
This paper discusses an experimental system being developed to
support ofice automation. The emphasis of the paper is on a
technology that allows people to automate their ofice and business
activities. Specifically, using forms as the interface, the authors
propose a powerful data manipulation and restructuring facility
that not only allows users to extract and manipulate data in the
forms, but can be used to interface between new and existing
applications as well.

Since business and ofice procedures are not discrete activities, but a
structured sequence of activities, a means to define and execute
procedures is required. Such a means is described in this paper along
with its model and an example of its application.

OPAS: An office procedure automation system
by V. Y. Lum, D. M. Choy, and N. C. Shu

Progress in office automation has been stimulated by the desire to
increase productivity and by advances in technology. Although office
automation is still in an early stage of development, some commercial
products have become available, and many users have had some
experience with them. However, today’s products are mainly tools for
office mechanization and not systems for automation. Such is the
case for electronic mail, word processors, and calendar manage-
ment.’-’

Office automation requires more than just these tools. This fact has
been recognized by many people and has been discussed in many
places.”” The development of a system that truly automates the
office and its business procedures requires additional facilities signifi-
cantly beyond the kind just mentioned. To see what is required, let us
consider what tasks are to be done in the office environment.

In the office people prepare documents and fill out forms of different
kinds. They file and retrieve them as needed. Documents and other

0 Copyright 1982 by International Business Machines Corporation. Copying in printed
form for private use is permitted without payment of royalty provided that (I) each
reproduction is done without alteration and (2) the Journal reference and IBM
copyright notice are included on the first page. The title and abstract, but no other
portions, of this paper may be copied or distributed royalty free without further
permission by computer-based and other information-service systems. Permission to
republish any other portion of this paper must be obtained from the Editor.

IBM SYST J 0 VOL 21 0 NO 3 1982 LUM, CHOY. AND SHU 321

similar items are also sent to different persons and places. However,
these activities are but some of the more visible tasks performed in the
office environment. For example, after a form, such as a travel
expense account form, has been filled out and properly signed, it
generally goes to the accounting department of the organization.
Here the personnel will scrutinize the data to see if the arithmetic is
correct, if the signatures are in the right places, if the expenses fit the
policies of the organization, if the advances have been accounted for,
and so on. After being scrutinized, the data are entered into a ledger
or passed on for further processing. Obviously, processing forms
constitutes one of the most frequent and time-consuming aspects of
office work. It would be very valuable to automate this rather
mechanical activity.

In some organizations, these tasks may have been automated by
writing special programs to process them. However, in most of them,
these tasks are manually checked by office personnel. It is clear that
some kind of processing capability would be needed if one were to
automate tasks of this kind. Further, as indicated in this example,
there is in fact a procedure related to a particular business function,
perhaps unique in each organization, that is executed over and over
again. Although not all office procedures can be automated, many of
the well-structured sequences of activities are. Baumann12 discussed
separating procedures into mechanizable units, whereas EllisI3 and
Cook14 proposed models that may be used to capture office proce-
dures. Both of these works are studies directed toward automation.
However, their emphasis is on modeling, and they do not provide us
with a facility for defining office procedures and a system that is
capable of automatically executing these procedures. Although some
svstems aimed at office automation have been renorted in the

"

that allows electronic mail, word processing, data processing, and
procedure specification and execution.

This paper discusses an experimental system named OPAS being built
at IBM Research in San Jose to support procedure automation in an
office environment. In this system, we have decided to take a
forms-oriented approach. First, we concur with others'' that forms
provide a natural and effective interface between an office worker
and data. Second, it has been found that much of the work in offices is
involved with forms in one way or another. In this paper, we shall
extend the meaning of form by considering textual documents as
forms with long data fields.

