One way of conceptualizing many of the human factors issues in
interactive computing is as issues in communication about com-
puters. Presented are a framework for this conceptualization and
a review of research addressed to several levels of the communi-
cation process. Communication as an ill-structured design pro-
cess is analyzed and contrasted with a process of algorithmic
encoding and decoding. The design framework is then applied to
examinations of how people name and refer to entities, how
people understand and express relations (quantifiers and other
predicates) between entities, how more complex communications
(business letters) are created, and how preprinted forms reflect
previous knowledge.

Human factors in communication
by J. C. Thomas and J. M. Carroll

Human factors is now and may be expected to continue as one of
the key elements of success in the data processing industry.' This
is particularly true in end-user application areas. In this paper we
sketch a prototheory of communication processes, based largely
on our earlier work on communication and other types of design.
We have come to believe that communication (between people
and systems and between people via systems) stands at center
stage among human factors issues. Scott and Simmons® use a
technique known as Delphi to canvass programming managers
about the most important factors influencing programmer produc-
tivity. The opinions of these managers focus on communication.
Walston and Felix,® in a more quantitative approach, use multiple
regression to predict programming productivity in terms of lines
of code. They also show that communication variables are most

Copyright 1981 by International Business Machines Corporation. Copying is
permitted without payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright notice are
included on the first page. The title and abstract may be used without further
permission in computer-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor.

IBM SYST J 4 VOL 20 «NO 2 ® 1981 THOMAS AND CARROLL

important among the general set of variables. For example, they
show that the nature of the interface with the customer is about
three times as important as whether structured programming is
used. These are all matters of human factors in communications.

Human factors problems of communication are often signaled by
two groups of people voicing ‘*Why-can’t-they . . .?”’ question
pairs. The designers of a computer system may ask: ““Why can’t
they (the users) understand a simple computer system?’’ This
question has its corresponding opposite question by an end user:
““Why can’t they (the designers) explain the system without using
all that jargon?’’ Another example pair is: "*Why can’t they be
more formal in stating what they want the program to do?’” and
““Why didn’t they tell me the program would do this? This isn’t
what I want.”” Another example is: **Why can’t the computer tell
me what to do next?”’ and ““DHZ301J.”" A message that one
cannot understand is not communication.

Because we find such pairs of questions far less likely to lead to a
solution than ‘*How-can-we?”’ questions, we focus in this paper
on the following thoughts. How can we use what we already
know about communication to improve (not perfect or determine)
our computer systems from the standpoint of human factors?
How can one explain a computer system to another? How can
someone who wants a computer application program explain the
application to a data processing expert? How should one design
the communication process between person and machine? How
can the computer system phrase error messages and menu
selections so that users may understand them?

We limit the scope of our discussion by focusing on software
issues, and by concentrating on reviewing our own work (though
we believe that the weight of related research only strengthens
our analysis). For a more general overview of relevant human
factors issues, the reader is referred to Meister,® Miller and
Thomas,” or Shneiderman.® Our emphasis in this paper on general
principles is in no way meant to serve as a substitute for
application-specific studies, some excellent examples of which
are found elsewhere in this issue. Rather, principles are set forth
to help focus development and testing efforts on reasonable
alternatives. General principles cannot specify what to do, but
they can aid vs in doing design work better. Thus our paper is not
a human factors case study; rather it expresses some human
factors principles derived from psychology.

Communication as design

A common view of communication is roughly the following. A
sender has an idea and encodes it into symbols that are then

THOMAS AND CARROLL IBM SYST J ¢ VOL 20 ¢ NO 2 ¢ 1981

transmitted to a receiver. The receiver decodes these symbols
into an internal code (or idea), and communication is good to the
extent that there is an isomorphism between the internal idea
states of both sender and receiver.

We have, however, found the following view more adequate in
providing a reasonable basis for understanding human factors
issues in communication. There is a sender or designer who
wants to communicate for some purpose. The sender designs a
message that he or she believes will result in a desired effect when
translated by an interpreter. The rationale for this view is more
fully expressed in References 7 and 8. Although the original
rationale for viewing communication as design was based purely
on an analysis of communication, we believe that viewing com-
munication in this way has an unanticipated pragmatic benefit for
the system designer in that user-computer design considerations
may be viewed in the same general framework as other design
considerations. Human factors need not be added to the system.
The communication purposes of the system and its documenta-
tion are integral and crucial to the designer’s overall creative
effort.

Under this view, a fuller understanding of person-computer
interaction depends on an understanding of how one designs
communications. But what is the design process? Our initial
studies of the design process consisted of having real designers
and real clients discuss such a real design problem as that of
attempting to redesign output devices for use in a research
library. We videotaped these interactions and later analyzed their
diatogues.”'® (For further case studies see References 11-13.)

From these studies we deduced that the design process is cyclic.

A design problem is neither solved at once nor decomposed into
subproblems that are solved independently. Rather, problem
solving begins by studying one part of the problem (the first
cycle). Then the solution or partial solution of that part may result
in another way of partitioning the problem or of defining the
problem. Subproblems evolve dynamically, depending on the
design process. The cyclic nature of design in general also seems
true for the special case of designing an adequate communication.

Within each cycle, we find some regularity in the dialogues in that
each problem progresses through a regular sequence of phases.
The client states the problem, and then the client and designer
together elaborate the problem. The designer offers a (partial)
solution. Then the client and designer together elaborate the
outlined solution. Next, the designer and especially the client
mentally test the elaborated solution against the concrete realities
of the situation. Finally, the solution for that portion of the
problem is either accepted or rejected. If it is accepted, a new

IBM SYST J ¢ VOL 20 @ NO 2 » 1981 THOMAS AND CARROLL

design
process

design is
cyclic

design
cycles
progress
through
phases

goals are
often
implicit

goal
structure
aids can
accelerate
the
convergence
of design
cycles

the designer
selects a
metaphor
to represent
the problem

cycle begins. If the solution is rejected, the client and designer
may return to an earlier phase. We discuss iater in this paper how
in letter-writing, the designing of a communication also seems to
progress through these phases.

The client’s goal statements are typically focused on current
symptoms of current difficulties. In fact, many of the require-
ments are implicit. These may already be met by a current system
and thus may not be explicitly thought about until the designer
proposes a solution that does not meet those requirements (or,
worse, delivers a system that fails to meet those unstated
requirements).

It is only through interaction with the designer that many of the
important but unstated goals of the client are brought forth.
Rather than ask the client to attempt to state all goals precisely
and explicitly at the very beginning of the design process, it is
probably wiser to concentrate on attempts to optimize the client-
designer interactions to ensure that all the client’s unstated
requirements are made explicit. Our work in letter writing,
dialogues, and naming confirms this principle for the case of
communication.

To achieve further experimental control of the design process, we
have simulated the client part of the dialogue process by giving
subjects requirement statements. In one experiment,'® partici-
pants were given a description of a complex library procedure
and told to design a schedule for these library procedures to
maximize efficiency. When higher-level goal information was
explicitly structured, this was reflected in more convergent
problem solving activity. In this case, the trajectory of successive
design cycles ballistically converged on the final design solution.
Ultimately, this goal orientation resulted in better-structured
schedules for the library procedures.

In further studies of design,'” we found that the particular
metaphorical device used to explain the nature of a design
problem affected the goodness of solution as well as the people’s
understanding of the problem. We presented participants with
logically identical problems couched in either a spatial or tempo-
ral metaphor. A spatial-temporal problem pair might be the
design of an office layout for a group of people who share various
personal and functional relations versus the design of a manufac-
turing process involving a set of steps that share various priority
and sequencing relations. There were two key findings. Persons
in the spatial problem condition who spontaneously generated
graphic representations of the problem produced more successful
solutions in shorter times. When persons in the temporal problem
condition were provided with a graphic representation, solution
time and performance differences were reduced. The application

THOMAS AND CARROLL IBM SYST J e VOL 20 ¢ NO 2 @ 1981

of this principle to providing effective communication is explored
later in this paper under the heading of existent knowledge and
communicative exchange.

