This paper presents the technique of data flow and how it can
substantially improve application development productivity. Flows
of data are the only connections needed between functional compo-
nents of a computer program. Components which pass only data are
so independent that they can easily be shared and reused. Such
components can be developed independently, which substantially
reduces the complexity of development and makes them much easier
and faster to design, implement, test, and change. Building pro-
grams in this way can yield substantial increases in productivity over
developing monolithic programs or even structures of called mod-
ules. The compatibility of data flow to natural human views of
applications and other parts of data processing, such as distributed
processing and high-performance architectures, is also presented.
Recommendations are included.

How data flow can improve application development
productivity

by W. P. Stevens

The time and effort needed to develop computer applications con-

tinues to be a major bottleneck. As hardware price/performance

improves and more applications are justified, there is growing

Figure 1 A data flow diagram  Pressure to increase the productivity of application developers. A

(Vinear) major improvement in productivity is necessary in order to have a

FUNCTIONS significant effect on the problem (see Reference 1 for an example).

/ l \ Many companies are trying to find ways to substantially improve

o2 productivity, and 1BM has expended a considerable amount of effort

e £3 toward finding solutions to this problem. This paper describes why

the technique of data flow can provide major improvements in
DATA FLOWS application development productivity.

Data flow is a technique that allows programs to be developed as
combinations of independent functions which are connected solely by
flows of data. A data flow diagram is a convenient way to depict
functions that are connected by flows of data. The connections
between functions can be “linear” as in the data flow diagram in

© Copyright 1982 by International Business Machines Corporation. Copying in printed
form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM
copyright notice are included on the first page. The title and abstract, but no other
portions, of this paper may be copied or distributed royalty free without further
permission by computer-based and other information-service systems. Permission to
republish any other portion of this paper must be obtained from the Editor.

STEVENS IBM SYST ! e VOL 21 @ NO 2 @ 1982




Figure 2 A data flow diagram {network)

PRINT
INVOICE

Figure 1 or can be a network as in Figure 2. Each function processes
input data and puts out the resulting data. The network defines the
flows of data between the various functions.

Benefits of using data flow come from

Reusable functions

Reduced complexity

Easy use of subassemblies

Natural, consistent application view
Easier application development

The most important of these is the ease with which previously
developed functions and/or combinations of functions can be used
and reused. The productivity improvements from reusing functions
can be so significant that this benefit alone can justify basing
application development on the data flow approach. Functions can
output data without naming the target functions. The destination of
each flow of data is specified externally to the function in the network
definition. The network definition is used at execution time by a
system service which does the physical passing of data between
functions. This makes it possible to reuse functions in other programs
without having to modify them. The ability to reuse a function in
another program is then determined by the need for that function and
the format of the data which the function uses. Networks can be
specified as easily as F1 & F2 & F3 for Figure 1—where the & means
that the output of one function is to be fed into the input of the next.
The UNIX"™ Operating System can do this for a linear sequence of
functions with the syntax F1| F2{F3.” The relationships between
functions in a data flow network are similar to the relationships
between programs in a traditional system “flowchart” which depicts
jobs and/or job steps and their input and output data. The programs
are independent of each other and can be run at different times (i.e.,
asynchronously) since they are only connected by input and output
data.

IBM SYST J » VOL 2] ® NO 2 & 1982 STEVENS




DeMarco’ and others have shown that users view manual applica-
tions as functions connected by flows of data. The data flow technique
directly implements this application view. Thus, the application user
is able to understand the design of the application since it can be
made identical to his application view.

It has been known for some time that modularity—building pro-
grams from small independent pieces—plays a crucial role in reduc-
ing the complexity of application development and in improving the
ability to reuse developed functions." The more independent the
pieces, the greater the reduction in complexity. Data flow provides
greater independence between pieces than other modularization
techniques (see the section, Reduced complexity).

