A wide variety of products for the office is now available, permitting
increased automation of office procedures. To realize their full
potential, these products must be able to exchange information and
control requests with one another. A family of architectures has been
defined to satisfy this need. This paper provides an overview of this
family of architectures, including their relationship to one another.
One member of this family, the Document Interchange Architecture,
is described in some detail. An example illustrates use of the family
of architectures in an office environment.

The Document Interchange Architecture:
A member of a family of architectures
in the SNA environment

by T. Schick and R. F. Brockish

Distributed processing is widely recognized as a highly effective
general-purpose organization for a computer system' and is currently
a prime method of automating office procedures. A structure has
been defined that provides interchangeability of information and
contro} requests among the distributed processing facilities in an
office. The structure consists of several functional layers. This
multiple-layered structure defines the Systems Network Architec-
ture (SNA) environment. The benefits of a layered structure are well
understood, modular development being an important consequence.
Much has been published about SNA; therefore, except for the
application layer, we will not describe it here. A detailed description
of SNA is provided in References 2 and 3.

The application layer consists of a family of several architectures:
Document Interchange Architecture (DIA), Document Content

© Copyright 1982 by International Business Machines Corporation. Copying in printed
form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM
copyright notice are included on the first page. The title and abstract, but no other
portions, of this paper may be copied or distributed royalty free without further
permission by computer-based and other information-service systems. Permission to
republish any other portion of this paper must be obtained from the Editor.

SCHICK AND BROCKISH IBM SYST J e VOL 21 e NO 2 e 1982

Architecture (DCA), and Graphic Codepoint Definitions (GCD). An
architecture required to develop the full potential of a distributed
processing system is now available as DIA. It is a protocol, or
language, to be used among applications and permits a variety of
applications, or processes, to exchange information and to make
control requests of one another in a consistent manner. Defined
specifically to satisfy this need, DIA is described in detail in this paper
along with its relationship to other members of the family of
architectures.

The major objective for developing DIA is to provide the means by
which distributed office-application processes interchange requests
that act as commands to the system, as, for example, DISTRIBUTE this
document, RETRIEVE a particular document, or SEARCH for a
document. These requests must be understood by the receiving
process exactly as they were intended by the sending process.

DIA provides a general means by which control requests and informa-
tion may be interchanged among a wide range of machines using a
single application-level interchange language. This provision not only
permits a centralized process, or product, to interact with many
apparently different products in a consistent manner, but it also
permits these different products to interact with one another directly
using the same interchange language. If there were no common
language, each product would need to negotiate a language with
every other product with which it interacts. The language problems of
building the Tower of Babel would be encountered in a new form.

Office automation is one of the most recent computer applications
with a distributed processing orientation. Although DIA could be used
as a general-purpose application-to-application protocol, it is oriented
to the procedures of the modern office. DIA is only one of several
architectures so oriented. Among others are Document Content
Architecture (DCA) and Graphic Codepoint Definitions (GCD). DIA
encapsulates the information structured according to these architec-
tures. Collectively these architectures are defined to provide inter-
changeability of information as well as control requests, and to
simplify both the system’s and the user’s view of them.

These architectures form a family and are tailored to the various
aspects of an office system. They provide the required system
interfaces. These interfaces are intentionally defined to be distinct
from the user interfaces of the system, which must be optimized for
human factors. The family of architectures is being used by such IBM
products for the office as the Distributed Office Support Facility
(DOSF),* the 5520 Administrative System,5 and the Distributed
Office Support System (DISOSS).® Later in this paper a scenario
appears that describes the use of this family of architectures in an
office environment.

IBM SYST J @ VOL 21 @ NO 2 » 1982 SCHICK AND BROCKISH

Figure 1 Office system spectrum
OFFICE SYSTEM APPLICATION LAYER FUNCTIONAL SPECTRUM

DISTRIBUTION
FILE
RETRIEVE

SEARCH
APPLICATION CONTROL
INFORMATION DESCRIPTION

INFORMATION CREATION
INFORMATION EDITING
INFORMATION FORMATTING
INFORMATION PRESENTATION

GRAPHIC CODEPOINT DEFINITIONS

A family of architectures

The office contains many different products and types of media. To
achieve their full potential there must be a means to permit these
products to interact with one another. The previously mentioned
family of architectures was defined to satisfy this requirement.

There is a spectrum of office functions that includes the creation,
revision, distribution, and storage and retrieval of information. This
spectrum is open-ended, thus permitting the introduction of new
functions, particularly those that become feasible as a result of new
technologies being developed. This apparently unstructured environ-
ment has been ordered into logically distinct functional sets.

Figure 1 indicates the office system functional spectrum within the
application layer. One functional set deals with the manipulation of
units of information as transparent entities. The envelope is a
commonplace medium which is used to convey control requests to
manipulate information and its contents as transparent entities. A
different set of functions is concerned with the internal form of these
units of information. Yet another set of functions has to do with the
description of the units of information.

In structuring a family of architectures to support the office environ-
ment, we can relate each architecture to a specific, logically distinct,
set of the functional spectrum. This relationship is important because
each functional set should be able to be defined, developed, and
enhanced with minimum regard to the changes and improvements of
the other functional sets in the family. For example, several DCAs
have been defined, including the DCA used by the IBM 5520, SCRIPT,
and others. The DIA processes are unaware of the specifics of the
structure of the information content. This permits both DIA and the
DCAs to develop without undue interaction.

