Problems of application-system cost, control, and effectiveness can
best be addressed by highly consistent development and execution
environments. This paper examines some relevant new approaches
(systems description languages, new data models, application gener-
ators, and very-high-level languages), discusses the need for addi-
tional integration, and outlines a particular integration direction.
This direction is intended to illustrate both the kind of consolida-
tion needed and some of the problems involved.

Towards an integrated development environment
by P. S. Newman

The history of general-purpose software can, in some sense, be seen
as the provision of increasingly powerful remedies for the following
persistent problems:

Development cost. It costs so much to develop and modify
application systems that many important functions cannot be
implemented.

Effectiveness. Application systems frequently do not serve the
needs of their users particularly well.

Systems control. 1t is rarely clear to the management whose
responsibilities subsume the functions of an application system
precisely what functions are to be performed.

Although general problems remain constant, the specifics change
with changes in hardware/software contexts and with changes in
user expectations. Thus every few years brings a new set of problem
analyses and associated remedies, the latter generally consisting of
new methodologies (e.g., structured programming) and/or new tools
(e.g., data dictionaries).

Some of the more important contemporary developments in the area
of methodologies and tools include system description languages,
conceptual models of information, application generators, and the
integration of data base manipulation into programming languages.
Another important development is the identification of tool multi-
plicity itself as a significant cause of application problems. This

Copyright 1982 by International Business Machines Corporation. Copying is permit-
ted without payment of royalty provided that (1) each reproduction is done without
alteration and (2) the Journal reference and IBM copyright notice are included on the
first page. The title and abstract may be used without further permission in
computer-based and other information-service systems. Permission to republish other
excerpts should be obtained from the Editor.

IBM SYST j @ VOL 21 e NO 1 e 1982 NEWMAN

1)

implies a need for efforts of “creative consolidation,” resulting in
definitions of comprehensive and manageable application develop-
ment/execution environments.

This paper develops an outline of one such environment, with
particular emphasis on the development aspect. The sections under
the next three main headings are concerned with that aspect exclu-
sively. They identify objectives, review traditional environments and
new approaches with respect to those objectives, and, finally, sketch
an environment obtained by adapting and integrating the new
approaches. The last main section examines the implications of these
results for the development/execution environment as a whole.

The environment outlined is intended as much to illustrate the type
of integration required and to identify problems as it is to propose a
specific direction. Other possibilities certainly exist. For example, an
important contemporary concept not examined here is that of data
abstraction.' Environments focusing on variants of this concept, such
as that discussed in Reference 2, are structured differently from the
one suggested in this paper.

Objectives

The purpose of application system development may be thought of as
the production of documentation, including code. Although this view
may appear somewhat odd at first encounter, it is easily justified on
the basis that documentation is not only the output of each phase of
the development process, but it is also the representation of the
system after development is completed. For concreteness, and to
establish some terminology, we list the following general types of
documentation involved:

» System planning documentation. This typically includes descrip-
tions of enterprise organization, policies, and information utiliza-
tion; it is used as a basis for the derivation of data processing
requirements.

Statements of data processing requirements. Requirements are
generally described without assuming application knowledge,
thereby allowing communication between data-processing and
non-data-processing personnel. This level of documentation
differs from the one that follows in that little structure is
associated with the system. The system is described as a “black
box” with certain inputs, outputs, and abstract methods of deriv-
ing the outputs.

Design descriptions (multiple levels). These descriptions subdi-
vide the previous black box into components and indicate the
functions of each.

Implementation description. This is the documentation executed
by the hardware/software machine.

82 NEWMAN IBM SYST J @ VOL 21 ¢ NO | e 1982

Given that the purpose of a development environment is the produc-
tion of the documentation just mentioned, the major part of that
environment may be thought of as a documentation system, consist-
ing of the following components:

Specifications of the documentation scheme (documentation
structure, content, and means of expression).

Software which supports documentation manipulation (entry,
modification, analysis, and storage).

The evolving documentation itself.

The view of a development environment as, essentially, a documenta-
tion system adds concreteness and focus to the search for objectives,
and highlights the importance of component interrelationships. But
what are those objectives? What is a “good” documentation system?
In general terms, a good documentation system addresses the major
problems of application systems: cost, controllability, and effective-
ness. To understand what specific qualities are needed, it is necessary
to investigate the relationship between the documentation system
and the application system.

The relationship between the documentation system and application
system is discussed in the context of the following general stages in
the system life cycle: initial development, usage, and revision.

During the initial development phase, the documentation system
serves as a means of communication between system designers and
their clients (e.g., the mgnagement whose area of responsibility
subsumes the system) to establish agreement on what a proposed
system is to do. The documentation system also serves as a means of
communication among cooperating system designers and between
system designers and implementors. It is also used to express the
actual implementation, that is, to communicate between people and
machines.

The ease with which designs and implementations can be expressed
and understood is the major determinant of application system cost.
The relationship of designer/client communication to application
system effectiveness is gaining recognition. For example, it has been
found” that extensive involvement by non-data-processing profession-
als in the development of decision support systems is necessary to
ensure commitment to such systems. Even more to the point, it is
contended that effective non-data-processing professional participa-
tion in general information system development must be based on
iterative development of formal high-level documentation.

During the usage phase, the documentation system plays two major
roles. First, it is used in the administration of system control. It
describes the functions of the system, including those protecting

IBM SYST J e VOL 21 ¢ NO | e 1982 NEWMAN

documentation
and
application
systems

documentation
system
objectives

security and integrity, and allows them to be understood, reviewec
periodically for adequacy, and tested.

In the case of the manual system, the management whose adminis-
trative responsibilities subsume the functions of the system are—
together with internal auditors—responsible for the correct opera-
tion and adequacy of the control functions. It is now recognized’ that
adequate control can be achieved only if these individuals accept the
same responsibilities with respect to automated systems. This,
however, requires the existence of documentation that is accessible to
non-data-processing professionals and describes all externally rele-
vant aspects of a system precisely and completely.

During the usage phase the documentation system also influences
system effectiveness in that it is responsible for the provision of
information to users. For example, data base descriptions should
explain what information is maintained by the installation, and
program catalogs should indicate what procedures are available.

During the system revision phase, the documentation system
provides an understanding of the current system and thus gives a
basis for deciding how modifications might be incorporated. The
documentation system also repeats its initial development role and
thus affects both system cost and effectiveness. Effectiveness is
influenced in the sense that if the process of change is too expensive,
modifications may not be made, and the application systems involved
may gradually become obsolete.

To summarize the results of the last section, the documentation
system is best understood as a mechanism for communication among
individuals and between individuals and machines.

We suggest that a documentation system can be successful as a
communication mechanism to the extent that it is sufficient and
accessible and to the extent that it encourages accuracy.

A documentation system is sufficient for a particular audience if it
serves the information needs of that audience. For example, a
documentation system is sufficient for the management responsible
for a particular application if levels intended for their use indicate
what externally visible functions are incorporated in that application.
It is sufficient for programmers if levels intended for their use
provide enough design detail.

A documentation system is accessible to a particular audience if the
amount of effort required to obtain, understand, and modify the
associated documentation is cost-justifiable. The amount of effort is
determined, to a large extent, by the following variables:

NEWMAN IBM SYST J e VOL 21 « NO 1 e 1982

Number and consistency of concepts influence the amount of
training and practice required to understand the use of the system
and the content of the documentation.

