
System  R is an  experimental  data  base  management system  that 
was designed to  be unusually  easy to  use.  System R supports  a 
high-level relational user  language called SQL, which may  be 
used by ad hoc  users  at  terminals or by  programmers  as  an  im- 
bedded data sublanguage in PLII or COBOL. This paper  describes 
the overall architecture of the  system, including the  Relational 
Data System ( R D S )  and the  Research  Storage  System ( R S S ) .  

RDS is a data base  language  compiler. Host language  programs 
with imbedded SQL statements are compiled  by System R ,  which 
replaces  the S Q L  statements with calls to  a machine-language  ac- 
cess  module.  The  compilation  approach  removes  much of the 
work of pursing,  name  binding, and optimization from  the  path of 
a running program, enabling highly eficient support for repeti- 
tive  transactions. I n  contrast,  the RSS is a low-/evel DBMS, sup- 
porting  simple  record-at-a-time  operators,  but with rather  sophis- 
ticated  transaction management,  recovery, and concurrency 
control. 
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System  R is an experimental  data  base management system de- 
signed and built at  the IBM San  Jose  Research  Laboratory  as  part 
of a program of research in the relational model of data.  The  ar- 
chitecture of System R was first described in Reference I ,  and 
SQL, its user  interface, was described in Reference 2 .  Since  these 
papers  were  published,  System  R  has undergone certain  archi- 
tectural  changes,  and implementation of the  prototype  system is 
now essentially complete.  The  purpose of this  paper is to describe 
the system-its goals, its design,  and achievements-in a single 
report. More detailed  reports  describing specific aspects of the 
system  are listed in the bibliography. 

The  paper is divided into  three  sections.  The first section clarifies 
the goals of the  system and introduces  the  features of the  system. 
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The  architecture is described in the  second  and third sections, 
covering,  respectively,  the  two  system  layers:  the  Relational 
Data  System  and  the  Research  Storage  System. 

Description of System R features 

A major impediment to the  widespread use  of computerized  data 
management systems is the cost  and complexity of understanding 
and using such  systems.  System R is an experimental data base 
system which is easy to understand  and  use.  The  system  adopts  a 
relational data model and supports the language called SQL for  de- 
fining, accessing,  and modifying multiple views of stored  tables. 
It provides a  sophisticated  authorization  facility,  and auto- 
matically handles systems  functions  such  as  recovery  and con- 
currency  control. 

All access  to data in System  R is through SQL (formerly known as 
 SEQUEL^), a relational data base language which  is described in 
Reference 2. An example relational data  base describing employ- 
ees and offices  in a company appears in Figure 1. Examples of the 
use of SQL follow, using this simple data  base. 

Q1: Find the  names of employees in the Paris office. 

SELECT  NAME 
FROM  EMPLOYEE 
WHERE  OFFICE = ‘PARIS’ 

Q2: List all the different offices  in the EMPLOYEE table. 

SELECT  UNlQUE(0FFICE) 
FROM  EMPLOYEE 

Q3: Find the  employees who work in an office managed by Roe- 
ver. Using a  “nested  query,” we obtain: 

SELECT  NAME,  OFFICE, JOB 
FROM  EMPLOYEE 
WHERE  OFFICE  IN 

(SELECT  LOCATION 
FROM  OFFICE 
WHERE  MANAGER = ‘ROEVER’) 

or alternatively we  may “join”  the  tables: 

SELECT  NAME,  OFFICE, JOB 
FROM  EMPLOYEE,  OFFICE 
WHERE  EMPLOYEE.OFFICE = 0FFICE.LOCATION 

AND MANAGER = ‘ROEVER’ 

Q4: List all the offices and  the  average salary of employees in 
each. 
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SELECT  OFFICE,  AVG(SAL) 
FROM EMPLOYEE 
GROUP BY OFFICE 

Q5: Print out a  sorted list of employees in Paris, with their sala- 
ries. 

SELECT  NAME,  SAL 
FROM EMPLOYEE 
WHERE OFFICE = ‘PARIS’ 
ORDER BY  NAME 

Q6: Insert  a new employee  into  the EMPLOYEE table. 

INSERT INTO EMPLOYEE(NAME,  OFFICE, JOB): 
<‘WADE’,  ‘SAN  JOSE’,  ‘SERVICE’> 

(Sets SALARY to null) 

Q7: Close the Paris office. 

DELETE EMPLOYEE 
WHERE OFFICE = ‘PARIS’ 

DELETE OFFICE 
WHERE LOCATION = ‘PARIS’ 

Q8: Give a ten percent raise to  the  service people in Bonn. 

UPDATE EMPLOYEE 
SET  SAL = SAL* 1 . 1  
WHERE JOB = ‘SERVICE’ 
AND OFFICE = ‘BONN’ 

One of the  basic goals of System R is to  support  two different 
types of processing against a data  base: (1) ad hoc  queries  and 
updates, which are usually executed only once, and (2) canned 
programs, which are installed in a program library and  executed 
hundreds of times.  System R makes all the  features of SQL avail- 
able in both these  environments.  These  features include state- 
ments  to  query  and  update a data  base,  to define and  delete  data 
base  objects  such as  tables,  views,  and  indexes, and to  control 
access  to the data  base by various  users. 