This structure is referred to as a_family of architectures rather than a
set of architectures because each one is designed to fit in with the

SCHICK AND BROCKISH IBM SYST J ® VOL 2] e NO 2 o 1982

Figure 2 Family of architectures and spectrum of function
FAMILY OF ARCHITECTURES

DISTRIBUTION
FILE
RETRIEVE

H
APPLICATION CONTROL
INFORMATION DESCRIPTION

INFORMATION CREATION
SPECTRUM INFORMATION EDITING
OF INFORMATION FORMATTING
FUNCTION INFORMATION PRESENTATION

GRAPHIC CODEPOINT DEFINITIONS

others, thus relating them to one another. The functions addressed by
each architecture are bounded to minimize overlap and potentially
conflicting constructs. Additionally, the structure of these architec-
tures correlates with the structuring of an office system into its logical
categories to simplify its overall conceptualization and, therefore, its
implementation. The family of architectures is open-ended to permit
the introduction of new architectures to support the automation of
new sets of functions as they are developed or become technologically
feasible.

Although these architectures are functionally bounded and logically
distinct, they are defined to be functionally extendable within their
respective logical bounds. This characteristic is essential for a techni-
cal spectrum that is dynamically growing. This architectural struc-
turing provides for the orderly integration of any new technical
solutions that are introduced. Figure 2 indicates the office system
functional spectrum as it relates to the family of architectures.

Each member of the family of architectures is now briefly summa-
rized.

Document Interchange Architecture (DIA) is defined to provide the
application-to-application protocols, semantics, and syntax. It deals
with the manipulation of information without regard to the informa-
tion content or the connectivity of the system.

DIA consists of several services. Document Distribution Services are
concerned with the functions of distribution and delivery of informa-
tion. Document Library Services are concerned with the functions of

IBM SYST J e VOL 21 e NO 2 e 1982 SCHICK AND BROCKISH

summary of
architectures

information
flow
overview

filing, retrieving, and searching for information. Application Process
Services have to do with the functions of an office system, such as
formatting information, modifying information, initiating programs
to be executed, and other general-purpose office system functions.

DIA also defines a document profile, a structured form to convey the
characteristics of information or a document. The document profile
conveys information such as the subject and date of a document, as
well as the internal DCA level of the document. DIA is discussed
extensively later in this paper.

The Document Content Architectures (DCA) are defined to provide
consistent internal structuring of information or documents.” They
deal with the functions required to be performed on the document
contents such as pagination, highlighting, headings, footings, and
centering. Different levels of DCA are defined, including Revisable
Form, which defines the structure of an editable or formattable
document, and Final Form, which defines the structure of a format-
ted document or a final form device-independent document.

Graphic Codepoint Definitions (GCD) address the problem of having
many more graphics than can be defined by the 256 bit combinations,
or codepoints, of a byte. Thousands of graphics have been defined,
including those for the natural languages such as the Latin, Slavic,
Oriental, and Mid-Eastern languages, and for various technical
languages. Therefore, it has been necessary to identify various sets
consisting of 256 graphics. Each set is called a codepoint page.

GCD defines a set of codepoint pages to ensure the consistent
understanding and translation of the many graphics. Furthermore,
GCD defines the means to move from one codepoint page definition to
another in an orderly manner.

GCD deals with the problem that resulted from conflicting codepoint
definitions having evolved for many graphics. For example, the
codepoint assignment in the definitions used in the United States and
England is identical for both the dollar sign and the pound sign.
Therefore, it is possible to generate a document in the United States
that states “I owe you $1000.00” and have it transmitted to England
where it will be printed as £1000.00 with the pound sign graphic
rather than the dollar sign graphic. Clearly this transmission does not
maintain the integrity of the intent of the information exchange,
whereas it does maintain the integrity of the information as repre-
sented by the bits of the information flow.

Figure 3 presents a broad overview of how each of these architectures
relates to the flow of information within a system. Scanning the
diagram, we see that a Document Interchange Unit is enveloped by
lower-layer SNA headers and trailers. (See References 2 and 3 for
appropriate details.)

SCHICK AND BROCKISH IBM SYST J ¢ VOL 21 @ NO 2 & 1982

Figure 3 Information flow

I DATA LINK CONTROL BASIC TRANSMISSION UNIT DATA LINK CONTROL

TRANSMISSION REQUEST/RESPONSE REQUEST/RESPONSE.
HEADER HEADER UNIT

DOCUMENT INTERCHANGE UNIT
{DIY)

COMMAND DOCUMENT
UNIT

Diu DiU
PREFIX SEQUENCE SUFFIX

DOCUMENT | DOCUMENT
CONTENT

DP/DCA PROFIL
ARCHITECTURE. ARCHITECTURE

This view of the relationships between the units of data handled by
the separate layers is highly simplified. In reality there is no
one-to-one correspondence between the units of data. Architectur-
ally, one layer’s unit of data may contain fractions or multiples of
another layer’s unit. For instance, many Basic Transmission Units
may be required to transmit one Document Interchange Unit (DIU).
The DIU, which is transported transparently by the lower layers, is
defined by DIA and is discussed later in this paper.

This paper concentrates on DIA and its relationship to the other
members of the family of architectures.

Document interchange environment

All of the tasks that can be automated in the modern office cannot be
performed locally within a stand-alone word processor. The informa-
tion available in one office must be shared with people in other
offices, either nearby or across the country. The Document Distribu-
tion Services of DIA provide the functions for utilizing data processing
resources in the distribution of information among offices using
different products.

IBM SYST J « VOL 21 @ NO 2 ¢ }982 SCHICK AND BROCKISH

Data processing resources are advantageous in office systems when
large amounts of data are being handled. Individual word processors
have limited quantities of data storage for retaining large quantities
of information. Also, access to locally retained information is limited
to relatively few people. The Document Library Services of DIA allow
for the retention of information in pools, or libraries, on larger data
processing systems whose storage capacities are apt to be extremely
large and more economical than local storage. These systems support
efficient searching and retrieval of information that is accessible to
numerous individual work stations while at the same time offering
protection against unauthorized access to the information. The
document libraries can be centralized or dispersed at geographically
separated data processing systems. Thus, DIA facilitates the integra-
tion of word processors with data processing systems to satisfy
requirements of the automated office.

