
System R is an experimental data base management system that
was designed to be unusually easy to use. System R supports a
high-level relational user language called SQL, which may be
used by ad hoc users at terminals or by programmers as an im-
bedded data sublanguage in PLII or COBOL. This paper describes
the overall architecture of the system, including the Relational
Data System (R D S) and the Research Storage System (R S S) .

RDS is a data base language compiler. Host language programs
with imbedded SQL statements are compiled by System R , which
replaces the S Q L statements with calls to a machine-language ac-
cess module. The compilation approach removes much of the
work of pursing, name binding, and optimization from the path of
a running program, enabling highly eficient support for repeti-
tive transactions. I n contrast, the RSS is a low-/evel DBMS, sup-
porting simple record-at-a-time operators, but with rather sophis-
ticated transaction management, recovery, and concurrency
control.

System R: An architectural overview
by M. W. Blasgen, M. M. Astrahan, D. D. Chamberlin,
J. N. Gray, W. F. King, B. G. Lindsay, R. A. Lorie, J. W. Mehl,
T. G. Price, G. R. Putzolu, M. Schkolnick, P. G. Selinger,
D. R. Slutz, H. R. Strong, 1. L. Traiger, 6. W. Wade, and
R. A. Yost

System R is an experimental data base management system de-
signed and built at the IBM San Jose Research Laboratory as part
of a program of research in the relational model of data. The ar-
chitecture of System R was first described in Reference I , and
SQL, its user interface, was described in Reference 2 . Since these
papers were published, System R has undergone certain archi-
tectural changes, and implementation of the prototype system is
now essentially complete. The purpose of this paper is to describe
the system-its goals, its design, and achievements-in a single
report. More detailed reports describing specific aspects of the
system are listed in the bibliography.

The paper is divided into three sections. The first section clarifies
the goals of the system and introduces the features of the system.

Copyright 1981 by International Business Machines Corporation. Copying is per-
mitted without payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journul reference and IBM copyright notice are
included on the first page. The title and abstract may be used without further
permission in computer-based and other information-service systems. Permission
to rrpublish other excerpts should be obtained from the Editor.

IBM SYST J VOL 20 NO I 1981 BLASGEN ET AL. 41

the SQL
language

Figure 1 A fragment of a relational
data base

SMllI-1
JONES

JONES
CLARK

DAVIS
JACOB . . .

tMPLOYEE

OFFICt JOB SALAR‘

PARIS SA1 t S 11000
BONN SALES 18000
HOISF S A I F 5 1200(1
ROSTON SERVILE 17000
I’ARIS SERVICE 15000

RIO SAIFS 12000
LONDON ~ F R V I C E I ion0

I OFFICE

I OCAllON MAhAGER PHONE

. . .

1

42

The architecture is described in the second and third sections,
covering, respectively, the two system layers: the Relational
Data System and the Research Storage System.

Description of System R features

A major impediment to the widespread use of computerized data
management systems is the cost and complexity of understanding
and using such systems. System R is an experimental data base
system which is easy to understand and use. The system adopts a
relational data model and supports the language called SQL for de-
fining, accessing, and modifying multiple views of stored tables.
It provides a sophisticated authorization facility, and auto-
matically handles systems functions such as recovery and con-
currency control.

All access to data in System R is through SQL (formerly known as
 SEQUEL^), a relational data base language which is described in
Reference 2. An example relational data base describing employ-
ees and offices in a company appears in Figure 1. Examples of the
use of SQL follow, using this simple data base.

Q1: Find the names of employees in the Paris office.

SELECT NAME
FROM EMPLOYEE
WHERE OFFICE = ‘PARIS’

Q2: List all the different offices in the EMPLOYEE table.

SELECT UNlQUE(0FFICE)
FROM EMPLOYEE

Q3: Find the employees who work in an office managed by Roe-
ver. Using a “nested query,” we obtain:

SELECT NAME, OFFICE, JOB
FROM EMPLOYEE
WHERE OFFICE IN

(SELECT LOCATION
FROM OFFICE
WHERE MANAGER = ‘ROEVER’)

or alternatively we may “join” the tables:

SELECT NAME, OFFICE, JOB
FROM EMPLOYEE, OFFICE
WHERE EMPLOYEE.OFFICE = 0FFICE.LOCATION

AND MANAGER = ‘ROEVER’

Q4: List all the offices and the average salary of employees in
each.

BLASGEN ET AL. IBM SYST J VOL 20 NO I 1981

SELECT OFFICE, AVG(SAL)
FROM EMPLOYEE
GROUP BY OFFICE

Q5: Print out a sorted list of employees in Paris, with their sala-
ries.

SELECT NAME, SAL
FROM EMPLOYEE
WHERE OFFICE = ‘PARIS’
ORDER BY NAME

Q6: Insert a new employee into the EMPLOYEE table.

INSERT INTO EMPLOYEE(NAME, OFFICE, JOB):
<‘WADE’, ‘SAN JOSE’, ‘SERVICE’>

(Sets SALARY to null)

Q7: Close the Paris office.

DELETE EMPLOYEE
WHERE OFFICE = ‘PARIS’

DELETE OFFICE
WHERE LOCATION = ‘PARIS’

Q8: Give a ten percent raise to the service people in Bonn.

UPDATE EMPLOYEE
SET SAL = SAL* 1 . 1
WHERE JOB = ‘SERVICE’
AND OFFICE = ‘BONN’

One of the basic goals of System R is to support two different
types of processing against a data base: (1) ad hoc queries and
updates, which are usually executed only once, and (2) canned
programs, which are installed in a program library and executed
hundreds of times. System R makes all the features of SQL avail-
able in both these environments. These features include state-
ments to query and update a data base, to define and delete data
base objects such as tables, views, and indexes, and to control
access to the data base by various users.

An ad hoc user at a terminal may type SQL statements and view
the result directly at a terminal, as in the examples above. Alter-
natively, the same SQL statements may be imbedded in a PL/I or
COBOL program by prefixing them with dollar signs to distinguish
them from host-language statements. SQL statements in PLll or
COBOL programs may contain host-language variables if the vari-
able names are prefixed by dollar signs, as in the following ex-
ample:

$UPDATE EMPLOYEE SET SALARY = $X WHERE NAME = $Y;

IBM SYST J VOL 20 0 NO I 1981 BLASGEN ET AL.