An ad hoc  user at a terminal may type SQL statements  and view 
the result directly  at  a  terminal, as in the  examples  above. Alter- 
natively,  the same SQL statements may be imbedded in a PL/I or 
COBOL program by prefixing them with dollar signs to distinguish 
them from host-language statements. SQL statements in PLll or 
COBOL programs may contain host-language variables if the vari- 
able names are prefixed by dollar signs, as in the following ex- 
ample: 

$UPDATE EMPLOYEE SET  SALARY = $X WHERE NAME = $Y; 
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If a PL/I or COBOL program wishes to execute  an SQL query  and 
fetch  the  result,  the  answer  set is readied  for  retrieval by an OPEN 
statement, which binds  the values of any host-language variables 
appearing in the  query.  Then  a FETCH statement is used  repeat- 
edly to  fetch  rows  from  the  answer  set  into  the  designated pro- 
gram variables, as in the following example: 

$LET PEOPLE BE 
SELECT  NAME, SALARY 
INTO $X, $Y 
FROM EMPLOYEE 
WHERE JOB = $Z; 

$OPEN PEOPLE; /*BINDS  VALUE OF Z * /  
$FETCH PEOPLE; /* FETCHES ONE  EMPLOYEE INTO X AND Y * /  
$CLOSE PEOPLE; /* AFTER ALL  VALUES  HAVE  BEEN  FETCHED */ 

After the  execution of each SQL statement,  a  status  code is re- 
turned to the  host program in a variable called SYRCODE. 

data SQL allows data  accesses  and  updates  to  be  expressed  without 
independence mentioning or implying the  existence of specific access  paths (ac- 

cess  paths are techniques  for finding the  relevant data using,  for 
example,  an  index  on a particular  column) or  the physical  layout 
of data.  This  has  the  advantage of making application programs 
simpler and  also  allows  the  data  management  system to  choose an 
optimal strategy  for evaluating the  program. 

For example, to determine if manager Portal has a service  person 
in his office, one invokes  the following query: 

SELECT  NAME 
FROM EMPLOYEE, OFFICE 
WHERE EMPLOYEE.OFFICE = 0FFICE.LOCATION 
AND  0FFICE.MANAGER = ‘PORTAL’ 
AND  EMPLOYEEJOB = ‘SERVICE’ 

Since  the language specifies only what is desired,  and  not how to 
obtain  it,  the  system  has  several  choices. For example, one  strat- 
egy is to  search EMPLOYEE looking for  service  people,  and  for 
each such entry, use  the  corresponding OFFICE to  enter  into  the 
OFFICE table to  see if that  employee  works  for  Portal.  Another 
strategy involves first searching OFFICE to find what LOCATIONS 
Portal manages and then searching EMPLOYEE for  service people 
at  those  locations.  Other  strategies  involve sorting one or both ta- 
bles. 

The  System R optimizer is responsible  for selecting the  strategy 
that minimizes the  “cost” of carrying  out  an SQL statement.  Cost 
is based on  estimates of CPU and I/O requirements. Using an opti- 
mizer in this  way  has  two benefits: First,  the user  need  not be 
concerned with storage  details,  and  thus may be  more  produc- 
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tive.  Second,  the  user is prohibited from  “taking  advantage” of 
knowledge of such  details.  The  second benefit allows the program 
to  continue  functioning as the underlying storage  structures 
evolve with time. 

In general,  since  System R supports a very high-level language, 
most data  base  structuring  issues can be  deferred until after  the 
applications are  written. This “install  now,  tune  later” philoso- 
phy also  eases  application programming by deferring many per- 
formance  decisions. 

The result of any SQL query is itself a table. Such a  table may  be 
materialized immediately,  or  the definition may be stored  as a 
view. Views may be used just like other  tables  except  that  certain 
views (involving, for example,  join)  cannot  be modified. 

Views extend  the notion of data  independence  even further, per- 
mitting the  user  to be isolated not only from storage  details (in- 
dexes,  pointers)  but  also from the  set of tables  currently  stored. If 
the  structure of a  table is changed (columns added  or  permuted  or 
a  table split into  two tables) then a view may  be defined that  ap- 
pears  to  users like the original table. Old programs can access  the 
new data via the view. 

Views also  provide  a powerful authorization mechanism. Rather 
than allowing users  access  to  an  entire  table,  one may define a 
view which is a row  and column subset of the table and only allow 
access  to  that view. For example,  one might allow managers  to 
see only records in their own departments.  Further, one may qual- 
ify certain  columns of the view as  read-only. In order  to allow for 
either  centralized or distributed  control of access,  a  special privi- 
lege called “grant” is also  included, which allows one  to grant 
any  subset of capabilities  to  other  users.  Each  such  operation 
may pass on the  “grant” privilege as well. 

SQL is an integrated  data definition and  data manipulation lan- 
guage. In System R the description of the  data base is stored in 
user-visible “system” tables which  may be read using the SQL 
language. The  creation of a table results in  new entries in these 
system  tables. Users defining tables are encouraged to include 
English text  that  describes  the  “meanings” of the tables  and their 
columns. Later,  others may retrieve all tables with certain  attri- 
butes  or may browse among the  descriptions of defined tables (if 
they  are so authorized). 

A major criticism of nonprocedural languages is that they have  a 
great potential for  execution inefficiency. If the use of SQL caused 
a large degradation in performance,  System R would be of little 
interest.  Therefore,  the design has  concentrated on performance 
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tines. As an  example, during compilation of a  user  program,  the 
user’s  authorization is checked  for  each SQL statement in the pro- 
gram. When the program is loaded for  execution,  one  check is 
made to verify that  the  user’s  authorization  to run the  program 
remains in effect. No authorization  checking is necessary on the 
execution of each SQL statement, so run-time overhead  is mini- 
mized. 

Experiments  indicate  that compilation is almost uniformly supe- 
rior  to  interpretation, even for  those SQL statements  that are exe- 
cuted only once  and  retrieve or modify only a few records. 

Any of the following can be done by an authorized  user at any 
time without interrupting  the normal operation of the  system: 

0 Create  and  destroy  tables 
0 Create  and  destroy  indexes on tables 
0 Add a column to an existing table 
0 Install a new transaction 
0 Add users to  the system 
0 Change the privileges held  by various  users 
0 Define or  drop  a view of existing data 

A major goal  of System R is to  provide a full set of capabilities  for 
data  base  management in a realistic,  operational  environment. 
Only in this way can  the viability of the  architecture  be  assessed. 
In  particular,  System R supports multiple users  concurrently  ac- 
cessing data  and  has  complete facilities for  transaction  backout 
and  system  recovery. Recovery compensates  for  system  failures 
as well as  catastrophic failures of the magnetic media (e.g., disk 
head  crash). Almost all recovery information is kept on disk and a 
noncatastrophic  restart is transparent to operations  personnel. 