DIA specifies the semantics and structures with which to interchange
both intentions and data between programmed processes in this
environment. DIA does not define the user interfaces through which
people use products. User interfaces are particular to individual
products. DIA allows those individual products to interact with other
products having the same or different user interface capabilities, to
accomplish the various tasks that arise in the office environment.

The physical system to which DIA applies is made up of work stations
and Document Distribution Nodes (DDN) as shown in Figure 4.
Work stations are processors with input and output facilities that
serve application processes or people who are sources and recipients
of documents. Work stations are Source Nodes and Recipient Nodes
in the DIA system. DDNs are facilities with storage, processing, and
communications capabilities to attach and support numerous work
stations. DDNs communicate with each other to perform safe storage
and forwarding of documents through the distribution system. DDNs
may also provide the storage and processing to maintain document
libraries. The work stations and DDNs are interconnected by commu-
nications lines and data transmission equipment.

We next describe the functional semantics and the structural syntax
of DIA.

Definitional consistency across the DIA spectrum

DIA is defined for a broad spectrum of functional capability. The
semantics, syntax, and protocols are defined with both conceptual
integrity (consistent understanding of the functions to be performed),
and consistency of the constructs (consistent formats and grammar of
the language). This is essential to provide a design of simplicity and,
therefore, comprehensibility.

SCHICK AND BROCKISH IBM SYST J e VOL 2] ® NO 2 » 1982

Figure 4 DIA system structure overview

DOCUMENT DISTRIBUTION NODE (DDN)

" DIA PROCESSOR

The semantics for each object, such as a command or an operand, are
defined in the same way wherever that object appears across the
entire architecture. The identification of users, documents, and
system resources are always consistent. The semantics of all instances
of operations, regardless of the context, are identically defined.

The syntax of architectural constructs appears in a consistent man-
ner. Constructs are self-defining and variable in length. The advan-
tages of this structure are related later in this paper.

The primary construct of the architecture, called a Document
Interchange Unit (DIU), is the unit of interchange used across the
spectrum of the architecture. All DIUs consist of up to five entities
called Prefix, Command Sequence, Data Unit(s), Document Unit(s),
and Suffix. Whenever these appear, they are syntactically and
semantically consistent.

The Command Sequence consists of one or potentially multiple
commands which may appear in any order and are executed in the
order of their appearance. Existing implementations constrain the
Command Sequence to a single command. Each command consists of
any number of operands. Many of these operands may appear in
different commands. They are defined in an identical manner across
all commands in which they may appear.

IBM SYST J o VOL 21 ® NO 2 » 1982 SCHICK AND BROCKISH

DIA
services

Figure 5 Document distribution
system

SOURCE/RECIPIENT NODE
(S/RN)

Use of the command protocols of the architecture is consistent across
the services of the architecture. Such consistency is important for
simplicity of implementation as well as being able to predict the
outcome of related events.

Definitions of profiles are also consistent when used across the several
services of DIA. The Document Profile is used and the fields are
defined identically regardless of whether they are used in conjunction
with a Distribution Service or a Library Service.

DIA functional definition summary (semantics)

DIA consists of several services that include Document Distribution
Services, Document Library Services, and Application Processing
Services. The architecture is defined such that services may be
broken up into logical subservices. Furthermore, as the need arises,
new services may be added to the architecture.

Document Distribution Services (DDS) support the logically distinct
functions of distribution requesting, storing and forwarding, and
delivery in a document distribution system. DDS collectively provide
for the asynchronous distribution of information. That is, they do not
require that the originator and any of the recipients be in session with
one another when the distribution of information is initiated. Figure 5
schematically defines the components of a document distribution
system as supported by DIA.

DDS support falls into three categories: the exchange of documents
directly between the source and the recipient nodes, their exchange of
information to and from a DDN, and the exchange of information
among DDNS.

Within the document distribution system, products implementing
DIA provide functions such as confirmation of delivery, priority
routing, delivery, and the mapping of logical names to communica-
tions routes. The distribution is optimized by carrying only one copy
of the document on common paths in the system. In addition to the
primary document, supplemental messages relating to the document
are also distributed. Messages may also be distributed without a
document. Information on the status of documents within the system
is defined for return to the source of the distribution.

The Document Library Services (DLS) include those functions that
support the storage and retrieval of information. The functions
defined include the filing, searching, retrieving, and deleting of
information.

The Application Processing Services (APS) include those functions
that facilitate office system applications and support the other DIA

SCHICK AND BROCKISH IBM SYST J ® VOL 21 @ NO 2 @ 1982

services. This set of DIA services supports functions such as format-
ting a document from revisable form to final form, modifying
descriptive information, and permitting one application to request
another to execute an identified program.

The Interchange Document Profile (IDP) provides a construct that
characterizes its related document. The profile, a construct distinct
from the related document, contains document descriptive informa-
tion such as author, subject, data, addressee(s), and other informa-
tion that describes a document from the user’s point of view. The
profile also contains document descriptive information relevant to the
system, such as the DCA level of the document.

At the application layer, the logical connection between two DIA
processes is a DIA-Session. The protocols for the DIA-Session pre-
scribe the DIA command requests and their replies to accomplish a
given function.

A DIA-Session is initiated by a SIGN-ON exchange that identifies the
participating processes, the role each is to perform, and the set of
functions to be used. The DIA-Session normally is concluded by a
SIGN-OFF command.

The essence of DIA is the set of commands that define the functions
to be performed when they are exchanged between DIA appli-
cations. The DIU could contain one or potentially multiple com-
mands contained within a Command Sequence. Existing implemen-
tation versions constrain the Command Sequence to only one com-
mand.