If a PL/I or COBOL program wishes to execute an SQL query and
fetch the result, the answer set is readied for retrieval by an OPEN
statement, which binds the values of any host-language variables
appearing in the query. Then a FETCH statement is used repeat-
edly to fetch rows from the answer set into the designated pro-
gram variables, as in the following example:

$LET PEOPLE BE
SELECT NAME, SALARY
INTO $X, $Y
FROM EMPLOYEE
WHERE JOB = $Z;

$OPEN PEOPLE; /*BINDS VALUE OF Z * /
$FETCH PEOPLE; /* FETCHES ONE EMPLOYEE INTO X AND Y * /
$CLOSE PEOPLE; /* AFTER ALL VALUES HAVE BEEN FETCHED */

After the execution of each SQL statement, a status code is re-
turned to the host program in a variable called SYRCODE.

data SQL allows data accesses and updates to be expressed without
independence mentioning or implying the existence of specific access paths (ac-

cess paths are techniques for finding the relevant data using, for
example, an index on a particular column) or the physical layout
of data. This has the advantage of making application programs
simpler and also allows the data management system to choose an
optimal strategy for evaluating the program.

For example, to determine if manager Portal has a service person
in his office, one invokes the following query:

SELECT NAME
FROM EMPLOYEE, OFFICE
WHERE EMPLOYEE.OFFICE = 0FFICE.LOCATION
AND 0FFICE.MANAGER = ‘PORTAL’
AND EMPLOYEEJOB = ‘SERVICE’

Since the language specifies only what is desired, and not how to
obtain it, the system has several choices. For example, one strat-
egy is to search EMPLOYEE looking for service people, and for
each such entry, use the corresponding OFFICE to enter into the
OFFICE table to see if that employee works for Portal. Another
strategy involves first searching OFFICE to find what LOCATIONS
Portal manages and then searching EMPLOYEE for service people
at those locations. Other strategies involve sorting one or both ta-
bles.

The System R optimizer is responsible for selecting the strategy
that minimizes the “cost” of carrying out an SQL statement. Cost
is based on estimates of CPU and I/O requirements. Using an opti-
mizer in this way has two benefits: First, the user need not be
concerned with storage details, and thus may be more produc-

44 BLASGEN ET AL. IBM SYST J 0 VOL 20 NO 1 1981

tive. Second, the user is prohibited from “taking advantage” of
knowledge of such details. The second benefit allows the program
to continue functioning as the underlying storage structures
evolve with time.

In general, since System R supports a very high-level language,
most data base structuring issues can be deferred until after the
applications are written. This “install now, tune later” philoso-
phy also eases application programming by deferring many per-
formance decisions.

The result of any SQL query is itself a table. Such a table may be
materialized immediately, or the definition may be stored as a
view. Views may be used just like other tables except that certain
views (involving, for example, join) cannot be modified.

Views extend the notion of data independence even further, per-
mitting the user to be isolated not only from storage details (in-
dexes, pointers) but also from the set of tables currently stored. If
the structure of a table is changed (columns added or permuted or
a table split into two tables) then a view may be defined that ap-
pears to users like the original table. Old programs can access the
new data via the view.

Views also provide a powerful authorization mechanism. Rather
than allowing users access to an entire table, one may define a
view which is a row and column subset of the table and only allow
access to that view. For example, one might allow managers to
see only records in their own departments. Further, one may qual-
ify certain columns of the view as read-only. In order to allow for
either centralized or distributed control of access, a special privi-
lege called “grant” is also included, which allows one to grant
any subset of capabilities to other users. Each such operation
may pass on the “grant” privilege as well.

SQL is an integrated data definition and data manipulation lan-
guage. In System R the description of the data base is stored in
user-visible “system” tables which may be read using the SQL
language. The creation of a table results in new entries in these
system tables. Users defining tables are encouraged to include
English text that describes the “meanings” of the tables and their
columns. Later, others may retrieve all tables with certain attri-
butes or may browse among the descriptions of defined tables (if
they are so authorized).

A major criticism of nonprocedural languages is that they have a
great potential for execution inefficiency. If the use of SQL caused
a large degradation in performance, System R would be of little
interest. Therefore, the design has concentrated on performance

views and
authorization

integrated
data base
catalogs

compilation

dynamic
data base
definition

transaction
management

Flgure 2 The architecture of Sys-
tem R

STAND ALONt

AD HOC QUERIES
INTERFACE FOR

61 V L I I n ~ s u

COBOL PROGRAMS

IIRELT ACCESS ,” n, A h , P

REI Al lONAL DATA SYSTEMS (RDS)

PANSING
ALlTHORlZAl lON CHELKING
ACCEbb IPATH SELECTION
TRANSLATION FROM SQL TO
SYbTtM, 370 MACl i lNE LANGUAGE

* SPA(t AND DtVICE MANAGEMENT - (OIVCIIRRENCY CONTROl
MAlhTENANCE O i INUFXES

I OGGING AND RECOVEKY

46

tines. As an example, during compilation of a user program, the
user’s authorization is checked for each SQL statement in the pro-
gram. When the program is loaded for execution, one check is
made to verify that the user’s authorization to run the program
remains in effect. No authorization checking is necessary on the
execution of each SQL statement, so run-time overhead is mini-
mized.

Experiments indicate that compilation is almost uniformly supe-
rior to interpretation, even for those SQL statements that are exe-
cuted only once and retrieve or modify only a few records.

Any of the following can be done by an authorized user at any
time without interrupting the normal operation of the system:

0 Create and destroy tables
0 Create and destroy indexes on tables
0 Add a column to an existing table
0 Install a new transaction
0 Add users to the system
0 Change the privileges held by various users
0 Define or drop a view of existing data

A major goal of System R is to provide a full set of capabilities for
data base management in a realistic, operational environment.
Only in this way can the viability of the architecture be assessed.
In particular, System R supports multiple users concurrently ac-
cessing data and has complete facilities for transaction backout
and system recovery. Recovery compensates for system failures
as well as catastrophic failures of the magnetic media (e.g., disk
head crash). Almost all recovery information is kept on disk and a
noncatastrophic restart is transparent to operations personnel.