We have been using two separate senses of the concept of
representation. The first is that of the cognitive representation of
the problem information that the subject uses to deal with the
design requirements. We call this the metaphor that is invoked by
the problem.'® The second sense of representation is the graphic
format used to work with the problem information, and is a
consequence of the metaphor. Thus, some metaphors suggest
ways of thinking about a problem that are more useful behavioral-
ly than others, as for example the spatial problem version.

There are several levels at which communication is examined in
this paper. Perhaps the most primitive act of communication is to
refer to a single entity. Studies of this process, called naming, are
reviewed first. Next most primitive are the ways that people
communicate about such simple relationships as quantifier rela-
tionships and conditional expressions. We next review studies of
more complex communication structures such as complex data
processing procedures and business letters. We then present
empirical data concerning metacomments—communication
about communication. And last we address the effects of the
social context in which communication takes place.

Qur premise is that at each communicative level, communication
is a design activity. We find that the generalizations about design
previously stated are valid for the special case of designing

communications. When viewed as design, communication is
richer and more complex than when viewed as transmission. We
have come to believe that the more adequate view of communica-
tion as design entrains more adequate person-machine communi-
cation facilities. An explanation of that extension of our commu-
nication-as-design model is the main theme of this paper.

Naming: how people name and refer to objects

Naming and reference are at the most basic level of language, and
so that is the place we begin a consideration of communication.
At the very least we need things to talk about, and yet the way we
refer to the things we talk about is not simple at all. Naming is a
genuine design problem. This is especially true in relatively
complicated naming domains like naming computer files, system
commands, new products, and program variables.

Despite the pervasiveness and importance of naming, there has

been almost no experimental study of it to date. We have
conducted a series of studies to begin to characterize naming with

IBM SYST J e VOL 20 e NO 2 @ 1981 THOMAS AND CARROLL

metaphors
differ in
their
behavioral
utility

communication
levels

inputs to
naming

the objective of suggesting more behaviorally effective naming
strategies or naming aids. For convenience, we divide naming
into consideration of its inputs, the process of generation, and the
usability of names—although there is considerable overlap.

There appear to be the following four principal inputs to the
creation of a name: the defining properties of the referent, the
functional context, the goals of the namer, and the needs of the
expected users. As it turns out, these inputs are listed in order of
the amount we know about each one, although probably in
reverse order of their importance. Indeed, extensive discussion in
the philosophy of language from the time of Frege to the present
has focused upon the suggestion (due to Frege) that names have
meaning as well as reference. A typical example is the co-
reference of two names like Evening Star and Morning Star. Both
names refer to the planet Venus, but the names are not the same.
Thus, reasoned Frege, both names must have distinct meanings.

The meanings, following the Frege school of thought, are con-
ceived of as propositions or structured sets of propositions such
as the following:

MORNING STAR = (X: (SECOND PLANET) AND (VISIBLE IN THE
MORNING))

EVENING STAR = (X: (SECOND PLANET) AND (VISIBLE IN THE
EVENING))

Names stand for, or abbreviate, their descriptions. A similar type
of situation exists when entities are referred to by verbal names
and number names. For example, a serial number relates a given
typewriter to others, whereas the character string EXECUTIVE
refers to members of a typewriter model class. Another example
is when the values of variables are referred to indirectly or
directly in the flow of program controil. Our knowledge grows
through the resolution of such paradoxes and confusion in
meaning.

A series of experimental studies required participants to name a
series of things. These studies revealed that a variety of entities
such as geometric designs, people’s everyday roles (such as their
occupations), computer files, and system commands all conform
to this framework. Descriptive material that logically underlies
the intended referent is collapsed into a compact designator, i.e.,
a name, as discussed in References 17-22 and illustrated by the
following examples:

ADVANCE = COMMANDS THE ROBOT TO MOVE FORWARD OR AD-
VANCE ONE STEP

ARM DOWN = COMMANDS THE ROBOT TO LOWER ITS ARM, TO MOVE
IT DOWN

THOMAS AND CARROLL IBM SYST J ¢ VOL 20 e NO 2 @ 1981

Since people spontaneously refer to properties of referents in the
names they create, we might presume that this would be a
desirable property of name schemes that are designed for people
to use. A traditional justification for not having descriptive names
in many application domains, say data bases, is that a large
number of unique designators is needed, and people have as-
sumed that descriptive natural language names could not provide
the required level of differentiation. O’Dierno® has shown that
this is false for an extensive inventory data base, and all of our
own research also suggests that descriptive names are not only
adequate but preferable.

We have found that the functional context of the naming situation
is a strong determinant of the specific descriptive material that
becomes the basis for a name. Thus, in the context of a general-
purpose computation package, a routine that takes two argu-
ments and produces their product might be called the multiplica-
tion routine . The same routine, however, in a payroll application
package might be called the gross pay routine (the two arguments
being wage rate and hours worked). People who were asked to
create names for novel referents spontaneously incorporated
elements of the context into their names." This suggests that
when names are designed for people to use, important aspects
about the likely contexts of use should be built into the names.

The goals people have when they create and use names are also
important input to naming. Carroll** and Olson® have examined a
goal termed minimal distinguishing in which names are frequent-
ly designed to distinguish their referents from other similar
entities. Thus, in minimal distinguishing, only enough informa-
tion to make the distinction is designed into the name. If a
program has only one output routine, it might be called OUTPUT.
But if there are three output routines, say for binary, octal, and
decimal numbers, a different naming strategy is required just to
distinguish the routines at all. To the extent that minimal distin-
guishing is a relevant goal, the word ‘‘output’ might be omitted
altogether, leaving the names ‘‘binary,”” ‘‘octal,”” ‘‘decimal,”’
with “‘output’” understood. Indeed, Carroll and Olson observed
this type of naming pattern.

A real example of this can be found in the naming scheme for data
types in PL/I and FORTRAN. In FORTRAN there are two data types,
integer and real. In PL/1 these labels fail to distinguish all data
types. Therefore, there are four types in PL/: fixed binary,
floating binary, fixed decimal, and floating decimal.

That other people use a name and the nature of such other
persons comprise a fourth design consideration. For example, it
is known that a novel compound noun, like system communica-
tion, is difficult to comprehend unequivocally. (Is it a type of

IBM SYST J » VOL 20 ¢ NO 2 o 1981 THOMAS AND CARROLL

the process
of naming

communication, a communication from a system, a communica-
tion addressed to a system, or a communication about a system?)
Subjects who are asked to create names to be used by others tend
to create far fewer names based on such neologisms than do
subjeclgs21 who are asked to create names in nonsocial situa-
tions.

We have only indicated the kinds of considerations that interact
as inputs to naming. Notice that differing goals, recipients, and
contexts might interact in very complex ways to suggest behav-
iorally adequate names.

The process of name generation is frequently a progression from
descriptive epithets to proper names. The descriptive phrase
“‘digital computing machine’’ (in the 1940s) becomes the briefer
descriptive name ‘‘digital computer’’ (in the 1950s), and today
simply ‘‘computer.’”” Several studies of this process have suggest-
ed a range of specific shortening strategies for name creation.’®?**

Structural redundancies are built into the form of a name to make
the content elements of the name (the referent’s description, the
context, goals, and the expected recipients of the name) more
obvious. However, name patterns extend to other names by
relating patterns of structural redundancy to patterns of referent
similarity. The naming strategies are called rule schemes.