The existing DIA commands as well as those introduced over time are
intended to be relatively low-level functional primitives. Here the
term functional primitive is defined so as to reflect the necessary
trade-offs made when defining a command set. For example, the
System/370 commands are relatively primitive. The function of a
multiply command can be executed using a series of add commands.
Although the command repertoire would be more primitive without
the multiply command, the efficiency of a System/370 program
containing a multiply function would be significantly reduced. The
same is true for the command repertoire of DIA. Although DIA
commands, such as FILE and SEARCH, are not primitive, they do
represent an attempt to provide a set of relatively primitive com-
mands to satisfy the requirements.

Defining these relatively primitive commands is basic to the realiza-
tion of the potential of the architecture. Permitting these commands
to appear in differing sequences, or programs, allows for extensibility.
This open-ended functional capability is analogous to the huge
functional capability provided by the limited number of relatively
primitive commands defined for the various CPU architectures such
as that of System/370.

IBM SYST J 8, VOL 21 ® NO 2 &,1982 SCHICK AND BROCKISH

Interchange
Document
Profile

DIA-Session
definition

DIA command
definition

classes of
commands

DIA commands include several Library Service Commands such as
FILE, which preserves identified documents in the library for an
authorized document owner, and RETRIEVE, which returns a library
copy of the identified document to an authorized document requestor.
A brief description of the semantics of other DIA commands is related
in the Appendix.

New functions may be added by defining and incorporating new DIA
services, new commands, and new operands, as required. These
services, commands, and operands must be defined within the frame-
work of the architecture.

There are two classes of commands by which reply protocols are
defined for DIA:

No-Reply-Required (NRR) Command Class—This command
class is defined to let one application convey information to
another application without that application necessarily replying
to the command.

Synchronous-Reply-Required (SRR) Command Class—This
command class is defined to let one application ask another to
perform a function with that application having to reply to the
request before any other interchange of requests is permitted.

The NRR Command Class is used for any command that does not
require a command in reply from the receiver. If the command sent in
the NRR class is a request for an operation that normally requires
return of results, the results will be returned with an appropriate
command in the NRR class. No explicit synchronization nor correla-
tion is done for this type of command exchange. Only an ACKNOWL-
EDGE command with an exception condition code is allowed to reply
to and reference an NRR command. The sender of the NRR command
is not required to correlate the exception reply to the original
command. The exception information is for statistics logging or
whatever use a sender chooses to make of it. For example:

A
DIU(A1) STATUS-LIST (NRR)

Here process A sends a STATUS-LIST command for information with
no reply needed.

The SRR Command Class is used for any command that requires a
command in reply as the next command sent by the receiver. The SRR
command sender may not send any other commands until the
replying command has been received. The replying command may be
an ACKNOWLEDGE command or any other appropriate command
that has a CORRELATION operand correlating it with the SRR
command. Should the DIA-Session be terminated while a reply to an

SCHICK AND BROCKISH IBM SYST J ® VOL 21 & NO 2 » 1982

SRR command is still outstanding, that reply is lost and neither
DIA-Session partner is required to perform any further action on
behalf of that command. The command must be issued again on
another DIA-Session. For example:

A
DIU(A1) REQUEST-DISTRIBUTION (SRR)....

DIU(B1) ACKNOWLEDGE (NRR) ... REPLY-DATA ...

In this case, Process A submits a document for distribution. Process B
executes the request, acknowledges the request, and returns the
identification of the distribution in the reply data.

A command reply is a command that contains the CORRELATION
operand. This operand both indicates that the command is a reply to a
previous SRR command and provides the data necessary to correlate
that reply to its corresponding request.

Commands fall into groupings according to the services that they
normally support. Some commands support more than one set of
services although they are defined within one group. Other commands
support all sets of services and are grouped together as being applicable
across services. The commands can be further categorized by their use
between different types of products in the interchange environment.
This latter categorization defines the term function set.

Because no single product requires all of the function available in
DIA, the total DIA facilities have been divided into function sets. The
function sets have been defined such that a single one contains all of
the DIA facilities required to support a given level of interchange for a
given set of services. The function sets may be used in combinations.
The specific function sets to be used during a DIA-Session are
specified with the SIGN-ON command.

The definition of function sets allows products to implement only
those functions applicable to their purposes. Thus, each product may
tailor its implementation to its environment.

For Document Distribution Services, function sets of commands are
defined to support the input of documents from work stations to
DDNs, the exchange of documents among DDNs, the output of
documents from DDNs to work stations, and the exchange of docu-
ments directly between work stations.

For Library services and Application Processing Services the func-
tion sets coincide with the commands within each of the services.

IBM SYST J @ VOL 21 ¢ NO 2 e 1982 SCHICK AND BROCKISH

function
sets

exception handling
and recovery

An example of a document distribution function set is the one for
DDN to Recipient Node. The following commands are supported in
this set. They support the delivery of documents and status to the
work station.

OBTAIN—Requests delivery of documents.

DELIVER— Delivers documents.

LIST—Requests a list of available documents and status.

STATUS-LIST—Notifies the work station that documents or status are
available for delivery.

CANCEL-DISTRIBUTION—Requests the cancellation of documents.

ACKNOWLEDGE—Acknowledges the receipt and conclusion of a
request.

SIGN-ON-—Initiates the DIA-Session, identifies user, function set(s),
etc.

SIGN-OFF—Concludes the DIA-Session.

An objective of DIA is to provide a means by which two application
processes exchange information in a reliable manner. The processes
must be capable of recognizing when a Document Interchange Unit
(DIU) is received with errors that are detected at a lower layer. DIA is
dependent on the fact that the layers of support below the application
level will notify the application process when a permanent error
exists. DIA assumes that all error procedures have been attempted by
the component layers below the DIA process and that unrecoverable
errors are presented to the process for final disposition.

The damage assessment process for a DIU with a permanent error is to
interpret and evaluate the DIU entities to determine if the request can
be successfully executed. If exceptions are detected and all of the
recovery techniques have been unsuccessful, the DIU cannot be
reliably processed, and the receiving process must terminate DIU
processing.

