This paper discusses an experimental system being developed to
support office automation. The emphasis of the paper is on a
technology that allows people to automate their office and business
activities. Specifically, using forms as the interface, the authors
propose a powerful data manipulation and restructuring facility
that not only allows users to extract and manipulate data in the
Jorms, but can be used to interface between new and existing
applications as well.

Since business and office procedures are not discrete activities, but a
structured sequence of activities, a means to define and execute
procedures is required. Such a means is described in this paper along
with its model and an example of its application.

OPAS: An office procedure automation system
by V. Y. Lum, D. M. Choy, and N. C. Shu

Progress in office automation has been stimulated by the desire to
increase productivity and by advances in technology. Although office
automation is still in an early stage of development, some commercial
products have become available, and many users have had some
experience with them. However, today’s products are mainly tools for
office mechanization and not systems for automation. Such is the
case flosr electronic mail, word processors, and calendar manage-
ment.

Office automation requires more than just these tools. This fact has
been recognized by many people and has been discussed in many
places.”"' The development of a system that truly automates the
office and its business procedures requires additional facilities signifi-
cantly beyond the kind just mentioned. To see what is required, let us
consider what tasks are to be done in the office environment.

In the office people prepare documents and fill out forms of different
kinds. They file and retrieve them as needed. Documents and other

© Copyright 1982 by International Business Machines Corporation. Copying in printed
form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM
copyright notice are included on the first page. The title and abstract, but no other
portions, of this paper may be copied or distributed royalty free without further
permission by computer-based and other information-service systems. Permission to
republish any other portion of this paper must be obtained from the Editor.

IBM SYST J VOL 2] ¢ NO 3 & 1982 LUM, CHOY, AND SHU

similar items are also sent to different persons and places. However,
these activities are but some of the more visible tasks performed in the
office environment. For example, after a form, such as a travel
expense account form, has been filled out and properly signed, it
generally goes to the accounting department of the organization.
Here the personnel will scrutinize the data to see if the arithmetic is
correct, if the signatures are in the right places, if the expenses fit the
policies of the organization, if the advances have been accounted for,
and so on. After being scrutinized, the data are entered into a ledger
or passed on for further processing. Obviously, processing forms
constitutes one of the most frequent and time-consuming aspects of
office work. It would be very valuable to automate this rather
mechanical activity.

In some organizations, these tasks may have been automated by
writing special programs to process them. However, in most of them,
these tasks are manually checked by office personnel. 1t is clear that
some kind of processing capability would be needed if one were to
automate tasks of this kind. Further, as indicated in this example,
there is in fact a procedure related to a particular business function,
perhaps unique in each organization, that is executed over and over
again. Although not all office procedures can be automated, many of
the well-structured sequences of activities are. Baumann'? discussed
separating procedures into mechanizable units, whereas Ellis” and
Cook™ proposed models that may be used to capture office proce-
dures. Both of these works are studies directed toward automation.
However, their emphasis is on modeling, and they do not provide us
with a facility for defining office procedures and a system that is
capable of automatically executing these procedures. Although some
systems aimed at office automation have been reported in the
literature,”"”"® no existing system has a set of integrated functions
that allows electronic mail, word processing, data processing, and
procedure specification and execution.

This paper discusses an experimental system named OPAS being built
at IBM Research in San Jose to support procedure automation in an
office environment. In this system, we have decided to take a
forms-oriented approach. First, we concur with others' that forms
provide a natural and effective interface between an office worker
and data. Second, it has been found that much of the work in offices is
involved with forms in one way or another. In this paper, we shall
extend the meaning of form by considering textual documents as
forms with long data fields.

Transferring information from one or more forms to another is a
common practice in an office environment. The extraction of infor-
mation from forms for various purposes such as report generation is
another common activity. Scrutinizing data given in forms to ensure
that they fit certain criteria is an exercise practiced in almost all
organizations. To handle these kinds of activities, one requires the

LUM, CHOY, AND SHU IBM SYST J @ VOL 21 @ NO 3 e 1982

means to specify the processing of data in the forms. Further, most of
the forms are hierarchical in nature; their processing often involves
various degrees of datd restructuring. Although one can write
customized programs to do these tasks, the facilities available today
either require highly developed programming skills or do not handle
hierarchical data structures. In the following section, we propose a
high-level forms-processing specification on hierarchical data aimed
to reduce the necessary training and programming details.

In addition to the forms-processing specification, we need a means to
specify office and business procedures and to connect the different
activities together as a meaningful sequence of events. For example,
consider the case in which a form is sent to a manager for review
before it is processed by a person in the accounting department. This
same form is further processed by another person in another depart—
ment, etc. Each of these steps must be manually activated if there is
no means to link the processes together. In the third section we
discuss how a procedure can be specified and executed so that
business functions can be automatically carried out according to the
specifications. Together, these two sections of the paper describe the
key concepts underlying our system that are different from those of a
conventional office system. In essence, OPAS is an office system that
provides forms processing along with procedure specification and
execution capabilities.

We then discuss the other components required to work with OPAS to
form an integrated office automation system and later discuss the
considerations in building such a system. Finally, we present the
conclusions that are drawn from this work.

Specification for processing data

A single form that is one of a group of forms of the same type, all
having the same heading, is called a form instance. Some of the
activities in an office involve the handling of a form instance in its
entirety. Examples of these activities include filling a form with data
and the filing, retrieving, sending, or receiving of a form. A display
form (i.e., a replica of a conventional paper form) is a convenient
object for these kinds of activities. However, when we need to specify
processing that requires the interrogation or extraction of some parts
of a form instance, the specification is difficult to represent in a
display form because relationships among fields of a display form are
not obvious or well-defined. It is also difficult to refer to fields in a
display form since they are not named and sometimes contain
information that is contractual in nature. Thus, in order to provide a
structured, machine-manipulatable representation, we base the spec-
ification of forms processing on the concept of an abstract form,
which is an abstraction of a display form with well-defined relation-
ships among fields.

