Discussed is a methodology of creating and using scenarios to assess
completeness, correctness, consistency, and usability of the external
design of computer software. Scenarios are paper tests of the
specifications of software being designed. The approach is an
outside-in, user-oriented evaluation of programs. The technique
requires no machine time to perform the evaluation. As a result,
defects are identified and changes are recommended early in the
design phase of software development, at the time when defect
removal costs are lowest.

Technique for assessing external design of software
by R. J. Pearsall

Software development has primarily focused on advancing the state
of the computer programming art by adding new functions and
performing existing ones at faster rates. These accomplishments
have, for the most part, been attributed to technological innovation.
Now, more attention is being given to the usability of software.

Substantial progress is being made in removing defects from software
during the software engineering process. Indeed, specific steps in
most software engineering processes allow for the removal of various
types of defects from the design and resulting code. The scenario
technique described in this paper complements this effort by identify-
ing defects in a program’s external design, thereby allowing for the
removal of these defects prior to program development.

Computer applications are changing significantly, placing new
demands on programming. In the past, users of programs were
primarily data processing professionals. Today, users are often
persons who may not have a data processing background. These
non-data-processing professionals relate to programs in terms of
usability for handling their applications. This creates new require-
ments for easy-to-use external interfaces. Users of software see it
collectively as tools to help them accomplish their jobs, and they may
or may not decide to use a particular tool, depending on its usability.'
Usability is thus a key consideration for developers of software.

© Copyright 1982 by International Business Machines Corporation. Copying in printed
form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM
copyright notice are included on the first page. The title and abstract, but no other
portions, of this paper may be copied or distributed royalty free without further
permission by computes-based and other information-service systems. Permission to
republish any other portion of this paper must be obtained from the Editor.

IBM SYST J @ VOL 21 ® NO 2 e 1982 PEARSALL

command
completeness

usability of
external languages

212

This paper describes a technique that uses scenarios to evaluate the
external design of large-scale, general-purpose programs. A scenario
is an English language exposition of the interaction of specified
programming and a particular application, expressed as what the
user does via job streams and especially what the user sees as a result
of the action. Functional specifications are used to create these
scenarios, and the technique provides a means for evaluating com-
pleteness, correctness, consistency, and usability of the design as
defined by the programming specifications. A scenario uses descrip-
tions of macros, commands, and publications such as reference
manuals to create job streams that perform the various tasks in a
representative user environment. This approach gives a user-oriented,
outside-in look at a program. Hence, the scenario technique provides
paper tests of programs under development before coding begins.

Scenarios offer several advantages. Functional defects can be found
when the scenarios are used to evaluate the external design. Also,
finished scenarios help to provide the developers with feedback on the
acceptability of programming externals. Scenarios can further aid in
preparing for system-level function testing, and we have used them to
assist in the production of program documentation.

Problems addressed by the scenario technique

We refer to the steps in going from application requirements to the
finished program collectively as the software engineering process.
We have added the scenario technique to this process’ and applied it
to the development of data base management systems and other
programming for the evaluation of external program interfaces.

Among the existing variations of the software engineering process,
the method with which we are most familiar calls for the external
design of software to be described in a document known as the Final
Programming Functional Specifications (FPFS). The software re-
quirements are contained in a document known as the Programming
Objectives (PO). These two documents are primary inputs to the
creation of the scenarios.

An FPFS is normally organized and described by program function or
component. Also, different people are often assigned to design each
program function. Consequently, it is difficult to determine the
completeness of the commands provided to perform the designed
functions or the completeness of the set of functions offered to
perform the tasks. The scenario technique provides for identification
of user tasks and evaluation of design in terms of those tasks, thereby
testing the completeness of commands and functions.

Another problem the technique addresses is that of the difficulty of
assessing the usability of proposed external languages by merely

PEARSALL IBM SYST J e VOL 2] ¢ NO 2 e 1982

studying syntax descriptions in reference manuals. A syntax may look
usable at first glance, but a program that uses mixtures of blanks,
parentheses, hyphens, and slashes as delimiters, for example, makes
it difficult to write command streams without syntax errors. Lengthy
keywords and nonstandard keyword abbreviations do not appear to
be difficult to use until one tries to spell them correctly and enter the
data on lines limited to eighty characters. One does not realize such
difficulties until he starts using the system.

Still another necessity addressed by the scenario technique is that of
consistency of commands in terms of content and format. This need
pertains not only to commands within the program being designed
but also to commands between that program and related programs
that a user must apply to accomplish desired tasks. For example, a
program that defines DROP as a command against objects of type A
and ERASE against objects of type B embodies an inherent difficulty
for the user. For the same reason, one who is using MVS and who is
also using TSO interactive facilities may find a program difficult to
use correctly where two commands mean the same thing. For
example, the user of the DELETE command for getting rid of objects
managed by TSO may be confused by an ERASE command that
performs the same function in a program that runs under control of a
TSO session.