The DIU process is composed of algorithms that evaluate the bIU
syntax to determine which functions of the DIA repertoire are to be
performed. This evaluation may discover syntax and semantic excep-
tions. The syntax exceptions are deviations from the structure
formats of the architecture, missing parameters, parameter values
outside permitted ranges, and DIU entities incorrectly encoded.
Semantic exceptions are usually detected when a requested operation
is activated and some violation prevents successful completion.

There is a distinction between errors and exceptions. Errors are those
failures that occur at the lower layers. Exceptions are DIA architec-
tural violations that are detected in a DIU without, necessarily, an
indication of a failure by a system or application component.

The syntax and semantic exceptions that prevent a requested DIA
application process from being normally completed must be reported

SCHICK AND BROCKISH IBM SYST J e VOL 21 e NO 2 e 1982

to the sender of the DIU. The ACKNOWLEDGE NRR command with an
EXCEPTION CODE operand is used to report exception conditions
detected by the receiver of a DIU. If there is an exception condition
_detected in the DIU containing the acknowledgment of the sender’s
request, the DIU processing is terminated because the sending of valid
ACKNOWLEDGE commands is fundamental to a DIA process. Excep-
tions that are detected by a sender that prevent successful transporta-
tion of a complete DIU are specified in a form of the DIU suffix.

The EXCEPTION CODE operand is structured to contain the Exception
Class and the Condition Code and to identify the DIU Exception
Object in which the incident is detected. The Exception Class and the
Condition Code describe the exception condition that has been
detected. Since exceptions can occur in any of the DIU objects, the
Exception Object code identifies the element in which the exception is
detected. Because the nature of exception conditions can sometimes
be obscure, the EXCEPTION CODE operand includes a field for the
actual object containing the detected exception.

The receiver of a DIU that contains an exception may recommend a
recovery action to the sender of that DIU. This recommendation is
carried by the ACKNOWLEDGE command in the RECOVERY-ACTION
operand. The receiver of the RECOVERY-ACTION operand is not
bound to the recommended action. If the recommended exception
action is not done, the subsequent recovery may be unacceptable to
the sender of the recommendation and therefore cause the session to
be terminated. The following recovery actions may be recom-
mended.

None—recovery action is to be determined by the sender of the
offending DIU.

Resend—the sender of the offending DIU should resend that DIU
as the next DIU sent after receiving the ACKNOWLEDGE command
containing this value.

Skip and resend—the sender should resend the offending bIU
after all other DIUs scheduled for this DIA-Session have been sent.
Postpone—the offending DIU should be sent on a subsequent
DIA-Session.

Cancel—the offending DIU should never be resent.

If the recovery action does not appear on an ACKNOWLEDGE
command, it is the same as if it were specified as none. Recovery
action values are ignored on a normal ACKNOWLEDGE command.
DIA structural definition (syntax)

Constructs of the services of DIA are self-defining and variable in

length. Generally, these characteristics permit fields to appear in any
order and fields of no interest to a particular product to be omitted.

IBM SYST J & VOL 21 & NO 2 & 1982 SCHICK AND BROCKISH

Figure 6 Document Interchange Unit structure overview

l DOCUMENT INTERCHANGE UNIT (DIU)

Functions, defined by commands, may be supported or not, according
to the functional objectives of the product. A parameter on a
particular command may be supported according to whether or not it
is optional and, if it is optional, whether or not its use is defined by the
product.

Furthermore, the fields of the architecture are defined to be variable
in length. Variableness is provided by using a length field as part of
each element’s introducer and by using the optional segmentation
capability which permits elements to consist of an unlimited number
of segments, each of which may be as large as 32 767 bytes in
length.

The SNA transport network deals with one type of segmentation
which is required to optimize the size of the units of information
moved in the network. It is distinct from the application process
segmentation. The fields in a DIU known only to the application
process are constrained to 32K bytes. The DIA segmentation permits
these application-level fields to have extensions, or multiple seg-
ments. Figure 6 presents an overall perspective of the architectural
structure.

SCHICK AND BROCKISH IBM SYST J & VOL 2] ®# NO 2 » 1982

The above-mentioned syntactic definitions are important because
they help permit individual products in an office to interact with one
another using the same language. A functionally rich product may be
able to utilize the full potential of the architecture, whereas a product
designed to provide less capability may constrain its use of the
architecture. DIA permits each of the product types to be optimized to
its respective unique requirements while it also permits the full range
of product types available for the office to interact within the same
system.

Document Interchange Unit

DIA defines a DIU as the interchange structure between DIA processes.
It consists of the following logical entities: a DIU prefix, one or more
commands comprising a Command Sequence, Data Units and Docu-
ment Units as options, and a DIU suffix, as shown in the top of Figure
6.

Structures within these entities are referred to as components.
Examples of components are command operands and document
profiles. Entities and components are self-defining and consist of
several fields.

All DIU entity and component constructs contain a mandatory
introducer consisting of a two-byte length field (LL) and a three-byte
identifier and format (IDF) field that are followed in some cases by an
optional extension (I1SS) consisting of a one-byte indicator (I) and
two-byte sequence number (SS), where

The length field consists of a two-byte unsigned binary value from
5 to 32K (32 767) indicating the number of bytes in the
construct.

The IDF field consists of three bytes. The first two bytes (ID)
identify the entity or component and its semantic definition; the
third byte, F, identifies the structural and syntactic representation
of the construct. For example, the ID indicates that this entity is a
FILE command and F represents the specific operand structure of
the command.

The 1SS extension field consists of three bytes. The first, referred
to as 1, is a byte of indicators used to specify options such as
segmentation; the second and third bytes, referred to as Ss, are a
two-byte sequence number. The ISS field is an optional extension
to the mandatory LLIDF introducer. Its presence as part of the
introducer is indicated by the high-order bit of the F byte.