Naturalness of notation is the closeness to a notation that the
intended audience perceives as natural. This influences both the
real readability and the more subjective approachability of the
documentation.

Storage convenience includes both simple retrieval/update conve-
nience and convenience in viewing information from different
perspectives. For example, although relationships between appli-
cation processes and data are generally identified via processing
descriptions, it is useful to view that information from the
perspective of data descriptions as well, in order to determine how
a particular item of data is used.

Volume influences effort in that voluminous documentation
forces laborious change procedures and has a forest-and-trees
effect on understanding. Documentation volume decreases as the
power of the descriptive concepts used increases.

Documentation is accurate if all levels are consistent. A documenta-
tion system encourages accuracy to the extent that it is easy to
compare levels and to propagate changes among levels. These char-
acteristics are related, in turn, to the accessibility of individual levels,
to the total number of levels, and to the amount of sharing among
levels. Sharing can involve the sharing of descriptive concepts,
description storage (repositories), and particular elements of descrip-
tions.

To summarize, we suggest as objectives for the documentation

system that it be sufficient, accessible, and accurate, and that the
following characteristics are needed for the attainment of those
objectives:

» Information adequacy.
e Limited numbers and consistency of concepts.
Naturalness of notation.
Limited documentation volumes.
Repository convenience.
Sharing among levels.

Current status and new approaches

In this section we examine the extent to which current documenta-
tion systems meet the objectives developed above. We identify
significant problems and discuss recent approaches to solving them.
This discussion serves two purposes: It introduces and begins to
evaluate the raw material available for the construction of an
integrated documentation system, and it also provides evidence that
explicit efforts toward integration are indeed necessary.

IBM SYST J @ VOL 21 @ NO | » 1982 NEWMAN

current
situation

new
approaches

Most documentation systems in use today fall considerably short of
meeting the objectives developed in the previous section. First, those
high levels of documentation intended for non-data-processing
professionals, when provided at all, are usually informal or formal-
ized only to the extent of following some standardized outline. Such
levels are usually quite accessible, but the information provided is
rather imprecise and thus insufficient. These inadequacies have a
deleterious effect on the controllability and effectiveness of systems.

On the other hand, the documentation levels that are intended for use
by data-processing professionals are generally sufficient, but they are
often extremely inaccessible. Voluminous detail is required; different
parts of a system must be described using different, uncoordinated
concepts; and the resulting descriptions are often stored in unrelated
repositories.

For example, the lowest user-generated level of system documenta-
tion generally consists of a set of high-level-language programs that
are intermixed with other descriptive material, such as assembly-
language programs, data-definition macros, job-control-language
procedures, and linkage specifications. In addition, many high-level
languages are rather fragmented internally and can be seen as
collections of sublanguages (e.g., declarative, algorithmic, and 1/0
statements). It has been (entertainingly) estimated that to construct
and test a single program the implementor must be familiar with
approximately twelve different languages and sublanguages.6 This
situation is directly responsible for the enormous difficulty users face
in cost-justifying the implementation of new systems or the modifica-
tion of old ones.

Another difficulty with current documentation systems is that there
is generally a lack of sharing among different levels. This, combined
with inaccessibility at the lower levels, causes the maintenance of
consistency (accuracy) to be very expensive. The lack of accuracy, in
turn, affects both systems control and the costs of systems modifica-
tion.

Note that the problems caused by development tool fragmentation
are not limited to those directly affecting the application developer.
An unintegrated set of tools is more costly to develop and maintain
than an integrated set. Thus, as long as the tools produced are
relatively unintegrated, fewer tools will be produced, and those that
are produced tend to cost more.

The above situation was universal for many years and still most
accurately portrays the situation in a standard installation. Rela-
tively recently, some more effective approaches have come into use
and descriptions of others have been published. The approaches
involved fall into the following categories:

NEWMAN IBM SYST J e VOL 21 @ NO 1 o 1982

System description vehicles.

Module interconnection languages.

Application packages, customizers, and generators.
New data models.

High-level language extension.

Very-High-Level Languages (VHLL).

Each of these areas is discussed in more detail in the following
sections. For each, a brief description is given together with an
evaluation of its relevance to the objectives established in the
previous section.

There have been many relatively recent efforts to provide facilities
above the implementation level for describing how application
systems work—for example: Functional Specification Technique
(FST),” Problem Statement Language (pSL),} Systems Architects
Apprentice (SARA),” and TELL (after William Tell)."

Three features of such facilities are discussed here: system descrip-
tion vocabularies, automated repositories, and executability. System
description vocabularies are common to all methods. Each method
sees a system as constructed of certain kinds of components. For
example, in FST, systems are considered to be built of multilevel
machines, with formal communication both between adjacent levels
of the same machine and among machines. In PSL, systems are
considered to be built of nested processes that represent functional
partitions.

To describe a system using such a facility, one identifies the types
and names of its components, how the components are nested and
linked, and, in a prescribed manner, what they do. What a compo-
nent does is generally couched in terms of communicating with other
components and system interfaces and in terms of accessing system-
maintained data bases. Those terms may be descriptive (e.g., “The
inventory process updates inventory-on-hand.”) and/or algorithmic
(e.g., “INVENTORY-ON-HAND = BGN-INVENTORY -+ SHIP-
MENTS.”).

Most of these description vocabularies have either an explicit or
implicit graphic interpretation. In fact, in at least one case, TELL, the
primary vocabulary is graphic.

The most important property of a system description vocabulary is
that it formalizes and imposes a discipline on requirement- and
design-level documentation. This contributes to both the accessibility
and the sufficiency of the resulting documentation. Accessibility is
improved in that the process of generation is simplified. That is to
say, one does not have to devise a framework for each instance of
documentation. Furthermore, much specification can be omitted
because many of the properties of the components identified are

IBM SYST J e VOL 2] @« NO | e 1982 NEWMAN

system
description
vehicles

module
interconnection
languages

implied by the component type designations. The use of standard
concepts and the succinctness of documentation also aids in under-
standability. Sufficiency is fostered in that the use of a standard
framework encourages completeness.

The two other basic features of system description methods—the use
of repositories and executability—are not features of all methods.
The inclusion of an automated repository further enhances accessi-
bility. Descriptions can be more easily reviewed, updated, and
subjected to various kinds of automated analysis and reporting.s’]0
Executability implies a precise means of describing component
function. If present, it can increase comprehension. It can also assist
in verifying design logic, and can aid in investigating performance-
related aspects of a design (given suitable assumptions about real
execution times).

Note, however, that an executable system description is not normally
adequate as an implementation. To be useful, a system description
must be relatively succinct and readable. This generally rules out the
use of traditional methods of accessing system interfaces and data.
For example, in FST, communication among components and
between components and system interfaces is represented by the
transmission of simple parameters. This representation may be used
to abstract the complex, voluminous interchanges typical of interac-
tive applications. Such an abstraction, however, is not an implemen-
tation.

Module interconnection languages have been developed as control-
ling frameworks for implementation to increase intercomponent
consistency. Although there are many variations, they all provide for
the description of the externally visible aspects of application compo-
nents separately from and prior to the development of implementa-
tion code. Thus they allow the verification of interface usage during
compilation, while also serving as substitutes for traditional linkage
specifications. Some formulations are designed to complement a
particular implementation language,'™"” while others are applicable
to many implementation languages.'*"

These languages, although they increase early-stage implementation
effort to some extcnt,'6 are powerful communication vehicles. They
allow parallel and consistent development of individual components
and greatly simplify analyses of the effects of change. Changes to a
component not relating to its use of shared data or to its interface do
not affect other components, whereas components potentially
affected by other types of changes can be easily located.