The  transaction  notion is the key to a  successful  recovery philos- 
ophy.  A  transaction is a user-defined unit of work which may 
involve many SQL statements. If the  system  crashes  during pro- 
cessing of a  transaction,  data in the  data  base may not be in a 
consistent  state  at  the time of the  crash.  Therefore,  the  system 
must be able to  “undo” partially completed  transactions.  Once a 
transaction  terminates, its updates are committed and  are  no 
longer subject  to being backed out in the  event of a crash. 

Transactions  also supply the key to concurrency  control. If  mul- 
tiple transactions  concurrently  read  and write the  same data, 
anomalies may arise.  System R uses  a locking protocol  such  that 
(1) the  system itself never gets confused  because of concurrent 
access  to  a  data item by two or more transactions,  and (2) the user 
can  control  the  extent to which his transaction is isolated from  the 
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divided between two  subsystems,  the Relational Data  System 
(RDS) and  the  Research  Storage  System (RSS). These  two  com- 
ponents  are  described in the following sections. 

Relational  Data  System 

RDS is split into  two  distinct  functions: (1) a  precompiler, called 
XPREP, which is used to precompile host-language programs  and 
install them as  “canned  programs”  under  System R,  and (2) an 
execution  system, called XRDI, which controls the execution of 
these  “canned  programs” and also executes SQL statements  for 
ad hoc terminal users. 

When an application programmer has  written  a PL/I or COBOL pro- 
gram with imbedded SQL statements, his first step is to  present 
the program to the  System  R  precompiler, XPREP. XPREP finds the 
SQL statements in the program and  translates  them  into a ma- 
chine-language “access module.” In the  user’s  program,  the SQL 
statements  are  replaced by host-language calls to  the  access mod- 
ule. The  access  module is stored in the System R data  base  to 
protect it from unauthorized modification. The  precompilation 
step is illustrated in Figure 3.  

The  advantages gained for  canned programs by the  pre- 
compilation step  are twofold: 

1. Much of the work of parsing,  name-binding,  access  path  selec- 
tion,  and  authorization checking can be  done  once by the  pre- 
compiler and  thus removed from the  process of running the 
canned  program. 

2. The access module,  because it is tailored  to  one specific pro- 
gram, is much smaller and runs much more efficiently than  a 
generalized SQL interpreter. 

After precompilation, the user’s program contains  pure PL/I or 
COBOL and can be compiled using a  conventional language com- 
piler. 

When a  “canned  program” is run on  System R, it makes  calls  to 
XRDI, which in turn loads and invokes  the  access module for  the 
program.  The  access module operates on the  data  base by making 
calls to RSS and  delivers the result to  the  user’s  program.  This 
process is illustrated in Figure 4. 

The ad hoc user of System R is supported by an application pro- 
gram called the  User-Friendly  Interface (UFI), which controls dia- 

Figure 3 Precompilatlon of a PUI- 
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logue management and  the  formatting of the display terminal.  The 
UFI has  an  access module of its own, but  its  access module is not 
complete  because  the  purpose of UFI is to execute SQL statements 
that  are  not  known in advance. When a user  enters  an  ad  hoc SQL 
statement, UFI passes  the  statement to XRDI by means of special 
“PREPARE” and “EXECUTE” calls which will be described  later. 
The effect of these calls is to  cause  a new “section” of the  access 
module of UFI to  be dynamically generated  for  the new statement. 
The dynamically generated  part of the  access module contains 
machine-language code  and is in every way indistinguishable 
from the  parts  that  were  generated by the  precompiler. 

System R permits many users  to be active  simultaneously,  per- 
forming a variety of activities.  Some  users may be precompiling 
new programs while others  are running existing “canned pro- 
grams.” At the  same time, other  users may be using UFI, 
querying and  updating  the  data  base  and  creating new tables  and 
views. All these  simultaneous  activities are supported by the au- 
tomatic locking subsystem built into  the RSS. 

precompilation When a PWI or COBOL program with imbedded SQL statements  is 
presented to  the  System R precompiler, it scans  the  program  to 
find the SQL statements  (they  are  indicated by dollar signs) and 
replaces  each SQL statement with a valid host-language CALL. In 
addition, each SQL statement is put  through a three-step  process 
in order  to  translate it into a machine-language routine. The  three 
steps  are  as follows: 

1. Parsing: The  parser checks  the SQL statement  for  syntactic va- 
lidity and  translates it into a conventional  parse-tree  represen- 
tation.  The  parser also returns to the  System R precompiler 
two lists of host program variables found in the SQL statement: 
a list of input variables  (values to  be furnished by the calling 
program and  used in processing  the  statement)  and a list of 
output  variables (target locations for  data  to be fetched by the 
statement). For example, if the SQL statement being parsed 
were as  follows: 

SELECT  NAME,  SALARY INTO $X, $Y 
FROM EMPLOYEE WHERE OFFICE = $A AND JOB = $B 

the input variables would be  A  and B, and the  output variables 
would be X and Y. 

2. Optimization: The System R optimizer is then  invoked with 
the  parse  tree as input.  The  optimizer  performs  several  tasks: 

a. First, using the internal catalogs of System R, it resolves all 
symbolic names in the SQL statement  to internal data base 
objects. 
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b. A  check is made to  ensure  that  the  current  user is autho- 
rized to perform the  indicated  operation on the  indicated 
table( s) . 

c. If the SQL statement  operates  on  one  or more user-defined 
views,  the definitions of the  views  (stored in parse  tree 
form)  are merged with the SQL statement  to form a new 
composite SQL parse  tree  that  operates on real  stored ta- 
bles. 

d.  The optimizer  uses  the  system catalogs to find the  set of 
available indexes and certain  other  statistical  information 
on the  tables to be processed. This information is used  to 
choose  an  access path and an algorithm for  processing  the 
SQL statement.  The design of this  access  path  selection  pro- 
cess is given briefly below and in more detail in Reference 
3. The  optimizer  represents  its  chosen  access  path by 
means of an ASL (Access Specification Lang~age )~  specifi- 
cation and by construction of the RSS parameter  lists  to be 
used in processing the statement. 