IBM SYST § » VOL 21 & NO 3 & 1982 LUM, CHOY, AND SHU

Figure 1 (A) Example of display form for PCA; (B) Example of display form for
TEA

Mapping from a display form representation to its corresponding
abstract form representation is usually straightforward. It essentially
involves giving names to all components of a form and making
hierarchical relationships among components explicit. Figures 1A
and 1B contain examples of display form blanks for.a petty cash
advance (PCA) and a travel expense account (TEA). A hierarchy graph
for the TEA form is shown in Figure 2.

The abstract form heading is a precise representation of the form
name, the components of the form, and the hierarchical relationships
among the components. The form name is a unique identifier for a

LUM, CHOY, AND SHU IBM SYST J @ VOL 21 NO 3 & 1982

Figure 2 Hierarchy graph for TEA form

ITINERARY

Figure 3 TEA abstract form heading

particular form; every form must have a name. Components of a form
can be any combination of fields and groups. A field is the smallest
unit of data. A group is a sequence of one or more fields and/or
subordinate groups. Groups can be either repeating or nonrepeating.
A nonrepeating group is a convenient way to refer to a collection of
consecutive fields (e.g., DATE as a nonrepeating group over MONTH,
DAY, YEAR). Repeating groups exhibit parent-child relationships and
can be nested; e.g., a repeating group can have, as its subordinate
component, another repeating group. Thus, levels of hierarchy in a
form are limited only by implementation restrictions. In our imple-
mentation, a flat table is simply a one-level form. As shown in Figure
3, the top line of the form heading contains the form name (TEA).
Component names are given as column headings. Repeating group
names are enclosed by parentheses (e.g., EXPENSES, ITINERARY).
Subordinate component names appear under the name of the parent
component.

Since the discussion of the specification for processing data is based
on the concept of an abstract form, we shall use “form” to mean
“abstract form” in the remainder of this section.

Forms processing specification

We are now ready to discuss the data manipulation language in our
system, which is referred to as the forms processing specification, or
FORMAL (from Forms ORiented MAnipulation Language). Each
process takes one or more forms as input and produces one form as
normal output (where the input and output sets are not necessarily
disjoint).

Process specification makes use of the form headings and adds other
constructs to complete the specification of the needed information for

IBM SYST J & VOL 21 & NO 3 e 1982 LUM, CHOY, AND SHU

Figure 4 Example of an abstract form process specification

TEA_CHECK: CREATE TEA_CHK

forms processing. Basically each process specification contains the
following: (1) a title line that specifies the name of the form process,
the operation to be performed (e.g., ENTER, CREATE, INSERT, PRINT,
etc.), and the name of the output form, (2) a form heading for the
output form, (3) a description of the data constituting the form (e.g.,
data types and occurrences) and the constraints to be imposed (such
as allowance of null values, value ranges, etc.), and (4) qualifications
for the intended process, which may include the source of data, the
conditions to be applied in selecting form instances, etc.

Figure 4 shows an example of a process specification. In this example,
the process takes the travel expense form (TEA) data as input and
checks to see if any value in the meal column is greater than 35 or if

the employee or the manager has not signed the form. If any one of
these conditions is satisfied, a TEA_CHK instance (containing the
employee name, his department and manager, the meal expenses, and
the total expense extracted from TEA) will be generated and placed in
the output.

The title line for the example in Figure 4 is
TEA_CHECK: CREATE TEA_CHK

which names the process (TEA_CHECK), the operation (CREATE), and
the output form name (TEA_CHK). To avoid overriding already
defined process specifications, the process name must be different
from the existing ones but does not need to be different from the
output form name. For example, it is acceptable to name the output
form TEA _CHECK instead of TEA_CHK. An operation can be any one
of many operations supported by the system, which include CREATE,
INSERT, DELETE, UPDATE, PRINT, QUERY, and COMPOSE. The mean-
ings of most of the operations are clear and will not be discussed
further. COMPOSE is used for one form of word processing (WP) and
data processing (DP) integration and will be discussed later.

LUM, CHOY, AND SHU IBM SYST J e VOL 21 ® NO 3 o 1982

Figure 5 Example of arithmetic and case expressions

TEA_ADJUST: INSERT INTO TEA_ADJ

The form heading of the output form (TEA_CHK) follows the title line
and ends with the double line. Data descriptions and process qualifi-
cations are specified under the form heading. As shown in Figure 4,
NAME, DEPT, MANAGER, and DATE are fields of character type,
whereas MEAL and TOTAL are fields of numeric type. The length of a
field is enclosed in parentheses.

When possible and reasonable, information pertaining to data
descriptions can either be derived from input sources or set to default
values. The details of the description of the data will not be discussed
in this paper. Those readers who are interested can refer to Shu er

20
al.

Process qualifications in this cdse name the source input form, TEA,
and specified conditions to be applied, namely (MEALS > 35) OR
{(MANAGER = NULL) OR (EMPLOYEE = NULL). The purpose of the
process qualifications is to provide more specific descriptions of the
form process so that an executable program can be compiled to carry
out the desired process. Process qualifications are explained in detail
in Reference 20. In this paper, we shall discuss only SOURCE and
CONDITION. SOURCE specifies where input data are coming from,
and CONDITION specifies the constraints to be applied for processing
the form instances from the input form(s).

