department in San
Jose evaluated competitive prototypes. They hired representative

people through a local employment agency and brought them in to
participate in carefully controlled experiments.

Edit the messages for appropriate language

Editing messages is not the same as testing them for usability,
although a sensitive, empathetic editor who is also a computer user
will see many ways to improve messages to make the program easier
to use. But an editor who is not intimately familiar with the use of a
program cannot adequately judge, for example, whether message and
context together meet the information needs of both novices and
experts. To make that judgment, the editor must know a lot about the
context. I have edited many messages in my time, and I know how
frustrating it is to try to imagine contexts without adequate informa-
tion.

But an editor can certainly check messages on the following points (in
approximate order of importance) and correct messages as neces-
sary:

IBM SYST J @ VOL 2] @ NO 4 = [982

playacting
in use

editing
points
to check

447




Are messages well written?

Is the terminology accessible to the intended audience?
Is standard conversational language used?

Are messages consistent?

Is punctuation standard?

Good writing. Of course, messages should be well-written—as any-
thing should be that people will read. An editor typically finds
numerous ways to shorten writing, but not for the sake of making it
shorter, rather to make it clearer and easier to read. For that reason,
the editor may very well want to lengthen messages that have been
over-shortened by excessive use of such devices as abbreviation,
contraction, symbols, and omission of small but useful words. These
devices seldom improve communication; they are shorthand for the
program or programmer’s convenience.

Vocabulary that is familiar. The goal of editing messages for
terminology is primarily to weed out technical terms and jargon that
the users of the program probably will not understand (and should
not be expected to). An editor is usually more sensitive to intrusive
language than a programmer is, but frequently less sensitive than the
real user. For this reason, editing cannot replace testing with repre-
sentative users, who will have valuable comments about how mes-
sages affect them.

Standard conversational language. This is the language we use when
we talk with a banker about a loan, or to a teacher about a child’s
progress in school. It is a respectful way of talking, though not stuffy.
We say, or imply, “you” in referring to the person we are addressing

(second person). We speak in the present tense predominantly. (We
also say “please” and “thank you” and refer to ourselves as “1.7'%)

Consistent messages. The messages a person sees in performing a set
of related tasks should be consistent as a group. People expect certain
things to be like other things they have experienced. Everyone on a
project should agree on conventions beforehand and follow them in all
messages they write, even though editing must be done later to ensure
consistency. The order of parts in a message should generally be the
same in all messages of that type. Exceptions must serve the higher
goal of greater clarity or naturalness in particular messages. If

messages are to have labels on each part (“status,” “error,” “action,”
or whatever), either all should have them or none should have them.

Standard punctuation. Standard punctuation is the punctuation used
in business letters and professional journals. Statements end with a
period, and questions end with a question mark. Dashes and semico-
lons are used sparingly. These practices are appropriate for mes-
sages.

[BM SYST J o, VOL 21 ¢ NO 4 g 1982




Design the computer program or system to produce the
messages

After you know your goals and have messages for the computer to
produce, you will not get far with coding until you answer some
technical questions:

How will you provide multiple levels of detail?

How will you let people ask for more information?

How will you enable people to correct input, rather than resay it
all?

To what different destinations will you send related messages, and
how will you sort them out?

What parts of the program or system will send messages, and how
will it know enough about the user to send the right ones?

How will you construct messages that contain variable informa-
tion?

How can you monitor whether you are reaching your goals?

Your logic should practically design itself as you answer these
questions. From my discussions with system programmers I can offer
the following suggestions:

e Centralize and put outward the code that talks to people.
¢ Plan for usability improvement.
Put outward the code that talks to people

Program modules buried deep within a series of calls have little
chance of issuing consistently good messages. These modules do not
know what the human “out there” is trying to do. They simply serve
the abstract needs of higher-level modules.

A person says to the computer,

send pmreport tom

A superior module asks an inferior: “Is this request syntactically
correct?”” The inferior module discovers that it is not, but this is all it
knows. If it is responsible for giving the person the bad news, it can
only say something like

Incorrect syntax. ‘“‘tom’’ is an invalid operand.