An important property of module interconnection languages for our
purposes is that they are a form of system description language. Seen
in this way, they represent a potential bridge between design and
implementation level documentation, possibly connecting and/or
allowing the elimination of some levels.

NEWMAN IBM SYST J @ VOL 21 @ NO 1 @ 1982

Application packages, customizers, and generators are methods of
obtaining running applications without the use of general-purpose
programming languages. We use the term application package to
denote precoded business applications that are modifiable only by
source code alteration. An application customizer is similar to an
application package, except that it includes facilities allowing certain
anticipated kinds of tailoring without resort to source code. A
customizer is capable of creating a family of applications, all
conforming to the same overall business pattern.

Application generators, such as the Application Development Facil-
ity (ADF),"” the Development Management System (DMS),"® and the
research vehicle discussed in Reference 19, are like customizers, but
the families of applications involved reflect data-processing patterns
instead of business patterns. For example, the basic pattern presup-
posed by ADF is that of interactive data entry/edit for Information
Management System (IMS) data bases.

A useful perspective in this area is contributed by Reference 20, in
which an application generator is explained as the result of a process
of program generalization. An example given there is that of a parser
generator. Such a generator allows the construction of a language-
specific parser by combining code embodying a standard parsing
method with a grammar for the language of interest.

The essence of these facilities is that a processing pattern is built in,
and the user need supply only some details, normally in declarative
form. The processing pattern is often presented as combining several
types of processing, such as data entry and edit. Note that it is not
important whether the actual processing is performed by generated

code or by an interpreter. Note also that where the processing
pattern is presented as a combination of patterns, the generator can
be viewed as a combination of several partial generators, each with
its own input. These two observations suggest that many familiar
functions can be thought of as application generators. For example, a
high-level device manager can be considered an interpretively based
partial application generator.

The use of customizer and generator input for implementation-level
component descriptions has great potential for simplifying both
component generation and review. Input to a single generator can
often replace many different kinds of specifications, including data
base access and display formatting. This has two significant effects
on documentation accessibility: The education required to generate
component descriptions is reduced, and the descriptions are succinct
and easily modified.

On the other hand, there is a potential problem associated with the

use of customizers and generators. To the extent that the application
patterns supported by generators are relatively constrained, and the

IBM SYST J ¢, VOL 2! ¢,NO 1 #,1982 NEWMAN

application
packages,
customizers,
and
generators

options provided are limited, ease-of-use is great. To the extent tha
the patterns are relatively unconstrained, and the options are exten-
sive and interdependent, ease-of-use tends to be reduced. (Anc
generators lose their advantage over general-purpose languages,
especially the upgraded languages to be discussed later in this
paper.) Thus, large numbers of specialized customers and generators
seem to be desirable. The problem is that such numbers tend to
exacerbate development tool fragmentation.

New, more abstract, physical-storage-independent data structures
developed during the last decade have a considerable contribution to
make in documentation systems. The most important types of struc-
tures in this class are versions of the relational’ and Entity/
Relationship (E/R) models.”” To analyze their significance, we use as
an example a version that shares characteristics of both models.

Figure 1t Data model example This version is illustrated in Figure 1. Here there are two types of

objects, entities and relationships. Entities are scalars and are placed

. : oo in entity sets to indicate the type of object represented. Relationships
HAS COLOR BLUE are ordered associations of two or more objects (entities and/or other

relationships) and are placed in relationship sets to indicate the type

Grssurmr). Aif:;::s of association represented. Additional information about this partic-
: ular model can be found in Reference 23.

, 2 | SUPPLIER
HAS-SUPPLIER
PARTS-INC

The characteristics that make such models important for our
purposes are their expressiveness, neutrality, and potential for high-
level access.

An expressive data model is one in which the organization of the
data provides a significant amount of information about its meaning.
The differences in expressiveness between models such as the one
illustrated in Figure 1 and the more record-oriented ones are
discussed in Reference 24. Briefly, in record-oriented models, the
combination of record type and field name must convey the follow-
ing: (1) what kind of object is referenced is by the field, (2) what the
object is being related to, (3) by what kind of relationship, and (4)
what is the role of the object in the relationship. The model
illustrated provides each of these items as separate pieces of informa-
tion.

Expressiveness is significant for several reasons. It enhances the
probability that a user might understand the content of a data base,
given only the most cursory description. Thus it is useful for data
bases that are accessed only occasionally by given individuals.
Repositories and casually used application data bases fall into this
category. Also, given that the objects of a data model are referenced
in code accessing that model, an expressive model would probably
give rise to more easily understood access code.

NEWMAN IBM SYST J 8 VOL 21 8 NO 1 %1982

The property of neutrality provides the ability to view the content of
a data base from many perspectives. Thus, if one were to browse the
data base shown in Figure 1, one might begin at a part, a color, a
supplier, a cost, etc. In contrast, for example, accesses of hierarchic
data bases generally require beginning at the top of a predefined
hierarchic pattern. Where data bases must be accessed in an ad hoc
fashion or where applications change rapidly, the requirement of
access pattern predefinition is burdensome, and neutral data bases
are preferable.

The potential for high-level access is perhaps the most important Figure 2 Graphic browse/up-
characteristic of the new data models. First, excellent graphic date

browse /update facilities can be devised. The interface described in
Reference 25 and adapted in Figure 2 is an example of this. More [parr - 12305

important is the fact that the entities and relationships of Figure 1 1.HAS-COLOR _ COLOR = BLUE

. - . 2.HAS-SUPPLIER SUPPLIER = AAA-PARTS
are mappable onto sets, and the binary relationships are mappable 3 el PARTSING
onto single- and multi-valued functions. These mappings allow data '

to be accessed by the succinct set-oriented Very-High-Level
Languages discussed later in the paper. The succinctness of these
languages provides ease of coding. When the succinctness is coupled
with an expressive data structure, the resulting code is very easily

understood.

(replace, add, del)

In summary, the new data models have great potential for increasing
user understanding of data base content and for simplifying both
data description and data accessing.

Languages that we typically think of as High-Level Languages high-level-
(HLLs), languages at the level of FORTRAN, COBOL, PASCAL, etc., are language

generally designed to include provisions for accessing only simple file extension
structures. With the advent of more sophisticated data base struc-

tures (networks, hierarchies, and relations), the need arises to allow

access from the HLLs. Early provisions made for this purpose were

rather ad hoc. They generally required communication with the

facilities involved via CALLs, using shared communication areas for

request details and responses. These attempts were not particularly

satisfactory; they made the fragmentation problem more acute and

tended to obscure the meaning of the application code.

More recently, there have been attempts to extend HLLs to provide
more natural, expressive interfaces to DBMS facilities, such as those
described in References 26 and 27. These language extensions are
generally much easier to learn than the earlier methods, and the
resulting programs are easier to generate and read.

The method of language extension is not completely satisfactory,
however, at least as compared with the other possibility, that is, the
creation of new languages. Existing languages are already very
complex. When new elements are added, not only is an increase in
complexity a certainty, but that increase may also be larger than

IBM SYST J @ VOL 2] @ NO 1 & 1982 NEWMAN

general-
purpose
VHLL

expected. A language is made up of both individual constructs and
the relationships between them. Thus the addition of one new
element may require the specification of many new relationships.