DIU commands, Data Units, and Document Units may be segmented
to accommodate processes with limited buffer sizes, data lengths
greater than 32K bytes, and situations where the total length is not
known until the end of the data has been transmitted. Segmentation
is controlled through the bit settings within the I byte.

IBM SYST J e VOL 21 ® NO 2 e 1982 SCHICK AND BROCKISH

Command
Sequence

Figure 7 DIA command

| «————————— DOCUMENT INTERCHANGE UNIT (DIl)) ———

5 OR 8 BYTES n BYTES n BYTES n BYTES

COMMAND

The DIU must be introduced by a prefix which begins and identifies
the DIU. The DIU prefix consists of an introducer and a DIU ID field.
The DIU ID field permits a DIU sent in reply to identify the DIU to
which the reply correlates.

In existing implementations, the Command Sequence contains one
command that prescribes operations to be performed. Syntactically,
the Command Sequence could contain up to 255 commands. In a DIU
there is only one Command Sequence, but it may be extensive
according to the complexity of the request. Each command directs
the process to which the DIU is sent to perform some function or act on
data in a specific manner. Execution of commands within a Com-
mand Sequence is the responsibility of the receiver of the DIU. The
operations requested by the commands must be performed in the
order in which the commands appear. Commands appear within the
Command Sequence of the DIU as shown in Figure 7.

The command consists of an operator, or introducer, and zero or more
operands. The first two bytes, referred to as its LL bytes, indicate the
length of the entire command including all of its operands. The next
two bytes, referred to as its ID bytes, define the semantics and reply
protocol for the command. The fifth byte, referred to as the F byte,
indicates the operands that are defined for the command, with
respect to their mandatory or optional appearance, and allowed types.
DIU commands may be segmented.

SCHICK AND BROCKISH IBM SYST J & VOL 21 % NO 2 & 1982

A DIA operand either contains or references data that are used in the
execution of the command in which the operand appears. The syntax
and semantics of each operand are consistently defined for all
commands in which the operand appears.

Each DIA operand consists of an introducer and an operand value.
The ID bytes indicate that this element is an operand, define the
semantics of the operand, and indicate that the data reside in a Data
Unit or a Document Unit, or are contained as immediate data in the
operand value field.

When the ID bytes indicate that the operand contains immediate
data, the operand value field contains the data to be used in
performing the operation of the command. Examples of operands are
Password, Message, etc. When the ID bytes indicate that the data
semantically defined by this operand reside in a Data Unit or
Document Unit, the operand value field contains a binary position
number with a value greater than or equal to one. This position
number is used to identify the specific Data Unit or Document Unit
being referenced by its relationship with other Data or Document
Units within the current DIU. Currently, the implementations of DIA
provide for only one Document Unit within a DIU. When the operand
data resides in a Data Unit, the IDF bytes of the Data Unit indicate
the semantics and structure of the operand data that it contains.

Operands are defined to contain immediate data values or to refer-
ence a value contained within a data unit. The architecture is defined
with this flexibility recognizing that in-line information is processed
with some efficiency, yet if the operand value is lengthy, or used by
more than one command in a DIU, then efficiencies are accrued when
the operand value is indirectly referenced by a command, i.e., the
data are not in line.

Operands are defined distinct from commands so that they may be
used identically in more than one command. For example, the
Recipient-Address operand is used in the REQUEST-DISTRIBUTION,
DISTRIBUTE, and DELIVER commands as well as in several others.

A Data Unit contains information, such as a distribution list, that is
referenced by operands in one or more commands in the Command
Sequence of the DIU containing the Data Unit. Information common
to multiple operands, in the same or multiple commands, may be
contained in a Data Unit and be referenced by those operands.
Information which is unwieldy as immediate data or which is not
available at command generation time may be placed in a Data Unit
and referenced by an operand of a command.

The Document Unit is an entity consisting of an introducer, a
Document Unit ID field, a Document Content Introducer, and, as
options, Document Profile(s) and the contents of the document itself
as shown in Figure 8.

IBM SYST J @ VOL 21 & NO 2 e 1982 SCHICK AND BROCKISH

operands

Document
Unit

Figure 8 DIA Document Unit

{ DOCUMENT INTERCHANGE UNIT (DIU)

DOCUMENT UNIT

The Document Unit introducer’s LL bytes indicate the length of the
entire Document Unit. If the length is greater than 32 767 or not
known at the time the length field is constructed, the Document Unit
may be segmented. The ID bytes indicate that this is a Document
Unit and denote its type. The F byte is encoded to indicate the
presence or absence of the optional ISS introducer extension.

The specific content of a Document Unit is dependent on the
requirements of each of the interchange document types. Therefore,
the DCAs specify the required Document Unit composition. The
Document Unit ID identifies the architecture of the document
contents, DCA, contained within this document unit.

A document profile contains information relating to or describing a
document. All information in a document profile applies to the entire
document. The Interchange Document Profile (IDP) is defined for
general interchange between processes that use DIA. The document
profile is defined because of the need to deal with a document without
necessarily examining the contents of the document, which may
consist of noncoded information or which may be defined according
to an unfamiliar internal structure.

The form of the document content is, in most cases, defined
externally from DIA. DIA defines a structure for interchanging the
document contents and is not concerned with the controls and format
of the content itself. DIA conveys the type of document in the
Document Unit I1D. The Document Content Architectures are inten-
tionally distinct from DIA so that the DIA process need not be aware of
the different DCAs.

SCHICK AND BROCKISH IBM SYST J » VOL 21 @ NO 2 @ 1982

There are some instances where DIA is the defining architecture for
the contents of a Document Unit. In these cases the document content
is used specifically to support a DIA function. Examples of instances
of the definition of document content by DIA are for transporting
document distribution status data or the Library Services Document
Descriptor.