Data flow implementations

Implementing a program as a combination of functions connected by
data flows consists of defining the network (e.g., by specifying F1 & F2
& F3 for the example in Figure 1) and creating or obtaining the
necessary functions. The functions are implemented as independently
compiled subroutines. Each function can be developed almost totally
independently of the other functions. They can be developed by
different techniques, at different times, in different languages, by
different people, in different locations, and even by different compa-
nies—as is most appropriate for that particular function. Most
important, if functions exist that do what is needed, they do not have
to be redone—they can simply be reused. The constraints are that
they input and output the desired data and execute in the target
environment.

Data flow architectures already exist for programs. The job control
languages of Multiple Virtual Storage (MVS) and Disk Operating
System/Virtual Storage Extended (DOS/VSE) define functions (job
steps) and the flows of data (files) among them. On-line systems
contain independent transactions which are initiated based on data
that is input by the terminal user. Distributed systems can execute
programs independently and asynchronously on different processors
which send data to each other.

There are also implementations of data flow mechanisms within a
program. One example is described by Morrison.” He shows how a
program can be specified as a network of functions connected by
flows of data. Functions call a data flow service to get or put their
data. The data flow service transfers data to subsequent functions
based on data flow connections specified separately in an application
network (such as Figure 2) rather than within the individual func-
tions. The data flow service also schedules the functions, which can be
run asynchronously—any function can run if it has input data to

STEVENS IBM SYST J e VOL 21 @ NO 2 e 1982




process. The distinction between multiple data flows in or out of a
function is made by indicating a numeric “port” number for the
flow.

Data flow within a program is also used in the UNIX Operating
System.” Here, the “shell” has the capability to dynamically specify
programs as combinations of reusable functions. The data from each
function is routed to the next function based on the specified function
sequence.

In both the UNIX system and the Morrison approach, a function can
pass data to other functions as if simply doing 1/0 operations to a
sequential file. For example, simple functions could have the follow-
ing form:

START
INPUT GET INPUT DATA
PROCESS THE DATA
PUT RESULTING DATA OUTPUT
RETURN

Functions with more sophisticated logic, such as initial or end of file
processing, and multiple input or output streams, could take the
following form:

START
INITIAL PROCESSING
DO UNTIL EOF
LOGIC
INPUT 1 — GET INPUT DATA 1
LOGIC
INPUT 2 — GET INPUT DATA 2
PROCESS THE DATA
PUT RESULTING DATA — OUTPUT
MORE LOGIC
END DO
EOF PROCESSING
RETURN

The ability to handle input and output data as though they were
sequential files keeps each function independent of the source(s) and
destination(s) of its data. A function can thus be used in any program
where its transformation of input data to output data (e.g., a rate
calculation) is needed. Data flow allows all of the functions in the
program to be written in the same reusable form.

The first form shown above is similar to a callable subroutine that is
passed data via call parameters. However, in order to reuse callable
subroutines, it is necessary to write a calling routine. Writing this
routine can require significantly more work than only having to
specify F1 & F2 & F3. Also, callable subroutines can become difficult to
program when two or more input and/or output data streams are
needed, or even when the data varies in content or occurrence. It is
much simpler to program such functions if zhey can call a service to
get their data rather than be called and have their data passed to
them. For example, consider the network in Figure 3. Here, functions

IBM SYST J ® VOL 2] @ NO 2 e 982 STEVENS

Figure 3 A network example




Figure 5 One call structure

Figure 6 The inverse call
structure

Figure 4 Sample coding for all functions

F1: START F2: START F3: START F4: START
LOGIC GET INPUT 1 GET INPUT 1 LOGIC
GET INPUT 1 PROCESS IT PROCESS IT GET INPUT 1
LOGIC PUT QUTPUT 1 PUT QUTPUT 1 LOGIC
GET INPUT 2 RETURN RETURN GET INPUT 2
MORE LOGIC MORE LOGIC
RETURN RETURN

F1 and F4 each deal with two data streams. It is easier and more
flexible if both F1 and F4 can be developed as shown in Figure 4.