Transferring information from one or more forms to another is a
common practice in an office environment. The extraction of infor-
mation from forms for various purposes such as report generation is
another common activity. Scrutinizing data given in forms to ensure
that they fit certain criteria is an exercise practiced in almost all
organizations. To handle these kinds of activities, one requires the

328 LUM. CHOY, AND S H U IBM SYST J VOL 21 NO 3 1982

the forms are hierarchical in nature; their processing often involves
various degrees of data restructuring. Although one can write
customized programs to do these tasks, the facilities available today

1 either require highly developed programming skills or do not handle
hierarchical data structures. In the following section, we propose a
high-level forms-processing specification on hierarchical data aimed
to reduce the necessary training and programming details. I

l In addition to the forms-processing specification, we need a means to
1 specify office and business procedures and to connect the different
1 activities together as a meaningful sequence of events. For example,
1 consider the case in which a form is sent to a manager for review

before it is processed by a person in the accounting department. This
~ same form is further processed by another person in another depart-

ment, etc. Each of these steps must be manually activated if there is
no means to link the processes together. In the third section we
discuss how a procedure can be specified and executed so that
business functions can be automatically carried out according to the
specifications. Together, these two sections of the paper describe the
key concepts underlying our system that are different from those of a
conventional office system. In essence, OPAS is an office system that

execution capabilities.

1

I provides forms processing along with procedure specification and

We then discuss the other components required to work with OPAS to
form an integrated office automation system and later discuss the
considerations in building such a system. Finally, we present the
conclusions that are drawn from this work.

1 Specification for processing data

1 A single form that is one of a group of forms of the same type, all
, having the same heading, is called a form instance. Some of the

activities in an office involve the handling of a form instance in its
entirety. Examples of these activities include filling a form with data
and the filing, retrieving, sending, or receiving of a form. A display
form (i.e., a replica of a conventional paper form) is a convenient
object for these kinds of activities. However, when we heed to specify
processing that requires the interrogation or extraction of some parts
of a form instance, the specification is difficult to represent in a
display form because relationships among fields of a display form are
not obvious or well-defined. It is also difficult to refer to fields in a
display form since they are not named and sometimes contain
information that is contractual in nature. Thus, in order to provide a
structured, machine-manipulatable representation, we base the spec-
ification of forms processing on the concept of an abstract form,
which is an abstraction of a display form with well-defined relation-
ships among fields.

IBM SYST J 0 VOL 21 NO 3 1982 LUM. CHOY. AND SHU 329

Figure 2 Hierarchy graph for TEA form

ITINERARY 1 1 EXPENSES

Figure 3 TEA abstract form heading

particular form; every form must have a name. Components of a form
can be any combination of fields and groups. Afield is the smallest
unit of data. A group is a sequence of one or more fields and/or
subordinate groups. Groups can be either repeating or nonrepeating.
A nonrepeating group is a convenient way to refer to a collection of
consecutive fields (e.g., DATE as a nonrepeating group over MONTH,
DAY, YEAR). Repeating groups exhibit parent-child relationships and
can be nested; e.g., a repeating group can have, as its subordinate
component, another repeating group. Thus, levels of hierarchy in a
form are limited only by implementation restrictions. In our imple-
mentation, a flat table is simply a one-level form. As shown in Figure
3, the top line of the form heading contains the form name (TEA).
Component names are given as column headings. Repeating group
names are enclosed by parentheses (e.g., EXPENSES, ITINERARY).
Subordinate component names appear under the name of the parent
component.

Since the discussion of the specification for processing data is based
on the concept of an abstract form, we shall use “form” to mean
“abstract form” in the remainder of this section.

Forms processing specification

We are now ready to discuss the data manipulation language in our
system, which is referred to as the forms processing specification, or
FORMAL (from Forms ORiented MAnipulation Language). Each
process takes one or more forms as input and produces one form as
normal output (where the input and output sets are not necessarily
disjoint).

Process specification makes use of the form headings and adds other
constructs to complete the specification of the needed information for

IBM SYST J VOL 21 NO 3 1982 LUM, CHOY, AND SHU .

b
Figure 5 Example of arithmetic and case expressions

TEMDJUST: INSERT INTO TEAADJ

The form heading of the output form (TEA-CHK) follows the title line
and ends with the double line. Data descriptions and process qualifi-
cations are specified under the form heading. As shown in Figure 4,
NAME, DEPT, MANAGER, and DATE are fields of character type,

~ whereas MEAL and TOTAL are fields of numeric type. The length of a
field is enclosed in parentheses.