In contrast, when developing a new language, one is free to reexam-
ine the total set of desired features. Then it can be determined
whether some features subsume others, whether some can be
discarded, or whether generalizations of several features can be
developed. Thus new language functions can be provided without an
increase in complexity over existing language.

The term Very-High-Level Language (VHLL) is very inclusive, and
there are a large number of disparate languages that can be so
categorized, as can be concluded from the general discussions in
Reference 28 and 29. These languages have in common an emphasis
on the elimination of implementation detail—on providing the capa-
bility of specifying “what” rather than “how.” Based on this charac-
teristic, application generator inputs—being declarative—can be
thought of as VHLLs. However, the term VHLL is used here (and in
Reference 28) to connote general-purpose languages only, that is,
languages that do not assume a particular application pattern.

One important VHLL class consists of the set-oriented languages,”
the most well developed of which is Set Language (SETL).”
Languages in this class obtain their power by viewing all data as
being organized in sets and expressing operations in terms of set
manipulation. The details eliminated are the details of accessing
low-level data structures.

An interesting characteristic of set-oriented VHLLs is that one can
map the constructs of some new data models to the constructs of such
languages. Specifically, as previously described, one can map entities
to sets of scalars and relationships to sets of vectors and to enumer-
ated single- and multi-valued functions.

Consider the data base illustrated in Figure 1. Instead of entity and
relationship sets, one might speak in terms of sets of scalars,
exemplified by PARTS, SUPPLIERS, COLORS, and sets of vectors,
exemplified by HAS_SUPPLIER. Then to add a part to the data base,
one might specify, for example:

PART + = “12345”

To assign a supplier to the part, one might specify something like:
HAS_SUPPLIER + = <*12345”, “ACME_PARTS">

or more attractively,

HAS_SUPPLIER(“12345”) + = “ACME_PARTS”

Similarly, to remove the suppliers of part 12345 from the data base,
one might specify:

NEWMAN IBM SYST J & VOL 21 ¢ NO 1 & {982

SUPPLIER — = HAS_SUPPLIER(“12345”)

The right side of the last statement denotes a set of suppliers. Thus,
the expressions of the language can function as a query.language.

As a more powerful example, consider the following:

?7p WHERE HAS_SUPPLIER(?p) = = SUPPLIER

which denotes the set of parts supplied by all suppliers.

These examples have been taken from Reference 23; related forms
are suggested in Rgferences 31-33.

It is difficult to exaggerate the potential importance of set-oriented
VHLLs if other necessary facilities can be handled as well as data
access and if adequate execution-time performance can be obtained.
The use of such languages at almost any documentation level would
almost necessarily serve to increase the coherence and succinctness
of descriptions at that level because much of the detail of traditional
programs can be traced to the need to access data within relatively
inconvenient structural contexts.

We have asserted that current documentation systems are generally
insufficient at upper levels and inaccessible at lower levels, the latter
problem being a result of both volume and fragmentation. We have
also outlined the following approaches that have great potential for
increasing documentation sufficiency and accessibility:

System description languages
Module interconnection languages
New data models

Application generators

Language extensions
Very-High-Level Languages (VHLLSs)

If these approaches are developed independently, however, the frag-
mentation problem may remain or even worsen. Many new tools
focus on a single documentation level or category within a level. Thus
if a set of such tools is incorporated into a documentation system, “as
is,” the fragmentation of that system may increase. This is especially
true if each tool incorporates its own dedicated repository, as many
do.

Also, the number of nonredundant tools (i.e., tools usabie simulta-
neously) in each category may tend to increase. For example, there
are many perspectives from which one may analyze a firm for system
planning purposes (e.g., those of the Business Information Analysis
and Integration Technique (BIAIT)**”® and Business Systems Plan-
ning (BSP)).’*”’ Similarly, there are complementary ways in which
one might analyze a system design (e.g., performance, effect on data,

IBM SYST J » VOL 21 ® NO 1 » 1982 NEWMAN

observations

system
description
methods

or user interface), each potentially giving rise to a different system
description language. The most important source of additional diver-
sity, however, may be in the area of customizers and generators. As
previously discussed, evolution will probably be in the direction of a
large number of specialized facilities, all usable to advantage within
the same documentation system.

The problem of fragmentation is being actively discussed, with some
treatments focusing on the implementation level alone®*® and others
having a broader scope.”*’ The achievement of adequate solutions,
however, will require considerable exploration of alternative direc-
tions and designs by many people. Since a desired result is to
minimize the number of concepts used, superficial connections
between development facilities (such as allowing them to be accessed
from the same menu) are of relatively little use. Instead, integrated
environments must be constructed by fundamental, closely coordi-
nated reworkings of those facilities. Such reworkings are not trivially
obtained, and if only a limited set of concepts is to be retained, that
set must be very carefully designed.

Documentation system construction

In this section we begin to outline a documentation system environ-
ment that may satisfy the objectives established earlier in this paper.
The method used is to combine adaptations of the approaches
previously introduced, in 2 manner analogous to that of solving a
jigsaw puzzle, except that the pieces can be bent somewhat to fit. We
select an initial approach and determine (1) what functions of the
environment it fulfills; (2) what adaptations are required; and (3)
what constraints on further selections are implied by its inclusion.
We then select another, complementary approach and address the
same questions, etc.

The discussion remains at a rather general level, focusing on
approach selection and on major adaptations, rather than on details
of individual approaches. Although the choices and adaptations are
relatively well-motivated, other possibilities certainly exist. Thus the
result obtained represents an illustration of the type of integration
needed and a suggestion of direction, rather than a solution to the
integration problem.

Both a system description vocabulary and a repository for the
descriptions are needed to document system design. The description
vocabulary should include a means of describing system structure in
terms of components and their interrelationships. It should also
include methods of describing component function. Both informal
(text) and formal descriptions should be used. The latter should be
succinct enough to be understandable, yet precise enough to be
executed, for purposes of design analysis or simulation. The reposi-
tory should be accessible by relatively untrained users, and suscepti-
ble to ad hoc as well as programmed access.

NEWMAN IBM SYST J ¢ VOL 21 e« NO 1 o 1982

It should be possible to create several levels of design description to
aid in the comprehension of large systems. A critical requirement is
that all such levels use the same vocabulary and repository. Further-
more, data-prdcessing requirement statements can be represented in
the same way as design descriptions, with hypothetical structure used
only to explain externally visible function.

The planning- and implementation-level documentation should also
be related, wherever feasible, to the design-level descriptions and
should share the same repository. The discussion here does not cover
system planning documentation, but examples are given in Refer-
ences 34-37. We note here only that, although the planning and
implementation vocabularies must differ from the design vocabulary
(as they deal with different subjects and are generally more applica-
tion-oriented), linkages should be created in expression of elicited or
derived requirements.

Considerable potential exists for the close linkage of implementation
descriptions (code) with design descriptions. First, the design-level
system structure descriptions might be augmented to serve module
interconnection purposes as well. Structural descriptions then
cascade from the general design to a level that includes both design
information and module interconnéction information (e.g., precise
interfaces) to lower levels described in terms of module interconnec-
tion alone. To do this, the design-level model of system structure
must correspond to a feasible implementation-level model.