Values for various fields in the output form can come from different
sources. In addition to specifying the form name as SOURCE, one can
use “*” to indicate that the field value is to be supplied on line.
Definition of the SOURCE can also be expressions involving arith-
metic operations, built-in functions (COUNT, SUM, etc.), set expres-
sions, user functions, or case expressions. Figure 5 shows that TOTAL
in TEA_ADJ is computed as TEA TOTAL + 1.00, and RECEIVER_OF
_NOTICE is assigned a value according to footnote <1>. Footnote
<1>, in turn, specifies a conditional assignment. If the value of
TEA.TOTAL is found to be less than 100, TEA.NAME will be assigned to

IBM SYST J @ VOL 21 e NO 3 e 1982 LUM, CHOY, AND SHU

RECEIVER _OF_NOTICE. Otherwise, MANAGER will be the source of
assignment.

CONDITION can include Boolean expressions, as in the example of
Figure 4. Components referenced can be in more than one form, with
the appropriate notation as in the SOURCE qualification. They can
also be in more than one level along a hierarchical path. Further, for
convenience, CONDITIONS can be stated under particular columns (to
which the specified condition will apply).

When data are extracted from source(s) or new fields are created and
placed in the output, the resulting form structure of the output is
often different from the structure(s) of the source form(s). In this
case, restructuring of data is required. There is no need, however, for
the user to explicitly specify the data-restructuring aspects of the
forms processing. Restructuring is implied by the differences in the
input and output form headings. For example, from the form heading
of TEA_CHK (Figure 4) and that of TEA (Figure 3) a “projection” is
implied.

It is worthwhile to note that each form process normally produces one
output. As an option, one can request the deposition of “failed”
instances to a designated file specified with CONDITION. The net
effect is the creation of an “ELSE” form in addition to the normal
output. We can see this effect by exercising this option in the example
of Figure 4. In this process, each input (TEA) instance is examined to
see whether the specified conditions are met. If so (i.e., when
MEAL exceeds 35 or when either the EMPLOYEE or MANAGER field
has a null value), values from the relevant fields in that particular
TEA instance will be extracted and restructured according to the form
heading of the output TEA_CHK form. If the conditions are not met,
the failed TEA instance will be put in TEA1 (which has the same
structure as TEA itself).

Integration of word processing and data processing

In an office environment, word processing and report generation play
an important role. The normal mode of word processing, i.e., generat-
ing a text document, will not be discussed here because it is handled
by the normal editors of the supporting software. In the case where
variable data are mixed with text, we will handle it with the
forms-processing specification using the special operation COMPOSE.
This process is one form of the integration of word processing and
data processing that we discuss.

In essence, COMPOSE is an operation that allows incorporation of data
(from a data form) into an output text form according to what is
shown in a display form. Similar to INSERT, UPDATE, and DELETE,
where the form name in the form heading denotes both the primary
source (where the “old” instances are) and the output form (where

LUM, CHOY, AND SHU IBM SYST J ® VOL 21 @ NO 3 e 1982

Figure 6 Example of a display form for the COMPOSE operation

the “new” instances will be placed), the form name specified in the
form heading of a COMPOSE operation refers to both the display form
and the output text form. Explicit SOURCE specification for the
COMPOSE operation is used to name the data form. If data are not
already available in an existing form, the SOURCE form must be
CREATEd before the COMPOSE operation is executed. To illustrate, let
us assume that the accounting department wishes to send a letter to
every employee who has submitted a travel expense account (TEA)
form in which a meal amount has exceeded 35. This letter has a
standardized text with imbedded variable data. Figure 6 shows a
display form for this letter. Brackets indicate where the data are to be
imbedded. The name enclosed in each pair of brackets specifies what
data are to be imbedded. A key word (such as TODAY) used as a data
name in the brackets causes required data to be supplied by the
system at execution time. Otherwise, data to be incorporated into the
text (such as NAME, DEPT, DATE, and MEAL) will be obtained from the
data form. As shown in Figure 7, the form named TOO_MUCH is first
derived from TEA by selecting instances where MEAL amount is
greater than 35. The COMPOSE operation of the process named
MEAL_PROC uses TOO_MUCH as the data form to place NAME, DEPT,
etc. into the text form named INQ_LETTER in accordance with the
display form.

Since looping through all instances of a form is implicit for every
operation defined for the forms processing, it goes without saying that
the COMPOSE operation produces one instance of output for each
instance in the data form. Thus, if there is more than one instance of
TOO_MUCH, there will be the same number of INQ_LETTER
instances (one for each TOO_MUCH).

IBM SYST J @ VOL 21 ® NO 3 1982 LUM, CHOY, AND SHU

7861 ® £ ON o 1T TOA o [1SAS WHI NHS ANV ‘AOHD ‘WN1

JoLIq ' ST SuImo[[o] Sy 'pauyep 9q Isnw sainpaooid do1jo 9y jo
[opow & ‘saInpasoid 901jo 91BWOINE 0} POYIdUW B IQLIISIP Im 210jog

saInpadoad 3210 Jo Ppowt y

‘popaau si sernpadold 3oyyo yosns JulqLIdSIp
JO poylow [eIousd e ‘0I0JIoY], "SaInjeuSis 10§ wLio) & Junmor oy
SANIAIOR J[puRY $$9001d ULIO) 10BIISQE Y] S0P JOUNAN "SYSB) Do
Auew 9)eWOINE 0] Papadu ale pue uoneoynads Furssaoold-wio)
JoBIISQE Y} Ul $IONIISUOD U3 Jo jared jou aie 030 ‘owly ‘djep se
yons ‘sjeusdis 1o suon)ipuod Surradduy ‘ojdwexs 104 "Juissaooid wiiof
JornIsqe Aq po[puey 10U o1 1BY) $3559001d JOY10 2UE 2I9Y] “ISAOIIOIN