The end of a DIU is explicitly defined by the required occurrence of a
DIU suffix. A DIU suffix indicates the following circumstances.

Normal termination of a DIU, Type 1. The sending of the DIU
proceeded and completed normally.

Abnormal termination of a DIU, Type 2. The sending application
encountered an unrecoverable DIA exception situation during the
sending of the DIU. This can occur in the sending of large DIUs for
which transmission is begun before the entire DIU is constructed.

The suffix ID bytes indicate that this entity is a DIU suffix of a specific
type. The specific types denote the circumstance for the use of the
DIU suffix.

Use of the family of architectures for interchange

The following scenario demonstrates the application of the family of
architectures described in this paper. For this example, assume that
an author, Bill, in Atlanta is utilizing a work station that attaches to a
document distribution system. He has created and edited a document
in Revisable Form DCA. The FORMAT command has been used to put
the document into Final Form DCA. The Interchange Document
Profile associated with the document lists BILL as the author along
with other pertinent information about the document. He is ready to
distribute the document to three recipients, two of whom, TOM and
HARRIET, are at an office in New York City and the other, DICK, is at
an office in Chicago. The company’s document distribution system is
configured as shown in Figure 9.

Through the user interface provided by the work station, Bill
indicates the desire to distribute the specific document to Tom and
Harriet in New York and to Dick in Chicago. The work station
program initiates an SNA communications session with the company’s
Document Distribution Node (DDN) serving the Atlanta office.
When the communications session is established, the work station
program sends a DIU containing a SIGN-ON command to open a
DIA-Session with the DDN. The work station sends a DIU containing
both a REQUEST-DISTRIBUTION command indicating the recipients,
New York (Tom, Harriet) and Chicago (Dick), and the document.
The DDN replies with a DIU containing an ACKNOWLEDGE command
that means it understands the request, has the document safely
stored, and will proceed to initiate the distribution. Since this work

IBM SYST 1 @ VOL 21 e NO 2 e 1982 SCHICK AND BROCKISH

Figure 9 Sample document distribution system

] row

HARRIET

station has no more outstanding requests to send at this time, the
work station sends a SIGN-OFF command terminating the DIA-Session
and deactivates the SNA session.

The DDN, in turn, establishes an SNA session with the company’s DDN
in New York, and after establishing a DIA-Session sends a DIU
containing both a DISTRIBUTE command indicating the recipients,
New York (Tom, Harriet) and Chicago (Dick), and the document.
The DDN replies with an ACKNOWLEDGE command indicating that it
has safely stored the requesting DIU and will proceed with the
request. The New York DDN has a similar dialogue with the Chicago
DDN to forward the document to Chicago (Dick.)

The New York DDN also recognizes that it supports Tom and
Harriet. It invokes the program at the New York DDN to service local
users and enqueues the document for delivery when Tom and Harriet
initiate an SNA session and a DIA-Session to receive mail. Tom,
known to the distribution system as TOM, indicates through his work
station and its user interface that he wants to know what “mail” is
queued for him. The work station establishes an SNA session and a
DIA-Session with the New York DDN and sends a DIU containing a
LIST command. Upon receipt of the LIST command, the local
distribution program in the DDN gathers together a list of information
about documents that have arrived for TOM.

The information is delivered to the work station in a DIU containing a
DELIVER command and a Document Unit containing the data about

SCHICK AND BROCKISH IBM SYST J ¢ VOL 21 ® NO 2 o 1982

the documents. The work station sends an ACKNOWLEDGE command
for the DELIVER command to the DDN and presents the information
to Tom, who can then select the document for delivery. When Tom
has indicated which document he wants delivered, the work station
sends to the DDN a DIU containing an OBTAIN command identifying
the document to be delivered. The DDN replies with a DIU containing
a DELIVER command and the requested document.

The work station acknowledges the DELIVER command and, depend-
ing on the capability of the work station, allows Tom to view the
document or print it as hard copy. If Tom views the document and
decides that he wants to retain it for future reference, he indicates to
the work station that he wants this document filed under a name he
chooses. The work station sends a DIU containing a FILE command
and the user-assigned document name to the DDN. The library service
program of the DDN files the document, assigns it a unique name, and
acknowledges the FILE command. Depending on the implementation
of the DDN, the FILE command may have been done automatically
prior to the DELIVER command. In this case, Tom would not have to
explicitly file the document to access it for reference. He would
however, be expected to delete the document when it is no longer of
use to him.

At some later date, Tom decides to reference the document. Using
the user interface of the work station, he indicates that he wants to
retrieve a document. He has forgotten the name of the document but
recalls that the author was Bill. Using the user interface, he causes
the work station to establish an SNA session and a DIA-Session with
the DDN. The work station sends a DIU containing a SEARCH
command indicating that the user wants information on all docu-
ments to which he has access and for which Bill is indicated as the
author in the document profile.

The library services program searches the profiles of Tom’s docu-
ments and delivers a Document Descriptor Document containing
profile information about all documents authored by Bill. The work
station presents that information to Tom, who can then pick the
document that he wants based on date or other indicative data
returned. The work station then sends a DIU containing a RETRIEVE
command specifying the document desired. The DDN replies with a
DELIVER command and the document. The work station then makes
the document available for viewing or printing.

In the meantime, Dick and Harriet are meeting their individual needs
by using their work stations to have similar DIA-Sessions with their
DDNS.

This example has shown how individual architectures in the family of

architectures are used to satisfy tasks encountered in the office
environment. Bach individual user has a different exchange of

IBM SYST J e VOL 21 @ NO 2 e 1982 SCHICK AND BROCKISH

requests and information to accomplish his or her required tasks. This
is one of the reasons that the architectures defining the interchange
between products support a wide variation of control sequences and
data types.

Summary

DIA, although oriented to an office systems application, can be a
general-purpose language used to interchange information and con-
trol requests among applications in a distributed processing environ-
ment. DIA is defined to be both semantically and syntactically
extendable in order to have a long life.