Command verbs within a single program are sometimes so much
alike in their English language definitions that a user has trouble
remembering the verb to use in a given computing situation. Consider
a programming language that offers the similar English language
commands DISPLAY and SHOW to operate on the same set of objects,
but defines the programming language command verbs as perform-
ing very different operations. This may lead to quite different and
erroneous results. Complementary to this is the case of similar
English and programming language verbs that operate on different
objects. An example of such a design flaw is that of defining SHOW as
valid for objects of type A only and DISPLAY for objects of type B
only. With either design, the user faces unnecessary confusion
between the English and the programming language.

Reasonableness of command operands in terms of the maxima,
minima, and granularity that they provide cannot be evaluated
without understanding other programs that are available to the user
in his environment. An example of reasonableness is that of a buffer
manager that allows buffers to be specified in integral multiples of
the page size only. Such buffer specifications can be used by the
storage manager and by access methods to minimize the number of
physical 1/0 operations. An example of an unreasonable maximum is
that of a buffer manager that limits a user to writing 1K-byte records
when the underlying access method (or another program) currently
in use allows 4K-byte records to be written.

IBM SYST J @ VOL 21 e NO 2 e 1982 PEARSALL

command
consistency

English

and
programming
languages

reasonableness
of
operands

abbreviations
and
defaults

system
action
messages

effect of
program
internals

command
ambiguity

An analysis of abbreviations and defaults should also be performed as
a part of the evaluation of software externals. The usefulness of
choosing to abbreviate or default and the value or term chosen
deserve careful attention. For example, the number of Write To
Operator (WTO) buffers provided by MVS was at one time an order of
magnitude too small to operate efficiently. As a result, many MVS
users were forced to override that default. An understanding of
related programs available to the user in his environment is therefore
key to evaluating this aspect of the design.

Another important consideration is to ensure that system messages go
to the right persons. For all commands, precise messages should be
provided to indicate the actions performed by the software at various
stages of a job execution. These messages should report the successful
and unsuccessful execution of commands. Unanticipated events
should also be reported. Systems problems are difficult for many
software users to determine and often require the attention of
individuals with specialized skills for resolution. Good external design
can provide data necessary to minimize the expense and lost time
associated with problem determination. Scenarios attempt to identify
everything that can go wrong with resources managed by software so
that good diagnostic messages can be built into the product and sent
to the proper user.

Command verbs, keywords, and operands often coincide with internal
objects of programs. This tends to make program externals appear to
be internally oriented (i.e., reflecting implementation algorithms and
structures), which may generate resistance to the use of the
program.' Terms that are familiar to non-data-processing profession-

als and convey the same information ought to be used in system
messages, contrary to the tendency for the externals designer to use
the same names as the internal supporting construct. Because the
software designer does not have the same perspective as the intended
user, an outside group can help to highlight areas where internal
program objects are presented to the end user.

One analysis of a product using the scenario technique found that
users were presented with names given to collections of components
within the program via commands and messages. The names had no
meaning and provided no additional useful information to the user.
These names, which had been assigned to groups of components for
the purpose of partitioning the code by department and functional
area for development, were identified and subsequently removed
from the externals.

The scenario process also evaluates a program design to identify
externals that at times are not indicative of their corresponding
function. For example, the CREATE verb was once used to bring
objects into existence. The CREATE verb was also used where it added

PEARSALL IBM SYST J o VOL 21 ® NO 2 e 1982

information to an existing object but did not result in the creation of a
new object. This example illustrates an ambiguous use of a command
verb.

Often, insufficient attention is given to seeing commands and the
resulting response messages from the viewpoint of an intended user.
Just as publications can be difficult to read when they are not written
for the intended audience, program externals can be similarly misdi-
rected. The scenarios segregate program externals by user task,
which allows an analysis of the acceptability of the external design as
viewed through the experience of the users associated with each of the
defined tasks.

Few programs developed today run independently of other software.
This complicates the design evaluation in that one must look beyond
the bounds of the program being evaluated in order to obtain a
system-level perspective. One must consider the interaction of a given
program with other programs. A user must deal with compilers, data
base managers, operating systems, access methods, session control
managers, and so forth, to accomplish certain tasks. The better these
programs work together, the better they serve the user.

For example, consider an MVS system where the user applies TSO
editing facilities to create batch job utilities for later execution.
Suppose that for an MVS utility a hyphen were chosen as the last
character on a line to indicate continuation of the input data stream
to the next physical record. With TSO, the hyphen indicates to the
editor that the user wishes to skip to a new physical line on his
terminal, but the new line is to be concatenated to the record
currently being entered. As a result, the task of creating input data
becomes overly complex because the two programs do not work well
together. Users have developed techniques to avoid this problem, but
it might have been obviated by the use of scenarios during the
development of the system.