The transaction notion is the key to a successful recovery philos-
ophy. A transaction is a user-defined unit of work which may
involve many SQL statements. If the system crashes during pro-
cessing of a transaction, data in the data base may not be in a
consistent state at the time of the crash. Therefore, the system
must be able to “undo” partially completed transactions. Once a
transaction terminates, its updates are committed and are no
longer subject to being backed out in the event of a crash.

Transactions also supply the key to concurrency control. If mul-
tiple transactions concurrently read and write the same data,
anomalies may arise. System R uses a locking protocol such that
(1) the system itself never gets confused because of concurrent
access to a data item by two or more transactions, and (2) the user
can control the extent to which his transaction is isolated from the

BLASGEN ET AL. IBM SYST J VOL 20 NO I 1981

divided between two subsystems, the Relational Data System
(RDS) and the Research Storage System (RSS). These two com-
ponents are described in the following sections.

Relational Data System

RDS is split into two distinct functions: (1) a precompiler, called
XPREP, which is used to precompile host-language programs and
install them as “canned programs” under System R, and (2) an
execution system, called XRDI, which controls the execution of
these “canned programs” and also executes SQL statements for
ad hoc terminal users.

When an application programmer has written a PL/I or COBOL pro-
gram with imbedded SQL statements, his first step is to present
the program to the System R precompiler, XPREP. XPREP finds the
SQL statements in the program and translates them into a ma-
chine-language “access module.” In the user’s program, the SQL
statements are replaced by host-language calls to the access mod-
ule. The access module is stored in the System R data base to
protect it from unauthorized modification. The precompilation
step is illustrated in Figure 3.

The advantages gained for canned programs by the pre-
compilation step are twofold:

1. Much of the work of parsing, name-binding, access path selec-
tion, and authorization checking can be done once by the pre-
compiler and thus removed from the process of running the
canned program.

2. The access module, because it is tailored to one specific pro-
gram, is much smaller and runs much more efficiently than a
generalized SQL interpreter.

After precompilation, the user’s program contains pure PL/I or
COBOL and can be compiled using a conventional language com-
piler.

When a “canned program” is run on System R, it makes calls to
XRDI, which in turn loads and invokes the access module for the
program. The access module operates on the data base by making
calls to RSS and delivers the result to the user’s program. This
process is illustrated in Figure 4.

The ad hoc user of System R is supported by an application pro-
gram called the User-Friendly Interface (UFI), which controls dia-

Figure 3 Precompilatlon of a PUI-
SQL program

PL I SOURCE PROGRAM

StLECT NAME INTO $X
tROM EMPLOYEE

WHERF N A M t = $ Y 1 .
, \

PRECOMPILER
SYSTEM K

(XI’KEP)

MODIFIED P- I ACCESS MODULE

MACHINE CODE
R t A D Y T O RUN

ON RSS

Figure 4 Execution of a compiled
program

OBJtCT
USERS

PKOGHAM

LOAUS

SYSTtM
(XRDII

MODULE

CALL

DATA BASE

logue management and the formatting of the display terminal. The
UFI has an access module of its own, but its access module is not
complete because the purpose of UFI is to execute SQL statements
that are not known in advance. When a user enters an ad hoc SQL
statement, UFI passes the statement to XRDI by means of special
“PREPARE” and “EXECUTE” calls which will be described later.
The effect of these calls is to cause a new “section” of the access
module of UFI to be dynamically generated for the new statement.
The dynamically generated part of the access module contains
machine-language code and is in every way indistinguishable
from the parts that were generated by the precompiler.

System R permits many users to be active simultaneously, per-
forming a variety of activities. Some users may be precompiling
new programs while others are running existing “canned pro-
grams.” At the same time, other users may be using UFI,
querying and updating the data base and creating new tables and
views. All these simultaneous activities are supported by the au-
tomatic locking subsystem built into the RSS.

precompilation When a PWI or COBOL program with imbedded SQL statements is
presented to the System R precompiler, it scans the program to
find the SQL statements (they are indicated by dollar signs) and
replaces each SQL statement with a valid host-language CALL. In
addition, each SQL statement is put through a three-step process
in order to translate it into a machine-language routine. The three
steps are as follows:

1. Parsing: The parser checks the SQL statement for syntactic va-
lidity and translates it into a conventional parse-tree represen-
tation. The parser also returns to the System R precompiler
two lists of host program variables found in the SQL statement:
a list of input variables (values to be furnished by the calling
program and used in processing the statement) and a list of
output variables (target locations for data to be fetched by the
statement). For example, if the SQL statement being parsed
were as follows:

SELECT NAME, SALARY INTO $X, $Y
FROM EMPLOYEE WHERE OFFICE = $A AND JOB = $B

the input variables would be A and B, and the output variables
would be X and Y.

2. Optimization: The System R optimizer is then invoked with
the parse tree as input. The optimizer performs several tasks:

a. First, using the internal catalogs of System R, it resolves all
symbolic names in the SQL statement to internal data base
objects.

48 BLASGEN ET AL. IBM SYST J VOL 20 0 NO I 0 1981

b. A check is made to ensure that the current user is autho-
rized to perform the indicated operation on the indicated
table(s) .

c. If the SQL statement operates on one or more user-defined
views, the definitions of the views (stored in parse tree
form) are merged with the SQL statement to form a new
composite SQL parse tree that operates on real stored ta-
bles.

d. The optimizer uses the system catalogs to find the set of
available indexes and certain other statistical information
on the tables to be processed. This information is used to
choose an access path and an algorithm for processing the
SQL statement. The design of this access path selection pro-
cess is given briefly below and in more detail in Reference
3. The optimizer represents its chosen access path by
means of an ASL (Access Specification Lang~age)~ specifi-
cation and by construction of the RSS parameter lists to be
used in processing the statement.

3. Code generation: The code generator translates the ASL struc-
tures produced by the optimizer into a System/370 machine-
language routine that implements the chosen access path.s
This machine-language routine is called a “section.” When
running, the section will access the data base by using the RSS
parameter lists that were produced by the optimizer.