-2ouonboas 1311 2Y1 1e A[[EO11RWOINE PIYOAUI 248 £A3Y)
7o) Kem € yons Ul s3ss0501d JUSISYIP BY) YUI] 0] SUBIW SY) PIdU I
‘sowt) oyeaedas 1€ s05s9001d [BENPIAIPUT AYOAUT ISAW IM ‘IAIMOYH "10]
POIUNOOOR UIIQ IARY SIDUBAPE YSEO JI JNO PUY ULD IM 10 ‘sasuadxd
[oARI} JO Y0oyd> ySnoioyi AIOA B SUYIP O) POYISW SIY} Isn ued
am ‘ojduwrexs 1o “A[[eoniewoine syse) Aueur ss300.d 01 woysAs a1 asn
ued om Fuissaoosd suLIO) YITA WRISAS Ino Ul payidads 9q ued Jusw
-UOJIAUS 9DUJO UB UI SWII0J JO FuIssa001d 3y1 Moy passnosip SABY I

uonN29Xad pue uonesy1dads ainpadoid

o 1P 12 NYS 01 paL1djo1 31k Ful
-859201d swioj jo uordLIOSAp Po[IeIop 10U B AYI[P[NOM OYM SISPEBIY

431137 ONI ISOdNOD 20084~ V3N

FSTLXI FLVIYO (LOVHLX3

3ISOdWOD Jo @jdwex3 / ainbiy

description of our model. Within an office, we shall define an Activity
as an elementary operation that is normally handled by a single
human or machine processor at one place to perform a homogeneous
function that has a readily identifiable objective. Examples of
Activity are creation or revision of a memo, filling in a form,
processing a form, printing a document, sending an item in the mail,
filing or retrieving a document. The name of an Activity is often the
action to be taken or the function to be performed.

A Procedure is defined as a set of structurally related Activities to be
executed in a certain manner so as to accomplish a particular office
function. Within a Procedure, the Activities may be executed in
parallel, in sequence, and/or according to certain specified condi-
tions. In general, a Procedure may be described by a directed graph
depicting the flow of control and the flow of information. A simple
Procedure may contain only a few Activities to form an aggregate
action that is frequently performed. A degenerated Procedure may
contain only a single Activity. However, an Activity may in turn call
for the execution of another Procedure. To be useful, a Procedure
often contains a set of heterogeneous Activities, thus implying that
Procedure Automation is more appropriate for an integrated office
system, which allows the execution of different functions in a
coherent manner. Examples of Procedure are processing of a travel
expense account, processing of a purchase request, and processing of
an employment application. A simple Procedure may include the
editing of a memo, filing it into a data base, sending copies to
different persons, and printing a hard copy.

Like forms, an Activity or a Procedure has an owner. In most cases,
the owner is the creator of the Activity or the Procedure. For
system-supplied Activities or Procedures, the owner is a preassigned
system administrator.

An invocation or execution of a Procedure is called a Job, and the
execution of an Activity is called a Task. There may be multiple Jobs
or Tasks in execution at the same time corresponding to the same
Procedure or Activity. Jobs are independent of one another except,
perhaps, in contending for system/user resources. There is no direct
communication between two Jobs. However, a Job may indirectly be
involved in the external triggering conditions defined for another
Job.

Procedure specification

The specification of an office procedure is via a predefined tabular
form called the Procedure Specification Form (PSF). Figure 8 shows
an example of a PSF. Within a PSF, every row describes an Activity to
be executed. The rows are divided into disjoint sets, or Groups, of
consecutive rows. Each Group is identified by the “Group ID,” or
identifier. Within a Group, all Activities are executed sequentially in

IBM SYST J @ VOL 21 © NO 3 e 1982 LUM, CHOY, AND SHU

Figure 8 Procedure specification form (PSF)

Procedure PROC__NAME

the ascending order of the assigned “Sequence Number.” Different
Groups can be executed separately and asynchronously and therefore
may be executed in parallel as far as the user is concerned.

The execution of a Group can be started whenever all the triggering
requirements for its first Activity are satisfied. The “timing” field
allows the user to specify timing triggers. Examples are “FRIDAY AT 4
PM,” “BETWEEN 9 AM AND 3 PM,” and “AFTER DECEMBER 31, 1985.”
Other (nontiming) triggers can be specified in the “triggers” field.
Examples are “RECEIPT OF form-name,” ‘“COMPLETION OF Activi-
ty,” and “ERROR OF Activity.” The main reason to separate the
timing triggers from the nontiming ones is to simplify the use of
triggers. For the system, this also simplifies the parsing of a PSF.
Architecturally, the timing trigger will be handled by a different
mechanism. Within a Group, serialization of Activities implies an
implicit trigger for each Activity: “on the successful completion of its
previous Activity or the skipping of the previous Activity if it is not to
be executed,” in conjunction with the triggers explicitly specified by
the user.

The “conditions™ field allows the user to specify the requirements,
normally data-oriented, for the execution of the Activity. Although a
trigger determines whether an Activity can be executed (if the
requirements are satisfied), is to be skipped (if the requirements will
never be satisfied), or is to be put on wait (otherwise), the “condi-
tions” do not affect Task initiation. They are checked after the Task
execution has started. If the requirements are not satisfied, an error
flag will be raised.

The “action” field is required on every row in the PSF. It identifies the
function of the Activity, such as PRINT, SEND, or the name of a form
process. An Activity within a Procedure may in turn invoke another
Procedure by specifying the Procedure name in the “action” field. In
this case, the execution may be either synchronous or asynchronous,
depending on whether the “completion” of this Activity is defined to
be the initiation or the completion of the separately started Job. The
former starts a separate asynchronous process, whereas the latter
serializes the new Job with the other Activities (Tasks) in the original
Group of the original Procedure.