Implementing the functions in Figure 3 as a hierarchy of called
modules results in the limitation that there can be only one module at
the top of the hierarchy. The basic alternatives are shown in Figures
5, 6, and 7. Either F1 or F4 or both of them end up having to be called
by other modules which pass the data. In Figure 5, for example, the
implementation of F4 is complicated because it must save input 1
until it gets called with input 2. If its logic can result in F4 needing a
second input 1 before being able to accept an input 2 (e.g., the first
input was not valid), it gets even more difficult. More logic will have
to be implemented in F4, and maybe also in F2, to give F4 the ability to
access multiple inputs before F2 returns to F1. This added complexity
results from the imposed limitation that a call hierarchy has only one
module at the top.

What is needed is the ability for all functions to be able to invoke a
service to get or put their data as in Figure 8. Then al/l functions can
be coded as in Figure 4.

Programming the merge function in Figure 9 demonstrates the above
problem. It is difficult to program a merge as a called subroutine
since the calling routine would not know which record to pass next.
The called merge routine is the one that has the information about
which input is needed next. However, it is straightforward to program
the merge as a data flow function, since it can then decide which
input it needs next and get that input from the program data
streams.

The inherent limitations of implementing programs as hierarchies of
functional modules which call each other are as follows:

The calling module names the called module and thus cannot
easily be used in other programs that need other functions as
targets for that output data.

The calling module passes control along with the data and thus
becomes responsible for determining when the called module
should execute.

Hierarchies result in less flexibility and independence between
modules than networks do. Modules can only share data with
modules they call rather than any other module in the program.

STEVENS IBM SYST J @ VOL 21 e NO 2 e 1982




Applications being automated often have network flows of data
which cannot be directly mapped into a call hierarchy. Thus the
developer must manually transform the desired network flow into
the hierarchial form—a task which can become very difficult.

The belief that modularization always makes the performance of a
program worse is a myth. Instead, it is likely that a modular program
will run faster than if it were developed as a monolithic program (see
Chapter 11 of Reference 6). Morrison’ further shows that the data
flow approach also allows the option of exploiting parallelism to
improve the performance of data-flow-connected programs—a tech-
nique not possible for monolithic programs or even for ones modular-
ized with structured design. Thus, data flow connections need not be
detrimental to performance and can even be a valuable way to
improve the performance of programs.

The ability to reuse functions

The ability with which functions of a program can be reused varies
from extremely difficult to trivial based on how highly related the
functions are to each other. The lower the relationship between
functions, the easier it is to reuse them. The most independent,
reusable functions are small modules that are separately compiled, do
only a single transformation of data, and share minimum data with
other functions (see Reference 6). Functions can be related in one or
more of the following ways:

1. Sharing data with other functions

2. Transferring control to another named function (e.g., via a call
statement)
Being compiled into the same physical module
Sharing the same local variable and line label definitions
Branching into and out of the code of other functions
Being physically spread throughout other functions (i.e., the code
of the function is not contiguous)

Sharing data is a necessary requirement in order for functions to be
part of the same program. With the data flow approach, Item 1 is the
only relationship between functions in a program.

Functions within large monolithic programs are often related in all of
the above ways. As a result, it is so hard to reuse (or even find)
functions that it is easier to develop them again. Structured program-
ming7 done using INCLUDE to reference source language segments
eliminates Items 5 and 6 because of its one-in one-out segments of
code. It makes the functions easier to reuse, but not easy enough to
make reuse practical. The key difficulties are that: (1) the program-
mer must understand the old program in order to extract a function;
(2) variable names and labels have to be cross checked and changed

IBM SYST J » VOL 21 e NO 2 o 1982 STEVENS

Figure 7 All functions called

l DRIVER MODULE '

Figure 8 All functions call for
service

DATA FLOW SERVICES

Figure 9 An example with two
inputs




Figure 10 Data flow modules

spooL £ 3 [ 3

[ D m— = 3 X DispLay

READ FROM UPPER WRITE TO
TERMINAL ~ CASE B Y "Ries

in cases of duplication with names and labels in the new code or in
other functions to be reused; and (3) the functions all have to be in the
same language.