3. Code generation:  The  code  generator  translates the ASL struc- 
tures  produced by the  optimizer  into  a System/370 machine- 
language routine  that implements the  chosen  access  path.s 
This machine-language routine is called a  “section.” When 
running, the section will access  the  data base by using the RSS 
parameter lists that were produced by the  optimizer. 

After all the SQL statements in a program have been translated 
into  sections,  the  sections  are collected together  to form an  ac- 
cess module. In addition to machine-language code,  each  section 
holds the SQL statement from which it was originally constructed, 
thus enabling the  section  to be rebuilt if its original access path 
should become unavailable  at some future time. When the  access 
module is complete, it is  stored in the  System R data  base  for  later 
use. 

After the  System R precompiler has replaced all the SQL state- 
ments in the  user’s program with calls  to XRDI, the program con- 
tains  pure PL/I or COBOL, and it  may be compiled using one of the 
conventional language compilers. The resulting object  program is 
now ready to be run on System R. 

Before proceeding to discuss how this program is executed, we optimization 
describe in more  detail how the  access  path selection portion of 
the optimizer works. 

A query block is represented by a SELECT list,  a FROM list,  and a 
WHERE tree, containing,  respectively,  the list of items to  be re- 
trieved,  the  table(s)  referenced,  and  the Boolean combination of 
simple predicates specified by the  user.  A single SQL statement 
may have many query blocks because  a  predicate may have  one 
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operand  that is itself a  query. For each  query  block, an optimal 
access  path is selected by the  optimizer. 

The optimizer carries  out name resolution  and view composition 
if necessary. View composition replaces all references  to view 
tables  and  columns with their underlying definitions in terms of 
actual  stored  tables. If the view definition contained predicate re- 
strictions,  these are ANDed to  the WHERE tree of this query. After 
view composition every table reference is a  stored  table. 

Finally,  the  optimizer performs access  path  selection.  (Reference 
3 has  a detailed discussion of this operation.)  The  optimizer ex- 
amines both the predicates in the  query  and  the  access  paths 
available on the  tables referenced by the query  and  formulates a 
cost prediction for  each  access  plan, using the following cost  for- 
mula: 

COST = PAGE FETCHES + W * (RSI CALLS). 

This  cost is a weighted measure of 1/0 operations (pages fetched) 
and CPU used (instructions  executed). W is an  adjustable weight- 
ing factor  between I ~ O  and CPU. RSI CALLS is a predicted  number 
of records  returned from the RSS to  be  used in evaluating this 
query. Since most of System R’s CPU time is spent in the RSS, the 
number of RSI calls is a good approximation  for CPU utilization. 
Thus, the  choice of a minimum cost  path  to  process a query in- 
volves an attempt to minimize total  resources  required. 

To compute  the  estimated  costs,  statistics  are maintained in the 
System  R  catalogs  and come from several  sources.  Initial  table 
loading and index  creation initialize these  statistics.  They  are 
then  updated periodically by an UPDATE STATISTICS command, 
which can be run by any authorized  user.  System  R  does not 
update  these  statistics  at  every INSERT,  DELETE, or UPDATE be- 
cause of the  extra  data base operations  and  the locking bottleneck 
it would create.  Continuous  maintenance of statistics would tend 
to serialize access  to  a table for  users  that modify the  table  con- 
tents. 

Using these  statistics,  the optimizer develops  estimates of the 
cost of carrying out  the  statement using a variety of access  paths 
(indexes,  sorting,  and scanning). The  cheapest  access  path is then 
selected. 

executinga When a  user  invokes  a program that  has been precompiled on 
precompiled System R,  the normal facilities of the  operating  system are used 

program to load and start  the object program.  System R first becomes 
aware of the program when it makes its first call to XRDI. On the 
first such call, XRDI checks  the  authority of the  current  user  to 
invoke the  indicated  access  module,  and  checks  that  the  access 
module is still valid. If these  checks are successful,  the  access 
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module is loaded from  the  data  base  into virtual memory, and 
control is passed to  the indicated section. On subsequent calls to 
the  same  access  module, control passes directly to the  indicated 
section.  The machine language code in the section processes  the 
original SQL statement from which it was compiled, using as 
needed the  host-program variables which are  passed with the call. 

Since all name binding, authorization  checking, and access  path 
selection are  done during the precompilation step,  the resulting 
access module is dependent on the  continued  existence of the 
tables it operates  on,  the indexes it uses as  access  paths,  and  the 
privileges of its creator.  Therefore,  whenever  a table or index is 
dropped  or a privilege is revoked,  System R automatically per- 
forms  a  search in its internal catalogs to find access  modules  that 
are dec ted  by the change. If the change involves dropping a 
table  or revoking a  necessary privilege, the  access module is 
erased from the  data  base.  However, if the change  involves 
merely dropping an index used by the  access  module, it  will be 
possible to  regenerate  the  access module by choosing an  alterna- 
tive  access  path. In this  case,  the  access module is marked  “in- 
valid.” When the  access module is next invoked,  the invalid 
marking is detected  and  the  access module is regenerated  auto- 
matically. The original SQL statement  contained within each  sec- 
tion is once again passed through the  parser,  the  optimizer,  and 
the  code  generator to produce  a new section based on the cur- 
rently available access  paths.  The newly regenerated access mod- 
ule is stored in the  data  base  and  also loaded into virtual memory 
for  execution. The  user’s  source program is not affected in any 
way, and the  user is unaware of the regeneration process  except 
for a slight delay during the initial loading of his access  module. 

It is possible that a  user might attempt  to change the data base in 
some way that would invalidate an access module while the  ac- 
cess module was actually loaded and running. It would be unde- 
sirable if such  a  change were allowed to become effective while 
the running access module was in the middle of some operation. 
To prevent this from occurring,  the loaded access module pro- 
tects itself by holding a lock on its own description in the  system 
catalog tables.  Therefore,  any  data  base change made by another 
concurrently running transaction  that will invalidate the  access 
module (changing its description from “valid”  to  “invalid”) must 
wait until the lock is released. 