Creating the scenarios

The programming areas just discussed have motivated us to develop a
scenario methodology that we divide into five sequential steps: (1)
establishing objectives; (2) defining representative environments; (3)
developing scenarios; (4) reviewing scenarios; and (5) identifying
problems.

To develop scenarios we have formed a group made up of members
from areas responsible for program testing, manual publications,
programming assurance, world-wide applicability, programming
education, system-level environment testing, and software planning.
Designers of programs being evaluated are excluded because their
inside knowledge, rather than the written specifications, may

IBM SYST J @ VOL 21 ® NO 2 & 1982 PEARSALL

human
factors

scenario
document

task
identification

task
outlines

influence their contributions to the scenarios. They may, however, be
consulted for clarification of specifications.

Our primary objective is to identify and remove external design
defects by constructing an outside-in evaluation of proposed software,
keeping in mind the user’s perspective of the external design. We also
believe that scenario development can increase the participants’
knowledge of the software. Thus we believe that if our work is
successful the resulting scenario document will prove beneficial in
analyzing the usefulness of a proposed program, in preparing support
documentation, in preparing system-level function testing plans, and
in fostering an understanding of external designs by upper-level
executives.

As a first step, the potential defects previously described are
explained to the team members to sensitize them to the types of
problems to look for. Also explained is the job of translating
programming externals that are specified in an expository format,
together with a sample user environment, into job streams to be run
against a proposed program. The job streams are to be set forth in a
document called the scenario document.

The next step is to partition the work of writing scenarios by
analyzing program contents and the intended users’ tasks. Teams of
two persons are assigned to write scenarios for each of the defined
tasks. In the scenario document that we produced for a data base
system we identified the following tasks: system installation, system
operations, system recovery, application development, data base
administration, system security, and system optimization.

The third step is to outline each task by extracting functions (line
items) from the Programming Objectives (PO) and from the Final
Programming Functional Specifications (FPFS) and to bring them
together as task outlines. The resulting outlines bound and define the
functions of each task. For example, the recovery task outline
contains five major items: (1) failure of system code; (2) system data
set errors; (3) data base manager log errors; (4) user data base errors;
and (5) recovery utility errors. Each major item is further subordi-
nated. From the data base system example just given, failure of
system code is further refined to address: (1) operating system abend
(abnormal ending), wait, or loop problems; (2) data base manager
loop, wait, or abend; (3) failure of a data-base-manager-dependent
program (such as the resource lock manager; (4) failure of a data
communication control region; (5) failure of a dependent message
processing region; and (6) failure to respond to an end user. The
completed outlines are reviewed by fellow study group members who
focus on identifying items omitted from any of the task outlines and
items that logically belong to other tasks. Outlines are updated to
reflect such changes.

PEARSALL IBM SYST J ® VOL 21 e NO 2 » 1982

The next step is to expand task outlines into what we term the
“narrative form.” This step involves the expansion of each topic in
each task outline into an English language narrative of what must be
done to perform that aspect of the task. In the recovery task, for
example, the outlined item entitled Data Base Manager Failure
(loop, wait, abend) is expanded to discuss symptoms indicating which
problem had occurred and the action to take to correct the problem.
Depending on the error situation, the symptoms are described in
either informational or error messages that appear in one or more of
the following places: user terminals, operating system master con-
soles, records written to the data base manager’s log, or in an
operating system log.

The functional descriptions of these symptoms and corrective actions
are extracted from FPFS. In the event that symptoms and/or correc-
tive actions are not stated in the FPFS, the writer of the narrative
proposes a problem log statement derived from the external design of
the program. Consider, for example, an event in which no indication
of the data base manager’s stopping or restarting is sent to the master
terminal operator responsible for data communication and message
processing. In this case, the master terminal operator first sees queues
of work building; then he sees the system go into recovery mode. He
may eventually determine what has happened, but he may never
learn via messages when the data base manager is ready for process-
ing. As a result of analysis, a design change was incorporated to
inform the master terminal operator of stopping and restarting
events.

The creation of the narrative level documentation is a rather complex
job, requiring a great deal of interpretation to show the program
control flow. This interpretation is necessary because messages in the
FPFS generally are not tied to specific commands. The writers of the
narratives are forced to make informed guesses in describing the flow.
For this reason, the narratives are reviewed by the program designers
to verify that the interpretations conform to the designers’ intentions.
Questions related to incompleteness of the FPFS are included in the
narratives so that they may be reviewed by the designers. The
designers either provide the answers to questions in the FPFS or give
the answers when they are not contained in the FPFS. Lacking such
information, the designers state that they cannot answer the ques-
tions because the design work is incomplete. Whenever a question is
answered by a designer or the design work is found to be incomplete,
the FPFS is amended and the narratives are updated to reflect the
comments from the designers’ review.