After all the SQL statements in a program have been translated
into sections, the sections are collected together to form an ac-
cess module. In addition to machine-language code, each section
holds the SQL statement from which it was originally constructed,
thus enabling the section to be rebuilt if its original access path
should become unavailable at some future time. When the access
module is complete, it is stored in the System R data base for later
use.

After the System R precompiler has replaced all the SQL state-
ments in the user’s program with calls to XRDI, the program con-
tains pure PL/I or COBOL, and it may be compiled using one of the
conventional language compilers. The resulting object program is
now ready to be run on System R.

Before proceeding to discuss how this program is executed, we optimization
describe in more detail how the access path selection portion of
the optimizer works.

A query block is represented by a SELECT list, a FROM list, and a
WHERE tree, containing, respectively, the list of items to be re-
trieved, the table(s) referenced, and the Boolean combination of
simple predicates specified by the user. A single SQL statement
may have many query blocks because a predicate may have one

IBM SYST J VOL 20 NO 1 0 1981 BLASGEN ET AL. 49

operand that is itself a query. For each query block, an optimal
access path is selected by the optimizer.

The optimizer carries out name resolution and view composition
if necessary. View composition replaces all references to view
tables and columns with their underlying definitions in terms of
actual stored tables. If the view definition contained predicate re-
strictions, these are ANDed to the WHERE tree of this query. After
view composition every table reference is a stored table.

Finally, the optimizer performs access path selection. (Reference
3 has a detailed discussion of this operation.) The optimizer ex-
amines both the predicates in the query and the access paths
available on the tables referenced by the query and formulates a
cost prediction for each access plan, using the following cost for-
mula:

COST = PAGE FETCHES + W * (RSI CALLS).

This cost is a weighted measure of 1/0 operations (pages fetched)
and CPU used (instructions executed). W is an adjustable weight-
ing factor between I ~ O and CPU. RSI CALLS is a predicted number
of records returned from the RSS to be used in evaluating this
query. Since most of System R’s CPU time is spent in the RSS, the
number of RSI calls is a good approximation for CPU utilization.
Thus, the choice of a minimum cost path to process a query in-
volves an attempt to minimize total resources required.

To compute the estimated costs, statistics are maintained in the
System R catalogs and come from several sources. Initial table
loading and index creation initialize these statistics. They are
then updated periodically by an UPDATE STATISTICS command,
which can be run by any authorized user. System R does not
update these statistics at every INSERT, DELETE, or UPDATE be-
cause of the extra data base operations and the locking bottleneck
it would create. Continuous maintenance of statistics would tend
to serialize access to a table for users that modify the table con-
tents.

Using these statistics, the optimizer develops estimates of the
cost of carrying out the statement using a variety of access paths
(indexes, sorting, and scanning). The cheapest access path is then
selected.

executinga When a user invokes a program that has been precompiled on
precompiled System R, the normal facilities of the operating system are used

program to load and start the object program. System R first becomes
aware of the program when it makes its first call to XRDI. On the
first such call, XRDI checks the authority of the current user to
invoke the indicated access module, and checks that the access
module is still valid. If these checks are successful, the access

50 BLASGEN ET AL. IBM SYST J VOL 20 NO I 1981

module is loaded from the data base into virtual memory, and
control is passed to the indicated section. On subsequent calls to
the same access module, control passes directly to the indicated
section. The machine language code in the section processes the
original SQL statement from which it was compiled, using as
needed the host-program variables which are passed with the call.

Since all name binding, authorization checking, and access path
selection are done during the precompilation step, the resulting
access module is dependent on the continued existence of the
tables it operates on, the indexes it uses as access paths, and the
privileges of its creator. Therefore, whenever a table or index is
dropped or a privilege is revoked, System R automatically per-
forms a search in its internal catalogs to find access modules that
are dec ted by the change. If the change involves dropping a
table or revoking a necessary privilege, the access module is
erased from the data base. However, if the change involves
merely dropping an index used by the access module, it will be
possible to regenerate the access module by choosing an alterna-
tive access path. In this case, the access module is marked “in-
valid.” When the access module is next invoked, the invalid
marking is detected and the access module is regenerated auto-
matically. The original SQL statement contained within each sec-
tion is once again passed through the parser, the optimizer, and
the code generator to produce a new section based on the cur-
rently available access paths. The newly regenerated access mod-
ule is stored in the data base and also loaded into virtual memory
for execution. The user’s source program is not affected in any
way, and the user is unaware of the regeneration process except
for a slight delay during the initial loading of his access module.

It is possible that a user might attempt to change the data base in
some way that would invalidate an access module while the ac-
cess module was actually loaded and running. It would be unde-
sirable if such a change were allowed to become effective while
the running access module was in the middle of some operation.
To prevent this from occurring, the loaded access module pro-
tects itself by holding a lock on its own description in the system
catalog tables. Therefore, any data base change made by another
concurrently running transaction that will invalidate the access
module (changing its description from “valid” to “invalid”) must
wait until the lock is released.

For certain types of SQL statements, no significant choice of ac-
cess path is required. These statements include those which
create and drop tables and indexes, begin and end transactions,
and grant and revoke privileges. The process of creating a new
table, for example, involves placing a description of the table in
the system catalogs. Since this process takes place essentially the
same way for each new table, it is possible to build into System R

IBM SYST J VOL 20 NO I 1981 BLASGEN ET AL.

treatment of
“nonoptimizable”
statements

51

table is to be created. Instead, the standard program is invoked
and given the name of the table to be created and a list of its
columns and their data types. This information is conveyed in the
form of the SQL parse tree for the CREATE TABLE statement. We
will refer to SQL statements that can be handled in this way as
“nonoptimizable” statements.

When the System R precompiler encounters a nonoptimizable
statement in a user program, it places the parse tree of the state-
ment directly into the section of the access module rather than
invoking the optimizer and code-generator. The resulting section
is labeled as an “INTERPSECT,” to distinguish it from a section
containing machine code, which is labeled a “COMPILESECT.”