DIA is one of several architectures that comprise a family of architec-
tures oriented to the requirements of the automated office. The
family of architectures provides structure to the office functional
spectrum. This functional spectrum is deliberately defined to be
open-ended, anticipating the introduction of new technologies and
new solutions to the system needs of the office. The architectures in
this family are structured among one another to minimize functional
overlap and to permit them to be developed independently.

It is this family of architectures that collectively provides for the
interchange of both information and control requests among the
many word processors, printers, and various other machines in an
office. This family of architectures permits the many distinct items of
equipment used in an office to comprise an office system.

ACKNOWLEDGMENTS

The architectures that comprise the family referred to in this paper
were conceived and developed by many contributors who represented
several organizations in the IBM laboratories in Hursley, England;
Sindelfingen, Germany; and Fujisawa, Japan; and in those located in
the United States in Austin, Texas; Boulder, Colorado; Kingston,
New York; Poughkeepsie, New York; Raleigh, North Carolina;
Rochester, Minnesota; and Santa Teresa, California. The dedicated
work of these people is reflected in this paper.

Appendix

This appendix contains a brief description of each of the DIA
commands.

DIA distribution services commands

DIA Document Distribution commands support asynchronous docu-
ment distribution and direct source-to-recipient document exchange
processes. They provide the functions necessary to perform distribu-
tion from initiation of the distribution to delivery of the document and
the return of status regarding the distribution.

SCHICK AND BROCKISH IBM SYST J & VOL 21 & NO 2 %1982

The REQUEST-DISTRIBUTION command transports a document
from a source node to a Document Distribution Node (DDN) for
distribution to specified recipients. The document may be con-
tained in the DIU Document Unit or in the command recipient’s
Document Library.

The DISTRIBUTE command transports a document in the store and
forward system from one DDN to another DDN.

The DISTRIBUTION-STATUS command returns, through the store
and forward system, status information on the progress of a
previously distributed document.

The STATUS-LIST command notifies the recipient that one or more
documents is available from the Distribution System or that
information about the progress of distributed documents is avail-
able.

The LIST command requests the receiver of the DIU to return to the
requestor a list of documents available from the Distribution
System for this recipient or a list of the status of documents
previously distributed.

The OBTAIN command requests the receiver of the DIU to return
one or more documents scheduled for delivery to the requestor.
The DELIVER command transports a document from a DDN to a
Source Node or a Recipient Node in response to the LIST, OBTAIN,
or RETRIEVE commands. The DELIVER command is also used to
transport a document directly from the Source Node to a Recip-
ient Node without utilizing the store and forward system.

The CANCEL-DISTRIBUTION command cancels system retention
of document status or cancels the distribution or delivery of
documents.

DIA library services commands

DIA Document Library Services commands provide the functions for
maintaining user documents in a document library on a data process-
ing system.

The FILE command preserves the identified document in the
library for an authorized document owner.

The RETRIEVE command returns a library copy of the identified
document to an authorized document requestor.

The SEARCH command locates the documents in the library that
have the characteristics specified by the search-data operand. It
creates and preserves a named list of references or pointers to the
search-selected documents.

The DELETE command permanently removes access to the identi-
fied document for the delete requestor. A document that has two
or more owners will be removed from library storage when all of
the owners have requested that it be deleted.

DIA application processing services commands

Application Processing Services define commands for requesting the
execution of tasks by another process.

IBM SYST J @ VOL 21 © NO 2 ¢ 1982 SCHICK AND BROCKISH

* The EXECUTE command requests the destination to invoke the
named process for execution.
The FORMAT command requests the destination to execute the
named formatting process using the identified document for the
format input object.
The MODIFY command is used to revise document control infor-
mation fields. A field must be uniquely identified as a specific
occurrence of a DIA parameter.

DIA commands applicable across services

These commands, also known as DIA-Session control commands, are
used to establish, maintain, and terminate dialogues between pro-
cesses using DIA.

SIGN-ON establishes a DIA-Session, determines the functions of
the interchange architecture to be used in that session, and gives
two processes the ability to validate each other’s authority to
exchange information.

SIGN-OFF concludes a DIA-Session. The conclusion can be
unequivocal or negotiated.

The SET-CONTROL-VALUE command provides the ability for one
DIA process to establish, change, or delete the value associated
with a control variable that is stored at another DIA process.

The ACKNOWLEDGE command notifies the DIU sender that the
requested DIU command operation is concluded with either a
normal or an exception response.

CITED REFERENCES

1. A. L. Scherr, “Distributed data processing,” IBM Systems Journal 17, No. 4,
324-343 (1978).
2. Systems Network Architecture Format and Protocol Reference Manual: Architec-
ture Logic, SC30-3112, IBM Corporation; available through IBM branch offices.
3. Systems Network Architecture: Concepts and Products, GC30-3072, IBM Corpo-
ration; available through IBM branch offices.
. IBM Distributed Office Support Facility: Document Transmission Function
Guide, SC27-0548, IBM Corporation; available through IBM branch offices.
. IBM 5520 Administrative System: System/370 Host Attach Programmer’s Guide,
SC23-0710, IBM Corporation; available through IBM branch offices.
. IBM Distributed Office Support System General Information, GH12-5124, IBM
Corporation; available through IBM branch offices.
. M. R. DeSousa, “Electronic information interchange in an office environment,”
IBM Systems Journal 20, No. 1, 4-22 (1981).

T. Schick is located at the IBM Communication Products Division
laboratory, P.O. Box 12275, Research Triangle Park, NC 27709;
R. F. Brockish is located at the IBM Information Products Division
laboratory, P.O. Box 1900, Boulder, CO 80302.

Reprint Order No. G321-5168.

SCHICK AND BROCKISH IBM SYST J e VOL 21 « NO 2 o 1982