Only the superior module, in touch with the person’s situation, can
interpret the abstract internal event (“syntax error’) in a way
appropriate to that situation. For example, the module can try
variations that make sense:

“Send pmreport to m’’ makes sense, but no m exists.
“Send pmreport to tom’’ makes sense, and tom exists.

The module can perhaps issue the go-ahead message:

IBM SYST J » VOL 21 ® NO 4 e 1982




usability
testing

Do you mean, ‘“‘send pmreport to tom’’?

My point is that the part of the program in the best position to know
the person (to know what is “going on outside””) must do the
communicating with the person. I do not mean that it should act as a
mere switchboard, routing messages that originate elsewhere. This
part of the program must relate events inside the program to events
outside. It must make probable assumptions about what the person is
doing and issue messages accordingly. It cannot do these things if it is
buried inside. It must be outward.

Plan for usability improvement

One way to pinpoint weak human aspects of a program and its
messages is to monitor what happens during interactions between
people and program. One can create an audit trail of messages that
indicate when people seem to be having a hard time. This log will
show

When the program asks for a go-ahead or gives a choice among
alternatives because of incomplete or ambiguous input.

When the program asks for missing information because of
incomplete input.

When the program’s last resort is to ask for correction or clarifica-
tion of input.

An auditor probably needs more information than just a record of
what people and program say to each other. Some information (such
as the time of occurrence) might be appended to each record saved,
but other information might call for messages written especially for
the auditor. These messages might include a profile of the person
{(how much experience?), a sketch of the system (its load, the mix of
applications), and a summary of how much time the computer and
the person are taking to interact.

Test the messages along with the running code

Testing a working program or system for usability is different from
testing it for function. To test function, the tester “exercises the
code.” The most efficient way to do that is to understand the code and
set up artificial test cases that anticipate what the code does. This is
done from the point of view of the code.

Usability testing has goals different from function testing, and must
be done accordingly. Rather than exercise the code, the tester must
either assume the user’s point of view and use the program as a tool to
do realistic tasks, or observe representative people using the pro-
gram.

Testing the usability of a working program should be less imaginary
than testing the design, even if testing is done by programmers who

IBM SYST J @ VOL 21 @ NO 4 o 1982




playact at being representative users. The program is really there. It
forces playacting to be more disciplined than it might be when the
script is all on paper. Nevertheless, real representative users will give
you a fairer test.

Consider automobile testing. The mechanics may not even take a car
out of the garage for much of the testing, and when they drive it for
“road-handling characteristics,” they look for details that most
drivers are never aware of. Mechanics, of course, have their own cars,
like other people. They leave their overalls at the garage when they
drive home. To some extent, mechanics can see a car as nonmechan-
ics see it. But real nonmechanics (teachers, clerks, farmers, musi-
cians) may be able to say more dependably whether or not a car is
easy to drive. They do not have to overcome the disadvantage of
knowing too much about automobiles.

Summary

I would now like to summarizé briefly what has been discussed. |
began by stating that one cannot produce good messages by just
letting them grow like weeds during program development, then
rewording them after the fact to make them read well. My experience
and reflection have convinced me that, to create messages that work
for their intended readers, we must do a number of things:

Set human goals for messages. We should first commit ourselves to
certain goals. A major goal is to be tolerant of “user errors.” We have
to decide how much error-correction the program will do. By
anticipating the kinds of mistakes humans will make, we can identify
the messages needed to account for those mistakes, as well as for
error-free operation.

Apply psychology in writing messages. We have an idea how people
think and feel around computers. We ought to provide messages that
match their expectations, that help them fit the pieces together the
first time they read the messages, and that put them at ease. First
decide what meaning to convey, then select the information to convey
that meaning, and choose the language to present it.

Write messages for the audience and the situation. People want
messages to suit their situation. To determine what information to
put in a message in each situation, first analyze what things people
will need to know, then determine whether they already know or can
learn those things from the context. If not, the message must provide
them, either explicitly or implicitly.