LUM, CHOY, AND SHU IBM SYST J ¢ VOL 21 « NO 3 » 1982

The “parameters” field contains parameters or execution options
accompanying the “action.” They are passed to the Task at execution
time. “Input forms” and “output forms” indicate the input and
output of the Activity. The name of a form may be Job- or
Task-dependent and therefore is not necessarily a constant. The
“error-handling” field allows the user to specify an Activity to be
executed (or a Job execution command to be issued) and a user/Job
to be notified in case of a specific error. The user or the Job to be
notified may be a variable, such as the initiator of the original Job.

Other fields that may also be included in the PSF are location/station
for the execution of the Activity, special resources required, execu-
tion priority, and user comment. It is anticipated that in most cases
the majority of the PSF entries may be left unfilled by the user, thus
allowing the default settings to be assumed.

To protect the use of private or controlled resources (usually but not
always forms), the owner of a resource may fill in an Authorization
Form (AF). An AF is shown in Figure 9. Each row in the AF represents
the granting of an authority. The granted authority is specified in the
“authority” field. It usually is an access right to a form, such as
READ, WRITE, COPY, DELETE, EXECUTE PROCEDURE, or OPEN MAIL
BOX. The “object” field specifies the resource to be controlled. It can
parametrically identify a set of objects, such as “MEMO BY SMITH
BETWEEN MAY | AND MAY 31, 1981.” The “user” field specifies the
users or Procedures to whom the authority is granted. This specifica-
tion can also be parametric, such as “ALL MANAGERS IN DEPT 123.”
The “constraint” field is optional. It allows the owner to restrict an
authorization, e.g., “EXPIRES DECEMBER 31, 1984 or “VALID
BETWEEN 8 AM AND NOON.” It also allows the owner to turn an
authorization on or off very quickly. Without authorization through
an AF, a resource is considered private and is not available to other
users. However, the parametric approach allows the owner to easily
grant an authority to all users and for all his resources, if he wants to.
The Authorization Form approach is based on the access control
mechanism described in Bamford and Choy.”'

Procedure execution

Once a Procedure is specified, it may be executed or it may be filed
away and retrieved later for modification and/or execution. A
number of operations are provided by the system to assist the user in
the execution of Procedures. One may invoke a Procedure, thereby
initiating a Job. The execution may not start immediately, depending
on the conditions required to execute its Activities and on the
availability of resources. One may terminate a Job before its execu-
tion is completed. However, the completed Tasks cannot be undone.
One may query the status of a Job and its Tasks. One may also
temporarily suspend the execution of a Job, change its execution
logic, and then resume the execution.

iBM SYST J @ VOL 21 NO 3 ¢ 1982 LUM, CHOY, AND SHU

Figure 9 Authorization form
(AF)

When a user queries the status of a Job, information about the Job is
returned in a form similar to the PSF, called a Job Status Form (JSF).
The JSF contains information concerning the Job and the correspond-
ing Procedure. It also contains the PSF (or a subset of the columns of
the PSF if some of the columns are access-protected) together with an
additional column showing the status of every Task within the Job,
and the queue or execution information for each Task if applicable.

When a Procedure is invoked, a Job is created, and it is associated
with a copy of the Procedure specification fixed at that time.
Subsequent changes to the PSF will not affect this Job regardless of
whether the execution of the Job has started. If, however, the
execution of the Job has started but has been suspended when the JSF
is displayed, any unexecuted and unskipped Activities in the Proce-
dure may be modified directly on the JSF. This modification will
change the logic of the Job when its execution is resumed. However,
the changes are only limited to this Job and are not reflected in the
original Procedure, i.e., the original PSF. This provision provides a
facility for the user to handle exceptions to predefined Procedures.
Such flexibility is very important in the automation of office proce-
dures.

Alternatively, when a Job is suspended and none of its Activities/
Tasks is in execution (i.c., they are either completed, skipped, or not
yet executed), another way to handle an exception is to terminate the
Job and process it manually. This method is suitable for those who
normally execute predefined Procedures and are not familiar with
procedure specification.

Needless to say, for security reasons, not every user should be allowed
to suspend, terminate, or modify a Job. Such operations should be
guarded by the access control facility, which is essential in an
integrated office system. The same Authorization Form can be used
not only to protect the forms, Procedures, and control structures, but
also to protect the execution of Procedures.

Example

We have briefly described a method to automate office procedures.
We shall now illustrate with a simple example how office procedures
can be specified.

Let us assume that there are two (input) forms, PETTY CASH
ADVANCE (PCA) and TRAVEL EXPENSE ACCOUNT (TEA), used in the
organization to account for the advances and expenses with regard to
business trips. Suppose that the PCA form instances, after signatures
have been obtained and checked, are deposited into a file (data base)
named PCA1; those not having signatures are deposited into a file
named PCA_CHK. When the TEA form instances are received (signed
by the manager), the accounting department first checks for signa-

LUM, CHOY, AND SHU IBM SYST J & VOL 21 & NO 3 & 1982

Figure 10 Example of PCA and TEA processes

TRAVEL EXPENSES PROCESSING

TRAVEL
EXPENSE
ACCOUNT
(TEA)

GET MGR
SIGNATURE

CHECK FOR
SIGNATURE &
MEAL EXPENSE

CHECK tF ADVANCE
ACCOUNTED FOR

tures and for meal expenses exceeding $35 and generates a summary
form named TEA_CHK. For those accepted, the department then
looks into the PCAL1 file to see if advances have been accounted for. If
so, the TEA record will be deposited into a TEA2 form file, which may
then be used as input to the general accounting system for further
data processing. (Alternatively, a summary of the TEA record can be
entered into the general ledger directly.) Otherwise, a summary
record will be generated and placed in the PCA_NOTE form file.