21,27,28

Examples of rule schemes that involve the explicit repetition of
character substrings come from a study of file naming.” In this
study, it was found that over ninety percent of the files whose
contents could be recalled had file names organized into literal
rule schemes. In the example of this that follows, the term on the
left is the file name, and the term on the right is the file type, a
field probably originally intended by the language designers to
differentiate among executable modules, source programs, etc.:

CONTENT PHOTO
CONTENT DRAWING
CONTENT TERMTEXT

Here all file names are identical; files are differentiated only by
file type. The following less trivial example involves indexing
within the file name:

NLBODY NLCOUPON
NLCVRSHT NLDOCS
NL11.10 NL12.2
NL12.4 NL12.5

The repetition of a common character substring (NL) in these
eight file names creates a partial rule basis for the creation of new
file names as well as a structured aid for recalling file names and
file contents.

THOMAS AND CARROLL IBM SYST J @ VOL 20 e NO 2 o 1981

A smaller percentage of file names were organized into rule
schemes without literal repetitions. The chief nonliteral scheme is
the person’s name scheme, that is, text files, often letters and
memos from, to, for, about, etc., some person Smith. The rule
scheme predicts the file name SMITH. A nonliteral rule scheme
called congruence has been studied in the context of designing
command paradigms.” Congruent command paradigms explicitly
represent the semantic oppositions in the definitions of the
commands to which they refer. The following two commands
comprise a congruent rule scheme;

RELEASE = COMMANDS THE ROBOT TO RELEASE OR UNHOOK AN
OBJECT BY OPENING ITS CLAW

TAKE = COMMANDS THE ROBOT TO TAKE OR GRAB ONTO AN
OBJECT BY CLOSING ITS CLAW

The semantic opposition of the command descriptions is paral-
leled in the opposition of command words selected to name these
commands. Deciding on one command name largely determines
the other, although not by virtue of an explicit repetition of
character substrings, but rather because of a nonliteral relation
between the names.

As a counter-example, the following two command names are
noncongruent:

UNHOOK = COMMANDS THE ROBOT TO RELEASE OR UNHOOK AN
OBJECT BY OPENING ITS CLAW

GRAB = COMMANDS THE ROBOT TO TAKE OR GRAB ONTO AN
OBJECT BY CLOSING ITS CLAW

People who were asked to design a command language for a
simulated robot spontaneously used congruence with remarkable
consistency.

More abstract rule schemes have been examined primarily in the
task context of designing system command paradigms for the
robot system. Several rule schemes for structuring command
languages have been explored, among them hierarchicalness and
hierarchical consistency. Hierarchical command languages have
multiple structural elements that are combined in fixed ways. The
following is an example of a pair of hierarchical commands for the
robot system: CHANGE ARM OPEN and CHANGE ARM CLOSE. These
commands are hierarchical in the sense that CHANGE defines a
large class; ARM specifies which part of the robot is to be
changed, and OPEN and CLOSE specify the exact action. A
corresponding example of nonhierarchical commands might be
RELEASE and TAKE. Both pairs define congruences, although the
properties of congruence and hierarchicalness can be combined
orthogonally.”

IBM SYST J @ VOL 20 e NO 2 » 1981 THOMAS AND CARROLL

usability
of names

name

schemes
should be
congruent

Hierarchical consistency is the property of maintaining a given
level of hierarchicalness throughout a command language. Thus,
in a hierarchically consistent language, if hierarchical commands
with three elements appear in some commands, they appear
analogously in all commands. Conversely, if any commands like
RELEASE occur, then there are no hierarchical commands.

Hierarchicalness and hierarchical consistency do not necessarily
involve literal repetition or the predictability of structural ele-
ments, given the occurrence of others; they are abstract condi-
tions on the syntactic form of names. As was shown in the study
reported by Carroll,” neither rule scheme was incorporated in the
command paradigms generated by experimental participants.
Thus two features found to make a language more usable are not
spontaneously thought of during initial design, at least not by
inexperienced designers.

Names that people create are not arbitrary with respect to other
names they create, an observation that has significant implica-
tions for the design of names in other application areas. For
example, it is misleading to have a text editing command U (=up)
and another command D (=delete). People presume that the
congruence implied by the U-D pair of commands is up-down,
and otherwise are led to error (see next section). It is also
important to note that the types of structural redundancy people
spontaneously design into names they create can be theoretically
analyzed into abstract cognitive principles like congruence. Thus
there is neither need nor desirability to proceed on a strictly case-
by-case basis in designing command languages. Obviously, this is
not meant to deny the utility of testing languages, even when they
are designed in a principled fashion.

To do productive research on the usability of names, one must
have a sufficient theory of what names can be like to design
critical experimental comparisons. Accordingly, it is not surpris-
ing that the least amount of research we have completed to date
concerns usability directly. The studies we have completed on
the usability of names involve a robot system, in which a simple
robot is ordered to change configuration and location and to
perform simple tasks.

The most clear-cut finding on usability in this domain is that
congruent command paradigms are rated as being better, are
learned more quickly and more completely, and are used with
greater success in solving problems. Thus rule schemes that
people spontaneously build into command languages they design
are powerful aids when those people are asked to learn and use
command languages incorporating those rule schemes.

THOMAS AND CARROLL IBM SYST J @ VOL 20 e NO 2 @ 198]

The results for hierarchicalness and hierarchical consistency are
less comforting. People rate command languages as better and
learn them more quickly when they are hierarchically consistent.
The frequencies of certain error types are reduced when subjects
are using hierarchical command languages. Thus the evidence
suggests that these two abstract rule schemes can be used at least
to some extent by people in learning and using command lan-
guages. However, recall that people tended not to design in these
properties spontaneously when they were asked to generate
command languages. There is a prima facie misfit in that what is
useful for the user is not natural for the designer.

As in the general case of design, a variety of sometimes compet-
ing requirements constitute naming. People who create names try
to incorporate material descriptive of the referent and the func-
tional context; they try to satisfy communicative and social goals.
Clearly, some of these inputs can be suppressed in favor of
others, and trade-offs can be codified in rule scheme strategies for
generating names and for building in patterns of redundancy that
can be recognized and used by communicative recipients. Recipi-
ents, conversely, seem to presume that patterns exist and that a
rational and behaviorally efficacious basis for names can be
identified and used. The simplistic view that names are arbitrary
labels for things, in spite of its long and continuing tradition, is
demonstrably wrong, and leads to bad communication systems.

Before leaving the topic of the usability of names the following
rather obvious but frequently overlooked guideline to person-
computer systems should be mentioned: When possible, use the
terminology of the user, not the designer.

For example, many people without data processing backgrounds
are more familiar with the terms ‘‘choice’’ or “‘variable” than
they are with the word ‘‘parameter.”’ Whereas people with
technical background in education may use the word ‘“module™
to refer to a unit of learning, a general reader is probably more
familiar with the term ‘‘lesson.”” Why require a student using a
manual on a subject other than education to learn the term
“‘module’’? These examples could be multiplied, but the point is
clear: As soon as possible, but certainly before making final
decisions on manuals, prompts, and menus, at least one or two
representatives of the intended user population should read
through the materials and circle every word they do not under-
stand. Then, whenever possible, words or phrases from the
intended user’s vocabulary should be substituted.

Relations: quantifiers, conditionals, and sentences

In addition to referring to things (objects, actions, and attributes),
even the simplest programming, command, and editing languages

IBM SYST J e VOL 20 @ NO 2 @ 1981 THOMAS AND CARROLL

name
schemes
shouid
generally be
hierarchically
consistent

quantifiers

referring to
quantified
relationships

interpreting
quantified statements

248

require the user to specify relationships of various kinds between
objects, actions, and attributes. We now discuss studies on ways
in which these relationships can be effectively communicated.
The simplest relationships are quantifiers (all, some, none),
connectives (and, or, not), and conditionals (if-then, if-and-only-
if). These are now discussed in turn.