Structured design4 eliminates Items 3 to 6 by dividing programs into
hierarchies of separately compiled modules which call each other
passing data as CALL parameters. When a function is separately
compiled, reuse is practical because no extra work is required to
understand, extract, and reuse it. However, passing data via a CALL
statement requires specifying the name of the target function and -
passing control to it with the data. Thus, it is difficult to reuse the
calling routine in another program where the target function is
different. It is also hard to pass multiple data streams to a function
from different sources—especially when the target function should
not execute until all of the data inputs are available (see discussion of
“merge” above). Thus, it is hard to implement general networks of
functions as hierarchies of called subroutines. Also, when functions
pass control to each other, they cannot be run asynchronously (see the
section, Natural, consistent view).

A function is much easier to use when it does not pass control to other
functions. Thus, even for hierarchies of called modules, reuse is more
likely for those modules that call no others—i.e., those where only
Item 1 happens to exist for the module. Data flow provides more
independence between functions within a program. With data flow
connections, a program can be created out of functions that are only
related by the data they pass. It is not necessary for any of the
functions to call or include any others. Thus, it is possible to reuse any
function in other programs without having to change it.

Once functions are easily reusable, it becomes possible to develop
programs considerably faster than is usually done. For example, the
functions in Figure 10 can be used to create several programs very
rapidly. The data into and out of the functions in this example are
80-character text-records.

STEVENS IBM SYST J @ VOL 21 @ NO 2 » 1982




In order to read File A, to sort the records in an ascending sequence,
and to display them, combine READ FILE A, SORT UP, and DISPLAY
(Figure 11). In order to read terminal lines, to make all letters upper
case, and to print them, combine READ FROM TERMINAL, UPPER
CASE, and PRINT. To put the words from input text onto File B in
ascending sequence, combine READ SPOOL INPUT, EXTRACT WORDS,
SORT UP, and WRITE TO FILE B. Other programs can be built in the
same fashion. To display words from File A without seeing duplicates
requires another function to be obtained or created (ELIMINATE
DUPLICATE WORDS)—but does not require the whole program to be
developed from scratch. To the extent that needed or usable functions
are available, the implementation phase can be orders of magnitude
faster than with any implementation technique that requires the
functions to be written (i.e., compare the time to enter F1 & F2 & F3
with the time to develop and test three functions by any technique).

The ability to reuse functions is critical to dramatic improvements in
programming productivity. It is the only way to eliminate major parts
of the application development task. The ability to reuse functions is
enhanced by making them more independent of one another. The
data flow technique provides a higher level of independence between
program modules than ways which pass data and control, such as the
CALL statement.

Reduced complexity

The data processing industry is constantly pushing against the limits
of what can be produced. Complexity is one of the biggest limitations.
As the size of a program to be developed increases, the time and
complexity to implement it increase exponentially—as in Figure 12
(see Reference 6).

The relationship is exponential primarily because the number of
possible interrelations between the parts of the programs grows
exponentially. The developer must understand and cope with all of
these possible connections. Figure 13 shows the resulting productivity
as a function of size. For large programs implementation complexity
can exceed the capability of even a team of developers. Increasing the
size of a team is often counterproductive unless the job can be broken
into independent subtasks.®

Modularizing a program reduces the number of possible interrela-
tions, therefore reducing the implementation complexity. The pro-
ductivity approaches that of developing small programs because the
program is created out of what are effectively a number of small
programs. The more independent the modules are, the closer the
productivity is to that of developing small programs. Since data flow
allows more independence between the modules than hierarchies of

IBM SYST J ® VOL 21 e NO 2 o 1982 STEVENS

Figure 11

One program

SORT UP

DISPLAY

COMPLEXITY

b

Figure 12 Complexity grows

exponentially with

size

Figure 13 Resulting productiv-

PRODUCTIVITY

ity loss

POTENTIAL
PRODUCTIVITY
INCREASE




subassembly
advantages

called routines, its potential for productivity is higher than structured
design—which, in turn, is higher than structured programming with
its more highly connected segments. Since the complexity, and thus
the productivity, varies exponentially with the size, the improvement
in productivity resulting from reducing the effective size of large
applications can be a factor of two or three or more. Also, the more
independent the functions are, the easier it is to shorten the elapsed
implementation time by spreading it among many developers. This is
true because independent functions require less communication
among the developers of those functions.