Figure 10 schematically illustrates the above operations. To perform
these tasks, we need three form-process specifications, as illustrated
in Figure 11. In this case, when a PCA form instance is received, the
form process PCA_CHECK will be invoked. When a completed TEA

IBM SYST J & VOL 21 ® NO 3 & 1982 LUM, CHOY, AND SHU

Figure 11 Processes for Figure 10

PCA__CHECK: CREATE PCA_CHK

TEA_CHECK2: CREATE TEA_CHK

TEA_PROC: CREATE PCA_NOTE

form instance becomes available, the TEA_CHECK2 will be used.
Finally, after a TEA form instance passes the TEA_CHECK2, the
TEA_PROC form process will be invoked.

One way to specify this office procedure is shown in Figure 12, in
which two Groups, PCA and TEA, are defined. They can be executed
in parallel. The PCA Group basically executes the PCA_CHECK form
process whenever a PCA instance is received. After this process is
finished, the same Group is repeated again for the next PCA instance,
waiting for its arrival if necessary. The TEA Group first executes the
TEA_CHECK?2 form process upon the receipt of a TEA instance. Then
the TEA__PROC process is invoked to match the PCA1 instance with the
TEAL instance. The latter is repeated until no more matching PCAl
instances are found. Finally, when a TEALI is processed, the Group is
repeated in a way similar to the PCA Group.

LUM, CHOY, AND SHU IBM SYST J & VOL 21 ¢ NO 3 e 1982

Figure 12 Example of procedure specification

Procedure TRAVEL_PROC

Alternatively, we can specify a separate Procedure for each of these
two Groups in Procedure TRAVEL_PROC and replace the last REPEAT
operation in each Group with an INVOKE operation to initiate a new
Job to execute the Procedure again asynchronously. In this manner,
there will be a separate Job for each TEA or PCA form instance.

This simple example shows the basic approach of the PSF. Clearly,
more Activities can be added to automate a more complex office
procedure.

Key supporting components

Forms without data are form blanks. A facility must be provided to
design form blanks and to enter data into form blanks. Moreover,
data already in a form may need to be changed. Thus, it is necessary
to have a form editor to support these functions.

At the time of designing a form, data structures for the form must be
made explicit and constraints specified. At data entry and modifica-
tion time, the form editor will be able to check the data being entered
to see if the constraints are satisfied. For example, if a petty cash
request form cannot be used for requests exceeding $200, this
constraint must be checked when data are entered. As another
example, a smart form editor should be able to sum up certain
columns when so requested. Clearly, much can be done by such an
editor. A form editor being implemented by another project will be
integrated with OPAS.

IBM SYST J ¢ VOL 21 & NO 3 ¢ 1982 LUM, CHOY, AND SHU

copy
handling

Data entered must be filed. Without a data base management
system, users will be burdened with many of the tasks that are now
done by the data base management systems (e.g., access control,
filing and retrieval, etc.). Thus, a data base management system is
considered to be a fundamental need of any office automation system
including OPAS. However, not any data base system will satisfy the
need of an integrated office system.

The office data base system required by forms processing and
procedure automation may also support the other applications or
functions on the same office system. Such an application-independent
data base system is crucial for integration of word processing and
data processing. Besides filing and retrieving of forms and specifica-
tions, the data base should also have at least the following character-
istics:

Structured interface to handle forms and control records, as well
as other documents

Query facility supporting content-search of data fields

Access control of specifications, forms, and fields

Support for long data fields for text, image, and voice data

The subject of designing such a data base system is beyond the scope
of this paper. An appropriate office data base system component will
be used by OPAS.

Data filed in the data base system must be retrievable. It is expected
that users may wish to retrieve data in a way akin to their daily
practices. For example, one can easily see that an integration of the
key word and synonym approach in library science to the data base
query language approach would be appropriate. In this way, textual
documents can be searched quickly. The office data base system used
by OPAS has this capability. '

Forms may be sent, received, routed, or distributed. Thus, a facility
for messages and electronic mail is needed. Our strategy is to use
existing office systems, e.g., PROFS (Professional Office System)s‘22 or
similar systems, to provide this support.

Other considerations

There are many other issues that are important for a procedure
automation system. We shall briefly discuss some of them now.

The term “copy” has different meanings. In one case, a copy is used
to refer to an exact image of the original, but it may or may not be
considered the same document as the original. This is the case in

LUM, CHOY, AND SHU IBM SYST J @ VOL 21 ¢gNO 3 41982

Figure 13 Example of COPY definition

DEFINE ARREST__RECORD

which we use a duplicating machine to make copies, or in which we
refer to a number of copies of the same document. For the case in
which a paper form is created, carbon paper is used to produce copies.
Although it may seem that the latter is the same as the former, quite
frequently not all of the information on the original is impressed into
the copies. Conversely, sometimes even the “original” may not
contain all the information that appears in the copies. In fact,
occasionally the copies may have different data structures in spite of
having the same data.

In OPAS, the methods of handling copies are as follows: When copies
actually have different data structures from the original, different
form definitions are used. When copies have the same data structure
as the original, only one data definition is needed. Figure 13 shows an
example where copies are defined using the abstract form specifica-

tion. In the columns where “N” (representing NO) appears, the
information on those columns will not be visible for that particular
copy. For example, DATE will not be shown in COPY 1 of the
ARREST_RECORD.

In an office system, another important issue is control. “Control” also
has different meanings. Some consider control to be copy control and
document identification. (Document is a generic term and includes
forms.) Others consider control to be access control and security
protection. Still others consider control to be gathering information
for auditing and tracking purposes.

For document identification and copy control, each document
instance in OPAS will be assigned a unique identification at the time
of generation, and this identification is nonvolatile during the docu-
ment’s existence. When a document is copied as if done by a
duplicating machine, the copy will bear information on the original as
well as additional information for copy identification. When copying
is not permitted for a particular document, this restriction can be
specified on the original. The system will then refuse to make a

copy.

