
Problems of application-system cost, control, and eflectiveness can
best be addressed by highly consistent development and execution
environments. This paper examines some relevant new approaches
(systems description languages, new data models, application gener-
ators, and very-high-level languages), discusses the need for addi-
tional integration, and outlines a particular integration direction.
This direction is intended to illustrate both the kind of consolida-
tion needed and some of the problems involved.

Towards an integrated development environment
by P. S. Newman

The history of general-purpose software can, in some sense, be seen
as the provision of increasingly powerful remedies for the following
persistent problems:

Development cost. It costs so much to develop and modify
application systems that many important functions cannot be
implemented.
Eflectiveness. Application systems frequently do not serve the
needs of their users particularly well.
Systems control. It is rarely clear to the management whose
responsibilities subsume the functions of an application system
precisely what functions are to be performed.

i
i Although general problems remain constant, the specifics change , with changes in hardwarelsoftware contexts and with changes in

user expectations. Thus every few years brings a new set of problem
analyses and associated remedies, the latter generally consisting of
new methodologies (e.g., structured programming) and/or new tools

I (e.g., data dictionaries).

Some of the more important contemporary developments in the area
of methodologies and tools include system description languages,
conceptual models of information, application generators, and the
integration of data base manipulation into programming languages.
Another important development is the identification of tool multi-
plicity itself as a significant cause of application problems. This

Copyright 1982 by International Business Machines Corporation. Copying is permit-
ted without payment of royalty provided that (1) each reproduction is done without
alteration and (2) the Journal reference and IBM copyright notice are included on the
first page. The title and abstract may be used without further permission in
computer-based and other information-service systems. Permission to republish other
excerpts should be obtained from the Editor. *

IBM SYST J VOL 21 NO I 1982 NEWMAN 81

implies a need for efforts of “creative consolidation,” resulting in
definitions of comprehensive and manageable application develop-
ment/execution environments.

This paper develops an outline of one such environment, with
particular emphasis on the development aspect. The sections under
the next three main headings are concerned with that aspect exclu-
sively. They identify objectives, review traditional environments and
new approaches with respect to those objectives, and, finally, sketch
an environment obtained by adapting and integrating the new
approaches. The last main section examines the implications of these
results for the development/execution environment as a whole.

The environment outlined is intended as much to illustrate the type
of integration required and to identify problems as it is to propose a
specific direction. Other possibilities certainly exist. For example, an
important contemporary concept not examined here is that of data
abstraction.’ Environments focusing on variants of this concept, such
as that discussed in Reference 2, are structured differently from the
one suggested in this paper.

Objectives

The purpose of application system development may be thought of as
the production of documentation, including code. Although this view
may appear somewhat odd at first encounter, it is easily justified on
the basis that documentation is not only the output of each phase of
the development process, but it is also the representation of the
system after development is completed. For concreteness, and to
establish some terminology, we list the following general types of
documentation involved:

System planning documentation. This typically includes descrip-
tions of enterprise organization, policies, and information utiliza-
tion; it is used as a basis for the derivation of data processing
requirements.
Statements of data processing requirements. Requirements are
generally described withopt assuming application knowledge,
thereby allowing communication between data-processing and
non-data-processing personnel. This level of documentation
differs from the one that follows in that little structure is
associated with the system. The system is described as a “black
box” with certain inputs, outputs, and abstract methods of deriv-
ing the outputs.
Design descriptions (multiple levels). These descriptions subdi-
vide the previous black box into components and indicate the
functions of each.
Implementation description. This is the documentation executed
by the hardware/software machine.

82 NEWMAN IBM SYST J VOL 21 NO I 1982

Given that the purpose of a development environment is the produc-
tion of the documentation just mentioned, the major part of that
environment may be thought of as a documentation system, consist-
ing of the following components:

9 Specifications of the documentation scheme (documentation

Software which supports documentation manipulation (entry,

The evolving documentation itself.

The view of a development environment as, essentially, a documenta-
tion system adds concreteness and focus to the search for objectives,
and highlights the importance of component interrelationships. But
what are those objectives? What is a “good” documentation system?
In general terms, a good documentation system addresses the major
problems of application systems: cost, controllability, and effective-
ness. To understand what specific qualities are needed, it is necessary
to investigate the relationship between the documentation system
and the application system.

The relationship between the documentation system and application
system is discussed in the context of the following general stages in
the system life cycle: initial development, usage, and revision.

During the initial development phase, the documentation system
serves as a means of communication between system designers and
their clients (e.g., the mqnagement whose area of responsibility
subsumes the system) to establish agreement on what a proposed
system is to do. The documentation system also serves as a means of
communication among cooperating system designers and between
system designers and implementors. It is also used to express the
actual implementation, that is, to communicate between people and
machines.

structure, content, and means of expression).

modification, analysis, and storage).

The ease with which designs and implementations can be expressed
and understood is the major determinant of application system cost.
The relationship of designer/client communication to application
system effectiveness is gaining recognition. For example, it has been
found3 that extensive involvement by non-data-processing profession-
als in the development of decision support systems is necessary to
ensure commitment to such systems. Even more to the point, it is
contended that effective non-data-processing professional participa-
tion in general information system development must be based on
iterative development of formal high-level do~umentation.~

During the usage phase, the documentation system plays two major
roles. First, it is used in the administration of system control. It
describes the functions of the system, including those protecting