For  certain  types of SQL statements, no significant choice of ac- 
cess  path is required.  These  statements include those which 
create  and  drop  tables  and  indexes, begin and end transactions, 
and  grant  and  revoke privileges. The  process of creating a new 
table,  for  example, involves placing a description of the  table in 
the  system  catalogs.  Since this process  takes place essentially  the 
same way for  each new table, it  is possible to build into  System R 
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table is to be created.  Instead,  the  standard program is invoked 
and given the  name of the table to be  created and a list of its 
columns  and  their data types.  This information is  conveyed in the 
form of the SQL parse  tree  for  the CREATE TABLE statement. We 
will refer to SQL statements  that  can  be handled in this way as 
“nonoptimizable”  statements. 

When the  System R precompiler encounters  a  nonoptimizable 
statement in a user program, it places the parse  tree of the  state- 
ment directly into  the  section of the  access module rather than 
invoking the  optimizer  and  code-generator.  The resulting section 
is labeled as  an “INTERPSECT,” to distinguish it from a section 
containing machine code, which is labeled a “COMPILESECT.” 

At run  time,  when XRDI receives  a call to execute  a given section, 
it examines  the  label  on  the  section. If it is a COMPILESECT, XRDI 
gives control  directly to  the section. If it is an INTERPSECT, XRDI 
determines  the  statement  type by examining the  root of the  parse 
tree, then  invokes the appropriate  standard  routine.  The  standard 
routine  obtains  its  necessary  inputs  (e.g.,  table  and column 
names) from the  parse  tree in the INTERPSECT. 

dynamically Some  programs may need to  execute SQL statements that were 
defined not known at  the time  the program was  precompiled. An example 

statements of such a program is  the  “User-Friendly  Interface” of System R, 
which allows users  to  type ad hoc SQL statements at a terminal, 
then  executes  them  and displays the  results.  Another  example is a 
general-purpose bulk loader program that loads data  into  tables 
via SQL INSERT statements  but  that  does not know at pre- 
compilation time the name of the  table  to be loaded, or  the num- 
ber  and  data  types of its columns. 

The SQL language feature  that  supports  this  type of application is 
the PREPARE statement, which is an  executable  statement having 
the  syntax: 

PREPARE <statement-name> AS <variable> 

For example,  a  programmer might write: 

PREPARE S1 AS QSTRING; 

This  indicates  to  System R that,  at  run  time,  the  character-type 
variable QSTRING will contain an SQL statement  that  should  be 
optimized and  associated with the  name S1. QSTRING may contain 
any kind of SQL statement,  and  the SQL statement may have  “pa- 
rameters”  indicated by question  marks,  such  as: 

UPDATE EMPLOYEE SET SALARY = ? WHERE NAME = ? 
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When the  precompiler  encounters a PREPARE statement in a  pro- 
gram, it creates a section in the  access module called an IN- 
DEFSECT. 

A call to an INDEFSECT causes  a dynamically defined SQL state- 
ment to pass  through  the  parser,  optimizer,  and  code  generator. 
The result is a  new COMPILESECT or INTERPSECT, which replaces 
the INDEFSECT in the  access module. The dynamically defined 
statement is  now ready  to be executed like any other SQL state- 
ment. 

After writing PREPARE S1 AS QSTRING, the programmer will want 
to execute  the  statement he has  prepared. If the  prepared  state- 
ment was not a query, the  programmer may use the following 
syntax: 

EXECUTE <statement-name> [USING <variable-list> ] 

For example: 

EXECUTE S1 USING  $X, $Y 

The precompiler will translate  the EXECUTE statement  into a call 
on the indicated section, passing the  addresses of $ x  and $Y as 
parameters of the  call.  The  section may be executed many times, 
with different parameters, without reinvoking the  System  R opti- 
mizer. 

If the  prepared SQL statement was a  query (a SELECT statement), 
the COMPILESECT produced  for it  will look exactly like a COM- 
PILESECT produced by the  precompiler.  Therefore,  the program 
may proceed  to  fetch  the result of the  query using OPEN and 
FETCH statements much like those used with a  query  that was 
defined at precompile  time. Details of this  process  are  described 
more fully in Reference 6. 

The  Research  Storage  System 

We now discuss  the RSS, a low-level DBMS that  provides  under- 
lying support  for  System  R.  The RSS supports  the  Research  Stor- 
age Interface (RSI), which provides simple,  record-at-a-time  oper- 
ators on base tables.  Operators are  also  supported  for data recov- 
ery, transaction  management,  and  data definition. Calls to  the RSI 
require explicit use of data  areas called segments and  access 
paths called indexes  and  links, along with the use of Rss-gener- 
ated, numeric identifiers for  data  segments,  tables,  access  paths, 
and  records.  The RDS handles the  selection of efficient access 
paths  to optimize its operations,  and maps symbolic table  names 
to their  internal RSS identifiers. The RSI is a navigational interface 
and  supports an object called a scan which can move from  record 



In  order  to  facilitate gradual data  base integration and tuning of 
access  paths,  the RSS permits new stored  tables  or new indexes  to 
be  created  at  any  time, or existing ones  destroyed,  without 
quiescing the  system and without dumping and  reloading  the 
data. One can also  add new fields to existing tables, or add or 
delete  pointer  chain  paths  across existing tables.  This  facility, 
coupled with the ability to  retrieve  any  subset of fields in a rec- 
ord, provides a degree of data  independence  at  a low level of the 
system, since existing  access modules that  execute RSI operations 
on records will be unaffected by the addition of new fields or  ac- 
cess  paths. 