At run time, when XRDI receives a call to execute a given section,
it examines the label on the section. If it is a COMPILESECT, XRDI
gives control directly to the section. If it is an INTERPSECT, XRDI
determines the statement type by examining the root of the parse
tree, then invokes the appropriate standard routine. The standard
routine obtains its necessary inputs (e.g., table and column
names) from the parse tree in the INTERPSECT.

dynamically Some programs may need to execute SQL statements that were
defined not known at the time the program was precompiled. An example

statements of such a program is the “User-Friendly Interface” of System R,
which allows users to type ad hoc SQL statements at a terminal,
then executes them and displays the results. Another example is a
general-purpose bulk loader program that loads data into tables
via SQL INSERT statements but that does not know at pre-
compilation time the name of the table to be loaded, or the num-
ber and data types of its columns.

The SQL language feature that supports this type of application is
the PREPARE statement, which is an executable statement having
the syntax:

PREPARE <statement-name> AS <variable>

For example, a programmer might write:

PREPARE S1 AS QSTRING;

This indicates to System R that, at run time, the character-type
variable QSTRING will contain an SQL statement that should be
optimized and associated with the name S1. QSTRING may contain
any kind of SQL statement, and the SQL statement may have “pa-
rameters” indicated by question marks, such as:

UPDATE EMPLOYEE SET SALARY = ? WHERE NAME = ?

52 BLASGEN ET AL. IBM SYST J VOL 20 NO 1 1981

When the precompiler encounters a PREPARE statement in a pro-
gram, it creates a section in the access module called an IN-
DEFSECT.

A call to an INDEFSECT causes a dynamically defined SQL state-
ment to pass through the parser, optimizer, and code generator.
The result is a new COMPILESECT or INTERPSECT, which replaces
the INDEFSECT in the access module. The dynamically defined
statement is now ready to be executed like any other SQL state-
ment.

After writing PREPARE S1 AS QSTRING, the programmer will want
to execute the statement he has prepared. If the prepared state-
ment was not a query, the programmer may use the following
syntax:

EXECUTE <statement-name> [USING <variable-list>]

For example:

EXECUTE S1 USING $X, $Y

The precompiler will translate the EXECUTE statement into a call
on the indicated section, passing the addresses of $ x and $Y as
parameters of the call. The section may be executed many times,
with different parameters, without reinvoking the System R opti-
mizer.

If the prepared SQL statement was a query (a SELECT statement),
the COMPILESECT produced for it will look exactly like a COM-
PILESECT produced by the precompiler. Therefore, the program
may proceed to fetch the result of the query using OPEN and
FETCH statements much like those used with a query that was
defined at precompile time. Details of this process are described
more fully in Reference 6.

The Research Storage System

We now discuss the RSS, a low-level DBMS that provides under-
lying support for System R. The RSS supports the Research Stor-
age Interface (RSI), which provides simple, record-at-a-time oper-
ators on base tables. Operators are also supported for data recov-
ery, transaction management, and data definition. Calls to the RSI
require explicit use of data areas called segments and access
paths called indexes and links, along with the use of Rss-gener-
ated, numeric identifiers for data segments, tables, access paths,
and records. The RDS handles the selection of efficient access
paths to optimize its operations, and maps symbolic table names
to their internal RSS identifiers. The RSI is a navigational interface
and supports an object called a scan which can move from record

In order to facilitate gradual data base integration and tuning of
access paths, the RSS permits new stored tables or new indexes to
be created at any time, or existing ones destroyed, without
quiescing the system and without dumping and reloading the
data. One can also add new fields to existing tables, or add or
delete pointer chain paths across existing tables. This facility,
coupled with the ability to retrieve any subset of fields in a rec-
ord, provides a degree of data independence at a low level of the
system, since existing access modules that execute RSI operations
on records will be unaffected by the addition of new fields or ac-
cess paths.

As a point of comparison, the RSS has many functions that can be
found in other systems, both relational and nonrelational, such as
the use of index and pointer chain structures. The areas that have
been emphasized and extended in the RSS include dynamic defini-
tion of new data types and access paths, as described above, dy-
namic binding and unbinding of disk space to data segments, mul-
tiple levels of isolation from the actions of the other concurrent
users, and automatic locking at the granularity of segments, ta-
bles, pages, or single records.

segments In the RSS, all data is stored in a collection of logical address
spaces called segments, which are employed to control physical
clustering. Segments are used for storing user data, access path
structures, internal catalog information, and intermediate results
generated by the RDS. All the records of any table must reside
within a single segment chosen by the RDS. However, a given
segment may contain several tables.

The RSS has the responsibility for mapping logical segment spaces
to physical extents on disk storage and for supporting segment
recovery. Within the RSS, each segment consists of a sequence of
4096-byte pages. Disk space for pages is allocated dynamically,
and pages are the transfer unit from disk to virtual storage. A
page request is handled by allocating space within a virtual stor-
age buffer shared among all concurrent users. Pages are fixed in
their buffer slots until they are explicitly freed by RSS com-
ponents. Freeing a page makes it available for replacement, and
when space is needed, the buffer manager replaces whichever
freed page was least recently used.

The RSS handles segment recovery by a novel technique that is
described in Reference 7.

tables The main data object of the RSS is the n-ary relation, alternatively
called a table, which consists of a time-varying number of rec-
ords, each containing n fields. A new table can be defined at any
time within any segment chosen by the RDS. An existing table and
its associated access path structures can be dropped at any time,

54 BLASGEN ET A L . I B M SYST J VOL 20 NO 1 1981'

with all storage space made reusable. Even after a table is defined
and loaded, new fields may be added on the right, without a data
base reload and without immediately modifying existing records.

Operators are available to INSERT and DELETE single records, and
to FETCH and UPDATE any combination of fields in a record. One
can also fetch a sequence of records along an access path through
the use of an RSS scan. Each scan is created by the RSS for fetch-
ing records on a particular access path through execution of the
OPEN-SCAN operator. The records along the path may then be
accessed by a sequence of NEXT operations on that scan. A scan
may employ an index, which gives direct access and value-order-
ing according to one or more of the columns of a table (e.g., to
retrieve all employees in a given department). A table may have
as many indexes as desired. The RSS also provides a scan through
the physical pages on which the data is stored, delivering records
in a system-determined order. For all of these access paths, the
RDS may attach a search argument (SARG) to each NEXT opera-
tion. The search argument may be any predicate involving atomic
expressions of the form <field number, operator, value>. The
value is an explicit byte string provided by the RDS, and the oper-

timizer attempts, whenever possible, to place SQL predicates into
RSS search arguments because of the performance advantage re-
sulting from reduced interface crossing.