1
When possible and reasonable, information pertaining to data

~ descriptions can either be derived from input sources or set to default I values. The details of the description of the data will not be discussed
in this paper. Those readers who are interested can refer to Shu et

~ a1.20

Process qualifications in this case name the source input form, TEA,
and specified conditions to be applied, namely (MEALS > 35) OR

1 (MANAGER = NULL) OR (EMPLOYEE = NULL). The purpose of the
process qualifications is to provide more specific descriptions of the

i form process so that an executable program can be compiled to carry
out the desired process. Process qualifications are explained in detail
in Reference 20. In this paper, we shall discuss only SOURCE and
CONDITION. SOURCE specifies where input data are coming from,
and CONDITION specifies the constraints to be applied for processing
the form instances from the input form(s).

Values for various fields in the output form can come from different
sources. In addition to specifying the form name as SOURCE, one can

Definition of the SOURCE can also be expressions involving arith-
metic operations, built-in functions (COUNT, SUM, etc.), set expres-
sions, user functions, or case expressions. Figure 5 shows that TOTAL
in TEA-ADJ is computed as TEA.TOTAL + 1.00, and RECEIVER-OF
-NOTICE is assigned a value according to footnote tl>. Footnote
< l> , in turn, specifies a conditional assignment. If the value of
TEA.TOTAL is found to be less than 100, TEA.NAME will be assigned to

use <<*,, to indicate that the field value is to be supplied on line.

IBM SYST J 0 VOL 21 NO 3 1982 LUM, CHOY, AND SHU 33

RECEIVER-OF-NOTICE. Otherwise, MANAGER will be the source of
assignment.

CONDITION can include Boolean expressions, as in the example of
Figure 4. Components referenced can be in more than one form, with
the appropriate notation as in the SOURCE qualification. They can
also be in more than one level along a hierarchical path. Further, for
convenience, CONDITIONS can be stated under particular columns (to
which the specified condition will apply).

When data are extracted from source(s) or new fields are created and
placed in the output, the resulting form structure of the output is
often different from the structure(s) of the source form(s). In this
case, restructuring of data is required. There is no need, however, for
the user to explicitly specify the data-restructuring aspects of the
forms processing. Restructuring is implied by the differences in the
input and output form headings. For example, from the form heading
of TEA-CHK (Figure 4) and that of TEA (Figure 3) a “projection” is
implied.

It is worthwhile to note that each form process normally produces one
output. As an option, one can request the deposition of “failed”
instances to a designated file specified with CONDITION. The net
effect is the creation of an “ELSE’ form in addition to the normal
output. We can see this effect by exercising this option in the example
of Figure 4. In this process, each input (TEA) instance is examined to
see whether the specified conditions are met. If so (i.e., when
MEAL exceeds 35 or when either the EMPLOYEE or MANAGER field
has a null value), values from the relevant fields in that particular
TEA instance will be extracted and restructured according to the form
heading of the output TEA-CHK form. If the conditions are not met,
the failed TEA instance will be put in TEA1 (which has the same
structure as TEA itself).

Integration of word processing and data processing

In an office environment, word processing and report generation play
an important role. The normal mode of word processing, i.e., generat-
ing a text document, will not be discussed here because i t is handled
by the normal editors of the supporting software. In the case where
variable data are mixed with text, we will handle it with the
forms-processing specification using the special operation COMPOSE.
This process is one form of the integration of word processing and
data processing that we discuss.

In essence, COMPOSE is an operation that allows incorporation of data
(from a data form) into an output text form according to what is
shown in a display form. Similar to INSERT, UPDATE, and DELETE,
where the form name in the form heading denotes both the primary
source (where the “old” instances are) and the output form (where

334 LUM, CHOY. AND S H U IBM SYST .I VOL 21 NO 3 1982

Z861 e E ON 1Z 1 0 A f LShS W e 1 n H S aNV ‘ h O H 3 ‘ W n l 9EE

as an elementary operation that is normally handled by a single
human or machine processor at one place to perform a homogeneous
function that has a readily identifiable objective. Examples of

1 Activity are creation or revision of a memo, filling in a form,
processing a form, printing a document, sending an item in the mail,
filing or retrieving a document. The name of an Activity is often the
action to be taken or the function to be performed.