As a point of comparison,  the RSS has many functions  that  can be 
found in other  systems, both relational and  nonrelational,  such as 
the use of index and  pointer chain structures.  The  areas  that  have 
been emphasized  and  extended in the RSS include dynamic defini- 
tion of new data  types and access paths,  as described above, dy- 
namic binding and unbinding of disk space  to  data  segments, mul- 
tiple levels of isolation from the  actions of the  other  concurrent 
users,  and  automatic locking at  the granularity of segments, ta- 
bles,  pages, or single records. 

segments In the RSS, all data is stored in a  collection of logical address 
spaces called segments,  which are  employed  to  control  physical 
clustering.  Segments  are used for  storing  user data,  access path 
structures,  internal catalog information,  and  intermediate  results 
generated by the RDS. All the  records of any table  must  reside 
within a single segment chosen by the RDS. However,  a given 
segment may contain  several  tables. 

The RSS has the responsibility for mapping logical segment spaces 
to physical extents on disk storage  and  for  supporting  segment 
recovery. Within the RSS, each segment consists of a  sequence of 
4096-byte pages.  Disk space  for  pages is allocated dynamically, 
and pages are  the  transfer unit from disk to virtual storage. A 
page request is handled by allocating space within a  virtual  stor- 
age buffer shared  among all concurrent  users. Pages are fixed in 
their buffer slots until they are explicitly freed by RSS com- 
ponents.  Freeing  a page makes it available for  replacement,  and 
when space is needed,  the buffer manager replaces  whichever 
freed page was least recently used. 

The RSS handles segment recovery by a novel technique  that is 
described in Reference 7. 

tables The main data  object of the RSS is the  n-ary  relation,  alternatively 
called a  table, which consists of a time-varying number of rec- 
ords, each containing n fields. A new table  can be defined at any 
time within any segment chosen by the RDS. An existing table  and 
its  associated  access path structures can be dropped at any  time, 
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with  all storage  space made reusable.  Even  after  a table is defined 
and  loaded, new fields may  be added on the right, without a  data 
base reload and without immediately modifying existing records. 

Operators  are  available  to INSERT and DELETE single records, and 
to FETCH and UPDATE any combination of fields in a  record. One 
can also  fetch  a  sequence of records along an  access  path  through 
the use of an RSS scan. Each  scan is created by the RSS for  fetch- 
ing records on a  particular  access  path through execution of the 
OPEN-SCAN operator. The records along the  path may then  be 
accessed by a  sequence of NEXT operations on that  scan. A scan 
may employ an index, which gives direct  access and value-order- 
ing according to  one  or more of the  columns of a  table (e.g.,  to 
retrieve all employees in a given department). A table may have 
as many indexes as desired.  The RSS also  provides  a scan through 
the physical pages  on which the  data is stored, delivering records 
in a system-determined  order. For all of these  access  paths,  the 
RDS may attach a search argument (SARG) to each NEXT opera- 
tion.  The  search  argument may be any  predicate involving atomic 
expressions of the form <field number,  operator,  value>.  The 
value is an explicit byte string provided by the RDS, and  the  oper- 

timizer attempts,  whenever  possible,  to place SQL predicates  into 
RSS search  arguments  because of the  performance  advantage  re- 
sulting from reduced interface crossing. 

Associated with every  record of a table is a record identifier 
called a TID. Each  record identifier is generated by the RSS and is 
available to  the RDS as a concise  and efficient means of addressing 
records. TIDS are  also used within the RSS to  refer to records from 
index structures and to maintain pointer  chains. However, they 
are  not intended for end users  above  the RDS, since they may be 
reused by the RSS after record deletions,  and  are reassigned dur- 
ing data  base  reorganization. 

In order  to  tune  the  data base to  particular  environments, the RSS 
accepts hints for  physical allocation during INSERT operations in 
the form of a  tentative "ID. The new record will be inserted in the 
page associated with that TID if sufficient space is available.  Oth- 
erwise, a nearby page is chosen by the RSS. Use of this facility 
enables  the RDS to cluster  records of a given table with respect  to 
some  criterion  such as a value ordering on one  or more fields. 

An index in the RSS is an access  path that provides a view of a 
table  ordered with respect to values in one  or more sort fields. 
Indexes combined with scans provide the ability to  scan  tables 
along a value ordering  for low-level support of simple views. 
More importantly, an index provides  associative  access  capabil- 
ity. By keying on the sort field values,  the RDS can rapidly fetch  a 
record using an  index.  The RDS can also open a  scan  at  a  particu- 
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lar point in the  index  and  retrieve a sequence of records with a 
given range of sort  values.  The RDS can employ a disjunctive nor- 
mal form search  argument (a SARG) during scanning to  further 
restrict  the  set of records  that is returned. This facility is espe- 
cially useful for  situations where SQL search  predicates  involve 
several fields of a  table  and  at  least  one of them  has  index sup- 
port. 

A new index can  be defined at  any  time, on any combination of 
fields in a  table.  Furthermore, each of the fields may be specified 
as ascending or descending.  Once defined, an index is maintained 
automatically by the RSS during all INSERT, DELETE, and UPDATE 
operations. An index  can  also be dropped  at any time. 

Each index is composed of one or more  pages within the segment 
containing the  table.  A new page can  be  added  to  an  index when 
needed, as long as one of the pages within the segment is marked 
as available. The pages  for a given index  are  organized  into a 
balanced hierarchical  structure, in the  style of B trees  and of Key 
Sequenced  Data Sets in IBM’S Virtual  Storage  Access Method 
(VSAM). 

In  order  to handle variable-length, multifield indexes efficiently, a 
special encoding scheme is employed on the field values so that 
the resulting concatenation  can  be  compared against others for 
ordering  and  searching. This encoding eliminates the need  for 
padding of each field and field-by-field comparison.8 

sort The RSS contains  a  sort  component  that sorts records  from a table 
according to  an RDS-provided order specification. The sort com- 
ponent can sort all of a  table,  or  any  row or column subset of a 
table, by one or more fields, in either  ascending or descending 
order.  Sort is carried  out using a sort-merge  algorithm, using a 
rapid internal sort of the  records on a  page, followed by a merge 
of the internally sorted  pages. 

transaction A transaction at  the RSS is a  sequence of RSI calls issued in behalf 
management of one  user. It also  serves  as a unit of consistency  and  recovery, 

as will be discussed below. An RSS transaction is delimited by the 
BEGIN TRANSACTION and END TRANSACTION commands.  Various 
resources  are  assigned  to  transactions by the RSS, using the lock- 
ing techniques  described below. A  transaction  recovery  scheme 
that allows a transaction to  be backed  out to  the beginning of the 
transaction is provided. 