Associated with every record of a table is a record identifier
called a TID. Each record identifier is generated by the RSS and is
available to the RDS as a concise and efficient means of addressing
records. TIDS are also used within the RSS to refer to records from
index structures and to maintain pointer chains. However, they
are not intended for end users above the RDS, since they may be
reused by the RSS after record deletions, and are reassigned dur-
ing data base reorganization.

In order to tune the data base to particular environments, the RSS
accepts hints for physical allocation during INSERT operations in
the form of a tentative "ID. The new record will be inserted in the
page associated with that TID if sufficient space is available. Oth-
erwise, a nearby page is chosen by the RSS. Use of this facility
enables the RDS to cluster records of a given table with respect to
some criterion such as a value ordering on one or more fields.

An index in the RSS is an access path that provides a view of a
table ordered with respect to values in one or more sort fields.
Indexes combined with scans provide the ability to scan tables
along a value ordering for low-level support of simple views.
More importantly, an index provides associative access capabil-
ity. By keying on the sort field values, the RDS can rapidly fetch a
record using an index. The RDS can also open a scan at a particu-

ator is ''=O " - l = ? ? ' '<>?, ' ' > 3 9 , ''<=?>,
9 3 or ">=". The RDS op-

IBM SYST J VOL 20 NO I 1981 BLASGEN ET AL.

lar point in the index and retrieve a sequence of records with a
given range of sort values. The RDS can employ a disjunctive nor-
mal form search argument (a SARG) during scanning to further
restrict the set of records that is returned. This facility is espe-
cially useful for situations where SQL search predicates involve
several fields of a table and at least one of them has index sup-
port.

A new index can be defined at any time, on any combination of
fields in a table. Furthermore, each of the fields may be specified
as ascending or descending. Once defined, an index is maintained
automatically by the RSS during all INSERT, DELETE, and UPDATE
operations. An index can also be dropped at any time.

Each index is composed of one or more pages within the segment
containing the table. A new page can be added to an index when
needed, as long as one of the pages within the segment is marked
as available. The pages for a given index are organized into a
balanced hierarchical structure, in the style of B trees and of Key
Sequenced Data Sets in IBM’S Virtual Storage Access Method
(VSAM).

In order to handle variable-length, multifield indexes efficiently, a
special encoding scheme is employed on the field values so that
the resulting concatenation can be compared against others for
ordering and searching. This encoding eliminates the need for
padding of each field and field-by-field comparison.8

sort The RSS contains a sort component that sorts records from a table
according to an RDS-provided order specification. The sort com-
ponent can sort all of a table, or any row or column subset of a
table, by one or more fields, in either ascending or descending
order. Sort is carried out using a sort-merge algorithm, using a
rapid internal sort of the records on a page, followed by a merge
of the internally sorted pages.

transaction A transaction at the RSS is a sequence of RSI calls issued in behalf
management of one user. It also serves as a unit of consistency and recovery,

as will be discussed below. An RSS transaction is delimited by the
BEGIN TRANSACTION and END TRANSACTION commands. Various
resources are assigned to transactions by the RSS, using the lock-
ing techniques described below. A transaction recovery scheme
that allows a transaction to be backed out to the beginning of the
transaction is provided.

Transaction recovery occurs when the RESTORE TRANSACTION
command is issued by the RDS, or when the RSS initiates the pro-
cedure to handle deadlock. The effect is to undo all the changes
made by the transaction, including all record and index modifica-
tions caused by INSERT, DELETE, and UPDATE operations, and all

56 BLASGEN ET AL. IBM SYST J VOL 20 NO I 1981

the declarations for defining new tables and indexes. Finally, all
locks on recoverable data that have been obtained are released.

The transaction recovery function is supported through the main-
tenance of time-ordered lists of log entries, which record informa-
tion about each change to recoverable data. The entries for each
transaction are chained together and include the old and new val-
ues of all modified objects. Modifications to index structures are
not logged since their values can be determined from data values
and index catalog information.

The log entries themselves are stored in a dedicated segment used
as a ring buffer. This segment is treated as a simple linear byte
space, with entries spanning page boundaries.

The RSS provides functions to recover the data base to a consis-
tent state in the event of a system crash. By a consistent state we
mean a set of data values that would result if a set of transactions
had completed and no other transactions were in progress. At
such a state all indexes and pointers are correct at the RSS level,
and all user-defined semantics on data values are valid.

In the RSS, the system recovery mechanisms use disk storage to
recover in the event of a “soft” failure that causes the contents
of main memory to be lost but that does not damage secondary
storage. This recovery technique is oriented toward frequent
checkpoints and rapid recovery. A similar mechanism uses tape
storage to recover in the relatively infrequent case where disk
storage is destroyed, and is oriented toward less frequent check-
points.

Since System R is a concurrent user system, locking techniques
must be employed to solve various synchronization problems.
both at the logical level of objects like tables and records and at
the physical level of pages.

At the logical level, such classic situations as the Lost Update
problem must be handled to ensure that two concurrent transac-
tions do not read the same value and then try to write back an
incremented value. If these transactions are not synchronized,
the second update will overwrite the first, and the effect of one
increment will be lost. Similarly, if a user wishes to read only
“clean” or committed data, not “dirty” data which has been up-
dated by a transaction still in progress and which may be backed
out, then some mechanism must be invoked to check whether or
not the data is dirty. For another example, if transaction recovery
is to affect only the modifications of a single user, then mecha-
nisms are needed to ensure that data updated by some ongoing
transaction T1 is not updated by another transaction T2. Other-
wise, the backout of transaction T1 will undo T2’s update and
violate the principle of isolated backout.

IBM SYST J VOL 20 NO I I Y E l BLASGEN ET AL.

At thephysical level of pages, locking techniques are required to
ensure that internal components of the RSS give correct results.
For example, a data page may contain several records, and each
record is accessed through its record identifier, which requires
following a pointer within the data page. Even if no logical con-
flict occurs between two transactions, because each is accessing a
different table or a different record in the same table, a problem
can occur at the physical level if one transaction follows a pointer
to a record on some page, while the other transaction updates a
second record on the same page and causes a data compaction
routine to reassign record locations.