The following are the five basic set relationships that may obtain
between the two sets A and B: (1) A is a proper subset of B; (2) A
and B are identical sets; (3) B is a proper subset of A; (4) A and B
are partially overlapping sets; and (5) A and B are disjoint sets.
There are also more restrictive, more quantified relationships that
may exist between two sets. For instance, every element of set A
is the ancestor of an element in set B; or, if A and B are subsets of
positive real numbers, we may define a relationship such that
every element of A is the square of a corresponding element of set
B. The basic set relationships, however, can be applied to any
type of object and are, therefore, most fundamental in some
sense. Nearly every query system uses some type of quantified
relationship. For this reason, initial work in studying people’s
understanding of simple relationships has focused on quantifiers.

The first question we may ask is: How do people spontaneously
refer to quantified relationships?* This question was investigated
by having subjects without formal training in logic describe the
relationship depicted in Venn diagrams after the form of repre-
sentation was briefly explained. The study showed a wide variety
of expressions used to describe each relationship, and some set
relations were described more accurately than others. Disjoint
relationships were always described unambiguously, whereas
partially overlapping sets were described least accurately. Al-
though subjects tended to give a fair proportion of ambiguous
descriptions, not a single description was inconsistent with the
Venn diagram pictured. These findings emphasize several points.
The Venn diagram is a fairly good way of describing set relation-
ships for nonprogrammers. People tend to err in not telling
everything about a relationship rather than something untrue.
These observations suggest several recommendations:

® Do not expect natural language descriptions of set relations to
eliminate confusion.

® Allow people to communicate in terms of set equivalence and
set disjunction when that is feasible and accurate.

e If a system requires the use of quantified relationships, give the
user feedback and provide easy recovery from errors in such
relationships.

Besides knowing how people express quantified statements in
natural language, a second and related issue is that of how people

THOMAS AND CARROLL IBM SYST J » VOL 20 e NO 2 @ 198]

interpret quantified statements. Three experiments were per-
formed that required people to interpret such statements.*

The interpretation tasks were as follows: (1) Having participants
judge the equivalence of several related statements; (2) Present-
ing the participants with a series of English sentences and asking
them to draw Venn diagrams to show all possible interpretations
of the sentences; and (3) Presenting them with a relational data
base and quantified questions, and having them manually find the
answers in the data base.

Results were consistent across the three interpretation tasks. For
example, in each task, the participants understood most easily
and more or less perfectly the following set relation: No A are B.
Notions of proper subset and equivalence were less well under-
stood. The least understood of the simple two-set relationships
was that A and B partially overlapped. Finally, statements
admitting of several distinct possibilities were dealt with least
well of all. For example, few subjects realized all the possible set
relations consistent with the statement ‘“Some A are B.”” These
results are compatible with earlier published results,*"* and
indicate quite clearly that English statements are not typically
generated or interpreted in a strict rule-like fashion that relates
them to actual set relationships.

A further quantifier experiment based explicitly on the communi-
cation-as-design model of communication studied the way that
people use ambiguity in motivated situations.” In this experiment,
pairs of participants communicated about quantified set relation-
ships from either a cooperative or a competitive situation. In both
situations, the interpreter of messages began with some (possibly
incorrect) statement concerning the relationship between two
sets, and then received a message from the message designer.
The job of the interpreter was to draw a Venn diagram that
illustrated the actual relationship between the two sets. The
message designer had knowledge of the actual relationship be-
tween two sets and also had knowledge of what the interpreter
already knew. The designer was always to send a relevant, true
message about the two sets. In the cooperative case, it was to the
designer’s advantage to make sure that the message was also
complete and unambiguous; and in the competitive case, it was to
the designer’s advantage to mislead the interpreter.

The main results of this experiment were that message designers,
given the same actual relationship between two sets, constructed
quite different messages depending upon whether they were in a
cooperative or competitive situation, and upon what they knew to
be the previous state of knowledge of the interpreter. Interpret-
ers, for their part, interpreted identical messages differently
depending upon whether they were in a cooperative or competi-
tive situation, and upon their own previous state of knowledge.

IBM SYST J ¢ VOL 20 ¢ NO 2 e 1981 THOMAS AND CARROLL

quantifiers
in query
languages

quantifiers
in natural
language

Thus, the view that a statement refers to a quantified relationship
was shown to be false. Consistent with and predictive of the
results was the view that a designer’s statement represented an
attempt to change an interpreter’s state of mind from a given state
to a desired state. It was the given and the desired states that
predicted the designer’s message, not the true state of the world.
In microcosm, this illustrates the futility of attempting to design a
computer system without understanding the end-user.*

Query-by-Example® provides an easy-to-use interface for a rela-
tional data base. An early version of the language was tested with
pencil and paper®®®” and found generally to be quite easy to use.
One source of difficulty for subjects in these experiments was that
of translating questions stated in English into the query language
syntax. The greater difficulty with quantifiers was apparently not
due to the query syntax; rather, it was due to a misunderstanding
of the English questions.

In a later phase of the experiment, subjects were each given a
tabular data base and five problem situations. For each problem
situation, subjects were asked to write an English question that
could be translated into Query-by-Example and whose answer
would help them solve the problem. In no case did any subject
write an English question that involved an explicit universal
quantifier (including subjects who made zero errors on quantifier
syntax). These results suggest that although universal quantifica-
tion is a very basic concept in thinking, people seldom use it
explicitly in natural language.

To shed further light on the issue of the use of quantifiers in
natural language, several observations are given here. In a pilot
experiment, John Gould gave five students a relational data base
and some problems. The students were to ask questions the
answers to which were in the relational data base and might be
helpful in solving the problem. Only seven of the 185 questions
contained quantifiers. Two of these students also transcribed
every question they heard during the course of one day. None of
the 100 questions so recorded involved quantification in the
logician’s sense.

An examination of other dialogues collected by Thomas® and
Carroll, Thomas, and Malhotra'’ reveals that the logician’s use of
quantifiers is rare or absent. Where a token ‘‘all’’ appears, it
seldom literally refers to universal quantification. More accurate-
ly, it often seems to signal high emotions rather than universal
quantification. On the other hand, some notion of ‘‘for all or
nearly all normal cases’’ is quite often implicit in the dialogues.

A number of recommendations for averting some of the difficul-
ties people typically encounter with quantifiers are listed in

THOMAS AND CARROLL IBM SYST J @ VOL 20 e NO 2 @ 1981

Reference 30. One recommendation is to try to limit the user’s
task to one of choosing something that is consistent with the
correct relationship rather than unambiguously specifying it.
Another, in answer to a quasi-natural-language query, is to
provide more data than are requested. For example, if a user asks
for gross sales of GM and Ford for 1979 and 1980, provide a two-
by-two table with the four annual gross sales figures and the
subtotals and grand total rather than attempting to distinguish
which of four possible questions is intended.

Simple propositions and quantified relations can be connected
into more complex relationships by the use of logical connec-
tives —AND, OR, and NOT. Yet there is evidence that people have
problems of ambiguity even when using these simple relation-
ships. Consider the ambiguities in the following statement: Print
items that are red and in stock and not large or square or size
seven.

OR relations typically give more difficulty than AND relations, but
any logical connective seems to increase the psychological com-
plexity considerably. The logical connectives AND and OR can be
confusing because they do not map directly into the English
words ‘‘and’’ and *‘or.”” Such a statement as *‘Put the blocks that
are red and the green ones into the bin’> may map into the
programming-like command PUT BLOCKS (RED OR GREEN) INTO
BIN. System users without data processing experience often
attempt a word-by-word match between command language and
problem statement that can result in incorrect statements.’**" A
review of many of the difficulties with connectives can be found
in References 39-41.