A Procedure is defined as a set of structurally related Activities to be
executed in a certain manner so as to accomplish a particular office
function. Within a Procedure, the Activities may be executed in
parallel, in sequence, and/or according to certain specified condi-
tions. In general, a Procedure may be described by a directed graph
depicting the flow of control and the flow of information. A simple
Procedure may contain only a few Activities to form an aggregate
action that is frequently performed. A degenerated Procedure may
contain only a single Activity. However, an Activity may in turn call
for the execution of another Procedure. To be useful, a Procedure
often contains a set of heterogeneous Activities, thus implying that
Procedure Automation is more appropriate for an integrated office
system, which allows the execution of different functions in a
coherent manner. Examples of Procedure are processing of a travel
expense account, processing of a purchase request, and processing of
an employment application. A simple Procedure may include the
editing of a memo, filing it into a data base, sending copies to
different persons, and printing a hard copy.

I
Like forms, an Activity or a Procedure has an owner. In most cases,
the owner is the creator of the Activity or the Procedure. For
system-supplied Activities or Procedures, the owner is a preassigned
system administrator.

An invocation or execution of a Procedure is called a Job, and the
execution of an Activity is called a Task. There may be multiple Jobs
or Tasks in execution at the same time corresponding to the same
Procedure or Activity. Jobs are independent of one another except,
perhaps, in contending for system/user resources. There is no direct
communication between two Jobs. However, a Job may indirectly be
involved in the external triggering conditions defined for another
Job.

Procedure specification

The specification of an office procedure is via a predefined tabular
form called the Procedure Specification Form (PSF). Figure 8 shows
an example of a PSF. Within a PSF, every row describes an Activity to
be executed. The rows are divided into disjoint sets, or Groups, of
consecutive rows. Each Group is identified by the “Group ID,” or
identifier. Within a Group, all Activities are executed sequentially in

IBM SYST J VOL 21 NO 3 1982 LUM. CHOY, AND SHU 331

The “parameters” field contains parameters or execution options
accompanying the “action.” They are passed to the Task at execution
time. “Input forms” and “output forms” indicate the input and
output of the Activity. The name of a form may be Job- or
Task-dependent and therefore is not necessarily a constant. The
“error-handling’’ field allows the user to specify an Activity to be
executed (or a Job execution command to be issued) and a user/Job
to be notified in case of a specific error. The user or the Job to be
notified may be a variable, such as the initiator of the original Job.

Other fields that may also be included in the PSF are location/station
for the execution of the Activity, special resources required, execu-
tion priority, and user comment. It is anticipated that in most cases
the majority of the PSF entries may be left unfilled by the user, thus
allowing the default settings to be assumed.

To protect the use of private or controlled resources (usually but not
always forms), the owner of a resource may fill in an Authorization
Form (AF). An AF is shown in Figure 9. Each row in the AF represents
the granting of an authority. The granted authority is specified in the
“authority” field. It usually is an access right to a form, such as
READ, WRITE, COPY, DELETE, EXECUTE PROCEDURE, or OPEN MAIL
BOX. The “object” field specifies the resource to be controlled. It can
parametrically identify a set of objects, such as “MEMO BY SMITH
BETWEEN MAY 1 AND MAY 31, 1981.” The “user” field specifies the
users or Procedures to whom the authority is granted. This specifica-
tion can also be parametric, such as “ALL MANAGERS IN DEPT 123.”
The “constraint” field is optional. It allows the owner to restrict an

BETWEEN 8 AM AND NOON.” It also allows the owner to turn an
authorization on or off very quickly. Without authorization through
an AF, a resource is considered private and is not available to other
users. However, the parametric approach allows the owner to easily
grant an authority to all users and for all his resources, if he wants to.
The Authorization Form approach is based on the access control
mechanism described in Bamford and Choy.2’