In order to make substantial strides in the level of complexity that can
be handled, it is also imperative to provide good support for indepen-
dent program subassemblies. A subassembly is a combination of
pieces which, itself, can be used in a larger assembly as if it were a
single piece. Application developers can build highly complex sys-
tems as long as those systems can be constructed from smaller,
understandable pieces, where each piece may itself be complex and
be built of smaller and simpler pieces. The concept of subassemblies
is widely used in manufacturing where subassemblies reduce manu-
facturing costs and raise the level of complexity that can be handled.

In program development, the use of the subassembly concept at the
program level has been limited by lack of adequate characteristics of
program modules and by lack of adequate support facilities in the
operating and subsystem environments. Support of subassemblies
requires maximum reusability and independence between the pieces
of a program and the ability to connect pieces into larger combina-
tions of pieces (subassemblies). The data flow approach provides the

needed reusability and independence. Data flow also provides a
simple way to combine pieces by specifying only the data flow
connections.

The use of subassemblies provides multiple advantages, including the
following:

¢ Reduced complexity for the developer
¢ Reusable standard assemblies
» Parallel design and/or development

By far, the biggest advantage of the use of subassemblies is the
reduction in complexity it provides. The key to productive use of a
subassembly is the ability to use it as a single function without having
to know that it is internally made up of multiple functions. For
example, the SORT UP function in Figure 10 may be a subassembly of
100 functions. Yet it is possible to build programs with it without
having to know whether it is a subassembly or not. That is the point of
subassemblies. If the components of the subassembly have to be
changed however slightly in order to use it, then the major advantage
of subassembilies is lost. Thus, a crucial requirement in order to use

STEVENS IBM SYST J @ VOL 21 @ NO 2 o 1982




the subassembly concept is the ease with which functions can be
reused—it must be possible to reuse functions without having to
change them.

Manufacturing industries already rely heavily on the use of subas-
semblies. Airplanes, cars, boats, and all kinds of vehicles, instru-
ments, tools, buildings, clothing, telephones, computers, etc. are
made from subassemblies. In fact, most manufacturing industries
could not even produce these complex products if it were not for the
subassembly concept. Once the system interconnections between the
major functional units have been determined, the requirements for
the subassemblies can be specified. Then the subassemblies can be
built in parallel or simply provided off the shelf by their suppliers,
which substantially reduces the time necessary to develop products.

An airplane manufacturer, for example, could never build one of
today’s complicated planes if it were necessary to design and build
every component of the plane, including the glass, metal, copper
wires, paneling, rugs, etc. Similarly, architects could never handle the
complexity of designing a building if they also had to design the
windows, cabinets, chairs, tables, desks, phone equipment, or even
just the I-beams, wall board, and heating systems used in buildings.

The sheer complexity of having to design and build all of the
subassemblies and the reusable parts of most products is beyond any
single manufacturer’s capability. No single manufacturer could have
the skills, let alone the necessary techniques, tools, or time to ever do
the job.

The subassembly concept is already in use within data processing,
too. The programmed intelligence of an application usually includes
the following levels:

Job stream

Program ( job step) or on-line transaction
Subroutine/macro

High-level language statement

Machine instruction

Microcode instruction

Each level is programmed by assembling combinations of compo-
nents from lower levels. Those components can be used as though
they were single functions, even if they are subassemblies of compo-
nents themselves. For example, a subroutine is called as a single
function but can contain many language statements. A high-level
language statement may invoke many machine instructions. Machine
instructions may be implemented from microcode instructions.
Whether a function is a subassembly or not should be irrelevant to the
user at the next higher level. The reduction in complexity occurs

IBM SYST J @ VOL 21 ¢ NO 2 e 1982 STEVENS

subassemblies
in programming




when components from lower levels can be used without having to
understand their internals.

There has been too little use of this subassembly concept at the
program/transaction level. This level can include thousands or even
hundreds of thousands of instructions without any intermediate
subassembly levels. The resulting complexity (see Figure 12) can
drastically reduce productivity.