One basic decision in System R was to handle both logical and
physical locking requirements within the RSS, rather than splitting
the functions across the RDS and RSS subsystems. Physical lock-
ing is handled by setting and holding locks on one or more pages
during the execution of a single RSI operation. Logical locking is
handled by setting locks on such objects as segments, tables, TIDS
and key value intervals and holding them either until they are
explicitly released or to the end of the transaction. The main mo-
tivation for this decision is to facilitate the exploration of alterna-
tive locking techniques. (One particular alternative has already
been included in the RSS as a tuning option, whereby the finest
level of locking in a segment can be expanded to an entire page of
data, rather than single records. This option allows pages to be
locked for both logical and physical purposes by varying the dura-
tion of the lock.) Other motivations are to simplify the work of the
RDS and to develop a complete, concurrent user RSS that can be
tailored to future research applications.

For situations detected by the end user or RDS where locking
large aggregates is desirable, the RSS also supports operators for
placing explicit share or exclusive locks on entire segments or
tables.

The RSS supports multiple levels of consistency that control the
degree of isolation of a user from the actions of other concurrent
users. When a transaction is started at the RSI, one of three con-
sistency levels must be specified. (These same consistency levels
are also reflected to the end user at the SQL level.) Different con-
sistency levels may be chosen by different concurrent transac-
tions. For all of these levels, the RSS guarantees that any data
modified by the transaction is not modified by any other, until the
given transaction ends. This rule is essential to our transaction
recovery scheme, where the backout of modifications by one
transaction does not affect modifications made by other transac-
tions.

The differences in consistency levels occur during read opera-
tions. Level 1 consistency offers the least isolation from other

58 BLASGEN ET AL. IBM SYST J VOL 20 NO 1 1981

users but causes the lowest overhead and lock contention. With
this level, “dirty data” (data which has been updated by a still-
running transaction) may be read (but not, of course, updated) by
a second transaction. It is clear that execution with Level 1 con-
sistency incurs the risk of reading data values that in some sense
never appeared if the transaction which set the data values is later
backed out, Yet, this level may be entirely satisfactory for gather-
ing statistical information from a large data base when exact re-
sults are not required.

In a transaction with Level 2 consistency, the user is assured that
every item read is “clean,” i.e., that the transaction that estab-
lished the value has ended and is therefore not subject to backout.
However, no guarantee is made that subsequent access to the
same item will yield the same values. At this consistency level, it
is possible for another transaction to modify a data item any time
after the given Level 2 transaction has read it. A second read by
the given transaction will then yield the new value, since the item
will become clean again when the other transaction terminates.

For the highest consistency level, called Level 3 , the user sees
the logical equivalent of a single-user system. No user running
Level 3 can tell that the other users are concurrently accessing
and modifying the data base. Every item read is clean, and sub-
sequent reads yield the same values, subject, of course, to up-
dates by the given user. This repeatability feature applies not only
to a specific item accessed directly by record identifier but even
to sequences of items and to items accessed associatively. For
example, if the RDS employs an index on the Employee table,
ordered by Employee Name, to find all employees whose names
start with “B,” then the same set of names will be returned if the
access is repeated later in the same transaction. Thus, the RDS
can effectively lock a set of items defined by an SQL predicate and
obtained by any search strategy against insertions into or deletion
from the set. Similarly, if the RDS employs an index to access the
record where Name = “Smith,” and no such record exists, then
the same nonexistence result is ensured for subsequent accesses
within the same transaction.

Level 3 consistency eliminates the problem of lost updates and
also guarantees that one can read a logically consistent version of
any collection of records, since other transactions are logically
serialized with the given one. As an example of this last point,
consider a situation where two or more related data items are
updated together, such as the source and target of a funds trans-
fer. With Level 3 consistency, a reader is assured of reading a
consistent pair, rather than, say, an old balance of one and a new
balance of the other.

It has been a surprise to us that the Level 3 consistency lock
protocol is no more expensive than the Level 2 protocol. In sev-

IBM SYST J VOL 20 NO I 1981 BLASGEN ET AL. 59

eral cases Level 3 is cheaper than Level 2. For that reason most
users elect Level 3 consistency (the default).

The RSS components set locks automatically to guarantee the log-
ical functions of these various consistency levels. For example, in
certain cases the RSS must set locks on records, such as when
they have been inserted or updated. Similarly, in certain cases the
RSS must set locks on index values or ranges of index values,
even when the values are not currently present in the index, such
as to handle the case of “Smith” described above. In both of
these cases the RSS must also acquire physical locks on one or
more pages, which are held at least during the execution of each
RSI operation, in order to ensure that data and index pages are
accessed and maintained correctly.

Data items can be locked at various granularities to ensure that
various applications run efficiently. For example, locks on single
records are effective for transactions that access small amounts of
data, whereas locks on entire segments are more reasonable for
transactions that cause the RDS to access large amounts of data.
In order to accommodate these differences, a dynamic lock hier-
archy protocol has been developed so that a small number of
locks can be used to lock both few and many objects.

Since locks are requested dynamically, it is possible for two or
more concurrent activations of the RSS to deadlock. The.RsS has
been designed to check for deadlock situations when requests are
blocked and to select one or more victims for backout if deadlock
is detected. Each time a transaction waits, a matrix of who is
waiting for whom is examined, and deadlock cycles (if any) are
detected. The selection of a victim is based on the relative ages of
transactions in each deadlock cycle. In general, the RSS selects
the youngest transaction as the victim. This transaction is then
backed out. Reference 9 has a more complete discussion of the
System R lock manager.

Summary and conclusions

We have described the architecture of System R, including the
Relational Data System and the Research Storage System. The
RDS supports a flexible spectrum of binding times, ranging from
precompilation of “canned transactions” to on-line execution of
ad hoc queries. The advantages of this approach may be summa-
rized as follows:

1. For repetitive transactions, all the work of parsing, name bind-
ing, and access path selection is done once at precompilation
time and need not be repeated.

BLASGEN ET AL. IBM SYST J VOL 20 NO 1 I 9 8 1

2. Ad hoc queries are compiled on line into small machine-lan-
guage routines that execute more efficiently than an inter-
preter.