Procedure execution

Once a Procedure is specified, it may be executed or it may be filed
away and retrieved later for modification and/or execution. A
number of operations are provided by the system to assist the user in
the execution of Procedures. One may invoke a Procedure, thereby
initiating a Job. The execution may not start immediately, depending
on the conditions required to execute its Activities and on the
availability of resources. One may terminate a Job before its execu-
tion is completed. However, the completed Tasks cannot be undone.
One may query the status of a Job and its Tasks. One may also
temporarily suspend the execution of a Job, change its execution
logic, and then resume the execution.

authorization, e.g., “EXPIRES DECEMBER 31, 1984” or “VALID

IBM SYST J VOL 21 NO 3 1982 LUM. CHOY, AND SHU

When a user queries the status of a Job, information about the Job is
returned in a form similar to the PSF, called a Job Status Form (JSF).
The JSF contains information concerning the Job and the correspond-
ing Procedure. It also contains the PSF (or a subset of the columns of
the PSF if some of the columns are access-protected) together with an
additional column showing the status of every Task within the Job,
and the queue or execution information for each Task if applicable.

When a Procedure is invoked, a Job is created, and it is associated
with a copy of the Procedure specification fixed at that time.
Subsequent changes to the PSF will not affect this Job regardless of
whether the execution of the Job has started. If, however, the
execution of the Job has started but has been suspended when the JSF
is displayed, any unexecuted and unskipped Activities in the Proce-
dure may be modified directly on the JSF. This modification will
change the logic of the Job when its execution is resumed. However,
the changes are only limited to this Job and are not reflected in the
original Procedure, i.e., the original PSF. This provision provides a
facility for the user to handle exceptions to predefined Procedures.
Such flexibility is very important in the automation of office proce-
dures.

Alternatively, when a Job is suspended and none of its Activities/
Tasks is in execution (i.e., they are either completed, skipped, or not
yet executed), another way to handle an exception is to terminate the
Job and process it manually. This method is suitable for those who
normally execute predefined Procedures and are not familiar with
procedure specification.

Needless to say, for security reasons, not every user should be allowed
to suspend, terminate, or modify a Job. Such operations should be
guarded by the access control facility, which is essential in an
integrated office system. The same Authorization Form can be used
not only to protect the forms, Procedures, and control structures, but
also to protect the execution of Procedures.

Example

We have briefly described a method to automate office procedures.
We shall now illustrate with a simple example how office procedures
can be specified.

Let us assume that there are two (input) forms, PETTY CASH
ADVANCE (PCA) and TRAVEL EXPENSE ACCOUNT (TEA), used in the
organization to account for the advances and expenses with regard to
business trips. Suppose that the PCA form instances, after signatures
have been obtained and checked, are deposited into a file (data base)
named PCAI; those not having signatures are deposited into a file
named PCA-CHK. When the TEA form instances are received (signed
by the manager), the accounting department first checks for signa-

340 LUM. CHOY, AND SHU IBM SYST J VOL 21 NO 3 1982

Figure 10 Example of PCA and TEA processes

TRAVEL EXPENSES PROCESSING

Data entered must be filed. Without a data base management
system, users will be burdened with many of the tasks that are now
done by the data base management systems (e.g., access control,
filing and retrieval, etc.). Thus, a data base management system is
considered to be a fundamental need of any office automation system
including OPAS. However, not any data base system will satisfy the
need of an integrated office system.

The office data base system required by forms processing and
procedure automation may also support the other applications or
functions on the same office system. Such an application-independent
data base system is crucial for integration of word processing and
data processing. Besides filing and retrieving of forms and specifica-
tions, the data base should also have at least the following character-
istics:

Structured interface to handle forms and control records, as well

Query facility supporting content-search of data fields
Access control of specifications, forms, and fields
Support for long data fields for text, image, and voice data

as other documents

The subject of designing such a data base system is beyond the scope
of this paper. An appropriate office data base system component will
be used by OPAS.