Data flow allows networks of functions to be used as subassemblies in
other networks. DeMarco® recommends depicting applications as
hierarchies of data flow diagrams in order to make them easier to
understand. The use of such hierarchies can even be crucial to the
ability to understand a large application. For the same reasons, the
ability to develop a large program can be greatly simplified by being
able to implement it as a hierarchy of subassemblies.

Natural, consistent view

There is a growing, worldwide interest in data flow methodologies
and their broad applicability to the information processing business.
Data flow networks are a natural way for people to depict applica-
tions. The data flow view of an application can be used throughout
the development process. Data flow architectures are also affecting
hardware design, since they offer the prospect of parallel machines
vastly more powerful than the Von Neumann machines of today.

People can view interrelated functions naturally as data flow
networks because data flow networks reflect how people interrelate.
Typically, people perform functions and share data with other people
who have other functions that they perform (asynchronously). Data
flow diagrams picture these interrelations as they exist naturally. The
information processing needs of an organization can be modeled with
data flow diagrams which show the flows of information among
functions. For example, Business Systems Planning (Bsp)”*" is a
technique for analyzing and understanding the information process-
ing needs of a business by analyzing the flow of data among the
functional units of the business. Similarly, applications can be
described using data flow diagrams as is done in structured analysis’
and Structured Analysis Documentation Technique (sapT™)."

The view of an application that the development system implements
is crucial to productivity. Developers can be more productive if the
system they are building is easier to understand (see pages 446—449
of Reference 12). Manual applications consist of information flowing
among people who do functions asynchronously with one another.
Thus, if the application can be implemented as a data flow network of
functions, the developer can work with a natural form he or she
already understands.

STEVENS IBM SYST J @ VOL 21 @ NO 2 o 1982




In most current development systems the developer has to make a
transition from the data flow of the manual application to a proce-
dural view somewhere during the development process. This transi-
tion is necessary because today’s Von Neumann computer hardware
is procedurally oriented. Analysis and design of programs has long
been done with flowcharts because they model how the computer
executes an application. However, since flowcharts do not model the
user’s application directly, the user cannot verify that the flowchart
correctly represents his application needs.

Drawing the application as a data flow diagram during analysis and
design avoids having the developer translate it to some procedural
form and also depicts the application in a form that the end user can
understand, verify, and change effectively. Being able to then imple-
ment the data flow diagram directly can delay the transition to a
procedural view until individual functions are to be created. The
transition to the machine-oriented procedural view can be avoided
entirely for those functions that already exist or which can be
generated with nonprocedural generators (see the section, Easier
application development). In any case, the procedurally oriented
view can be isolated to the implementation of small individual
functions.

Underscoring the value of using data flow as a consistent view of the
application are the characteristics of distributed and high-perform-
ance architectures. An application developed to run in a distributed
environment—where parts of the same program/application are run
asynchronously on distributed processors and send data to each
other—requires a data flow view of the processing. Thus, if the
application, which starts out with a data flow view, is changed to a

procedural view, it will have to be changed back again in order to run
it in a distributed form.

Current high-performance hardware architectures and multiproces-
sors already exploit parallelism. Programs that are developed as
monoliths, or out of callable subroutines, cannot take advantage of
multiprocessors within a given program. (The parallelism of muitiple
processors is exploited either through multitasking or by running
multiple programs.) Functions that are connected by data flows are
so independent that they can be run asynchronously.

Current high-performance single processors “pipeline” executing
instructions by doing a dynamic data flow analysis of the instruction
stream. Optimizing compilers go through a similar approach in order
to streamline execution of high-level procedural language coding.
Future high-performance architectures currently being researched
also plan to take advantage of parallelism to improve performance.13
With these architectures, it would be possible to avoid translating to a
procedural view for all functions rather than only when they already
exist or can be generated.