For example, the simplified model of Figure 3, representing a
synthesis of many models, might be used. It consists of three kinds of
elements: (1) Processes, which are asynchronous units of execution;
(2) Data bases, which are collections of data maintained within the
system and accessed by processes; and (3) Messages, by which
processes communicate with each other and with system interface
points. Processes and data bases that have single instances in the
system are distinguished from those potentially having as many
instances as users of a particular type.

A design description using this model includes (1) A4 structural
description identifying the processes, data bases, and their interrela-
tionships; (2) Formal descriptions of process functions; and (3)
Descriptions of data base content. The data model assumed in
describing data base content has to be consistent with that assumed
in describing the processing of the data.

A further means of connecting design and implementation level
descriptions is to use identical methods of describing the processing
and the data. This does not mean that the descriptions themselves are
identical. For example, design descriptions tend to summarize user
interface handling by abstract formulations of net inputs and
outputs, whereas implementation descriptions must include precise

IBM SYST J « VOL 21 « NO | » 1982 NEWMAN

Figure 3 System model

Figure 4 Repository

CLASS 0

DESC OF
DATA DESC
DATA GRPS
(CLASS 1)

CLASS 1

DESC OF

CLASS 2

DATA GRPS
.

.
.

DESC OF

CLASS n

DATA GRPS

CLASS 2

MASTER

CATALOG

CLASS n

A DATA GRP
.

.
A DATA GRP

descriptions of prompts, responses, etc. The feasibility of this
approach rests on performance questions and is discussed further on.

We have identified the significance of the newer data models as lying
in their expressiveness, neutrality, and potential for high-level access.
We now use these structures to fill gaps in the environment under
construction. To begin, they are clearly appropriate for the reposito-
ry, as they are suitable for data bases that are subject to infrequent
access via unanticipated paths. The system description method PSL
uses what may be viewed as an early approximation of an Entity/
Relationship (E/R) model as its repository vehicle, and it benefits
accordingly.

We now also make more detailed decisions about the repository to
lend concreteness to the subsequent discussion. We assume that the
repository does not consist of a single data base; rather it is made up
of a collection of data bases or data groups, each organized according
to the example data mode! discussed ecarlier. These groups are
related by a master catalog data group. Each data group contains a
particular kind of information about a particular element of the
application system. For example, one data group may contain system
planning information and another may describe an application data
base.

There are several reasons for the use of a multiple data group
descriptive repository. We assume that the descriptive repository is
used as a development focus for all applications and application
systems associated with a particular physical system—possibly
distributed. As such, the somewhat decentralized approach has
distinct logistic advantages in the areas of naming conventions, data
sharing, and change control. Another reason for the choice is
discussed further on. Note that there need be no loss of function as
compared to a single data group repository approach, except possibly
some built-in integrity checking.

Each descriptive data group in the repository is itself described by a
built-in data group, rendering the repository self-describing. Each
collection of data groups having the same descriptor constitutes a
data group class. Figure 4 illustrates some of these ideas. Class 0 is
special and circular. Its single contained data group describes the
class of data description data groups.

Besides the repository, the data model is also ideal for the modeling
of application data at design levels. Descriptions of system functions
at those levels generally attempt to convey what information is
involved and what is done to it in abstract terms, that is, in terms that
are relatively independent of performance-oriented data structure
selection. E/R and E/R-like models are well suited to this task. In
fact, many eatly discussions of such models termed them “concep-

NEWMAN iBM SYST J e VOL 21 e NO 1 o 1982

tual models,”"' and considered their most important use to be in

describing the information content of a data base.

The use of the same data model both for system description data and
for the modeling of application data at the design level is an
important step in reducing the number of descriptive concepts
needed. It might be noted, however, that different design levels may
reflect different partitionings into data groups of enterprise data. To
use an extreme example, at a higher level all the data might be
represented as a single data bank. At a lower level, decisions as to the
allocation of the data to different data bases might be expressed
(together with the processing implications).

This brings us to the other reason for the use of multiple data groups
for systems description data. Coherence seems much better served by
making no fundamental distinctions between data used to describe
application systems and data operated upon by application systems.
Inasmuch as the latter is clearly partitioned among data groups,
there is no reason why the former should not be also.

We finally consider using the data model for internal data at the
implementation level. If one draws a boundary around an automated
system and considers all data retained within that boundary as being
internal data, note that no one ever sees the internal data as stored.
This contrasts with information passing over the system boundary:
human interfaces, portable files, etc. The format of internal data is
relevant only for performance reasons; if the use of conceptual
structures simplifies the implementation-level descriptions, only
optimization concerns stand in the way of their use. These concerns
are discussed further in connection with languages later in this

paper.

In an earlier section we concluded that customizers and generators
had great potential for reducing the education and effort needed to
generate and maintain implementation-level component descrip-
tions. Thus we now include them in our environment. To connect this
decision with earlier ones, we can specify that generator inputs be
placed in repository data groups (of generator-specific classes). To
create an application, a user creates the appropriate data groups and
invokes the generator. If the application is a component of a larger
system, the module interconnection specification is used to indicate
that those data groups, together with the appropriate generator,
constitute the implementation of that component.

These decisions do not exhaust the set of basic issues connected with
the inclusion of generators in our environment. Those to be consid-
ered here are the following: (1) the problem of generator multiplicity
(introduced earlier); (2) the extent to which generators solve the
implementation problem; and (3) the implications of generator use
for design-level documentation.

IBM SYST J e VOL 21 ¢ NO 1 » 1982 NEWMAN

application
packages,
customizers,
and
generators

multiplicity
of
generators

pervasiveness
of
generators

relation of
generator
input to
Intermediate-
level
documentation

Recall that a multiplicity of simple generators may be required
because the alternative may be a few generators with large numbers
of options. To allow this without adding to the complexity of the
environment, carefully constructed descriptive material and usage
instructions must be provided for each facility. The word “catalog”
captures the desired effect. The selection of a facility appropriate to a
need should be comparable in simplicity to the use of a mail order
catalog. Also, diversity should be limited to that required. Concepts
presented by generation facilities relating to aspects of the applica-
tion system outside their domain—such as data bases and interpro-
cess communication—should be presented similarly throughout the
generator catalog.

Does the introduction of generators represent a complete solution to
the problems of implementation-level specification? Does it obviate
improvements to more general-purpose methods of application
implementation? The position taken here is that it does not. No
matter how many facilities are provided, they will not cover all needs.
At least some applications will have to be constructed by more
traditional means. Also, many applications will be constructed by
applying source-level modifications to application packages. It is
mentioned in Reference 42 that one reason for the wide use of
application packages is the extreme difficulty of estimating develop-
ment costs for new applications. In other words, application packages
are often used—even when extensive source modifications are
needed—as a way of lowering project risk.

Thus improvements to general-purpose languages are stiil relevant.
In fact, one of the more important kinds of improvements may be in
the area of simplifying the construction and modification of applica-
tion generators to permit user installations to create generators for
their own use.

One purpose of elaborate design documentation is to organize the
work of the substantial number of programmers normally involved in
an application system development project. Given the availability of
customizers and the associated reduction in required programmers,
there may well be a temptation to avoid the generation of design-
level documentation, especially processing descriptions, for small-
to-medium-size systems. If this is done, however, the other benefit of
design documentation is lost, namely the understanding of system
operation as a whole. This understanding is needed for reasons
discussed earlier in this paper, including management control, and is
not normally provided by generator input for the following reasons:

The different generators used in a single system generally have
different input vocabularies.