3. Users are given a single language, SQL, for use in ad hoc
queries as well as in writing PL/I and COBOL transaction pro-
grams.

4. The SQL parser, access path selection routines, and machine
language code generator are used in common between query
processing and precompilation of transaction programs.

5 . When an index used by a transaction program is dropped, a
new access path is automatically selected for the transaction
without user intervention.

The RSS is a low-level data base management system that pro-
vides multiple paths for accessing data including sequential
scans, indexes, sorting, and pointer chains, and, in addition, pro-
vides service for locking, recovery, and transaction management.
The locking facility, for example, allows some users to be running
transaction programs, others to be precompiling new programs,
and others to be running ad hoc queries and updates, all on-the
same data base at the same time with predictable consequences.

CITED REFERENCES
1. M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, K. P. Eswaran, J. N.

Gray, P. P. Griffiths, W. F. King, R. A. Lorie, P. R. McJones, J. W. Mehl, G.
R. Putzolu, I . L. Traiger, B. W. Wade, and V. Watson, “System R: A rela-
tional approach to data base management,” ACM Transactions on Database
Systems 1, No. 2, 97-137 (June 1976).

2. D. D. Chamberlin, M. M. Astrahan, K. P. Eswaran, P. P. Griffiths, R. A.
Lorie, J. W. Mehl, P. Reisner, and B. W. Wade, “SEQUEL 2: A unified ap-
proach to data definition, manipulation, and control,” IBM Journal of Re-
search und Development 20, No. 6, 560-575 (November 1976).

3 . P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G.
Price, “Access path selection in a relational database management system,”
23-24, Proceedings of the I979 SIGMOD Conference.

4. R. A. Lorie and J. F. Nilsson, “An access specification language for a rela-
tional data base system,” IBM Journal of Research and Development 23, No.
3, 286-298 (May 1979).

5 . R. A. Lorie and B. W. Wade, The Compilation of N Very High-Level Lan-
guage, Research Report RJ2008, IBM Corporation, San Jose, CA (May 1977).

6. D. D. Chamberlin, M. M. Astrahan, W. F. King, R. A. Lone, J. W. Mehl, T.
G. Price, M. Schkolnick, P. G. Selinger, D. R. Slutz, B. W. Wade, and R. A.
Yost, Support for Repetitive Transactions and Ad Hoc Query in S y s t e m R ,
Research Report RJ2551, IBM Corporation, San Jose, CA (May 1979).

7. R. A. Lone, “Physical integrity in a large segmented database,” ACM Trans-
actions on Database Systems 2, No. I , 91-104 (March 1977).

8. M. W. Blasgen, K. P. Eswaran, and R. G. Casey, “An encoding method for
multifield sorting and indexing,” Communications of the ACM 20, No. 1 1 ,
874-878 (November 1977).

9. J. N. Gray, R. A. Lone, G. F. Putzolu, and I. L. Traiger, “Granularity of locks
and degrees of consistency in a shared data base,” Modeling in Data Base
Management Systems, G. M. Nijssen, editor, North Holland, pp. 365-394
(1976). (Also as IBM Research Report RJ1606.)

IBM SYST J VOL 20 NO I 1981 BLASGEN ET AL. 61

BIBLIOGRAPHY
M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, J . N. Gray, W. F. King, B.
G. Lindsay, R. A. Lorie, J. W. Mehl, T. G. Price, G. R. Putzolu, M. Schkolnick,
P. G. Selinger, D. R. Slutz, H. R. Strong, P. Tiberio, I. L. Traiger, B. W. Wade,
and R. A. Yost, “System R, A relational database management system,” IEEE
Computer 13, No. 5 , 43-48 (May 1979).
M. M. Astrahan et al., A History and Evaluation of System R , Research Report
RJ2843, IBM Corporation, San Jose, CA (June 1980).
M. W. Blasgen and K. P. Eswaran, “Storage and access in relational data bases,”
IBM Systems Journal 16, No. 4, 363-377 (1977).
M. W. Blasgen, J. N. Gray, M. Mitoma, and T. G. Price, “The convoy phenome-
non,” ACM Operating Systems Review 13, No. 2, 20-25 (April 1979).
D. D. Chamberlin, “Relational data base management systems,” Computing Sur-
veys 8, No. 1 , 43-66 (March 1976).
D. D. Chamberlin, A Summary of User Experience with the SQL Data Sub-
language, Research Report RJ2737, IBM Corporation, San Jose, CA (April 1980).
K. P. Eswaran, J . N. Gray, R. A. Lone, and I. L. Traiger, “On the notions of
consistency and predicate locks in a relational database system,’’ Communica-
tions of the ACM 19, No. 1 1 , 624-634 (November 1976).
J . N. Gray, “Notes on data base operating systems,” in Operating Systems-An
Advanced Course, R. Bayer, R. M. Graham, G. Seegmuller, editors, Springer-
Verlag, New York, 393-481 (1978).
J. N. Gray, P. R. McJones, M. W. Blasgen, R. A. Lorie, T. G. Price, G. R.
Putzolu, and I. L. Traiger, The Recovery Manager of a Data Management Sys-
tem, Research Report RJ2623, IBM Corporation, San Jose, CA (August 1979).
J. N. Gray and V. Watson, A Shared Segment and Interprocess Communication
Facility f o r VMi370, Research Report RJ1579, IBM Corporation, San Jose, CA
(May 1975).
P. P. Griffiths and B. W. Wade, “An authorization mechanism for a relational
database system,” ACM Transactions on Database Systems 1, No. 3, 242-255
(September 1976).
H. R. Strong, I. L. Traiger, and G. Markowsky, Slide Search, Research Report
RJ2274, IBM Corporation, San Jose, CA (June 1978).

M . W . Blasgen is with IBM at 10215 Fernwood Road, Bethesda,
MD 20034; f. N . Gray is with TANDEM in Cupertino, CA; W. F.
King is with IBM Corporate Headquarters, Old Orchard Road,
Armonk, N Y 10504; the other authors are located at the IBM Re-
search Laboratory, 5600 Cottle Road, San Jose, CA 95193.

Reprint Order No. (3321-5140.

62 BLASGEN ET AL.