IBM SYST J @ VOL 21 @ NO 2 » 1982 STEVENS




Figure 15 A first prototype

GET
TEST
INPUT

AK3CD

Figure 14 The final program

Data flow can also reduce the total work to be done. Consider the
following instructions (from Morrison®):

MOVEATOB
MOVECTOD

The execution of these instructions can be done in either order, or
even simultaneously. Procedural approaches (e.g., current procedural
languages) require that the developer decide which instruction to
place first. This decision is then frozen and is hard to change. It is
impossible to distinguish later which precedences were necessary and
which were arbitrary. The procedural approach, therefore, results in
unnecessary work and complexity and an increased potential for
errors (e.g., if the maintenance programmer decides a particular
precedence was arbitrary when it was not). With data flow architec-
tures, only the necessary data flow precedences are specified to the
computer. The developer never needs to specify unnecessary prece-
dences forced simply by the procedural nature of the machine.

Easier application development

Data flow provides advantages for all phases of the application
development cycle. The application identification, analysis, and
design phases were discussed previously. Data flow also makes it
much easier to prototype, create, test, change, and thus, to maintain
and optimize programs. Each of these activities is easier when
functions can be extracted and dealt with independently of the
program—and when programs can be dealt with independently of
any particular function. And, because the activities are easier, they
can be done more completely and accurately—resulting in increased
quality.

Prototyping is widely recommended but seldom done. One difficulty
is that prototyping is often accomplished by building something by a
different, though quicker, method. The prototype is evaluated and
changed before construction by the preferred, but slower and harder,
method. Data flow connections can allow prototyping to be done
without duplicating the implementation. Skeleton or similar existing
functions can be connected to form a prototype of the final program.

STEVENS IBM SYST J @ VOL 21 ® NO 2 & [982




Figure 16 A later prototype

Figure 17 A testing network
FUNCTION

T0 BE

TESTED

GET
SAVED
OuTPUT

COMPARE

As each function is implemented, it is added to the prototype in what
becomes the final program as illustrated by the example in Figures
14-16.

Modules constructed for a prototype can later be replaced by more
specialized functions without disrupting the system. But the need to
construct special modules for the prototype should decrease as the
library of existing functions increases. This way, the prototyping
effort is not extra, but rather is simply the first step of building the
final program.

Testing is much easier when a function can be easily inserted into a
network that can automatically test the function (as in Figure 17).
Input and output data for the test can be generated, entered
manually, or saved from a test that is run with manual input. The test
network could then feed the same data into the function or program
to be tested, compare the output against previously saved output, and
report any differences. It may even be possible to automate the
testing of some functions completely by inserting therm—without
change—into testing programs which use pre- and post-condition
specifications to validate test results automatically.

Regression testing is another practice that is highly recommended
but seldom implemented. The difficulty seems to be the human
involvement necessary to do the testing. The testing approach
discussed above could allow regression testing to be automated.

IBM SYST J e VOL 21 @ NO 2 o 1982 STEVENS




In a data flow environment, strictly separating 1/O functions from
logic functions can also facilitate testing. When the 1/0 code and the
application logic are bound into the same unit, they must be tested
together. By separating the 1/0 and logic functions, the 1/0 functions
simply get the data from the 1/0 device and pass it (unchanged) as a
data stream to the logic function(s). With data flow connections it is
then trivial to replace an 1/0 function with a (test) 1/0 function that
passes the same stream of data from a test file (as in Figure 17).
Thus, the logic can be tested independently of the 1/0 functions. The
logic can even be tested on a physically separate development system
that does not support the same I/0 operations as the target system.
1/0 functions can be tested by connecting their output data stream to
a test function that displays, prints, or automatically checks that
data.

It would also be easier to create generators for new 1,0 functions if
the functions to be generated only had to move the data between the
external device and memory. The generator would need only the
nonprocedural definitions of the data on the external device and the
data in memory. Generators for new logic functions would also be
easier to create and use if they did not also have to generate all of the
various types of 1/0 capabilities. Such application component genera-
tors could greatly simplify the complexity and effort of application
development by handling the complexity of doing 1/0 operations and
a portion of the logic automatically. Data flow provides an easy way
to connect independent 1/0 and logic functions, thus facilitating the
development and use of such application component generators.

Functions are much easier to change if they are independent and

replaceable. The developer can work with only the function to be
modified rather than the entire program. Modifications to a function
can be tested independently of the program before reinserting the
modified function. The original function can be left in place until the
modifications are completely tested and an archived copy of it used
again later if errors show up in the modified version.