IBM SYST J VOL 21 NO I 1982 NEWMAN

~~~ ~ 

b 

b 

1 

documentation 
and 
application 
systems 

83 



security  and  integrity,  and allows them  to be understood, reviewec 
periodically for adequacy,  and tested. 

In the case of the  manual  system, the management whose adminis- 
trative responsibilities subsume  the functions of the  system are- 
together with internal auditors-responsible for the  correct  opera- 
tion and  adequacy of the control functions. It is now recognized’ that 
adequate control can be achieved only if these individuals accept  the 
same responsibilities with respect to automated systems. This, 
however, requires the existence of documentation  that is accessible to 
non-data-processing professionals and describes all  externally rele- 
vant aspects of a system precisely and completely. 

During  the usage phase the  documentation system also influences 
system effectiveness in that it is responsible for the provision of 
information to users. For example, data base descriptions should 
explain what information is maintained by the  installation,  and 
program  catalogs should indicate what procedures are available. 

During  the system revision phase, the documentation system 
provides an understanding of the  current system and  thus gives a 
basis for deciding how modifications might be incorporated. The 
documentation system also repeats its initial development role and 
thus affects both system cost and effectiveness. Effectiveness is 
influenced in the sense that if the process of change is too expensive, 
modifications may not be made,  and  the application systems involved 
may gradually become obsolete. 

documentation To summarize  the results of the  last section, the  documentation 
system system is best understood as a mechanism for communication among 

objectives individuals and between individuals and machines. 

We suggest that a  documentation system can be successful as a 
communication mechanism to  the  extent  that  it is sufficient and 
accessible and  to  the  extent  that  it encourages accuracy. 

A documentation  system is suscient for a  particular  audience if it 
serves the information needs of that audience. For example, a 
documentation system is sufficient for the  management responsible 
for a  particular application if levels intended for their use indicate 
what  externally visible functions are incorporated in that application. 
It is sufficient  for programmers if levels intended for their use 
provide enough design detail. 

A documentation system is accessible to a particular  audience if the 
amount of effort required to obtain,  understand,  and modify the 
associated documentation is cost-justifiable. The  amount of effort is 
determined,  to  a  large  extent, by the following variables: 

I 84 NEWMAN IBM SYST J VOL 21 0 NO 1 1982 



Number and consistency of concepts influence the  amount of 
training  and  practice  required  to  understand  the use of the system 
and  the  content of the documentation. 
Naturalness of notation is the closeness to  a notation that  the 
intended audience perceives as  natural.  This influences both the 
real  readability  and  the more subjective approachability of the 
documentation. 
Storage convenience includes both simple retrieval/update conve- 
nience and convenience in viewing information from different 
perspectives. For example, although relationships between appli- 
cation processes and  data  are generally identified via processing 
descriptions, it is useful to view that information from the 
perspective of data descriptions as well, in order  to  determine how 
a  particular item of data is used. 
Volume influences effort in that voluminous documentation 
forces laborious change procedures and  has  a  forest-and-trees 
effect on understanding. Documentation volume decreases as  the 
power of the descriptive concepts used increases. 

Documentation is accurate if all levels are consistent. A documenta- 
tion system encourages accuracy to  the  extent  that  it is easy to 
compare levels and  to  propagate  changes  among levels. These  char- 
acteristics are related, in turn,  to  the accessibility of individual levels, 
to the total number of levels, and  to  the  amount of sharing among 
levels. Sharing  can involve the  sharing of descriptive concepts, 
description storage (repositories), and  particular elements of descrip- 
tions. 

To  summarize, we suggest as objectives for the  documentation 
system that it be sufficient, accessible, and  accurate,  and  that  the 
following characteristics are needed for the  attainment of those 
objectives: 

Information  adequacy. 
8 Limited  numbers  and consistency of concepts. 

Naturalness of notation. 

Repository convenience. 
Sharing among levels. 

Limited documentation volumes. 

I 

Current status and new approaches 

In this section we examine  the  extent  to which current  documenta- 
tion systems meet the objectives developed above. We identify 
significant problems and discuss recent  approaches  to solving them. 
This discussion serves two purposes: It introduces  and begins to 
evaluate the raw material  available for the construction of an 
integrated  documentation system, and it also provides evidence that 
explicit efforts toward integration are indeed necessary. 

IBM SYST J VOL 21 NO I 0 1982 NEWMAN 85 



current Most documentation systems in use today fall considerably short of 
situation meeting the objectives developed in the previous section. First, those 

high levels of documentation intended for non-data-processing 
professionals, when  provided at all, are usually informal or formal- 
ized only to  the  extent of following some standardized  outline.  Such 
levels are usually quite accessible, but the information provided is 
rather imprecise and  thus insufficient. These  inadequacies have a 
deleterious effect on the controllability and effectiveness of systems. 

On  the  other  hand,  the  documentation levels that  are intended for use 
by data-processing professionals are generally sufficient, but they are 
often extremely inaccessible. Voluminous detail is required; different 
parts of a system must be described using different, uncoordinated 
concepts; and  the resulting descriptions are often stored in unrelated 
repositories. 

For example, the lowest user-generated level  of system documenta- 
tion generally consists of a  set of high-level-language programs that 
are intermixed with other descriptive material,  such as assembly- 
language  programs,  data-definition macros, job-control-language 
procedures, and linkage specifications. In  addition, many high-level 
languages are  rather fragmented  internally  and  can be seen as 
collections of sublanguages (e.g., declarative,  algorithmic,  and 1/0 
statements).  It  has been (entertainingly)  estimated that to  construct 
and test a single program  the implementor must be familiar with 
approximately twelve different languages  and  sublanguages.6  This 
situation is directly responsible for the enormous difficulty users face 
in cost-justifying the implementation of  new systems or the modifica- 
tion of  old ones. 

Another difficulty with current  documentation systems is that  there 
is generally a lack of sharing among different levels. This, combined 
with inaccessibility at the lower  levels, causes the maintenance of 
consistency (accuracy)  to be very expensive. The lack of accuracy, in 
turn, affects both systems control  and  the costs of systems modifica- 
tion. 

Note  that  the problems caused by development tool fragmentation 
are not limited to those directly affecting the application developer. 
An unintegrated  set of tools is more costly to develop and  maintain 
than  an integrated  set.  Thus, as long as the tools produced are 
relatively unintegrated, fewer tools  will  be produced, and  those that 
are produced tend to cost more. 

new The above situation was universal for many  years  and still most 
approaches accurately  portrays  the  situation in a  standard  installation.  Rela- 

tively recently, some more effective approaches have come into use 
and descriptions of others have been published. The approaches 
involved fall into  the following categories: 

86 NEWMAN IBM SYST J VOL 21 NO 1 1982 



