
Basic concepts cfrelational data base management systems are
described. Characteristics of the relational approach are identi-
jied and compared with present implementations of hierarchical
and network data base systems. Depending on the application, a
user may experience one or more of the following benejits of rela-
tional systems described in this paper: ease of understanding,
increased data independence, ease of use, sound theoretical
basis, and generalized data dejinition. Types of applications most
suited to hierarchical and network data base systems are ulso
compared and contrasted.

A primer on relational data base concepts
by G. Sandberg

For about a decade there has been continuously increasing inter-
est in relational data base systems, most of it initially created by
university and research activities. A series of papers published by
E. F. Codd in the early seventies are often cited as the earliest
works on the subject.’

Relational data base systems are now becoming available for op-
erational data processing installations. Examples of such systems
by IBM are Query-By-E~ample~’~ and IMPS.4 In addition, many
research prototype systems have been implemented, as ex-
emplified by System R5 and IS/1-PRTV.6’7 A number of other rela-
tional systems are expected to become commercially available
within the next few years.’” This paper describes basic concepts
of relational data base systems and identifies potential benefits of
the relational data base approach, comparing it with present im-
plementations of hierarchic and network data base systems.

What is a relational data base system?

The most fundamental property of a relational data base system is
that data are presented to the user as tables instead of networks
or hierarchies. Thus, the data are structured in the form of tables

Copyright 1981 by International Business Machines Corporation. Copying is per-
mitted without payment of royalty provided that (I) each reproduction is done
without alteration and (2) the J o u r n d reference and IBM copyright notice are
included on the first page. The title and abstract may be used without further
permission in computer-based and other information-service systems. Permission

Table 1 Relational structure of employee records

COLUMN OR FIELD

Figure 1 Transformation of (a) a hi-
erarchy of two record
types into (b) the corre-
sponding relational tables

(A)