Aside from quantified expressions and AND/OR/NOT, other simple
logical relationships are the conditional (material implication) and
the biconditional. Experiments by Miller and Becker® as well as
the focus of much literature in computer science point to the
importance of transfer-of-control statements in the writing and
comprehension of programs. Several other studies have directly
compared various ways of specifying transfer of control in order
to determine which methods are least error prone.®*

For certain classes of problems, a procedure table® is apparently
the easiest method of specifying transfer of control. Other
results*® indicate that when subjects write sorting programs,
disjunctive sets are slightly more difficult to use in transferring
control, particularly when negatives are introduced into the
specification.

Miller” points out that in natural language, people generally
avoid conditional statements and prefer qualificational state-
ments. Consider the statement, “'If we have this item, ship it; if

IBM SYST J @ VOL 20 #NO 2 & 1981 THOMAS AND CARROLL

simple
logical
connectives

conditionals

sentences

we do not, produce a back order.”’ People are more likely to say,
**Ship the items we have, and back-order the rest.”” The preferred
sequence, at least in English, seems to be ACTION followed by
QUALIFIERS rather than CONDITIONAL followed by ACTION.

Thomas** studied dialogues about an invoicing system in which
the subjects were to accomplish one of three tasks: (1) Specify a
particular type of invoicing system; (2) Understand a particular
invoicing system; or (3) Diagnose what was wrong with a
particular invoicing system.

Two results of interest from these studies concern the use of
conditionals and communication in a natural language system.
Regarding conditionals, the dialogues give further support to the
notions of Miller and Becker that people are spontaneously more
likely to use qualificational rather than conditional statements. As
in the case of quantifiers, a rather astonishing deficit of simple
relationships on the part of people in laboratory studies seldom
appears in dialogues because people also use nonverbal mecha-
nisms to express themselves. It is, however, doubtful that the
experimental participants had communicated with sufficient pre-
cision for a computer program to be written based on their
understanding.

Regarding the attempts to build a computerized natural language
dialogue system, the experiments reported show that people
discussing a common topic use different syntactic and logical
constructions depending upon their task. A computer system that
took into account the user’s task would be better able to parse
and interpret the user’s comments than one that relied solely on a

general knowledge of the topic of conversation. The implication
is that a system designer must have an appreciation for the user’s
application of the system; a general knowledge that the system is
for bankers, for example, is inadequate.

In understanding or creating a sentence, one is dealing with a
complex structure that can be analyzed at a number of different
levels, e.g., syllables, words, phrases, and so on. Successful
comprehension or production involves the development of an
integrated description addressing each of these different levels
almost in real time. The structure of the activity seems to be that
as language input or output is partitioned into more manageable
segments, or cycles, these units are processed more or less
independently. Finally, they are integrated at higher levels of
comprehension and behavior,

Several purely hypothetical structural views about the nature of
sentence processing units have been advanced, a review of which
is given in Reference 45. Typically, these views adopt some
particular level of linguistic representation as the level of sen-

THOMAS AND CARROLL IBM SYST J @ VOL 20 @ NO 2 o 1981

tence processing organization. Further research has shown,
however, that the partitioning of sentences into behavioral units
is a process of balancing competing goals. For example, it is well-
known that human information processing is limited, as shown
for example in Reference 46. Hence one goal of sentence process-
ing is to design segments of optimal length and complexity to fully
utilize but not overtax available processing capacity. Another
goal, however, is accuracy. To the extent that the available
processing units are logically complete and explicit, the commu-
nicative recipient is more successful in understanding the com-
munication.

The consequence of this is a trading relation. Proper linguistic
constituent boundaries only sometimes partition sentence strings
into optimally long and complex segments, When considerations
of length and complexity lead to a mismatch, the partitioning of
the sentence is a compromise, possibly corresponding neither to
the linguistic parsing nor to the optimal processing parsing.
Various heuristics are used by communicators and recipients to
design workable interchanges."""

To the extent that this model of communication processing at the
sentence level is valid, we may develop some suggestions for
designing communications that are easy to process. People
understand sentences by analyzing linguistic sequences into
discrete behavioral units. This processing may be facilitated
therefore by organizing linguistic material so as to allow the ready
identification and segmentation of such units. Consider the
following examples in which nominalized clauses have explicit
subject nouns:

After winning the poker hand , Harry decided to cash in his chips.
After Harry won the poker hand, he decided to cash in his chips.

The initial clause of the second sentence is more readily under-
stood. Indeed, Daiute? found that one of the characteristics of
poor writers is that they fail to reliably make sentential relations
explicit for the reader.

Higher-level communication structures

We began by discussing how people design messages about things
by naming. We then discussed communication about simple
logical relationships (quantifiers, logical connectives, and condi-
tionals), and the relationships expressed in sentences. The way in
which relationships are expressed in sentences is governed by a
complex but orderly set of syntactic rules that we call grammar.
We now turn our attention to the ways in which people design and
interpret messages at still higher levels of organization by meta-
comments, business letters, and metaphors.

IBM SYST J &« VOL 20 @ NO 2 » 1981 THOMAS AND CARROLL

metacomments

metaphor
and
metacomments

Although there are grammatical rules that constrain the ways in
which people relate ideas within a sentence, it is also important
for two communicators to understand how sentences are related
in a higher-level organization. One method of achieving this kind
of understanding is by using metacomments, that is, messages
about the communication itself.

In three studies previously described, people variously attempted
to describe, understand, or diagnose an order-handling and
invoicing system by typing messages simulating a natural lan-
guage computer system over an IBM 3270 Visual Display Termi-
nal to another human being. The resulting dialogues were record-
ed and analyzed. It was clear that metacomments were crucial in
effective communication.

In one example, the user and the system discussed discounts.
Without being aware of it, however, the two people were
referring to two quite different types of discounts. After that
discussion was over and apparent agreement reached, the person
simulating the system said, "*O.K. Do you also want a discount
applied to the invoice total?”’

The user had thought that a discount applied to the invoice total
was exactly what they had just been discussing. The system’s
guestion informed the person that they had not been talking about
the same thing. Notice though that the superfluous words,
*0.K.” and ‘‘also” of the system were crucial in the user’s
perception of the miscommunication. The words *"O.K.”" and
. also . ..” are clues that one topic had ended and that
another was about to start. Without these clues, the question
would simply have been, “*Do you want a discount applied to the
invoice total?”’

‘e

The user could easily have thought that this was merely a
summary of what they had been discussing, rather than the
introduction of a new topic. The “O.K.”” and **. .. also . .."”
were metacomments because they signaled the other person that
a new topic was being brought up and, in this case, were crucial
to the detection of a misunderstanding. It appears, based on this
and other examples in the dialogues, that a ‘‘natural language™
computer system that ignores metacomments is ineffective. In
human natural language communication, comments made about
the communication process are very important,

To help visualize the effects of metacomments, the following
metaphor is sometimes useful. Communication is like two run-
ners on either side of an opaque wall. They are running over
rough terrain, which causes them to vary their speeds. The payoff
is tied to their staying close together. In communication, staying
close together is like communicating well. Obviously, the two

THOMAS AND CARROLL IBM SYST J @ VOL 20 ¢ NO 2 ¢ 1981

runners need to communicate with each other, such as by
shouting or tapping on the wall. This is analogous to using
metacomments.