System description vehicles. 
Module interconnection languages. 
Application packages, customizers, and  generators. 
New data models. 
High-level language extension. 
Very-High-Level Languages (VHLL). 

Each of these  areas is discussed in more detail in the following 
sections. For each,  a brief description is given together with an 
evaluation of its relevance to the objectives established in the 
previous section. 

There have been many relatively recent efforts to provide facilities 
above the implementation level  for describing how application 
systems work-for example: Functional Specification Technique 
(FST),’ Problem Statement  Language (PSL),’ Systems  Architects 
Apprentice (SARA),9 and TELL (after William Tell).” 

Three  features of such facilities are discussed here: system descrip- 
tion vocabularies, automated repositories, and  executability.  System 
description vocabularies are common to all methods. Each method 
sees a system as constructed of certain kinds of components. For 
example, in FST, systems are considered to be built of multilevel 
machines, with formal communication both between adjacent levels 
of the  same machine and among machines. In PSL, systems are 
considered to be built of nested processes that represent functional 
partitions. 

To describe a system using such  a facility, one identifies the types 
and  names of its components, how the components are nested and 
linked, and, in a prescribed manner, what they do. What  a compo- 
nent does is generally couched in terms of communicating with other 
components and system interfaces  and in terms of accessing system- 
maintained data bases. Those terms may be descriptive (e.g., “The 
inventory process updates inventory-on-hand.”) and/or algorithmic 
(e.g., “INVENTORY-ON-HAND = BGN-INVENTORY + SHIP- 
MENTS.’’). 

Most of these description vocabularies have either an explicit or 
implicit graphic  interpretation. In fact, in at least one  case, TELL, the 
primary vocabulary is graphic. 

The most important property of a system description vocabulary is 
that it formalizes and imposes a discipline on requirement-  and 
design-level documentation.  This  contributes  to both the accessibility 
and  the sufficiency of the resulting documentation. Accessibility is 
improved in that  the process of generation is simplified. That is to 
say, one does not have to devise a  framework for each  instance of 
documentation.  Furthermore, much specification can be omitted 
because many of the properties of the components identified are 

IBM SYST J VOL 21 NO I 1982 NEWMAN 

system 
description 
vehicles 

87 



implied by the component type designations. The use of standard 
concepts and  the succinctness of documentation also aids in under- 
standability. Suficiency is fostered in that  the use of a  standard 
framework encourages completeness. 

The two other basic features of system description methods-the use 
of repositories and executability-are not features of all methods. 
The inclusion of an  automated repository further  enhances accessi- 
bility. Descriptions can be more easily reviewed, updated,  and 
subjected to various kinds of automated analysis and reporting.'"' 
Executability implies a precise means of describing component 
function. If present, it can increase comprehension. It can also assist 
in verifying design logic, and  can  aid in investigating performance- 
related  aspects of a design (given suitable assumptions about  real 
execution times). 

Note, however, that an  executable system description is not normally 
adequate as an implementation. To be useful, a system description 
must be relatively succinct and  readable.  This generally rules out  the 
use of traditional methods of accessing system interfaces  and data. 
For example, in FST, communication among components and 
between components and system interfaces is represented by the 
transmission of simple parameters.  This  representation may be  used 
to  abstract  the complex, voluminous interchanges typical of interac- 
tive applications.  Such  an  abstraction, however, is not an implemen- 
tation. 

Module interconnection languages have been developed as control- 
ling frameworks for implementation to  increase  intercomponent 

interconnection consistency. Although there are many variations, they  all provide for 
languages the description of the externally visible aspects of application compo- 

nents  separately from and prior to  the development of implementa- 
tion code. Thus  they allow the verification of interface usage during 
compilation, while also serving as substitutes for traditional  linkage 
specifications. Some  formulations are designed to complement a 
particular implementation lang~age,""~ while others are applicable 
to many implementation 1ang~ages.I~"~ 

These  languages,  although  they  increase  early-stage  implementation 
effort  to some extent,I6 are powerful communication vehicles. They 
allow parallel and consistent development of individual components 
and  greatly simplify analyses of the effects of change.  Changes to a 
component not relating  to  its use of shared data or to  its  interface  do 
not affect  other  components, whereas components potentially 
affected by other types of changes  can be easily located. 

An important  property of module interconnection languages for our 
purposes is that they are a form of system description language. Seen 
in this way, they represent a potential bridge between design and 
implementation level documentation, possibly connecting and/or 
allowing the elimination of some levels. 

88 NEWMAN IBM SYST J VOL 21 NO I 1982 



Application packages, customizers, and  generators are methods of 
obtaining  running applications without the use of  general-purpose 
programming languages. We use the  term application  package to 
denote precoded business applications that  are modifiable only by 
source code alteration.  An application  customizer is similar  to an 
application package, except that it includes facilities allowing certain 
anticipated kinds of tailoring without resort to  source code. A 
customizer is capable of creating  a family of applications,  all 
conforming to  the  same overall business pattern. 

Application  generators, such as the Application Development Facil- 
ity (ADF)," the Development Management  System (DMS)," and  the 
research vehicle discussed in Reference 19, are like customizers,  but 
the families of applications involved reflect data-processing  patterns 
instead of business patterns. For example, the basic pattern presup- 
posed  by ADF is that of interactive data  entry/edit for Information 
Management  System (IMS) data bases. 

A useful perspective in this  area is contributed by Reference 20, in 
which an application generator is explained as  the result of a process 
of program  generalization. An example given there is that of a  parser 
generator.  Such  a  generator allows the construction of a  language- 
specific parser by combining code embodying a  standard  parsing 
method with a  grammar for the  language of interest. 

The essence of these facilities is that a processing pattern is built in, 
and  the user need supply only some details, normally in declarative 
form. The processing pattern is often presented as combining several 
types of processing, such as  data entry  and  edit. Note  that it is not 
important whether the  actual processing is performed by generated 
code or by an interpreter. Note also that where the processing 
pattern is presented as a combination of patterns,  the  generator  can 
be  viewed as a combination of several partial  generators,  each with 
its own input.  These two observations suggest that many familiar 
functions can be thought of as application generators. For example, a 
high-level device manager can be considered an interpretively based 
partial application generator. 

The use of customizer and  generator input for implementation-level 
component descriptions has great potential for simplifying both 
component generation and review. Input  to  a single generator  can 
often replace many different kinds of specifications, including data 
base access and display formatting.  This has two significant effects 
on documentation accessibility: The education required to  generate 