Data filed in the data base system must be retrievable. It is expected
that users may wish to retrieve data in a way akin to their daily
practices. For example, one can easily see that an integration of the
key word and synonym approach in library science to the data base
query language approach would be appropriate. In this way, textual
documents can be searched quickly. The office data base system used
by OPAS has this capability.

Forms may be sent, received, routed, or distributed. Thus, a facility
for messages and electronic mail is needed. Our strategy is to use
existing office systems, e.g., PROFS (Professional Office ~ y s t e m) ~ . ~ ~ or
similar systems, to provide this support.

Other considerations

There are many other issues that are important for a procedure
automation system. We shall briefly discuss some of them now.

copy The term "copy" has different meanings. In one case, a copy is used
handling to refer to an exact image of the original, but it may or may not be

considered the same document as the original. This is the case in

344 LUM, CHOY. AND SHU IBM SYST J 0 VOL 21 NO 3 1982

Figure 14 Conceptual implementation of display form data entry and abstract
form processing into data base system

DATA

CHECKING
ENTRY & & RESTRUCTURING

DATA MANIPULATION

RESTRUCTURED

1

OFFICE DATA BASE

Access control on data is mainly handled by the data base manage-
ment system. The interface to the user is via the Authorization Form
discussed earlier. I n order to satisfy audit or tracking requirements,
all tasks executed on the system are logged with essential information
describing the event, such as user identification, document identifica-
tion, and timestamps.

It is generally recognized that an organization cannot afford to redo
all existing applications in order to fit into a new system. That is to
say, business automation must be realized in an evolutionary and not
a revolutionary manner.'' Our solution to this problem is to have
OPAS generate data that can be used directly as inputs to the existing
applications. Experience in the Data Restructuring System,23 for-
merly called EXPRESS or XPRS, has indicated that this approach is
viable.

Figure 14 shows the relationship among the display form, the
abstract form, the abstract form specification, and the data base

LUM, CHOY, AND SHU IBM SYST J VOL 21 NO 3 1982

system. As shown in the diagram, data that are entered will go
through the Display Form Editor and be deposited into the data base
system. When data manipulation or restructuring is needed, data will
be retrieved from the data base and processed by the code generated
from an abstract form specification.

Whereas a display form generally handles a small amount of data,
restructuring can involve a very large volume. For example, in order
to interface to an existing application, one may have to invert the
structure of a tree. Take the case of a file where information is kept
for all the parts ordered by the departments in an organization. In
this case, one simple structure is to have PART as the repeating group
in DEPARTMENT, which is at the root level. Now if we want to
interface to an application that has as an input a file of parts and their
departments (i.e., a file with DEPARTMENT as repeating group under
PART), one must go through the entire file of data. Efficiency is
therefore a major concern.

Form specification is generally believed to be done infrequently for a
given task. To gain processing efficiency, form specifications are
therefore compiled into customized executable code and stored in the
data base system. It will be invoked as needed.

Figure 15 shows a simplified architectural diagram of the system.
The functions of all the major components are obvious except,
perhaps, for the Supervisor. The Supervisor is the component that
interprets the specified procedures and executes them. It is also the
unit that must coordinate the different events as well as keep track of
the status of the different events. For example, it may be that one
person’s TEA has not finished processing when another one is submit-
ted. In this case, the Supervisor must set up both Jobs to run
independently. Moreover, a particular TEA may be only partially
finished and get dislodged in the middle of the procedure because of
an exception condition. In this case, if that particular TEA is modified,
one may or may not want to start the procedure from the beginning.

In addition, as we have mentioned, much information is needed for
control. Such information can be captured by the Supervisor because
it has the overall view of the processing being done. At least it must
provide information to the other components so that they can act
appropriately. The Supervisor should have considerable intelligence
if automation is to be achieved.

Other issues related to implementation are raised by the system’s
hardware configuration. It is expected that a local network tying a
host processor to intelligent and/or “dumb” workstations is the way
things will be in the future. For example, the user interface (as shown
in Figure 15) can be distributed over many workstations of various
kinds.