Conclusion and recommendations

Use of the data flow technique is a key to increasing the productivity
of the application developer. It allows greater independence between
functions of an application, which substantially improves the ease
with which functions can be reused and can greatly reduce complex-
ity. These two advantages alone can provide a substantial increase in
productivity, even with today’s tools. The independence also makes it
easier to understand and deal with the functions, thus making it
easier to prototype, develop, test, and change them. Each of these
tasks can be much easier when each function can be dealt with
independently of the other functions in any particular program.

STEVENS IBM SYST J @ VOL 21 @ NO 2 e 982




Most manufacturing industries build products out of reusable subas-
semblies. This approach is fundamental to the ability and speed with
which complex products are produced. It is also used to substantial
advantage in traditional data processing above and below the
program level. The ease of reuse provided by data flow allows making
productive use of the subassembly concept within a program.

Data flow is a natural view of a manual application that can be used
consistently throughout the development process. The data flow view
is also consistent with the relationships among steps in a job and
between nodes in a distributed processing network.

To capitalize on the advantages provided by data flow, begin
integrating tools and techniques which support data flow into your
application development process. A valuable first step is to use data
flow diagrams in the analysis and design phases, which will allow the
user to view his application in a one-to-one relationship with manual
procedures. Documenting analysis and design with data flow dia-
grams can greatly improve the communication between the data
processing developers and the end users and also make it easier for
the data processing developer to do analysis and design. Business
Systems Planningg'10 is a valuable way to do application identifica-
tion. It provides information about data flows within the company,
which can be used in the analysis and design of applications.

The use of data flow diagrams to document the output of application
identification, analysis, and design phases can avoid the transition to
procedural representation until the implementation phase of the
development cycle. This provides substantial benefits in the early

phases of development and results in designs which can exploit data
flow capabilities provided in the execution environment.

UNIX is a trademark of Bell Laboratories, Incorporated.

CITED REFERENCES

1. J. Martin, “With current programming methods applications increase unattain-
able, Martin says,” Computerworld XIV (December 8, 1980), p. 21.
2. S. R. Bourne, “UNIX time-sharing system: The UNIX shell,” The Bell System
Technical Journal 57, No. 6, Part 2, 1970-1973 (1978).
3. T. DeMarco, Structured Analysis and System Specification, Yourdon, Inc., New
York (1978), pp. 1-125.
4. E. Yourdon and L. Constantine, Structured Design, Prentice-Hall, Inc., Engle-
wood Cliffs, NJ (1979).
. J. P. Morrison, “Data Stream Linkage Mechanism,” IBM Systems Journal 17,
No. 4, 383-408 (1978).
. W. P. Stevens, Using Structured Design, John Wiley & Sons, Inc., New York
(1981).
. J. K. Hughes and J. I. Michtom, A4 Structured Approach to Programming,
Prentice-Hall, Inc., Englewood Cliffs, NJ (1977).
. F. P. Brooks, The Mythical Man-Month, Addison-Wesley Publishing Company,
Reading, MA (1978).

IBM SYST J © VOL 21 @ NO 2 e 1982 STEVENS




. “Business Systems Planning—Information Systems Planning Guide,” GE20-
0527, IBM Corporation (July 1981); available through IBM branch offices.

. J. A. Zachman, “Business Systems Planning and Business Information Control
Study: A comparison,” IBM Systems Journal 21, No. 1, 31-53 (1982).

. An Introduction to SADT—Structured Analysis and Design Technique, 9022-
78R, Softech, Inc., Boston (November 1976).

. W.M. Newman and R. F. Sproull, Principles of Interactive Computer Graphics,
Second Edition, Chapter 28, McGraw-Hill Book Company, Inc., New York
(1979), pp. 443-467.

. J. B. Dennis, “Data flow supercomputers,” Computer 13, No. 11, 48-56 (Novem-
ber 1980).

The author is in the IBM Information Systems Group staff, 1000
Westchester Avenue, White Plains, NY 10604.

Reprint Order No. G321-5165.

178 STEVENS IBM SYST J ® VOL 21 @ NO 2 & 1982