component descriptions is reduced,  and  the descriptions are succinct 
and easily modified. 

On the other  hand,  there is a potential problem associated with the 
use of customizers and  generators.  To  the  extent that  the application 
patterns supported by generators are relatively constrained,  and  the 

IBM SYST J VOL 21 NO 1 1982 NEWMAN 



new 
data 

models 

Figure 1 Data model example 

HAS-COLOR 

SUPPLIER 

AAA-PARTS 

1 I 

90 

options provided are limited, ease-of-use is great.  To  the extent  tha 
the  patterns  are relatively unconstrained,  and the options are exten 
sive and  interdependent, ease-of-use tends  to be reduced. (An( 
generators lose their  advantage over general-purpose languages, 
especially the upgraded languages  to be discussed later in this 
paper.)  Thus,  large  numbers of specialized customers  and  generators 
seem to be desirable. The problem is that such numbers tend to 
exacerbate development tool fragmentation. 

New, more abstract, physical-storage-independent data  structures 
developed during  the last decade have a  considerable  contribution  to 
make in documentation systems. The most important types of struc- 
tures in this class are versions of the  relational2'  and  Entity/ 
Relationship (E/R) models.22 To  analyze  their significance, we use as 
an example  a version that  shares characteristics of both models. 

This version  is illustrated in Figure 1. Here  there  are two types of 
objects, entities  and relationships. Entities are scalars  and are placed 
in entity  sets to  indicate  the  type of object represented. Relationships 
are ordered associations of two or more objects (entities and/or other 
relationships) and  are placed in relationship  sets to  indicate  the  type 
of association represented. Additional  information  about  this  partic- 
ular model can be found in Reference 23. 

The characteristics that make such models important for our 
purposes are their expressiveness, neutrality,  and potential for high- 
level access. 

An expressive data model  is one in which the  organization of the 
data provides a significant amount of information about  its meaning. 
The differences in expressiveness between models such as  the one 
illustrated in Figure 1 and  the more record-oriented ones are 
discussed in Reference 24. Briefly, in record-oriented models, the 
combination of record type and field name must convey the follow- 
ing: (1) what kind of object is referenced is by the field, (2) what  the 
object is being related to, (3) by what kind of relationship, and (4) 
what is the role of the  object in the relationship. The model 
illustrated provides each of these items as  separate pieces of informa- 
tion. 

Expressiveness is significant for several reasons. It enhances  the 
probability that a user might understand  the  content of a data base, 
given only the most cursory description. Thus it is useful for data 
bases that  are accessed only occasionally by given individuals. 
Repositories and casually used application data bases fall  into  this 
category. Also, given that  the objects of a data model are referenced 
in code accessing that model, an expressive model  would probably 
give rise to more easily understood access code. 

NEWMAN IBM SYST J VOL 21 NO 1 1982 



The  property of neutrality provides the  ability  to view the  content of 
a data base from many perspectives. Thus, if one were to browse the 
data base shown in Figure 1, one might.begin at a  part,  a color, a 
supplier,  a cost, etc. In contrast, for example, accesses of hierarchic 
data bases generally require beginning at the top of a predefined 
hierarchic  pattern.  Where data bases must be accessed in an ad hoc 
fashion or where applications change rapidly, the  requirement of 
access pattern predefinition is burdensome, and  neutral  data bases 
are preferable. 

The potential for high-level access is perhaps the most important 
characteristic of the new data models. First, excellent graphic 
browse/update facilities can be devised. The interface described in 
Reference 25 and  adapted in Figure 2 is an example of this.  More 
important is the  fact that  the entities  and relationships of Figure  1 
are mappable onto sets,  and  the binary relationships are mappable 
onto single- and multi-valued functions. These mappings allow data 
to be accessed by the succinct set-oriented Very-High-Level 
Languages discussed later in the  paper. The succinctness of these 
languages provides ease of coding. When the succinctness is coupled 
with an expressive data  structure,  the resulting code is very easily 
understood. 

In summary,  the new data models have great potential for increasing 
user understanding of data base content  and for simplifying both 
data description and  data accessing. 

Languages that we typically think of as High-Level Languages 
(HLLS), languages at the level  of FORTRAN, COBOL, PASCAL, etc., are 
generally designed to include provisions for accessing only simple file 
structures.  With  the advent of more sophisticated data base struc- 
tures (networks, hierarchies,  and  relations),  the need arises  to allow 
access from the HLLs. Early provisions made for this purpose were 
rather ad hoc. They generally required communication with the 
facilities involved  via CALLS, using shared communication areas for 
request details  and responses. These  attempts were not particularly 
satisfactory; they made the fragmentation problem more acute  and 
tended to obscure the  meaning of the  application code. 

More  recently,  there have been attempts to extend HLLs to provide 
more natural, expressive interfaces  to DBMS facilities, such as those 
described in References 26 and 27. These  language extensions are 
generally much easier to learn  than  the  earlier methods, and  the 
resulting programs are easier to  generate  and  read. 

The method of language extension is not completely satisfactory, 
however, at  least as compared with the  other possibility, that is, the 
creation of  new languages. Existing languages are already very 
complex. When new elements are added, not only is an increase in 
complexity a  certainty,  but that increase  may  also be larger  than 

IBM SYST J VOL 21 NO 1 1982 NEWMAN 



the relationship; between them.  Thus  the  addition of one new 
element may require  the specification of many new relationships. 

In contrast, when developing a new language,  one is free  to reexam- 
ine the  total set of desired features.  Then  it  can be determined 
whether some features  subsume  others, whether some can be 
discarded, or whether  generalizations of several features  can be 
developed. Thus new language functions can be provided without an 
increase in complexity over existing language. 

general- The  term Very-High-Level Language (VHLL) is very inclusive, and 
purpose there  are a  large number of disparate  languages that  can be so 

VHLL categorized, as can be concluded from the  general discussions in 
Reference 28 and 29. These  languages have in common an emphasis 
on the elimination of implementation detail-on providing the  capa- 
bility of specifying “what”  rather  than “how.” Based on this  charac- 
teristic, application generator inputs-being declarative-can be 
thought of as VHLLS. However, the  term VHLL is  used here  (and in 
Reference 28) to connote general-purpose  languages only, that is, 
languages that do not assume  a  particular  application  pattern. 

One  important VHLL class consists of the  set-oriented languages,28 
the most  well developed of which is Set Language (SETL).30 
Languages in this class obtain  their power by viewing all data as 
being organized in sets and expressing operations in terms of set 
manipulation. The details  eliminated are  the details of accessing 
low-level data  structures. 

An interesting  characteristic of set-oriented VHLLs is that one can 
map  the  constructs of some new data models to the constructs of such 
languages. Specifically, as previously described, one can  map  entities 
to  sets of scalars  and relationships to sets of vectors and  to  enumer- 
ated single- and multi-valued functions. 

Consider the  data base illustrated in Figure 1. Instead of entity  and 