Generator inputs often center on aspects of the application that
are unrelated to system flow (such as screen formats), and thus
tend to obscure that flow.

NEWMAN IBM SYST J ® VOL 21 @ NO 1 e 1982

This suggests that customizers and generators be asked to produce
not only executable code, but also design documentation. Another—
possibly less practical—approach is to use a common language for
generator output, one sufficiently expressive to be susceptible to
automated abstraction to a design level.

These comments on the use of application packages, customizers,
and generators in the environment under construction may be
summarized as follows:

These facilities should constitute an important part of the envi-
ronment.

Their use, however, does not make improvements to general-
purpose languages unnecessary.

One important extension to general-purpose languages might be
the addition of aids for the construction of generation facilities.
Generators might emit design-level processing descriptions as well
as code.

The environment as constructed up to this point appears to require
general-purpose language capability in the following contexts:

s Accessing the repository.
» Representing processing at the design and implementation levels.
» Implementing application customizers, generators, and packages.

Two candidate approaches to general-purpose language have been
outlined: extensions to existing high-level languages and new
languages at a still higher level (VHLLs). Both approaches have
drawbacks. The complexity problems of the extension approach have
already been mentioned. There is also the probability that an
extended language is less powerful (and thus less succinct) than a
set-oriented VHLL. Some extensions proposed for data base access,
such as those discussed in Reference 43, provide more power in
manipulating the data involved than is provided by the base
languages for manipulating local data. Thus, it is reasonable to
suppose that, at the very least, a VHLL can extend that power to all
data accesses. On the other hand, the VHLL approach presents
performance problems, in that current optimization technology
cannot guarantee performance equivaient to HLL-coded applications
in many cases.

One possibility is to try to use the VHLL approach for all the above
purposes except where performance is an issue, that is, in implemen-
tation-level component description. To minimize the total number of
concepts used in the environment, however, it is preferable to use the
same general-purpose language throughout. In the remainder of this
section we investigate the feasibility of this more consistent
approach, examining the implications and problems of VHLL usage in
each of the above contexts, except that application generator imple-
mentation is not addressed further.

IBM SYST) e VOL 2] ®« NO | e [982 NEWMAN

Very- High-
Level Languages

VHLL
at
design
level

The use of a VHLL for design-level processing descriptions presents
no intrinsic problems. To provide a better picture of a VHLL design-
level specification, we now flesh out our assumed language to some
extent.

We assume that the VHLL to be used is similar to that previously
discussed, and accesses data organized according to the model in
Figure 1. This implies the use of that model for internal data at the
design level. The data may be divided among many data groups
associated with different areas of the application and having
different lifespans. Data groups local to a process, i.c., existing only
while the process is active, should be declarable within that process,
using declarative text closely related to the form of global data
descriptions.

The second subject to be addressed with respect to VHLL at the
design level is that of language style, and more specifically, that of
procedurality. Some VHLLs use adapted forms of classic procedural
syntax—permitting loops, explicit processing sequences, and so
forth. It might be objected that this is improper because such
languages must indicate “what,” not “how.” A procedural style
should not be ruled out, however, for the following reasons.

Sometimes a specific sequence must be followed to obtain a desired
result. For example, in an order processing program, the orders must
be processed one-by-one even if multiple processors are available.”
Also, it is very often easier to express a desired result as the outcome
of a series of steps than by other means. In fact, relatively pure
specification languages are often accessible only to the mathemati-
cally sophisticated. In any case, much of the procedurality that

hinders accessibility in traditional programs is due to low-level data
manipulation.

Thus, procedurality should be acceptable to some extent in a VHLL.
For purposes of optimization, if the language is properly constructed
a compiler should be capable of distinguishing between necessary
and optional sequencing, via data dependency analysis, for example.

The third issue discussed here in connection with the use of VHLL at
the design level is that of interprocess communication. Referring
back to the system structure assumed (processes, data bases, and
messages), it is clear that some provision must be made for messages.
By adapting clements of many approaches, such as, for example,
those of References 45-47, to the needs of our VHLL, we can specify
that a2 message consists of a list of values, with each value being
cither a set or an entire data group. We may then add statements to
the language to SEND and RECEIVE messages into and out of
specified local and global data groups.

Having made these assumptions about the VHLL, we might now
visualize a design-level system description as consisting of a struc-

NEWMAN IBM SYST J » VOL 21 @ NO 1 @ 1982

ture-description data group that identifies system components and
their interrelationships, and a set of process and data description
data groups detailing those components. Process-description data
groups contain VHLL code represented as relationships between
statements and statement numbers.

The VHLL elements needed for the simple accessing of repository
data groups are the same as those used for describing processing at
the design level. Therefore, in this section we focus on the use of a
VHLL for the production of design analyses and reports in display or
hard-copy form. For this purpose, methods are needed for communi-
cating with system interfaces succinctly and expressively. This is a
critical area because the suitability of the methods developed will
have great influence on the overall usability of the language. It is
speculated” that the relative lack of success of extant VHLLs can be
attributed to the fact that although they “make it simpler to code
small parts of a program,” they do not “significantly ease the
problem of overall program formulation and organization.” It is
quite possible that the lack of appropriate facilities for system
interface handling is an important aspect of this problem.

Examples of the types of facilities needed are found in References 33
and 48. However, these proposals, in which the interface facilities are
included in the language directly, seem to unnecessarily constrain the
types of devices that can be accommodated and the levels at which
they can be addressed. We therefore look to the use of partial
application generators in one or more of the following forms:

o Interpretive interface processes. These generator-equivalents
would be used as intermediaries in communicating with a device
at a particular level. For example, to create a display, one might
send a message of a prespecified class to a display interface
process. The message is to contain format, content, and processing
(e.g., editing) information. The amount of detail sent would
depend on the level of the interface process.

Module generators. These would resemble application generators
but have significantly narrower scope.

Subroutine generators. These would be similar to module genera-
tors, but they would operate on generator-input blocks containing
declarations imbedded in VHLL code rather than on separate
generator-input data groups. This approach can be thought of as a
generalization of the method in Reference 48. It conveniently
localizes generator inputs and allows generators to share local
data descriptions with the VHLL language processor. However, it
requires provisions both in the definition of the VHLL and in the
construction of its processor.

The use of partial generators, especially if extended to the implemen-
tation level, has the additional advantage of increasing the range of
generator applicability while reducing the need for generator prolif-
eration.

IBM SYST J « VOL 21 @ NO 1 e 1982 NEWMAN

VHLL

for
repository
processing

VHLL

at the
implementation
level

The major impediment to the use of a VHLL at the implementation
level is that of performance. Simply stated, because VHLLs specify
“what” rather than “how,” the compiler is left to decide ““how.” This
matter is not resolved here. Rather we attempt to demonstrate that
the problem is less serious than might be supposed.

Among the factors involved is the significant amount of work that
has been done in such relevant areas as classic optimization of
high-level languages,” related optimization of very-high-level
languages,” > automatic selection of data storage structures,’®”’
data base access optimization,”” and artificial-intelligence-oriented
program synthesis.””® (The preceding references are a representa-
tive rather than an exhaustive set.) This work has not advanced
sufficiently to solve the problem of optimizing VHLLs, but it does
represent a significant body of research.