IBM SYST J @ VOL 21 @ NO 3 » 1982 LUM, CHOY, AND SHU

control

integrating
OPAS with
existing
applications

execution
efficiency

346

Figure 14 Conceptual implementation of display form data entry and abstract
form processing into data base system

DATA DATA MANIPULATION
ENTRY & & RESTRUCTURING
CHECKING

DISPLAY ABSTRACT ABSTRACT
FORM FORM FORM
SPECIFICATION
TERMINALS
RESTRUCTURED
DATA

FORM

EDITOR PROCESSING
COMPILER

DISPLAY ABSTRACT
FORM

=

\V 4

OFFICE DATA BASE

Access control on data is mainly handled by the data base manage-
ment system. The interface to the user is via the Authorization Form
discussed earlier. In order to satisfy audit or tracking requirements,
all tasks executed on the system are logged with essential information
describing the event, such as user identification, document identifica-
tion, and timestamps.

It is generally recognized that an organization cannot afford to redo
all existing applications in order to fit into a new system. That is to
say, business automation must be realized in an evolutionary and not
a revolutionary manner.'" Qur solution to this problem is to have
OPAS generate data that can be used directly as inputs to the existing
applications. Experience in the Data Restructuring System,” for-
merly called EXPRESS or XPRS, has indicated that this approach is
viable.

Figure 14 shows the relationship among the display form, the
abstract form, the abstract form specification, and the data base

LUM, CHOY, AND SHU IBM SYST J e VOL 21 e NO 3 e 1982

system. As shown in the diagram, data that are entered will go
through the Display Form Editor and be deposited into the data base
system. When data manipulation or restructuring is needed, data will
be retrieved from the data base and processed by the code generated
from an abstract form specification.

Whereas a display form generally handles a small amount of data,
restructuring can involve a very large volume. For example, in order
to interface to an existing application, one may have to invert the
structure of a tree. Take the case of a file where information is kept
for all the parts ordered by the departments in an organization. In
this case, one simple structure is to have PART as the repeating group
in DEPARTMENT, which is at the root level. Now if we want to
interface to an application that has as an input a file of parts and their
departments (i.e., a file with DEPARTMENT as repeating group under
PART), one must go through the entire file of data. Efficiency is
therefore a major concern.

Form specification is generally believed to be done infrequently for a
given task. To gain processing efficiency, form specifications are
therefore compiled into customized executable code and stored in the
data base system. It will be invoked as needed.

Figure 15 shows a simplified architectural diagram of the system.
The functions of all the major components are obvious except,
perhaps, for the Supervisor. The Supervisor is the component that
interprets the specified procedures and executes them. It is also the
unit that must coordinate the different events as well as keep track of
the status of the different events. For example, it may be that one
person’s TEA has not finished processing when another one is submit-
ted. In this case, the Supervisor must set up both Jobs to run
independently. Moreover, a particular TEA may be only partially
finished and get dislodged in the middle of the procedure because of
an exception condition. In this case, if that particular TEA is modified,
one may or may not want to start the procedure from the beginning.

In addition, as we have mentioned, much information is needed for
control. Such information can be captured by the Supervisor because
it has the overall view of the processing being done. At least it must
provide information to the other components so that they can act
appropriately. The Supervisor should have considerable intelligence
if automation is to be achieved.

Other issues related to implementation are raised by the system’s
hardware configuration. It is expected that a local network tying a
host processor to intelligent and/or *“dumb” workstations is the way
things will be in the future. For example, the user interface (as shown
in Figure 15) can be distributed over many workstations of various
kinds.

IBM SYST J & VOL 21 & NO 3 o 1982 LUM, CHOY, AND SHU

general
architecture

Figure 15 Simplified archi-
tecture of OPAS

Conclusion

In this paper, we have described an experimental integrated office
system with broad capability to be used for automating office tasks.
In particular, we have discussed two major aspects of the system,
namely abstract forms processing using the language FORMAL and
procedure specification and execution. Both of the specification
methods are at a high level. They are based on the familiar concept of
processing and handling forms.

However, a number of issues remain to be solved. For example, an
appropriate user interface for process/procedure specification is a
research topic, and even the measure of “goodness” of an interface is
lacking. In this system we have the compound effect of such
difficulties, because the system will have users with different levels of
skill, and they all expect the system to fill their needs. Although
conceptually we can think of the specifications as discussed, one
should note that a final user interface remains to be designed to work
with the proposed specification methods.

Although we have tried to make the procedure and process specifica-
tions easy for an office worker to use, the user still needs training in
order to be able to specify any complex process or procedure.
Whatever programming language and user interface one can come up
with, the ability to think logically is still required to specify or
program the processes or procedures. The use of Query-by-Example
(QBE)** by nonprogrammers seems to indicate that a two-
dimensional and nonprocedural programming language has its mer-
its. Consequently, a user interface close to the method presented in
this paper may be a reasonable start.

One may wonder if the forms process and procedure specification
languages are sufficiently powerful to describe most, if not all, office
work. The answer to this question with respect to forms processing is
much easier than the answer on procedure specification. From use of
the Data Restructuring System,” we have learned that the data
manipulation and restructuring capability in that system is quite
sufficient to handle most of the processing needs. FORMAL has at
least the same power and therefore can be expected to do well.
However, there is no experience to guide us about the specification of
office procedures. To gain some experience, our approach is to build
an experimental system as proposed and let users in real office
environments use it in their daily activities.

At this time, we have the basic part of the office data base system
running and the whole data base system designed. The form design
component as mentioned above is implemented. Part of the form
processing compiler is operational. The procedure specification is in
progress. We can translate some sample data to the required formats.
We are investigating the integration of OPAS with an existing office
system, such as PROFS.