relationship  sets, one might  speak in terms of sets of scalars, 
exemplified by PARTS,  SUPPLIERS,  COLORS, and  sets of vectors, 
exemplified by HAS-SUPPLIER. Then  to  add  a  part  to  the  data base, 
one  might specify, for example: 

PART + = “12345” 

To assign a supplier to  the  part,  one  might specify something like: 

HAS-SUPPLIER + = <“12345”,  “ACME-PARTS”> 

or more attractively, 

HAS-SUPPLIER(“12345”) + = “ACME-PARTS” 

Similarly,  to remove the suppliers of part 12345 from the  data base, 
one  might specify: 

92 NEWMAN 1BM SYST J VOL 21 NO I 1982 









new 
data 

models 

Figure 4 Repository 

CLASS 1 CLASS 2 
” 

DESC OF MASTER 
CLASS 2 CATALOG 

CLASS 0 DATA GRPS 

DESC OF CLASS n 
DATA DESC 

(CLASS 1) CLASS n 
DATA GRPS DESC OF A  DATA GRP 

DATA GRPS 

A  DATA GRP 

96 

descriptions of prompts, responses, etc. The feasibility of this 
approach rests on performance questions and is discussed further on. 

We have identified the significance of the newer data models as lying 
in their expressiveness, neutrality,  and potential for high-level access. 
We now use these  structures  to fill gaps in the environment under 
construction. To begin, they are clearly appropriate for the reposito- 
ry, as they are suitable for data bases that  are subject to infrequent 
access via unanticipated  paths. The system description method PSL 
uses what may be  viewed as  an early  approximation of an  Entity/ 
Relationship (E/R) model as its repository vehicle, and  it benefits 
accordingly. 

We now also make more detailed decisions about  the repository to 
lend concreteness to  the  subsequent discussion. We assume that  the 
repository does not consist of a single data base; rather  it is made  up 
of a collection of data bases or data groups, each  organized  according 
to  the example data model discussed earlier.  These groups are 
related by a master  catalog  data  group. Each data  group contains  a 
particular kind of information about  a  particular  element of the 
application system. For example, one data group may contain system 
planning information and  another may describe  an  application data 
base. 

There  are several reasons for the use of a multiple data group 
descriptive repository. We assume that  the descriptive repository is 
used as a development focus for all applications and  application 
systems associated with a  particular physical system-possibly 
distributed. As such, the somewhat decentralized  approach  has 
distinct logistic advantages in the  areas of naming conventions, data 
sharing,  and  change  control.  Another reason for the choice is 
discussed further on. Note  that  there need be no loss  of function as 
compared to  a single data group repository approach, except possibly 
some built-in integrity checking. 

Each descriptive data group in the repository is itself described by a 
built-in data group, rendering the repository self-describing. Each 
collection of data groups having the  same  descriptor  constitutes  a 
data  group  class. Figure 4 illustrates some of these ideas. Class 0 is 
special and  circular.  Its single contained data group describes the 
class of data description data groups. 

Besides the repository, the  data model is also ideal for the modeling 
of application data  at design levels. Descriptions of system functions 
at  those levels generally attempt to convey what  information is 
involved and  what is done to it in abstract  terms,  that is, in terms that 
are relatively independent of performance-oriented data  structure 
selection. E/R and E/R-like models are well suited  to  this  task.  In 
fact, many early discussions of such models termed  them “concep- 

NEWMAN IBM SYST J VOL 21 NO I 1982 



tual models,”41 and considered their most important use to be in 
describing the information content of a data base. 

The use of the  same data model both for system description data  and 
for the modeling of application data  at  the design level  is an 
important  step in reducing the number of descriptive concepts 
needed. It might be noted, however, that different design levels may 
reflect different partitionings  into data groups of enterprise data.  To 
use an extreme example, at a higher level all  the data might be 
represented as a single data bank. At a lower  level, decisions as to the 
allocation of the data to different data bases might be expressed 
(together with the processing implications). 

This brings us to the  other reason for the use of multiple data groups 
for systems description data. Coherence seems much better served by 
making no fundamental distinctions between data used to describe 
application systems and  data operated upon by application systems. 
Inasmuch as the  latter is clearly partitioned among data groups, 
there is no reason why the former should not  be also. 

We finally consider using the  data model for internal data  at the 
implementation level. If one draws  a  boundary  around  an  automated 
system and considers all data retained within that boundary as being 
internal data, note that no one ever sees the  internal data as  stored. 
This  contrasts with information passing over the system boundary: 
human  interfaces,  portable files, etc.  The format of internal data is 
relevant only  for performance reasons; if the use of conceptual 
structures simplifies the implementation-level descriptions, only 
optimization concerns stand in the way of their use. These concerns 
are discussed further in connection with languages  later in this 
paper. 

In an earlier section we concluded that customizers  and  generators 
had great potential for reducing the  education  and effort needed to 
generate  and  maintain implementation-level component descrip- 
tions. Thus we  now include them in our  environment.  To connect this 
decision with earlier ones, we can specify that generator  inputs be 
placed in repository data groups (of generator-specific classes). To 
create  an application,  a user creates  the  appropriate  data groups and 
invokes the  generator. If the application is a component of a  larger 
system, the module interconnection specification is used to  indicate 
that those data groups, together with the  appropriate  generator, 
constitute  the implementation of that component. 

These decisions do not exhaust  the  set of basic issues connected with 
the inclusion of generators in our  environment. Those to be consid- 
ered here are the following: (1)  the problem of generator multiplicity 
(introduced  earlier); (2) the  extent  to which generators solve the 
implementation problem; and (3)  the implications of generator use 
for design-level documentation. 

IBM SYST J VOL 21 N O  I 1982 NEWMAN 



multiplicity 
of 

generators 

pervasiveness 
of 

generators 

relation of 
generator 

input to 
Intermediate- 

level 
documentation 

98 

because the alternative may be a few generators with large  numbers 
of options. To allow this without adding to  the complexity of the 
environment, carefully  constructed descriptive material  and usage 
instructions  must be provided for each facility. The word “catalog” 
captures  the desired effect. The selection of a facility appropriate  to  a 
need should be comparable in simplicity to the use of a  mail  order 
catalog. Also, diversity should be limited to that required. Concepts 
presented by generation facilities relating  to  aspects of the  applica- 
tion system outside  their domain-such as  data bases and  interpro- 
cess communication-should be presented similarly throughout  the 
generator  catalog. 

Does the introduction of generators represent a complete solution to 
the problems of implementation-level specification? Does it obviate 
improvements to more general-purpose methods of application 
implementation? The position taken  here is that  it. does not. No 
matter how many facilities are provided, they will not cover all needs. 
At least some applications will have to be constructed by more 
traditional means. Also, many applications will  be constructed by 
applying source-level modifications to  application packages. It is 
mentioned in Reference  42 that one reason for the wide use of 
application packages is the  extreme difficulty of estimating develop- 