Transaction  recovery  occurs when the RESTORE TRANSACTION 
command is issued  by the RDS, or  when  the RSS initiates the pro- 
cedure  to handle  deadlock.  The effect is  to undo all the changes 
made by the  transaction, including all record  and  index modifica- 
tions  caused by INSERT, DELETE, and UPDATE operations,  and all 
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the  declarations for defining new tables  and indexes. Finally, all 
locks on recoverable  data  that  have  been  obtained are  released. 

The  transaction  recovery function is supported through the main- 
tenance of time-ordered lists of log entries, which record informa- 
tion about  each  change to recoverable data.  The entries for  each 
transaction  are  chained  together  and include the old and  new val- 
ues of all modified objects. Modifications to index structures  are 
not logged since  their values can be determined from data values 
and index catalog information. 

The log entries  themselves  are  stored in a  dedicated  segment used 
as a ring buffer. This segment is treated  as  a simple linear  byte 
space, with entries spanning page boundaries. 

The RSS provides  functions  to  recover  the  data base to a consis- 
tent  state in the  event of a system  crash. By a consistent state we 
mean a set of data values  that would result if a  set of transactions 
had completed  and  no  other  transactions were in progress. At 
such a state all indexes  and  pointers  are  correct  at  the RSS level, 
and all user-defined semantics on data values are valid. 

In the RSS, the  system  recovery  mechanisms  use disk storage to 
recover in the event of a “soft” failure  that  causes  the  contents 
of main memory to be lost but  that  does not damage secondary 
storage.  This  recovery  technique is oriented  toward  frequent 
checkpoints  and rapid recovery. A similar mechanism uses  tape 
storage to  recover in the relatively infrequent case  where disk 
storage is destroyed, and is oriented toward less  frequent  check- 
points. 

Since  System R is a concurrent  user  system, locking techniques 
must be employed to solve various  synchronization  problems. 
both at the logical level of objects like tables and records  and at 
the physical level of pages. 

At the logical level,  such classic situations as the  Lost  Update 
problem must be handled to ensure  that  two  concurrent  transac- 
tions do not read  the same value and  then  try  to  write back an 
incremented  value. If these  transactions  are  not  synchronized, 
the second update will overwrite  the  first,  and  the effect of one 
increment will be lost. Similarly, if a  user wishes to  read only 
“clean” or committed data, not “dirty”  data which has  been up- 
dated by a transaction still in progress  and which  may  be backed 
out, then some mechanism must be invoked to  check  whether  or 
not the  data is dirty.  For  another  example, if transaction  recovery 
is to affect only the modifications of a single user,  then  mecha- 
nisms are needed to  ensure  that data updated by some ongoing 
transaction T1 is not  updated by another  transaction T2. Other- 
wise,  the  backout of transaction T1 will undo T2’s update and 
violate the principle of isolated backout. 
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At thephysical level of pages, locking techniques  are  required  to 
ensure  that  internal  components of the RSS give correct  results. 
For example,  a data page may contain  several  records,  and  each 
record is accessed  through  its  record identifier, which requires 
following a pointer within the  data  page.  Even if no logical con- 
flict occurs  between  two  transactions,  because  each is accessing  a 
different table or a different record in the same  table, a problem 
can occur at  the physical level if one  transaction follows a  pointer 
to a  record on some  page, while the  other  transaction  updates  a 
second  record on the same page and  causes a data  compaction 
routine to reassign record  locations. 

One basic  decision in System R was to handle both logical and 
physical locking requirements within the RSS, rather  than splitting 
the  functions across  the RDS and RSS subsystems.  Physical  lock- 
ing is handled by setting  and holding locks on one  or  more pages 
during the  execution of a single RSI operation. Logical locking is 
handled by setting  locks on such  objects  as  segments,  tables, TIDS 
and key value intervals and holding them  either until they are 
explicitly released or  to the  end of the  transaction.  The main mo- 
tivation for  this  decision is to facilitate  the exploration of alterna- 
tive locking techniques. (One particular  alternative  has  already 
been included in the RSS as a tuning option, whereby the finest 
level of locking in a segment can be  expanded  to  an  entire page of 
data, rather  than single records.  This  option allows pages  to be 
locked  for  both logical and physical purposes by varying the dura- 
tion of the  lock.)  Other motivations are  to simplify the  work of the 
RDS and  to  develop  a  complete,  concurrent  user RSS that  can  be 
tailored to  future  research  applications. 

For situations  detected by the  end  user or RDS where locking 
large aggregates is desirable,  the RSS also  supports  operators  for 
placing explicit share  or exclusive  locks  on  entire  segments or 
tables. 

The RSS supports multiple levels of consistency  that  control  the 
degree of isolation of a user from the  actions of other  concurrent 
users. When a  transaction is started  at  the RSI, one of three con- 
sistency levels must be specified. (These  same  consistency  levels 
are also reflected to  the end user at  the SQL level.) Different con- 
sistency levels may be chosen by different concurrent  transac- 
tions.  For all  of these  levels,  the RSS guarantees  that  any  data 
modified  by the  transaction is not modified by any other, until the 
given transaction ends. This rule is essential to our  transaction 
recovery  scheme,  where  the  backout of modifications by one 
transaction  does  not affect modifications made by other  transac- 
tions. 