LUM, CHOY, AND SHU IBM SYST J ¢ VOL 21 ¢ NO 3 e 1982

ACKNOWLEDGMENT
The authors are grateful to have had the opportunity to discuss many

of
F.

the issues with their colleagues. In particular, the discussions with
C. Tung, C. Chang, J. L. Bennett, R. Haskin, and M. Zolliker have

been very helpful. The authors also thank management, specifically
Peled, E. D. Carlson, and J. Ma, for their support.

A.

CITED REFERENCES

1

. J. McQuillan and D. Walden, “Designing electronic mail systems that people will
use,” SIGOA Newsletter 1, No. 2, 5-6 (May 1980).

. H. E. OKelly, “Electronic message system as a function in the integrated
electronic office,” Proceedings of the National Computer Conference 49, 499—
502 (1980).

. W. E. Ulrich, “Introduction to electronic mail,” Proceedings of the National
Computer Conference 49, 485-488 (1980).

. W. E. Ulrich, “Implementation considerations in electronic mail,” Proceedings of
the National Computer Conference 49, 489—-492 (1980).

. P. C. Gardner, Jr., “A system for the automated office environment,” IBM
Systems Journal 20, No. 3, 321-345 (1981).

. M. Hammer et al., “A very high-level programming language for data processing
application,” Communications of the ACM 20, No. 11, 832-840 (November
1977).

. M. Hammer and M. D. Zisman, “Design and implementation of office informa-
tion systems,” Proceedings of the NYU Symposium on Automated Office
Systems (May 1979), pp. 13-23.

. M. Hammer and J. S. Kunin, “Design principles of an office specification
language,” Proceedings of the National Computer Conference 49,541-548
(1980).

. M. Hammer and M. Sirbu, “What is office automation?” 1980 Office Automa-
tion Conference Digest (March 1980), pp. 37-49.

. G. H. Sandewall et al., “Provisions for flexibility in the Linkoping Office
Information System,” Proceedings of the National Computer Conference
49, 569-577 (1980).

. M. D. Zisman, “Office automation: Revolution or evolution?” Sloan Manage-
ment Review 19, No. 3, 1-16 (Spring 1978).

. L. S. Baumann and R. D. Coop, “Automated workflow control: A key to office
productivity,” Proceedings of the National Computer Conference 49, 549-554
(1980).

. C. A. Ellis, “Information control nets: A mathematical model of office informa-
tion flow,” Proceedings of the ACM Conference on Simulation, Modeling, and
Measurement of Computing Systems (August 1979), pp. 225-240.

. C. L. Cook, “Streamlining office procedures—An analysis using the information
control net model,” Proceedings of the National Computer Conference 49, 555~
566 (1980).

. S. P. deJong, “The System for Business Automation (SBA): A unified application
development system,” Proceedings of IFIP Congress 80 (1980), pp. 469-474.

. D. Tsichritzis, “OFS: An integrated form management system,” Proceedings of
the Very Large Data Base Conference (October 1980), pp. 161-166.

. D. Tsichritzis, Form Management, Technical Report CSRG-127, University of

Toronto, Toronto, Ontario, Canada (1980).
. D. W. Embley, 4 Forms-Based Nonprocedural Programming System, Research
Report, University of Nebraska—Lincoln, Lincoln, NE (October 1980).

. H. C. Lefkovitz et al., “A status report on the activities of the CODASYL End

User Facilities Committee (EUFC),” February 1979, SIGMOD Record 10, Nos.
2 & 3 (issued August 1979).

. N. C. Shu er al., Specification of Forms Processing and Business Procedures for

Office Automation, Research Report RJ3040, IBM Research Division, San Jose,

[BM SYST J e VOL 21 ® NO 3 e 1982 LUM, CHOY, AND SHU

350

CA 95193 (January 1981). (To appear in IEEE Transactions on Software
Engineering.)

. R. J. Bamford and D. M. Choy, “Access control for a shared data base,” IBM
Technical Disclosure Bulletin 23, No. 4, 1638—1639 (September 1980).

. IBM Professional Office System: User’s Guide, SH20-5503, Program Number
5799-BEX, IBM Corporation; available through IBM branch offices.

. Data Extraction, Processing and Restructuring System, Define and Convert
Reference Manual, SH20-2178, Program Number 5796-PLH, IBM Corpora-
tion; available through IBM branch offices.

. M. M. Zloof, “A language for office and business automation,” Proceedings of the
AFIPS Office Automation Conference (March 1980), pp. 249-260.

. M. M. Zloof, “Query-by-Example: A data base language,” IBM Systems Journal
16, No. 4, 324-343 (1977).

GENERAL REFERENCES

C. A. Ellis and G. J. Nutt, “Office information systems and computer science,” ACM
Computing Surveys 12, No. 1, 27-60 (March 1980).

G. H. Engel et al., “An office communications system,” IBM Systems Journal 18, No.
3, 402431 (1979).

I. Ladd and D. Tsichritzis, “An office form flow model,” Proceedings of the National
Computer Conference 49, 533-539 (1980).

N. C. Shu et al., “CONVERT: A high-level translation definition language for data
conversion,” Communications of the ACM 18, No. 10, 557-567 (October 1975).

A. Wohl, “A review of office automation,” Datamation 26, No. 2, 117-119 (February
1980).

M. D. Zisman, Representation, Specification, and Automation of Office Procedures,
Ph.D. dissertation, Wharton School, University of Pennsylvania, Philadelphia, PA
(1977).

V. Y. Lum and D. M. Choy are located at the IBM Research Division
laboratory, 5600 Cottle Road, San Jose, CA 95193; N. C. Shu is

located at the IBM Scientific Center, P.O. Box 45013, Los Angeles,
CA 90045.

Reprint Order No. G321-5172.

LUM, CHOY, AND SHU {BM SYST J e VOL 21 @ NO 3 e 1982