Before the narratives can be considered as complete, they are
compared with a representative user environment that contains
descriptions of user data bases, applications, transactions, user IDs,
and associated names that are to be used in and be common to the
scenarios produced in the next step. In the case of our data base

IBM SYST J & VOL 2] ® NO 2 & 1982 PEARSALL

task
narratives

user
environment

scenario
creation
and
review

system scenario, the IMS/VS primer’ contains a sample problem that
we used with modifications to study applications, data bases, and so
forth to exercise those aspects of the system that we were evaluating.

To create the actual scenarios, study group members write such
programming as the user-initiated instructions, commands, and JCL
for each narrative. This programming is required to perform the work
described by the narrative for the sample environment and for all of
the system responses to the user. The scenario writers extract the
command syntax and messages from the FPFS, and parameter names
and values from the user environment definition appendix of the
scenario document in order to create job streams. The resulting job
streams are the solutions to the defined user tasks for the sample
environment. When commands and messages necessary to perform a
task are not contained in the FPFS, design change requests are
submitted. Design change requests are also submitted when usability
concerns are recognized in the provided externals. For example, in
using commands to accomplish a particular task, we recognized that
a particular set of commands would be more usable as subcommands
of another specific command. This eliminated the requirement that a
user temporarily interrupt an existing terminal session to enter a
command that logically belonged to the session.

The scenarios are subjected to a second review by the system
designers that focuses on verifying the externals used to accomplish
the tasks. Again, questions are placed in the scenario document when
the writers cannot find the appropriate external in the FPFS. The
scenarios are finally updated to reflect approved design change
requests that affect the externals of the program, plus changes

attributed to incorrect interpretation of the external design as defined
by the FPFS. The format of and actions resulting from the scenario
review by the system designers are the same as those described
previously in the narrative review.

Concluding remarks

The final version of a scenario gives an accurate view of the program
through the eyes of a user. The scenario also gives management a
useful view of the system. Thus the scenario becomes the first vehicle
to give flow to the program externals, allowing an examination of the
externals as they apply in a user environment. Anyone should be able
to use a scenario to evaluate a proposed program for usability,
compatibility, consistency, and completeness of functional content.
The difficult job of transforming the contents of reference manuals
and sample environments into task-oriented job streams need be
performed and validated only once. Thus program testers, publica-
tion writers, and others can use the same scenario, rather than each
group’s having to generate similar information for its specific require-
ments.

PEARSALL IBM SYST J » VOL 21 ¢ NO 2 ¢ 1982

We have found that scenarios may also be applied in the following
situations:

Educating program development support groups.

Creating system-level function test procedures.

Deriving publication objectives and plans.

Producing marketing review board inputs.

Obtaining users’ opinions, approval, and feedback prior to the
development of running code.

In our first application of the scenario technique—a data base
system—a number of problems were identified in the program
functional specifications and were removed. The defects found
involved usability, completeness, correctness, and consistency of
system externals. The scenario process provides an outside-in look at
the system prior to the actual creation of the running code to support
the design. The evaluation of the system required no machine time,
and the technique was applied sufficiently early in the program
development cycle to remove defects at minimum cost.

In programming projects where scenarios have been written, the
scenario writers have found a number of defects that had previously
been overlooked. The scenario technique has thus proved to be an
effective discipline for exposing external design defects. Initial plan-
ning work for system-level functional testing has been developed
using scenarios as primary inputs. Publications and planning groups
have also made use of scenarios as primary inputs. Programming
executives have increased their understanding of programs under
development, and marketing executives have used the scenarios in
making their evaluations of programs. We believe that the scenario

concept is suitable for incorporation in all software engineering
processes, particularly in the development of large and/or complex
interactive systems.

CITED REFERENCES

1. J. L. Bennett, “Incorporating usability into system design,” IBM GPD Design ‘79
Symposium Proceedings 1, San Jose, CA (April 1979); a copy of the paper may be
obtained from the author of the present paper.

. H. Remus, Planning and Measuring Program Implementation, Technical Report
TRO03.095, IBM Santa Teresa Laboratory, 555 Bailey Avenue, San Jose, CA 95150
(June 1980).

. IMS/VS Primer, World Trade System Center Bulletin No. $320-5757-2 (Septem-
ber 1977); available through IBM branch offices.

The author is located at the IBM General Products Division Santa
Teresa Laboratory, 555 Bailey Avenue, San Jose, CA 95150.

Reprint Order No. G321-5167.

IBM SYST J o VOL 21 @ NO 2 o 1982 PEARSALL 219