Another important factor is that current application trends seem to
decrease the need for the more difficult global optimizations. To be
more specific, interactive transactions on increasingly integrated
data bases account for an ever-growing proportion of application
code. The relevance of the trend toward interactive transactions is
that the optimization methods most relevant to this type of process-
ing, namely data access optimization and relatively local VHLL
optimization, are among the more tractable ones. Data access
optimization has probably reached the point where an automatically
determined strategy is as good as a manually specified one. Local
VHLL optimization, although less advanced, shows promise.

The increase in data base integration is important because it implies
the need for relatively neutral storage methods, thus lessening the
importance of storage structure selection optimization.

A final factor affecting VHLL feasibility is the continuing decline in
hardware costs relative to programming costs. Although automatic
implementations will probably not match good HLL implementations
for some time, the real question is whether the cost of a manual
implementation is less than the cost of buying faster/larger hard-
ware to make up for any inefficiencies.

The really difficult cases are large batch applications. Here, the
arbitrary use of a VHLL without adequate optimization can lead to
greatly reduced performance. In such cases, the user might be
advised that the compiler preserves at least the overall logic of the
code, so that major subdivisions of the program must be carefully
decided upon. Alternatively, the HLL extension approach might be
used.

NEWMAN IBM SYST J e VOL 21 e NO 1 o 1982

implications for the total environment

Up to this point, we have focused on the documentation-system
aspect of the development/execution environment. Important omis-
sions from the discussions are the following:

Command languages that activate development and production
processing.

Repositories for the execution environment.

Facilities for installing new function in the execution environ-
ment.

These subjects are not addressed here in the same detail as those of
earlier sections. Instead, the discussion is limited to some general
suggestions that are consistent with the documentation system struc-
ture and with the overall objective of environment integration.

The most obvious suggestion is that the development and execution
environments be the same and thus that there be a single command
language and a single repository. Furthermore, since command
languages have evolved over the years from simple facilities for data
binding and application invocation to programming language equiva-
lents, it is reasonable to propose that a form of the VHLL be used as
the command language for the environment. This would contribute
to overall consistency and provide a built-in capability for ad hoc
data access to both development and application data.

If the repository is to be extended to include application data groups,

it must acquire additional organization, such as subdivisions for
purposes of data group naming, ownership, and so forth. Also, to
make the repository as inclusive as possible, special data groups
should be allocated for specifications governing system authorization
and accounting.

The subdivisions of the repository, if allowed to contain running
processes as well as data groups, might also be used to represent work
contexts, i.e., subenvironments used as a basis for resource utilization
accounting, symbol resolution, application of defaults, etc. A given
work context might be associated with a particular user or with a
particular centralized application system function. Processes in one
context must be able to access data in and send messages to other
contexts.

Given this structure, the installation of an application system basi-
cally involves associating its components with the appropriate work
contexts. To allow the procedure to be automated, the design-level
structure descriptions might be augmented to group processes and
data by target contexts or context types.

IBM SYST J & VOL 21 4 NO | & 1982 NEWMAN

Concluding remarks

In this paper we have attempted to demonstrate two points: (1) that
there is a need for increased attention to environment integration,
and (2) that such integration requires a fundamental reworking of
various approaches rather than the establishment of superficial
connections.

We have also suggested a particular direction for such integration,
with the following as its most important characteristics:

The use of a coherent system repository for all descriptive and
application data.

The use of a highly expressive data model that shares characteris-
tics of the Entity/Relationship (E/R) and relational models for
that repository and thus for all data maintained within a system.
The use of closely related design- and implementation-level
description methods, thereby allowing the documentation of these
levels using similar concepts and providing inter-level comparabil-
ity.

The use of a multitude of partial and full application generation
capabilities.

The use of a single general-purpose language for all non-
generator-based processing description, as well as for system
description analysis.

Many questions and problems have been raised and left unresolved in
the development of the basic direction. Two of the most important
were (1) how to use VHLLS in the building of application generators,
and (2) how to provide significant optimization for VHLLs. These
questions should be considered important subjects for future
research.

ACKNOWLEDGMENTS
I thank D. W. Low, J. G. Sakamoto, R. C. Summers, and B. P.
Whipple for their careful reviews and many helpful suggestions.

CITED REFERENCES

1. B. Liskov; An Introduction to CLU, Memo No. 136, Computation Structures
Group, Laboratory for Computer Science, Massachusetts Institute of Technolo-
gy, Cambridge, MA (1976).

. Xerox Learning Research Group, “The Smalltalk-80 System,” BYTE 6, No. 8,
3648 (August 1981).

. M. J. Ginzberg, “Redesign of management tasks: A requirement for successful
decision support systems,” MIS Quarterly 2, No. 1, 39-52 (March 1978).

. H. F. Juergens, “Attributes of information system development,” MIS Quarterly
1, No. 2, 31-41 (June 1977).

. Systems Auditability and Control Study, Institute of Internal Auditors, Alta-
monte Springs, FL (1977).

. J. R. Ehrman, “The new tower of babel,” Datamation 26, No. 3, 156-160
(March 1980).

104 NEWMAN [BM SYST J ® VOL 21 @ NO | » 1982

7. M. Berthaud, “Towards a formal language for functional specifications,”
Proceedings of the IFIP Working Conference on Constructing Quality Software,
North-Holland Publishing Co., New York (1977), pp. 379-396.

. D. Teichroew and E. A. Hershey, “PSL/PSA: A computer-aided technique for
structured documentation and analysis of computer-based information systems,”
[EEE Transactions on Software Engineering SE-3, No. 1, 41-48 (January
1977).

. G. Estrin, “A methodology for design on digital systems—Supported by SARA
at the age of one,” AFIPS Conference Proceedings, National Computer Confer-
ence 47, 313-324 (1978).

. S. N. Zilles and P. G. Hebalkar, “Graphical representation and analysis of
information systems design,” Data Base 11, No. 3, 93-98 (Winter—Spring
1980).

. J. L. Archibald, The External Structure: Experience with an Automated Module
Interconnection Language, Research Report RC8652, IBM Thomas J. Watson
Research Center, Yorktown Heights, NY 10598 (January 1981).

. J. G. Mitchell, W. Maybury, and R. Sweet, Mesa Language Manual, Version 5.0,
Xerox Palo Alto Research Center, Palo Alto, CA 94304 (April 1979).

. N. Wirth, “Lilith: A personal computer for the software engineer,” Proceedings
of the 5th International Conference on Software Engineering, March 1981, pp.
2-15.

. L. W. Cooprider, The Representation of Families of Software Systems, Techni-
cal Report AFOSR-TR-79-0732, Computer Science Department, Carnegie-
Mellon University, Pittsburgh, PA (April 1979).

. W. F. Tichy, “Software development control based on module interconnection,”
Proceedings of the 4th International Conference on Software Engineering,
Institution of Electrical Engineering, London (September 1979), pp. 29-41.

. D. L. Parnas, “On the design and development of program families,” /EEE
Transactions on Software Engineering SE-2, No. 1, 1-9 (March 1976).

. IMS Application Development Facility, General Information, IBM Reference
Manual, Order No. GB21-9869-1 (November 1978); available through IBM
branch offices.

. Development Management System, General Information, IBM Reference Manu-
al, Order No. GH20-2195 (January 1979); available through IBM branch
offices.

. E. D. Carlson and W. Metz, 4 Design for Table Driven Display Generation and
Management Systems, Research Report RJ2770, IBM Research Laboratory,
5600 Cottle Road, San Jose, CA 95193 (March 1980).