How close together can the runners stay if they have no way to
communicate with each other? They do fairly well until they
come to some rocky terrain or until one of them falls. Without
being able to communicate, they have no method of coordinating
their positions. Similarly, in communication, without metacom-
mentary, the two communicators may grow hopelessly divergent.
This is why system designers must provide for metacommunica-
tion in an overall system design.”

More specifically, we can ask what kinds of signals the two
runners would like to be able to give each other. Presumably, the
runners would like to communicate their speeds, direction,
internal state, and something about the terrain they are experi-
encing. These four types of comments are precisely the kinds of
metacomments people were observed to make in the dialogues.
They communicated about the speed of conversation with terms
like, ‘*‘Hey, slow down,”” or ‘*Wait a moment,”” or “*Yes, yes, I
understand. Go on.”’

People communicate about direction with comments that are
keepers and turners. Turners might, for example, request that the
conversation turn to something more specific, as in *“Well, give
me an example.”’, or more general, as in ‘*Yes, but what about it
in general?’’ Or there might be a request to move to an analogous
case or move to another case of the same type. A keeper is more
or less analogous to the communication in a draw poker game,
“T'll stand pat.”

People also attempt to describe or control their internal state, the
corresponding state of the other, or the state of the dialogue itself.
Consider the following examples: “‘I'm tired.”’; *‘I'm going to
understand this if it kills me.’": *‘I know you’re tired, but let’s try
to keep going ’til midnight and then knock off.”’; or **We just
don’t seem to be on the same wavelength.”

People also describe the conversational terrain they are travers-
ing. A teacher may introduce a topic by saying, ‘*Look, I know
this material on the analysis of variance is difficult . . .”"; “*We
always seem to argue when we discuss money.”’

In the interest of economy, error messages, prompts, menus,
feedback messages, and descriptions in manuals are sometimes
devoid of the metacommentary. This lack may be a false econo-
my. Thus, the user may see a message appear on a screen such
as: Display Device Number. Apart from the syntactic ambiguity,
there is an absence of the appropriate metacomments that tell the

IBM SYST J e VOL 20 e NO 2 ® 1981 THOMAS AND CARROLL

types of
metacomments

pre-existing
formats for
information

business
letters

as a
structure

user how to take this message. Is it a prompt to enter the device
number? Is the system about to display the device number? Has
the user just input something that the computer has now classified
as a device number? Has the user inadvertently chosen the menu
item Display Device Number?

Thus we have arrived at the following admonition: Make clear to
the user not only the content of the message, but also how it is to
be taken. In other words—by spatial convention or other-
wise—clarify whether a message is meant to inform of error,
inform of state, prompt for action, or give feedback. The follow-
ing are appropriate metacomments to clarify the output ‘‘Display
Device Number’’: *‘Please key in the device number of your
display and press ENTER."’; “‘The device number of your display
is as follows:’’; “‘Is that the device number of your display?
Please answer ‘Yes’ or ‘No.” ”’; ““You chose item 3. ‘Display
Device Number.” ™’

When the same kinds of information are communicated over and
over, people often use special formats for presenting the informa-
tion. The use of a pre-existing format serves much the same
function as metacomments; it implicitly tells the interpreter of a
message how to use the information. It saves the designer from
having to specify over and over that information which is
common to a series of messages. It also focuses the interpreter’s
attention on those portions of the information that are different.
Checks, invoices, requisitions, and income tax forms are com-
mon examples of information presented within a fixed format. If
these formats are well-designed with the users of the information

in mind, they can be excellent means of communicating. To the
extent that this knowledge can be made explicit and then embed-
ded in a computer system that deals with these structures, the
computer system becomes easier to use and more useful.

Perhaps the most common error in designing forms is that the
designer uses terms whose referent is known to the designer but
not to the person filling out the form. Thus, in a particular
organization, the term *‘originator’’ may have an obvious referent
to people in accounting who designed the form, but it may not be
obvious at all to the various originators.

There are other classes of documents whose format is less fixed
than a check or invoice but which definitely do have some higher-
level form. These include reports, memos, and business letters. A
particular example that has been studied in some depth is the
business letter.”>*

There are at least two kinds of knowledge people have about

business letters that can be used in a computer system. First, a
business letter has a certain structure. For a given organization,

THOMAS AND CARROLL IBM SYST J @ VOL 20 e NO 2 o 1981

the formatting may be fairly standard. In such cases, the user
ideally has to specify this information only once, and subsequent
requests for business letters assume that formatting information,
which may be overridden depending on the circumstances.

For example, the system may automatically enter the current
date, which the user can override and begin with the next item,
the address of the intended recipient. Again, if an address already
exists in a previous letter to that recipient the system may
automatically include that address, which again can be overrid-
den by the user.

In addition to the structure of letters, most people have a more or
less fixed procedure for producing a business letter. A word-
processing system can incorporate that procedure but allow other
options. For instance, good communication typically begins with
an assessment of the audience. A system can prompt the user to
consider his audience by presenting that item first on a menu of
choices but allow the author to skip directly to composition.

When composing a document, even a letter, many books on
writing recommend beginning by making an outline. The system
might also present this option first, while allowing the user to
choose another option, such as entering the address.

After a letter is composed, a spelling checker may be engaged
unless the user decides not to. In general, the system may order
menu choices at each point in the production to put first on the
list necessary options that have not yet been done or options that
are typically done next in sequence. A normative (ideal) model of
the letter-writing process has been designed and compared to
actual procedures used by a small number of subjects.”

Although people tend to engage in a particular sequence of tasks
in producing a letter, they often interrupt the process and address
a previously unstated goal. In this way, the process of composing
a (nonroutine) business letter illustrates the same cyclical prob-
lem solving process observed in the design dialogues. The
following excerpt from the protocol of someone talking aloud
while writing a letter in the service of getting a job illustrates this

process:

(The writer expressed the goal of getting a job and began by
writing the first sentence of the letter). “Umm. O.K. So, now
what I’m thinking about is well that’s not bad. . . . Maybe that
should be the second paragraph. Maybe it can stay as the first
paragraph. Does it meet my criteria? Let’s see. Ummm. For a
beginning. Which I suppose would be to give whoever’s reading
the letter an idea of my particular need ... my ... and the
thrust, I guess, of the interview, which is to . . . for them to tell

IBM SYST } VOL 20 e NO 2 » 1981 THOMAS AND CARROLL

procedures
for
producing
business
letters

a defining
metaphor

me about the things I don’t know about since I say that I'm
changing my career. Umm. And, I'm obviously also interested in
what’s there. As far as job possibilities. So that’s really not a bad
beginning, I guess. O.K. O.K. Now. So our first paragraph ends.
. . . Now, what else do I want to say and what else do they want
to know . . .7

The letter-writing composition process appears to be analyzable
into cycles in a manner similar to other design problems.

Letter-writing presents just one common example of semistruc-
tured documents. One can also find procedural and content
regularities in composing such other documents as technical
reports. For those formats that require references to be sequen-
tially numbered, one can save time and effort by automatically
numbering references and by renumbering them after the inser-
tion of additional material.

The general conclusion is that the study of the process of
designing and interpreting various forms can help determine how
systems such as office communication systems can aid people to
communicate more effectively and more efficiently.

Existent knowledge and communicative exchange

So far in our discussion of higher-level communication struc-
tures, we have been focused on the form of the linguistic vehicle
for communication. We now turn to issues of the communicative
content. Consider a communication problem in which one is
trying to find out about a computer text editing system. The
person has several partners in this communication exercise,
including the system documentation, the system itself, perhaps a
training manual, and perhaps even a teacher. Information—basi-
cally linguistic information—is exchanged and the person either
learns enough about the system to use it to some extent or fails in
this.