The differences in consistency  levels  occur during read  opera- 
tions.  Level 1 consistency offers the least isolation from  other 
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users  but  causes the lowest overhead  and lock contention. With 
this level,  “dirty  data”  (data which has been updated by a still- 
running transaction) may be  read  (but  not, of course,  updated) by 
a second transaction.  It is clear  that  execution with Level 1 con- 
sistency incurs the risk of reading data values that in some  sense 
never appeared if the transaction which set  the  data  values is later 
backed out,  Yet,  this level may be entirely  satisfactory  for  gather- 
ing statistical information from  a large data  base when exact re- 
sults are  not  required. 

In a transaction with Level 2 consistency,  the  user is assured  that 
every item read is “clean,”  i.e.,  that  the  transaction  that  estab- 
lished the value has  ended  and is therefore not subject to backout. 
However, no guarantee is made that subsequent  access to the 
same item will yield the  same  values. At this  consistency  level, it 
is possible for  another  transaction  to modify a  data item any time 
after the given Level 2 transaction  has read it. A second read by 
the given transaction will then yield the new value,  since the item 
will become  clean again when the  other  transaction  terminates. 

For  the highest consistency level, called  Level 3 ,  the  user sees 
the logical equivalent of a single-user  system. No user running 
Level 3 can tell that the other  users  are  concurrently  accessing 
and modifying the  data  base.  Every item read is clean,  and sub- 
sequent  reads yield the  same  values,  subject, of course,  to up- 
dates  by  the given user.  This  repeatability  feature applies not only 
to a specific item accessed  directly by record identifier but  even 
to  sequences of items  and to items accessed  associatively.  For 
example, if the RDS employs an  index  on  the  Employee  table, 
ordered by Employee  Name, to find all  employees  whose  names 
start with “B,” then  the  same  set of names will be returned if the 
access is repeated  later in the  same  transaction.  Thus, the RDS 
can effectively lock a set of items defined by an SQL predicate  and 
obtained by any  search  strategy  against  insertions  into or deletion 
from the  set. Similarly, if the RDS employs  an  index  to  access  the 
record  where  Name = “Smith,”  and  no such record  exists, then 
the same  nonexistence  result is ensured for subsequent  accesses 
within the same  transaction. 

Level 3 consistency eliminates the problem of lost updates and 
also guarantees that one  can  read a logically consistent  version of 
any collection of records,  since  other  transactions  are logically 
serialized with the given one. As an example of this last  point, 
consider a situation where two or more  related  data  items  are 
updated together,  such  as  the  source  and  target of a funds  trans- 
fer. With Level 3 consistency,  a  reader is assured of reading a 
consistent  pair,  rather  than, say,  an old balance of one  and  a new 
balance of the  other. 

It has been  a  surprise  to  us  that  the Level 3 consistency lock 
protocol is no more  expensive  than the Level 2 protocol.  In  sev- 
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eral  cases  Level 3 is cheaper  than  Level 2. For  that  reason most 
users  elect  Level 3 consistency  (the default). 

The RSS components  set  locks automatically to  guarantee the log- 
ical functions of these  various  consistency levels. For example, in 
certain  cases the RSS must set  locks on  records, such as when 
they have  been  inserted or  updated. Similarly, in certain cases the 
RSS must  set  locks  on  index  values or ranges of index  values, 
even when the  values  are  not  currently  present in the  index, such 
as to handle the  case of “Smith”  described  above.  In  both of 
these  cases  the RSS must also  acquire physical locks on  one  or 
more pages,  which  are held at  least during the  execution  of  each 
RSI operation, in order to ensure  that  data  and index pages  are 
accessed  and maintained correctly. 

Data items  can  be locked at various  granularities  to ensure that 
various applications run efficiently. For example,  locks  on single 
records are effective for  transactions  that  access small amounts of 
data,  whereas  locks  on  entire  segments  are more reasonable  for 
transactions that  cause  the RDS to  access large amounts of data. 
In  order  to  accommodate  these  differences, a dynamic lock hier- 
archy protocol  has been developed so that a small number of 
locks can be used  to lock both few and many objects. 

Since locks are requested  dynamically, it is possible for  two or 
more concurrent  activations of the RSS to deadlock. The.RsS has 
been designed to  check  for deadlock  situations when requests  are 
blocked and to  select one or more victims for  backout if deadlock 
is detected.  Each time a transaction waits, a matrix of who is 
waiting for whom is examined,  and  deadlock  cycles (if any)  are 
detected.  The  selection of a victim is based  on  the  relative ages of 
transactions in each deadlock cycle.  In  general,  the RSS selects 
the  youngest  transaction as  the victim.  This  transaction is then 
backed out.  Reference 9 has a more  complete  discussion of the 
System  R lock manager. 

Summary and conclusions 

We have  described  the  architecture of System R, including the 
Relational Data  System  and  the  Research  Storage  System.  The 
RDS supports  a flexible spectrum of binding times, ranging from 
precompilation of “canned  transactions”  to on-line execution of 
ad hoc queries. The advantages of this  approach may be summa- 
rized as follows: 

1. For  repetitive  transactions, all the work of parsing, name bind- 
ing, and  access path selection is done  once  at precompilation 
time and  need  not be repeated. 
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2. Ad hoc  queries are compiled on line into small machine-lan- 
guage routines  that  execute  more efficiently than  an inter- 
preter. 

3. Users  are given a single language, SQL, for use in ad hoc 
queries  as well as in writing PL/I and COBOL transaction pro- 
grams. 

4. The SQL parser,  access  path  selection  routines,  and machine 
language code  generator are used in common between  query 
processing  and precompilation of transaction  programs. 

5 .  When an index used by a  transaction program is dropped,  a 
new access  path is automatically selected  for  the  transaction 
without  user  intervention. 

The RSS is a low-level data base management system that pro- 
vides multiple paths  for  accessing  data including sequential 
scans,  indexes,  sorting,  and  pointer  chains,  and, in addition, pro- 
vides service  for locking, recovery,  and  transaction  management. 
The locking facility,  for  example, allows some users  to be running 
transaction  programs,  others to be precompiling new programs, 
and others  to be running ad hoc queries and updates, all on-the 
same data base at  the same time with predictable consequences. 
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