ment costs for new applications.  In  other words, application packages 
are often used-even when extensive source modifications are 
needed-as a way  of lowering project risk. 

1 

Thus improvements to general-purpose languages are still relevant. 
In fact, one of the more important kinds of improvements may be  in I 
the  area of simplifying the construction and modification of applica- 
tion generators  to  permit user installations  to  create  generators for 
their own use. 

One purpose of elaborate design documentation is to  organize  the 
work of the  substantial  number of programmers normally involved in 
an application system development project. Given the  availability of 
customizers  and  the associated reduction in required  programmers, 
there may well be a  temptation  to avoid the generation of design- 
level documentation, especially processing descriptions, for small- 
to-medium-size systems. If this is done, however, the  other benefit of 
design documentation is lost, namely the  understanding of system 
operation as a whole. This  understanding is needed for reasons 
discussed earlier in this  paper, including management  control,  and is 
not normally provided by generator  input for the following reasons: 

different inputvocabularies. 
Generator  inputs often center on aspects of the  application that 
are unrelated  to system flow (such as screen formats),  and  thus 
tend to obscure that flow. 

NEWMAN IBM SYST J 0 VOL 21 N O  1 0 1982 





VHLL The use of a VHLL for design-level processing descriptions presents 
at no intrinsic problems. To provide a  better  picture of a VHLL design- 

design level specification, we  now flesh out  our assumed language  to some 
level extent. 

We assume that  the VHLL to be  used  is similar  to that previously 
discussed, and accesses data organized  according  to the model in 
Figure 1. This implies the use of that model for internal data  at the 
design level. The  data may be divided among many data groups 
associated with different areas of the application and having 
different lifespans. Data groups local to  a process, i.e., existing only 
while the process  is active, should be declarable within that process, 
using declarative  text closely related to the form of global data 
descriptions. 

The second subject to be addressed with respect to VHLL at the 
design level  is that of language  style,  and more specifically, that of 
procedurality.  Some VHLLS use adapted forms of classic procedural 
syntax-permitting loops, explicit processing sequences, and so 
forth. It might be objected that this is improper because such 
languages must indicate  “what,” not “how.” A  procedural style 
should not  be ruled out, however, for the following reasons. 

Sometimes  a specific sequence must be  followed to  obtain  a desired 
result. For example, in an  order processing program, the orders  must 
be  processed one-by-one even if multiple processors are available.44 
Also, it is  very often easier to express a desired result as  the outcome 
of a series of steps  than by other means. In fact, relatively pure 
specification languages are often accessible only to the  mathemati- 
cally sophisticated. In any  case, much of the  procedurality that 
hinders accessibility in traditional  programs is due to low-level data 
manipulation. 

Thus,  procedurality should be acceptable  to some extent in a VHLL. 
For purposes of optimization, if the  language is properly constructed 
a compiler should be capable of distinguishing between necessary 
and optional sequencing, via data dependency analysis, for example. 

The  third issue discussed here in connection with the use of VHLL at 
the design level  is that of interprocess communication.  Referring 
back to the system structure assumed (processes, data bases, and 
messages), it is clear that some provision must be made for messages. 
By adapting elements of many approaches, such as, for example, 
those of References 45-47, to  the needs of our VHLL, we can specify 
that a message consists of a list of values, with each value being 
either a set or an  entire  data group. We may then  add  statements  to 
the  language  to SEND and RECEIVE messages into  and  out of 
specified local and global data groups. 

Having  made these assumptions  about the VHLL, we might now 
visualize a design-level system description as consisting of a  struc- 

100 NEWMAN IBM SYST J 0 VOL 21 NO I 1982 



ture-description data group that identifies system components and 
their  interrelationships,  and  a  set of process and  data description 
data groups detailing those components. Process-description data 
groups contain VHLL code represented as relationships between 
statements  and  statement  numbers. 

The VHLL elements needed for the simple accessing of repository VHLL 
data groups are  the same as those used  for describing processing at  for 
the design level. Therefore, in this section we focus on the use of a repository 
VHLL for the production of design analyses and  reports in display or processing 
hard-copy form. For this purpose, methods are needed for communi- 
cating with system interfaces succinctly and expressively. This is a 
critical  area because the  suitability of the methods developed will 
have great influence on the overall usability of the  language. It is 
speculated29 that  the relative lack of success of extant VHLLS can be 
attributed  to  the  fact  that  although they “make  it simpler to code 
small parts of a  program,”  they do not “significantly ease  the 
problem of overall program formulation and  organization.”  It is 
quite possible that  the lack of appropriate facilities for system 
interface handling is an important aspect of this problem. 

Examples of the types of facilities needed are found in References 33 
and 48. However, these proposals, in which the  interface facilities are 
included in the  language  directly, seem to unnecessarily constrain  the 
types of devices that can be accommodated and  the levels at  which 
they can be addressed. We therefore look to the use  of partial 
application generators in one or more of the following forms: 

Interpretive  interface  processes. These  generator-equivalents 
would be used as intermediaries in communicating with a device 
at a  particular level. For example, to  create  a display, one might 
send a message of a prespecified class to a display interface 
process. The message is to  contain  format,  content,  and processing 

depend on the level  of the  interface process. 
Module  generators. These would resemble application  generators 
but have significantly narrower scope. 
Subroutine  generators. These would  be similar to module genera- 
tors,  but they would operate on generator-input blocks containing 
declarations imbedded in VHLL code rather  than on separate 
generator-input data groups. This  approach can be thought of as a 
generalization of the method in Reference 48. It conveniently 
localizes generator  inputs  and allows generators  to  share local 
data descriptions with the VHLL language processor. However, it 
requires provisions both in the definition of the VHLL and in the 
construction of its processor. 

I (e.g., editing)  information. The  amount of detail  sent would 

~ 

The use of partial  generators, especially if extended to  the implemen- 
tation level, has the  additional  advantage of increasing the  range of 
generator applicability while reducing the need for generator prolif- 
eration. 

IBM SYST J 0 VOL 21 NO 1 1982 NEWMAN 101 



VHLL The major impediment to  the use of a VHLL at the implementation 
at the level  is that of performance. Simply stated, because VHLLs specify 

implementation “what”  rather  than “how,” the compiler is left  to decide “how.” This 
level matter is  not  resolved here. Rather we attempt to  demonstrate that 

the problem is  less serious than might be supposed. 

Among the  factors involved  is the significant amount of work that 
has been done in such relevant areas  as classic optimization of 
high-level related optimization of very-high-level 
 language^,^"^^ automatic selection of data storage 
data base access ~p t imiza t ion ,~~”~  and artificial-intelligence-oriented 
program synthe~is.’~’~~  (The preceding references are a  representa- 