Playact to evaluate the messages for usability. We should evaluate
messages for usability before coding begins to avoid big surprises
later, when it is harder to repair things. We can either “play the

IBM SYST J ¢ VOL 21 ® NO 4 » 1982 DEAN




program’ or have people who represent real users interact with a
prototype while we observe them. This exercise in imagination is a
must.

Edit the messages for appropriate language. Wording of messages is
secondary to the point they make and to the information that is
selected to make the point. But the language of messages must be
edited for appropriate language: good writing, familiar terminology,
standard conversational English, similarity among messages of the
same type, standard punctuation.

Design the computer program or system to produce the messages.
With messages written and evaluated, we can design the program or
system to produce them and avoid the trap of compromising human
requirements for the sake of program convenience. Perhaps the more
challenging problems of computer science today lie not in inventing
new function, but in making existing function easier to use.

Test the messages along with the running code. Messages should be

evaluated for usability again after the program or system is working.
People actually use it in realistic situations and observe what’s what.

ACKNOWLEDGMENTS

Several people have helped me think about and develop this essay.
One of them is Kevin Arnold, to whom I am grateful for suggesting
that 1 ask, “What messages should a program send in the first
place?” Jim Benjamin, Steve Uhlir, and Pat Wilson are system
programmers who made many technical suggestions. Mr. Uhlir also
gave me excellent editorial advice. The following people made useful
comments on an early version of the essay: Terry Allard, Dudley

Dinshaw, George Heigho, Phyllis Kaiser, Kris Malnarick, Edward
Ort, James Overholt, Flo Pessin, Carol Schira, Bill Sprague, Doris
Stoessel, Jim Vreeland, and Frank Waters.

CITED REFERENCES AND NOTE

1. T. Gilb and G. Weinberg, Humanized Input: Techniques for Reliable Keyed
Input, Winthrop Publishers, Cambridge, MA (1977).

. P.J. Hayes, J. E. Ball, and R. Reddy, “Breaking the man-machine communication
barrier,” Computer 14, No. 3, 19-30 (March 1981).

. Gilb and Weinberg, op cit.

. M. Dean, “Using experimental psychology in technical writing,” Proceedings,
28th International Technical Communication Conference, Society for Technical
Communication, Pittsburgh, PA (May 1981), pp. E14-17. Also available as a
Technical Report, TR 03.133, IBM Corporation, Santa Teresa Laboratory, San
Jose, CA 95150 (March 1981).

. E. D. Hirsch, Jr., The Philosophy of Composition, The University of Chicago
Press, Chicago and London (1977). I discovered this fascinating book after I wrote
the paper cited above. Hirsch helped me understand better how we use our
short-term memory (and our long-term memory) when we read. His chapter on
“The Psychological Bases of Readability” interprets some of the findings of G. A.
Miller, published in The Psychology of Communication, Penguin, Baltimore
(1967).

IBM SYST J & VOL 21 @ NO 4 & 1982




. L. S. Chavarria, “Improving the friendliness of technical manuals,” Proceedings,
29th International Technical Communication Conference, Society for Technical
Communication, Boston (May 1982), pp. W26-28.

. Gilb and Weinberg, op cit.

. J. Martin, Design of Man-Computer Dialogues, Prentice-Hall, Inc., Englewood
Cliffs, NJ (1973).

. From a workshop by W. E. Moody, “How Humans Read and Understand:
Psychology Theory and Writing,” at the Society for Technical Communication’s
28th International Technical Communication Conference, Pittsburgh, PA (May
1981).

. When I attended a usability symposium in 1981, I was told that Professor A.
Chapanis, Director of the Communications Research Laboratory at The Johns
Hopkins University, holds that people appreciate “please” and “thank you” in
computer messages. “I” may smack too much of anthropomorphism.

The author is located at the IBM General Products Division, Santa
Teresa Laboratory, P.O. Box 50020, San Jose, CA 95150.

Reprint Order No. G321-5175.

IBM SYST J & VOL 21 @ NO 4 » 1982