. P. Lucas, “On the structure of application programs,” Lecture Notes in Computer
Science 86: Abstract Software Specifications, Springer-Verlag, New York
(1980).

. E. F. Codd, “A relational model for large shared data banks,” Communications
of the ACM 13, No. 6, 377-387 (June 1970).

. P. P.-S. Chen, “The entity-relationship model-—Toward a unified view of data,”
ACM Transactions on Database Systems 1, No. 1, 9-36 (March 1976).

. P. S. Newman, An Atomic Network Programming Language, Report G320-
2704, IBM Scientific Center, 9045 Lincoln Boulevard, Los Angeles, CA 90045
(June 1980).

. W. Kent, “Limitations of record-based information models,” ACM Transactions
on Database Systems 4, No. 1, 107-131 (March 1979).

. R. G. Cattell, “An entity-based database user interface,” Proceedings of the
ACM SIGMOD International Conference on Management of Data, ACM, New
York (May 1980), pp. 144-150.

. D. D. Chamberlin, M. M. Astrahan, K. P. Eswaran, P. P. Griffiths, R. A. Lorie,
J. W. Mehl, P. Reisner, and B. W. Wade, “SEQUEL 2: A unified approach to
data definition, manipulation, and control,” IBM Journal of Research and
Development 20, No. 6, 560-575 (November 1976).

. C.J. Date, “An introduction to the Unified Data Language (UDL),” Proceedings
of the 6th International Conference on Very Large Data Bases, October 1980, pp.
15-27.

IBM SYST J @ VOL 21 @ NO 1 & 1982 NEWMAN

. W. A. Wulf, “Trends in the design and implementation of programming
languages,” IEEE Computer 11, No. 9, 14-25 (January 1980).

. M. Hammer and G. Ruth, “Automating the software development process,”
Research Directions in Software Technology, P. Wegner (Editor), MIT Press,
Cambridge, MA (1979), pp. 767-790.

. J. T. Schwartz, On Programming, An Interim Report on the SETL Project,
Computer Science Department, Courant Institute for Mathematical Sciences,
New York University, New York (1973).

. D. W. Shipman, “The functional data model and the data language Daplex,”
ACM Transactions on Database Systems 6, No. 1, 140-173 (March 1981).

. N. Goldman and D. Wile, “A database foundation for process specifications,”
Proceedings of the International Conference on Entity-Relationship Approach to
Systems Analysis and Design, Los Angeles, CA (December 1979), pp. 426—445.

. M. Hammer and B. Berkowitz, “DIAL: A programming language for data
intensive applications,” Proceedings of the ACM-SIGMOD International Confer-
ence on Management of Data, ACM, New York (May 1980), pp. 75-92.

. W. M. Carlson, “Business Information Analysis and Integration Technique
(BIAIT)— The new horizon,” Data Base 10, No. 4, 3—9 (Spring 1979).

. D. V. Kerner, “Business information characterization study,” Data Base 10, No.
3, 10-17 (Spring 1979).

. Business Systems Planning—Information Systems Planning Guide, Order No.
GE20-0527-2 (October 1978); available through IBM branch offices.

. J. G. Sakamoto and F. W. Ball, “Supporting Business Systems Planning studies
with the DB/DC Data Dictionary,” IBM Systems Journal 21, No. 1, 54-80
(1982, this issue).

. P. A. Demers, “System design for usability,” Communications of the ACM 24,
No. 8, 494-501 (August 1981).

. A. I. Wasserman and C. J. Prenner, “Toward a unified view of data base
management, programming languages and operating systems—A tutorial,”
Information Systems 4, 119-126 (1979).

. T. Winograd, “Beyond programming languages,” Communications of the ACM
22, No. 7, 391-401 (July 1979).

. H. Biller and E. J. Neuhold, “Concepts for the conceptual schema,” Architecture
and Models in Data Base Management Systems, G. M. Nijssen (Editor),
North-Holland Publishing Co., New York (1977), pp. 1-30.

. J. F. Collins, G. J. Feeney, and J. Gosden, “Calling a spade a spade. ... A chat
with MIS executives,” Datamation 25, No. 11, 13 (November 25, 1979).

. P.G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price,
“Access path selection in a relational database management system,” Proceed-
ings of the 1979 SIGMOD Conference (1979), pp. 23-34.

. S. Jones and P. Mason, “Proceduralism and parallelism in specification
languages,” Information Systems 5, No. 2, 97-106 (November 1980).

. R. P. Cook, “*MOD—A language for distributed programming,” IEEE Trans-
actions on Software Engineering SE-6, No. 6, 563—571 (November 1980).

. J. A. Feldman, “High level programming for distributed computing,” Communi-
cations of the ACM 22, No. 6, 353—-368 (June 1979).

. B. Liskov, “Primitives for distributed computing,” Proceedings of the Seventh
Symposium on Operating Systems Principles, December 1979, pp. 33-42.

. J. M. Lafuente and D. Gries, “Language facilities for programming user-
computer dialogues,” IBM Journal of Research and Development 22, No. 2,
145-158 (March 1978).

. F. E. Allen and J. A. Cocke, “A catalog of optimizing transformations,” Design
and Optimization of Compilers, R. Rustin (Editor), Prentice-Hall, Inc., Engle-
wood Cliffs, NJ (1972), pp. 1-30.

. R. G. G. Cattell, “Automatic derivation of code generators from machine
descriptions,” ACM Transactions on Programming Languages and Systems 2,
No. 2, 173-190 (April 1980).

51. J. T. Schwartz, “Optimization of very high level languages—1,” Computer
Languages 1, No. 2, 161-194 (June 1975).

52. J. T. Schwartz, “Optimization of very high level languages—II,” Computer
Languages 1, No. 3, 197-218 (September 1975).

NEWMAN IBM SYST J ® VOL 21 ¢ NO |1 o 1982

. F. Arbab, Notes on the Semantics and Optimization of a VHLL, Report
G320-2706, IBM Scientific Center, 9045 Lincoln Boulevard, Los Angeles, CA
90045 (October 1980).

. W. H. Burge, An Optimizing Technique for High Level Programming
Languages, Research Report RC5834, IBM Thomas J. Watson Research Center,
Yorktown Heights, NY 10598 (February 1976).

. E. J. Neuhold, The Design of a Business Definition Language Compiler,
Research Report RC6475, IBM Thomas J. Watson Research Center, Yorktown
Heights, NY 10598 (April 1977).

. J. R. Low, “Automatic data structure selection: An example and overview,”
Communications of the ACM 21, No. 5, 376385 (May 1978).

. P. D. Rovner, “Automatic representation selection for associative data struc-
tures,” Proceedings of the AFIPS National Computer Conference 47, 691-701
(June 1978).

. M. Stonebraker, E. Wong, P. Kreps, and G. Held, “The design and implementa-
tion of INGRES,” ACM Transactions on Database Systems 1, No. 3, 189-22
(September 1976).

. S. Fickas, “Automatic goal-directed program transformation,” Proceedings of
the National Conference on Artificial Intelligence, August 1980, pp. 68-70.

. E. Kant, “The selection of efficient implementations for a high-level language,”
Proceedings of the Symposium on Artificial Intelligence and Programming
Languages, August 1977.

The author is located at the IBM Scientific Center, 9045 Lincoln
Boulevard, Los Angeles, CA 90045.

Reprint Order No. G321-5162.

IBM SYST J e VOL 21 « NO 1 » 1982 NEWMAN 107