IBM SYST J VOL 21 NO 3 1982 LUM, CHOY, AND SHU

general
architecture

Figure 15 Simplified archi.
tecture of OPAS

341

Conclusion

In this paper, we have described an experimental integrated office
system with broad capability to be used for automating office tasks.
In particular, we have discussed two major aspects of the system,
namely abstract forms processing using the language FORMAL and
procedure specification and execution. Both of the specification
methods are at a high level. They are based on the familiar concept of
processing and handling forms.

However, a number of issues remain to be solved. For example, an
appropriate user interface for process/procedure specification is a
research topic, and even the measure of “goodness” of an interface is
lacking. In this system we have the compound effect of such
difficulties, because the system will have users with different levels of
skill, and they all expect the system to fill their needs. Although
conceptually we can think of the specifications as discussed, one
should note that a final user interface remains to be designed to work
with the proposed specification methods.

Although we have tried to make the procedure and process specifica-
tions easy for an office worker to use, the user still needs training in
order to be able to specify any complex process or procedure.
Whatever programming language and user interface one can come up
with, the ability to think logically is still required to specify or
program the processes or procedures. The use of Query-by-Example
(QBE)24.25 by nonprogrammers seems to indicate that a two-
dimensional and nonprocedural programming language has its mer-
its. Consequently, a user interface close to the method presented in
this paper may be a reasonable start.

One may wonder if the forms process and procedure specification
languages are sufficiently powerful to describe most, if not all, office
work. The answer to this question with respect to forms processing is
much easier than the answer on procedure specification. From use of
the Data Restructuring System,” we have learned that the data
manipulation and restructuring capability in that system is quite
sufficient to handle most of the processing needs. FORMAL has at
least the same power and therefore can be expected to do well.
However, there is no experience to guide us about the specification of
office procedures. To gain some experience, our approach is to build
an experimental system as proposed and let users in real office
environments use it in their daily activities.

At this time, we have the basic part of the office data base system
running and the whole data base system designed. The form design
component as mentioned above is implemented. Part of the form
processing compiler is operational. The procedure specification is in
progress. We can translate some sample data to the required formats.
We are investigating the integration of OPAS with an existing office
system, such as PROFS.

348 LUM. CHOY. AND SHU IBM SYST J VOL 21 NO 3 1982

ACKNOWLEDGMENT

The authors are grateful to have had the opportunity to discuss many
of the issues with their colleagues. In particular, the discussions with
F. C. Tung, C. Chang, J. L. Bennett, R. Haskin, and M. Zolliker have
been very helpful. The authors also thank management, specifically
A. Peled, E. D. Carlson, and J. Ma, for their support.

CITED REFERENCES
1. J. McQuillan and D. Walden, “Designing electronic mail systems that people will

use,” SIGOA Newsletter 1, No. 2, 5-6 (May 1980).
2. H. E. O’Kelly, “Electronic message system as a function in the integrated

electronic office,” Proceedings of the National Computer Conference 49, 499-
502 (1 980).

3. W. E. Ulrich, “Introduction to electronic mail,” Proceedings of the National
Computer Conference 49,485-488 (1980).

4. W. E. Ulrich, “Implementation considerations in electronic mail,” Proceedings of
the National Computer Conference 49,489492 (1980).

Systems Journal20, No. 3, 321-345 (1981).
6. M. Hammer et al., “A very high-level programming language for data processing

application,” Communications of the ACM 20, No. 1 I , 832-840 (November
1977).

7. M. Hammer and M. D. Zisman, “Design and implementation of office informa-
tion systems,” Proceedings of the N W Symposium on Automated Ofice
Systems (May 1979), pp. 13-23.

8. M. Hammer and J. S. Kunin, “Design principles of an office specification
language,” Proceedings of the National Computer Conference 49,541-548
(1980).

9. M. Hammer and M. Sirbu, “What is office automation?” 1980 Ofice Automa-
tion Conference Digest (March 1980), pp. 3 7 4 9 .

10. G. H. Sandewall et al., “Provisions for flexibility in the Linkoping Office
Information System,” Proceedings of the National Computer Conference
49,569-577 (1980).