tive rather  than  an exhaustive set.)  This work has not advanced 
sufficiently to solve the problem of optimizing VHLLS, but  it does 
represent a significant body of research. 

Another  important  factor is that  current application trends seem to 
decrease  the need for the more difficult global optimizations. To be 
more specific, interactive  transactions on increasingly integrated 
data bases account for an ever-growing proportion of application 
code. The relevance of the  trend toward interactive  transactions is 
that  the optimization methods most relevant to this  type of process- 
ing, namely data access optimization and relatively local VHLL 
optimization, are among the more tractable ones. Data access 
optimization has probably reached the point where an automatically 
determined  strategy is as good as  a  manually specified one. Local 
VHLL optimization,  although less advanced, shows promise. 

The increase in data base integration is important because it implies 
the need for relatively neutral  storage methods, thus lessening the 
importance of storage  structure selection optimization. 

A final factor affecting VHLL feasibility is the  continuing decline in 
hardware costs relative to programming costs. Although  automatic 
implementations will probably not match good HLL implementations 
for some time,  the real question is whether the cost of a  manual 
implementation is  less than  the cost of buying faster/larger  hard- 
ware  to  make  up for any inefficiencies. 

The really difficult cases are large  batch  applications.  Here,  the 
arbitrary use of a VHLL without adequate optimization can lead to 
greatly reduced performance. In such cases, the user might be 
advised that the compiler preserves at least the overall logic of the 
code, so that major subdivisions of the  program  must be carefully 
decided upon. Alternatively, the HLL extension approach  might be 
used. 

102 NEWMAN LBM SYST J VOL 21 NO 1 1982 



Implications for the total environment 

Up to  this point, we have focused on the documentation-system 
aspect of the development/execution environment. Important omis- 
sions from the discussions are  the following: 

Command  languages that activate development and production 

Repositories for the execution environment. 
Facilities for installing new function in the execution environ- 

processing. 

ment. 

These subjects are not addressed here in the  same  detail  as  those of 
earlier sections. Instead,  the discussion is limited to some general 
suggestions that  are consistent with the  documentation system struc- 
ture  and with the overall objective of environment integration. 

The most  obvious suggestion is that  the development and execution 
environments be the  same  and  thus that  there be a single command 
language  and  a single repository. Furthermore, since command 
languages have evolved  over the  years from simple facilities for data 
binding and application invocation to  programming  language equiva- 
lents, it is reasonable to propose that a form of the VHLL be  used as 
the command language for the environment. This would contribute 
to overall consistency and provide a built-in capability for ad hoc 
data access to both development and application data. 

If the repository is to be extended to include application data groups, 
it  must  acquire  additional  organization, such as subdivisions for 
purposes of data group  naming, ownership, and so forth. Also, to 
make  the repository as inclusive as possible, special data groups 
should be allocated for specifications governing system authorization 
and  accounting. 

The subdivisions of the repository, if allowed to contain running 
processes as well as  data groups, might also be used to represent work 
contexts, i.e., subenvironments used as a basis for resource utilization 
accounting, symbol resolution, application of defaults,  etc.  A given 
work context might be associated with a  particular user or with a 
particular  centralized application system function. Processes in one 
context must be able  to access data in and send messages to  other 
contexts. 

Given this  structure,  the  installation of an  application system basi- 
cally involves associating its components with the  appropriate work 
contexts. To allow the procedure to be automated,  the design-level 
structure descriptions might be augmented  to  group processes and 
data by target  contexts or context types. 

IBM SYST J VOL 21 NO I 1982 NEWMAN 103 



In this paper we have attempted  to  demonstrate two points: (1) that 
there is a need for increased attention  to environment integration, 
and (2) that such integration requires a  fundamental reworking of 
various approaches  rather  than  the  establishment of superficial 
connections. 

We have also suggested a  particular direction for such  integration, 
with the following as its most important  characteristics: 

The use of a  coherent system repository for all descriptive and 
application data. 
The use of a highly expressive data model that shares  characteris- 
tics of the  Entity/Relationship (E/R) and  relational models for 
that repository and  thus for all data maintained within a system. 
The use of closely related design- and implementation-level 
description methods, thereby allowing the documentation of these 
levels using similar concepts and providing inter-level comparabil- 
ity. 
The use of a  multitude of partial  and full application generation 
capabilities. 
The use of a single general-purpose  language for all non- 
generator-based processing description, as well as for system 
description analysis. 

Many questions and problems have been raised and left unresolved in 
the development of the basic direction. Two of the most important 
were (1) how to use VHLLs in the building of application  generators, 
and (2) how to provide significant optimization for VHLLS. These 
questions should be considered important  subjects for future 
research. 

ACKNOWLEDGMENTS 

I thank D. W. Low, J. G. Sakamoto, R. C .  Summers,  and B. P. 
Whipple for their  careful reviews and many helpful suggestions. 

CITED  REFERENCES 
1. B. Liskov, An Introduction to CLU, Memo No. 136, Computation  Structures 

Group, Laboratory for  Computer Science, Massachusetts Institute of Technolo- 
gy, Cambridge,  MA  (1976). 

2. Xerox Learning Research Group,  “The  Smalltalk-80 System,” BYTE 6, No. 8, 

3. M. J.  Ginzberg, “Redesign of management tasks: A  requirement for successful 

4. H. F. Juergens, “Attributes of information system development,” MIS Quarterly 

5. Systems  Auditability and Control Study, Institute of Internal Auditors, Alta- 

6. J. R. Ehrman,  “The new tower of babel,” Datamation 26, No. 3, 156-160 

36-48 (August 1981). 

decision support systems,” MIS Quarterly 2, No. 1, 39-52 (March 1978). 

1, No.  2,31-41  (June 1977). 

monte Springs, FL (1 977). 

(March 1980). 

I 104 NEWMAN IBM SYST J VOL 21 NO I 1982 



I 

7. M.  Berthaud, “Towards a formal language for functional specifications,” 
Proceedings of the  IFIP  Working Conference on Constructing  Quality  Software, 
North-Holland Publishing Co., New York (1977), pp. 379-396. 

8. D. Teichroew and E. A. Hershey, “PSL/PSA:  A computer-aided technique for 
structured documentation and analysis of computer-based information systems,” 
IEEE Transactions on Software Engineering SE-3, No. 1, 41-48 (January 
1977). 

9. G .  Estrin, “A methodology for design on digital systems-Supported by SARA 
at the  age of one,” AFIPS Conference Proceedings, National  Computer  Confer- 
ence47,313-324 (1978). 

10. S. N. Zilles and P. G .  Hebalkar,  “Graphical representation and analysis of 
information systems design,” Data  Base 11, No, 3, 93-98 (Winter-Spring 
1980). 

I 1. J. L. Archibald, The  External  Structure:  Experience  with  an  Automated  Module 
Interconnection Language, Research Report  RC8652, IBM Thomas J. Watson 
Research Center, Yorktown Heights, NY 10598 (January  1981). 

12. J .  G .  Mitchell, W.  Maybury, and R. Sweet, Mesa Language Manual, Version 3.0, 
Xerox Palo Alto Research Center, Palo Alto, CA 94304 (April 1979). 

13. N. Wirth,  “Lilith: A personal computer for the software engineer,” Proceedings 
of the  5th  International Conference on Software  Engineering, March 1981, pp. 