The traditional learning process is as follows: Understand a
function (such as advancing the cursor), pair off a command word
with that function, and finally be able to remember and employ
one when you become aware of the other. Thus if a person
becomes aware of wanting to advance the cursor, the immediate
response is to type in NEXT. This conception of learning is
inadequate to deal with any but the simplest and most uncharac-
teristic kinds of learning that naturally occur. We discuss this in
more detail elsewhere.'® For present purposes, we restrict our-
selves to an adequate formulation of learning and its considerable
implications for communication.

THOMAS AND CARROLL IBM SYST J @ VOL 20 @ NO 2 » 1981

People almost always try to learn about new things by making use
of past learning. New concepts are typically expressed in the
terms of old concepts—at least initially. One way that this occurs
we call metaphorical extension or simply metaphor. (See Refer-
ences 54 and 5S5.) An existent knowledge structure is loaded into
memory and used as a structural template for further learning.
The entities and relations of this source knowledge structure are
transformed into a new domain by metaphor, and with the default
assumption that the mapping can be an exhaustive isomorphism.
Source domains can be consolidated and/or partitioned, but they
are rejected only rarely. An immediate consequence of this is that
the metaphors selected in learning or implicitly or explicitly
suggested to the learner should be carefully chosen.

Consider the text editor example. Many users of text editing
systems have unreasonable metaphorical models of such sys-
tems. Generally, this is because no attention has been paid to
directing the selection and development of metaphors in the early
stages of system learning. Almost all editors have cursor com-
mands like UP, DOWN, NEXT, etc. but it seems that almost half of
all new users confuse these directions. If, for example, the cursor
moves up, the text window moves down. These users have not
been given a concrete metaphor for cursor movement. They
develop their own metaphor that often corresponds, only by pure
chance, with the system designer’s idea.

Zloof’s Query-by-Example®® may be an example of a system that
capitalizes on an understanding of the way in which people think
about a relational data base. We believe this query system is easy
to learn because it uses the natural metaphor of a printed table for
representing a computerized query system to the user.***” (For
further demonstrations of the utility of appropriate metaphors see
References 15, 56, and 57.)

Cases of inappropriate metaphors are of course abundant. Bott>®
finds an interesting example in the word ‘‘command.”” About
seventy percent of new users learning a text editing system
misinterpreted the word as being something the machine tells
them to do. Clearly, people do not literally misunderstand the
word itself. Rather, they apply the wrong metaphor, thereby
placing the computer in control of the editing session. Mispercep-
tions occur when interfaces and instructional materials fail to
direct people to useful metaphors.

What constitutes a suitable metaphor, however, is impossible to
prescribe in advance, at least given our current understanding.
We can, however, suggest general guidelines for choosing a
metaphor for a computer system or some aspect of the computer
system,'® but these guidelines are tools, not rules.

IBM SYST J e VOL 20 @ NO 2 » 198! THOMAS AND CARROLL

suitable
metaphors

The expected users of the system must be defined and character-
ized as a first step in creating metaphors. What metaphors are
they spontaneously likely to adopt? How do people represent the
knowledge that is to serve as the source for the metaphor? For
example, someone who is designing a word processor for secre-
taries might assume that many intended users may initially try to
understand the word processor as though it were a super-
typewriter. What sorts of things does one expect a super-
typewriter to do? How does one conceive a typewriter to work?
Thus we may use appropriate metaphors as learning aids.

A system with different subparts may lend itself best to a
composite metaphor in which fairly distinct parts of the system
are related to different things. In such cases, the different parts of
the metaphor should probably not be mutually incompatible. It is
probably not wise, for example, to compare one part of a system
to a tape recorder and another part to a dictating machine. On the
other hand, the parts of the metaphor should not be taken from
very disparate domains because it is probably too confusing to
compare a system to a composite of a schoolroom, a robot cook,
and a mosquito net. Composite metaphors should probably be of
moderate diversity.

The differences between the source (typewriter) and the meta-
phor target (word processor) must also be examined. They must
be pointed out to the learner, perhaps not initially but eventually.
It is important to note that these are all empirical matters that for
the present must be resolved on a case-by-case basis by systemat-
ic empirical studies of user populations and application environ-
ments.

Concluding remarks

Perhaps it would have been more satisfying to discover that
communication can be adequately characterized as transmission
across a channel from an encoding station to a decoding station.
But if research work in cognitive and social psychology teaches
us anything, it teaches us that mechanical simplicities are dis-
tinctly the exception. Thinking, behaving, and communicating
are so much a part of the purposive, social, and design contexts in
which they occur that it hardly makes sense to examine them
outside these contexts.

Examining human capacities and propensities within these rich
task environments, however, can be doubly rewarding. Research
work that addresses the human condition in all of its inherent
complexity can produce usable insights into the structure of
human psychology. And the very activity of pursuing such
research questions induces empathy for the user-end of a man-
machine interaction. It helps to remind us that the user-end is
indeed unique.

THOMAS AND CARROLL IBM SYST J » VOL 20 e NO 2 @ {981

CITED REFERENCES

1. B. W. Boehm, ‘“‘Software and its impact: a quantitative assessment,”
Datamation 19, No. 5, 48-59 (May 1973).

2. R. Scott and D. Simmons, ‘‘Programmer productivity and the Delphi tech-
nique,”’ Datamation 20, No. §, 71-73 (1974).

. C. E. Walston and C. P. Felix, ‘A method of programming measurement and
estimation,”” IBM Systems Journal 16, No. 1, 54-73 (1977).

. D. Meister, Behavioral Foundations of System Development, John Wiley &
Sons, Inc., New York (1976).

. L. A. Miller and J. C. Thomas, ‘‘Behavioral issues in the use of interactive
systems: Part 1. General issues,”’ International Journal of Man-Machine
Studies 9, No. 5, 509-536 (1977).

. B. Shneiderman, Software Psychology, Winthrop Publishers, Cambridge,
MA (1979).

. J. C. Thomas, ‘‘A design-interpretation analysis of natural English,”’ Interna-
tional Journal of Man-Machine Studies 10, 651-668 (1978).

. T. Winograd, ‘‘What does it mean to understand language?”’, Cognitive
Science 4, 209-241 (1980).

. A. Malhotra, J. C. Thomas, J. M. Carroll, and L. A. Miller, ‘‘Cognitive
processes in design,”” International Journal of Man-Machine Studies 12, 119-
140 (1980).

. J. M. Carroll, J. C. Thomas, and A. Malhotra, ‘A clinical-experimental
analysis of design problem solving,”” Design Studies 1, 84-92 (1979).

. G. Glegg, The Science of Design, Cambridge University Press, Cambridge,
England (1973).

. E. deBono, The Use of Lateral Thinking, Cape, Ltd., London, England
(1967).

. V. Papanek, Designing for the Real World, Pantheon Books, New York
(1971).

. J. M. Carroll, J. C. Thomas, L. A. Miller, and H. P. Friedman, ‘‘Aspects of
solution structure in design problem solving,”” American Journal of Psycholo-
gy 93, No. 2, 269-284 (1980).

. J. M. Carroll, J. C. Thomas, and A. Malhotra, ‘‘Presentation and representa-
tion in design problem solving,”” British Journal of Psychology 71, 143-153
(1980); reprinted in S. K. Reed (Editor), Cognition: Theory and Applications ,
Brooks/Cole Publishing Company, Monterey, CA (1981).

. J. M. Carroll and J. C. Thomas, ‘‘Metaphor and the cognitive representation
of computing systems,”’” to be published by IEEE Transactions on Systems,
Man, and Cybernetics.

. J. M. Carroll, Names and Naming: An Interdisciplinary Review, Research
Report RC 7370, IBM Thomas J. Watson Research Center, Yorktown
Heights, NY 10598 (1978).