1 1 . M. D. Zisman, “Office automation: Revolution or evolution?” Sloan Manage-
ment Review 19, No. 3, 1-16 (Spring 1978).

12. L. S. Baumann and R. D. Coop, “Automated workflow control: A key to office
productivity,” Proceedings of the National Computer Conference 49, 549-554
(1980).

i 13. C. A. Ellis, “Information control nets: A mathematical model of office informa-
tion flow,” Proceedings of the ACM Conference on Simulation. Modeling, and
Measurement of Computing Systems (August 1979). pp. 225-240.

1 14. C. L. Cook, “Streamlining office procedures-An analysis using the information
control net model,’’ Proceedings of the National Computer Conference 49,555-
566 (1 980).

1 15. S. P. deJong, “The System for Business Automation (SBA): A unified application
development system,” Proceedings of IFIP Congress 80 (1980). pp. 469-474.

16. D. Tsichritzis, “OFS: An integrated form management system,” Proceedings of
the Very Large Data Base Conference (October 1980). pp. 161-166.

17. D. Tsichritzis, Form Management, Technical Report CSRG-127, University of
Toronto, Toronto, Ontario, Canada (1980).

18. D. W. Embley, A Forms-Based Nonprocedural Programming System, Research
Report, University of Nebraska-Lincoln, Lincoln, N E (October 1980).

19. H. C. Lefkovitz et ai., “A status report on the activities of the CODASYL End
User Facilities Committee (EUFC),” February 1979, SIGMOD Record 10, Nos.
2 & 3 (issued August 1979).

20. N. C . Shu et al., Specification of Forms Processing and Business Procedures for
Ofice Automation. Research Report RJ3040, IBM Research Division, San Jose,

I 5. P. C. Gardner, Jr., “A system for the automated office environment,” IBM

,

I

I

IBM SYST J VOL 21 NO 3 1982 LUM. CHOY. AND SHU 349
1

CA 95193 (January 1981). (To appear in IEEE Transactions on Software

21. R. J. Bamford and D. M. Choy, “Access control for a shared data base,” IBM

22. IBM Professional Ojice System: User’s Guide, SH2k5.503, Program Number

23. Data Extraction, Processing and Restructuring System, Define and Convert

Technical Disclosure Bulletin 23, No. 4, 1638-1639 (September 1980).

5799-BEX, IBM Corporation; available through IBM branch offices.

Reference Manual, SH2C-2178, Program Number 5796-PLH, IBM C
tion; available through IBM branch offices.

A N P S Ojice Automation Conference (March 1980), pp. 249-260.

16, No. 4,324-343 (1977).

24. M. M. Zloof, “A language for office and business automation,” Proceedings of the

25. M. M. Zloof, “Query-by-Example: A data base language,” IBMSystems Journal

GENERAL REFERENCES

C. A. Ellis and G. J. Nutt, “Office information systems and computer science,” ACM
ComputingSurveys 12, No. 1.27-60 (March 1980).

G. H. Engel et al., “An office communications system,” IBM Systems Journal 18, No.
3,402431 (1979).

1. Ladd and D. Tsichritzis, “An office form flow model,” Proceedings o f the National
Computer Conference 49, 533-539 (1980).

N. C. Shu et al., “CONVERT: A high-level translation definition language for data
conversion,” Communications of the ACM 18, No. 10, 557-567 (October 1975).

A. Wohl, “A review of office automation,” Datamation 26, No. 2, 117-1 19 (February
1980).

M. D. Zisman, Representation, Specification, and Automation of Ojice Procedures.
Ph.D. dissertation, Wharton School, University of Pennsylvania, Philadelphia, PA
(1977).

laboratory, 5600 Cottle Road, San Jose, CA 95193; N . C. Shu is
located at the IBBM Scientijc Center, P.O. Box 45013, Los Angeles,
CA 90045.

Reprint Order No. (3321-5172.

350 LUM, CHOY, AND SHU IBM SYST J VOL 21 NO 3 1982