14. L. W. Cooprider, The Representation ojFamilies  of  Software  Systems, Techni- 
cal  Report  AFOSR-TR-79-0732,  Computer Science Department,  Carnegie- 
Mellon University, Pittsburgh, PA (April 1979). 

15. W. F. Tichy,  “Software development control based  on module interconnection,” 
Proceedings of the  4th  International Conference on Software Engineering, 
Institution of Electrical Engineering, London (September  1979), pp. 29-41. 

16. D. L. Parnas, “On the design and development of program families,” IEEE 
Transactions on Software Engineering SE-2, No. 1, 1-9 (March 1976). 

17. IMS Application Development Facility, General Information, IBM Reference 
Manual,  Order  No. GB21-9869-1 (November 1978); available through IBM 
branch offices. 

18. Development Management System, General Information, IBM Reference Manu- 
al,  Order  No.  GH20-2195  (January 1979); available through IBM branch 
offices. 

19. E. D. Carlson and W.  Metz, A Design for  Table Driven Display Generation and 
Management  Systems, Research Report  RJ2770,  IBM Research Laboratory, 
5600 Cottle Road, San Jose, CA 95193 (March  1980). 

20. P. Lucas, “On the  structure of application programs,” Lecture Notes in Computer 
Science 86: Abstract  Software  Specijcations, Springer-Verlag, New York 
(1980). 

21. E. F. Codd, “A relational model for large  shared  data banks,” Communications 
of the  ACM 13, No.  6,377-387  (June 1970). 

22. P. P.-S. Chen,  “The entity-relationship model-Toward a unified  view  of data,” 
ACM Transactions on Database Systems 1, No. 1,  9-36 (March 1976). 

23. P. S. Newman, An  Atomic  Network  Programming  Language, Report  G320- 
2704, IBM Scientific Center, 9045 Lincoln Boulevard, Los Angeles, CA 90045 
(June 1980). 

24. W. Kent, “Limitations of record-based information models,” ACM Transactions 
on DatabaseSystems 4, No. 1, 107-131 (March  1979). 

25. R. G .  Cattell, “An entity-based database user interface,” Proceedings of  the 
ACM  SIGMOD International Conference on Management of Data, ACM, New 
York (May 1980), pp. 144-150. 

26. D. D. Chamberlin, M. M. Astrahan, K. P. Eswaran, P. P. Griffiths, R. A. Lorie, 
J. W. Mehl, P. Reisner, and B. W. Wade, “SEQUEL 2: A unified approach  to 
data definition, manipulation, and control,” IEM  Journal  of  Research and 
Development 20, No. 6, 56C575 (November 1976). 

27. C. J. Date, “An introduction to the Unified Data  Language  (UDL),” Proceedings 
of the  6th International Conference on Very  Large Data Bases, October 1980, pp. 

2-15. 

15-27. 

IBM SYST J VOL 21 NO 1 1982 NEWMAN 105 



1 

28.  W. A. Wulf, “Trends in the design and implementation of programming 
languages,” IEEE  Computer 11, No. 9, 14-25 (January 1980). 

29. M. Hammer  and G. Ruth,  “Automating  the software development process,’’ 
Research Directions in Software Technology, P. Wegner (Editor), MIT Press, 
Cambridge,  MA  (1979), pp. 767-790. 

30. J. T.  Schwartz, On Programming, An Interim Report on the SETL Project, 
Computer Science Department,  Courant  Institute for Mathematical Sciences, 
New York University,’New York (1973). 

31. D. W. Shipman,  “The functional data model and  the  data  language Daplex,” 
ACM Transactions on DatabaseSystems 6, No.  1,140-173  (March  1981). 

32. N. Goldman and D. Wile, “A database foundation for process specifications,” 
Proceedings of the International Conference on Entity-Relationship Approach to 
Systems  Analysis and Design, Los Angeles, CA (December 1979), pp. 426-445. 

33. M.  Hammer and B. Berkowitz, “DIAL:  A programming language for data 
intensive applications,” Proceedings of the ACM-SIGMOD International Confer- 
ence on Management of Data, ACM, New York (May 1980), pp. 75-92. 

34. W. M. Carlson, “Business Information Analysis and Integration  Technique 
(B1AIT)”The new horizon,” Data Base 10, No. 4,  3-9 (Spring 1979). 

35. D. V. Kerner, “Business information characterization study,” Data Base 10, No. 
3, 10-17 (Spring 1979). 

36. Business Systems Planning-Information Systems Planning Guide, Order No. 
GE20-0527-2 (October 1978); available through IBM branch offices. 

37. J.  G. Sakamoto  and F. W. Ball, “Supporting Business Systems Planning studies 
with the  DB/DC  Data Dictionary,” IBM Systems Journal 21, No. 1, 54-80 
(1 982, this issue). 

38. P. A. Demers, “System design for usability,” Communications of the ACM 24, 
No.  8,494-501  (August 1981). 

39. A. I .  Wasserman and C.  J. Prenner, “Toward a unified  view  of data base 
management, programming languages and operating systems-A tutorial,” 
InformationSystems 4, 119-126 (1979). 

40. T. Winograd, “Beyond programming languages,” Communications of the ACM 

41. H. Biller and E. J. Neuhold, “Concepts for the conceptual schema,” Architecture 
and Models in Data Base Management Systems, G.  M. Nijssen (Editor), 
North-Holland Publishing Co., New York (1977). pp. 1-30. 

42. J. F. Collins, G. J. Feeney, and J. Gosden, “Calling a spade a spade. . . . A  chat 
with MIS executives,” Datamation 25, No. 11, 13 (November 25, 1979). 

43. P. G.  Selinger, M. M. Astrahan,  D.  D.  Chamberlin, R. A. Lorie, and T.  G. Price, 
“Access path selection in a relational database  management system,” Proceed- 
ings of the I979 SIGMOD Conference (1979), pp. 23-34. 

44. S. Jones and P. Mason, “Proceduralism and parallelism in specification 
languages,” Information Systems 5, No. 2,97-I06 (November 1980). 

45. R. P. Cook, “*MOD-A language for distributed programming,” IEEE Trans- 
actions on Software Engineering SE-6, No. 6, 563-571 (November 1980). 

46. J. A. Feldman, “High level programming for distributed computing,” Communi- 
cations of the ACM 22, No.  6,353-368  (June  1979). 

47. B.  Liskov, “Primitives for distributed computing,” Proceedings of the Seventh 
Symposium on Operating Systems Principles, December 1979, pp. 33-42. 

48. J .  M.  Lafuente and D. Gries,  “Language facilities for programming user- 
computer dialogues,” IBM Journal of Research and Development 22, No. 2, 
145-158 (March 1978). 

49. F. E. Allen and J. A. Cocke, “A  catalog of optimizing transformations,” Design 
and Optimization of Compilers, R. Rustin  (Editor),  Prentice-Hall, Inc., Engle- 
wood Cliffs, NJ (1 972), pp. 1-30. 

50. R. G. G. Cattell,  “Automatic derivation of code generators from machine 
descriptions,” ACM Transactions on Programming Languages and Systems 2, 
No. 2,173-190  (April 1980). 

51. J.  T.  Schwartz, “Optimization of  very high level languages-I,” Computer 
Languages 1, No. 2,161-194  (June  1975). 

52. J.  T.  Schwartz, “Optimization of very high level  languages-11,’’ Computer 
Languages 1, No. 3, 197-218 (September 1975). 

22, NO. 7, 391-401 (July 1979). 

06 NEWMAN IBM SYST J VOL 21 NO I 1982 



53. F. Arbab, Notes on the  Semantics and Optimization  of  a  VHLL, Report 
(3320-2706, IBM Scientific Center, 9045 Lincoln Boulevard, Los Angeles, CA 
90045 (October 1980). 

54. W. H. Burge, An Optimizing  Technique for High Level Programming 
Languages, Research Report RC5834, IBM Thomas J .  Watson Research Center, 
Yorktown Heights, NY 10598 (February 1976). 

55. E. J .  Neuhold, The Design of a  Business DeJinition Language Compiler, 
Research Report RC6475, IBM Thomas J.  Watson Research Center, Yorktown 
Heights, NY 10598 (April 1977). 

56. J.  R. Low, “Automatic  data  structure selection: An example and overview,” 
Communications of the  ACM 21, No. 5 ,  376-385 (May 1978). 

57. P. D. Rovner, “Automatic representation selection for associative data  struc- 
tures,” Proceedings of  the  AFIPS  National  Computer Conference 47, 691-701 
(June 1978). 

58. M.  Stonebraker, E. Wong, P. Kreps, and G .  Held, “The design and implementa- 
tion of INGRES,” ACM Transactions on Database Systems 1, No. 3, 189-22 
(September 1976). 

59. S. Fickas, “Automatic goal-directed program transformation,” Proceedings of 
the  National Conference on Artificial  Intelligence, August 1980, pp. 68-70. 

60. E.  Kant,  “The selection of efficient implementations for a high-level language,” 
Proceedings of  the  Symposium on Artificial  Intelligence and Programming 
Languages, August 1977. 

The  author is located at  the  IBM Scienti’c Center, 9045 Lincoln 
Boulevard,  Los  Angeles, C A  90045. 

Reprint  Order  No. (3321-5162. 