. J. M. Carroll, Natural Strategies in Naming , Research Report RC 7533, IBM
Thomas J. Watson Research Center, Yorktown Heights, NY 10598 (1979).

. J. M. Carroll, ‘“The role of context in creating names,’’ Discourse Processes
1, No. 3, 1-24 (1980).

. J. M. Carroll, **‘Naming and describing in social communication,”” Language
and Speech, to be published 1981.

. J. M. Carroll, ‘‘Creating names for things,”” Journal of Psycholinguistic
Research, to be published 1981.

. J. M. Carroll, Naming Personal Files in an Interactive Computing Environ-
ment, Research Report RC 8356, IBM Thomas J. Watson Research Center,
Yorktown Heights, NY 10598 (1980).

. E. O’'Dierno, '*Designing computer systems for people,”” Proceedings of the
Symposium on The Role of Human Factors in Computers, Baruch College,
New York, November 1976.

. J. M. Carroll, ‘‘Purpose in cognitive theory of reference,”” Bulletin of the
Psychonomic Society 16, 37-40 (1980).

. D. R. Olson, *‘Language and thought: aspects of cognitive theory of seman-

IBM SYST J @ VOL 20 « NO 2 & 1981 THOMAS AND CARROLL

tics,”” Psychological Review 77, 257-273 (1970).

. R. M. Krauss and S. Weinheimer, ‘‘Confirmation and the encoding of
referents in verbal communication,” Journal of Personality and Social
Psychology 4, 343-346 (1966).

. J. M. Carroll, “*Creative analogy and language evolution,”” Journal of
Psychological Research 9, 595-617 (1980).

. J. M. Carroll, ‘‘Complex compounds: Phrasal embedding in lexical struc-
tures,”’ Linguistics 17, 863-877 (1980).

. J. M. Carroll, Learning, Using, and Designing Command Paradigms, Re-
search Report RC 8141, IBM Thomas J. Watson Research Center, Yorktown
Heights, NY 10598 (1980).

. J. C. Thomas, Quantifiers and Question-Asking , Research Report RC 5866,
IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598
(1976).

. J. Roberge, ‘A reexamination of the interpretation of errors in formal
syllogistic reasoning,”” Psychonomic Science 19, No. 6, 331-333 (1970).

. J. Ceraso and A. Provitera, ‘‘Sources of error in syllogistic reasoning,”’
Cognitive Psychology 2, 400-410 (1971).

. R. Revlis, *“Syllogistic reasoning: Logical decisions from a complex data
base,”” R. J. Falmagne (Editor), Reasoning: Representation and Process in
Children and Adults, John Wiley & Sons, Inc., New York (1975).

. E. Niemark and J. Santa, ‘‘Thinking and concept attainment,”” M. R.
Rosenzweig and L. W. Porter (Editors), Annual Review of Psychology 26,
Annual Reviews, Palo Alto, CA (1975).

. M. M. Zloof, ““Query by Example,”” AFIPS Conference Proceedings, 1975
National Computer Conference 44, 431-438 (1975).

. J. C. Thomas and J. D. Gould, “*A psychological study of Query by
Example,” AFIPS Conference Proceedings, 1975 National Computer Con-
ference 44, 439-445 (1975).

37. D. Greenblatt and J. Waxman, ‘A study of three data base query languages,”
B. Shneiderman (Editor), Databases: Improving Usability and Response,
Academic Press, Inc., New York (1978).

. P. Reisner, ““Use of psychological experimentation as an aid to development
of a query language,”” IEEE Transactions on Software Engineering SE-3,218-
229 (1976).

. P. Wason and P. Johnson-Laird, Psychology of Reasoning, Harvard Univer-
sity Press, Cambridge, MA (1972).

. J. Scandura, Problem Solving, Academic Press, Inc., New York (1977).

. J. Erikson and M. Jones, "‘Thinking,” M. Rosenzweig and L. Porter
(Editors), Annual Review of Psychology, Annual Reviews, Palo Alto, CA
(1978).

. L. A. Miller and C. Becker, Programming in Natural English, Research
Report RC 5137, IBM Thomas J. Watson Research Center, Yorktown
Heights, NY 10598 (1974).

. L. A. Miller, Behavioral Studies of the Programming Process, Research
Report RC 7367, IBM Thomas J. Watson Research Center, Yorktown
Heights, NY 10598 (1978).

. J. C. Thomas, A Method for Studying Natural Language Dialogue , Research
Report RC 5882, IBM Thomas J. Watson Research Center, Yorktown
Heights, NY 10598 (1976).

. J. M. Carroll and T. G. Bever, ‘‘Sentence comprehension: A case study in the
relation of knowledge to perception,” E. Carterrette and M. Friedman
(Editors), The Handbook of Perception, Volume 7, Speech and Language
Academic Press, Inc., New York (1976), pp. 299-344.

. G. A. Miller, ‘‘The magical number 7 plus or minus 2: Some limits on our
capacity for processing information,’” Psychological Review 63, 81-97 (1956).

. T. G. Bever and J. M. Carroll, “‘On some continuous properties of lan-
gunages,”” T. Meyers, J. Laver, and J. Anderson (Editors), The Cognitive
Representation of Speech, North-Holland Publishing Company, The Hague,
Netherlands (1980).

THOMAS AND CARROLL [BM SYST J @« VOL 20 ¢ NO 2 ¢ 1981

. J. M. Carroll, “*Sentence perception units and levels of syntactic structure,’”
Perception and Psychophysics 23, 506-514 (1978).

. J. M. Carroll, **Functional completeness as a determinant of processing load
during sentence comprehension,”” Language and Speech 22, 347-369 (1979).

. J. M. Carroll, M. K. Tanenhaus, and T. G. Bever, “‘The perception of
relations: The interaction of structural, functional, and contextual factors in
the segmentation of sentences,”” W. J. M. Levelt and G. B. Flores d’Arcais
(Editors), Studies in the Perception of Language, John Wiley & Sons, Ltd.,
London, England (1978), pp. 187-218,.

. C. Daiute, *‘Psycholinguistic foundations of writing,”” Research in the Teach-
ing of English (February 1981).

. J. C. Thomas, ‘A cognitive model of letter writing procedures,”” Paper
presented at the American Psychological Association Meeting, Toronto,
Canada 1978; may be obtained from the author.

. J. D. Gould and S. J. Boies, ‘‘Writing, dictating, and speaking letters,”
Science 201, 1145-1147 (1978).

. D. Norman, D. Gentner, and A. Stevens, ‘*‘Comments on learning: Schemata
and memory representation,”’” D. Klahr (Editor), Cognrition and Instruction,
Erlbaum Associates, Hillsdale, NJ (1976).

. D. Rumelhart and D. Norman, Analogical Processes in Learning, Office of
Naval Research Report 8005, University of California, San Diego (1980).

. R. Mayer, ‘“‘Different problem-solving competencies established in learning
computer programming with and without meaningful models,” Journal of
Educational Psychology 1, No. 67 (6), 725-734 (1975).

. R. Mayer, ‘‘Some conditions of meaningful learning for computer program-
ming: Advance organizers and subject control of frame order,”” Journal of
Educational Psychology 1, No. 68 (2), 143-150 (1976).

. R. A. Bott, A Study of Complex Learning: Theory and Methodologies, Ph.D.
thesis, University of California, San Diego, 1978.

John C. Thomas is located at the IBM Corporate Headquarters,
Armonk, NY 10504, and John M. Carroll is located at the IBM
Thomas J. Watson Research Center, P.O. Box 218, Route 134,
Yorktown Heights, NY 10598.

Reprint Order No. G321-5148.

IBM SYST J @ VOL 20 @ NO 2 @ 1981 THOMAS AND CARROLL 263