DEPARTMENT MANAGER LOCATION

I DEPARTMENT IEMPLOYEE NUMBERI NAME I

~~~~~~ ~~ 

1 2 3 
EMPLOYEE NAME DEPARTMENT 

NUMBER 

1 61256 MYGIND  NFSC 
ROWOR 
RECORD 

2 38972 CHEMNITZ NMC 
09181 BARCLAY NFSC 
74245 SANDBERG  NFSC 

5 223 18 PERSSON  NMC 

consisting of columns and rows, with the rows corresponding to 
records or segments,  and  the columns representing fields within 
the  records. Table 1 is an example of a relational data  structure 
for  employee information, with Employee as  the  table name. 

This illustrative table  contains only five rows or records,  one for 
each employee. Such  a  data  base  for  a company of a  size  that 
requires  a  data  base, of course, contains many more rows.  Three 
facts  are  recorded  here  for each employee-employee number, 
name, and department-each in a  separate column of the table. 

The  internal  data  storage  format  is not relevant  to  the relational 
view. This is not to say  that internal access  and storage tech- 
niques are not important because they determine  whether  the 
data  base  system performance is acceptable.  Performance impli- 
cations,  however,  are not part of the definition of the relation'd 
view. 

The  important  fact is that  the relational view exists  at  the level at 
which the  user  sees  the data. The user may be, for example,  a 
person sitting at  a visual terminal and interacting with the system 
in a specialized query language or a programmer using conven- 
tional programming languages like COBOL or PL/I. 

Any hierarchical or network  data  structure  can  be transformed 
into a  set of relational tables. One technique is to  convert each 
predefined access path in the  network or hierarchy into  a key 
field column in a relational table. Then all  fields from the hi- 
erarchy or network record are explicitly named in the relational 
table. As an example: two  tables may be  substituted for a  parent- 
child record  structure in a hierarchy or an owner-member set in a 
CODASYL network.  The first table  represents  the parent record 
type,  and  the second is equivalent to  the child record  type, ex- 
panded with the key field of the parent as an extra column. The 
transformation of a  hierarchy of two  record  types  (a)  into  corre- 



~~ 

If a relational data base view is simply a view of records with the table 
same  format, how does  that differ from program views of tradi- definition 
tional flat  files that  have been used for many years?  The dif- 
ferences include specificity of rules. The following are rules that 
must be followed if the  data  base view is to qualify as a relational 
view: 

0 Each  table  contains only one  record  type. 
0 Each  record  (row)  has  a fixed number of fields, all of which 

0 Fields  are  distinct (atomic) so that  repeating  groups  are not 

0 Each  record is unique-duplicates are  not  allowed. 
0 Records may come in any  order;  there is no predetermined 

e Fields  take  their values from  adomain of possible field values. 
0 The  same domain may be used for many different field types, 

thus becoming the  source of field values in different columns 
in the  same  or different tables. 

0 New tables can be produced on the basis of a match of  field 
values from the  same domain in two existing  tables. 

are explicitly named. 

allowed." 

sequence. 

The  formation of new tables is a key to relational systems,  and 
does  not apply to  access  methods handling flat files. The  access 
methods are not designed to combine such files into new files; 
that is an application program responsibility. 

Table operations 

One of the new operations available in relational systems is the 
capability of combining relational tables, called a join. Other  rela- 
tional operations  are  selection (which creates a subset of  all the 
records in a table), and projection (which creates  a  subset of the 
columns in a  table). A key characteristic  shared by all relational 
operations is that  the  results they produce are always new tables. 
This  makes it possible to provide very powerful and  concise lan- 
guages for  the manipulation of relational data  structures. 

The  simplest of these  basic relational operations is selection, in selection 
which certain rows in a given table are  selected  and used to build 
a new table. A selection criterion may be,  for  example,  that  one 
or  more fields have  a specific value: all rows satisfying this condi- 
tion are selected  for  the new table. Table 2 gives an  example of 
selection.  Here all rows of Table 2a  in which the  employee's  de- 
partment is NFSC are  selected  for inclusion in the newly created 
Table 2b. 

In the  next operation-projection-only certain columns in a projection 



Table 2 Selection of employees In (a) who are in Department NFSC for inclusion in a new 
table (b) 

EMPLOYEE 
NUMBER 

NAME  DEPARTMENT 

61256 
38972 

(a) 09181 
74245 
22318 

MYGIND 
CHEMNITZ 
BARCLAY 
SANDBERG 
PERSSON 

NFSC 
NMC 
NFSC 
NFSC 
NMC 

EMPLOYEE 
NUMBER 

NAME  DEPARTMENT 

6 1256 
(b) 09181 

74245 

MYGIND 
BARCLAY 
SANDBERG 

NFSC 
NFSC 
NFSC 

Table 3 Projection using the NAME and DEPARTMENT column in (a) to  form the new table 

(b) 

EMPLOYEE  NAME 
NUMBER 

DEPARTMENT 

61256 MYGIND 
38972 CHEMNITZ 

74245 SANDBERG 
22318 PERSSON 

(a) 09181 BARCLAY 

NFSC 
NMC 
NFSC 
NFSC 
NMC 

NAME  DEPARTMENT 

MYGIND NFSC 
CHEMNITZ NMC 
BARCLAY NFSC 
SANDBERG  NFSC 
PERSSON NMC 

columns. When the new table is built,  the resulting table may 
contain  some rows that  are  identical,  because in some  rows val- 
ues in the retained columns may be identical. Since  duplicates are 
not allowed in a relational table, all but  one of such duplicate 
rows are discarded.  The  basic operation is illustrated in Table 3, 
in which the projection operation is performed on the  Name  and 
DeDartment columns in Table 3a to form the  resultant  Table  3b. 



Table 4 Join on DEPARTMENT (c) consists of  MANAGER  and  LOCATION information in (b) combined with EMPLOYEE  NUMBER  and 
NAME in (a) 

EMPLOYEE  NAME  DEPARTMENT 
NUMBER 

61256 MYGIND  NFSC 
38972 CHEMNITZ  NMC 

74245 SANDBERG  NFSC 
22318 PERSSON  NMC 

(a) 09181 BARCLAY  NFSC 

DEPARTMENT  MANAGER  LOCATION 

NFSC 
NMC  HOFFMAN  COPENHAGEN (b) 

JARENO  STOCKHOLM 

EMPLOYEE  NAME  DEPARTMENT  MANAGER  LOCATION 
NUMBER 

.~ 

61256 MYGIND  NFSC  JARENO  STOCKHOLM 
38972 

74245 SANDBERG  NFSC  JARENO  STOCKHOLM 
223 18 PERSSON  NMC  HOFFMAN  COPENHAGEN 

CHEMNITZ  NMC  HOFFMAN  COPENHAGEN 
(C) 09181 BARCLAY  NFSC  JARENO  STOCKHOLM 

Quite often, selection and  projection  are  combined  into  the  same 
request.  In  that  case,  the  search criterion may be that a certain 
field be  greater  than a specified value,  and only certain named 
columns are of interest.  The first operation selects  the  rows  that 
satisfy the size condition,  and  the second operation  projects  the 
relevant  columns. 

The  third operation-join-means that  two  tables  are  to be join 
merged on the basis of the values from one column in each 
table."  The  two  tables are said to be joined  over the  two  columns. 
Consider  the  example in which Table 4a and  Table 4b are  re- 
quired to  be joined on the  basis of the  Department column in each 
table. When this is done,  the Manager and  Location  columns 
form the  join on Department shown in Table  4c. 

Conceptually,  the  join  operation works as follows: 

0 Take  the first row  from  the first table and  try to find a row in 

0 When a match is found,  put  the  two  rows  together, forming 

0 Continue until the  second  table is exhausted. 

the  second table with a matching value. 

one new row. 



0 Repeat until the first table is also  exhausted. The second  table 
has now been  searched as many times as there  are  rows in the 
first table. 

For  the  join  operation  to  make  sense,  the  two  columns must con- 
tain field values that are comparable,  that  is,  they come from  the 
same  domain. To illustrate  this  point, if there  is  one domain of all 
possible dates, and  one domain of all possible  prices, it is not 
reasonable  to  join  two  tables on the basis of dates in one  table  and 
prices in the  other. Relational implementations  do  not  always 
check  such  conditions, but leave  the  user to determine  what is a 
reasonable  operation. 

The method of operation for a join is very time-consuming and 
expensive if implemented directly as described.  That  has been a 
criticism of relational systems  since  the beginning. However, im- 
proved  techniques in the  areas of query optimization  and in- 
dexing are developing,  some of which are discussed in Refer- 
ences 12-14. Thus, in the  join operation previously  discussed, if 
there  were  an  index on a column in the  second  table, only the 
index might have  to  be  searched. And for  some  rows in the first 
table,  no search would be  required in the  second  table  at all. Fur- 
ther, if there  were  also  an  index on a column in the first table,  the 
search  for  equal  values  could  be performed entirely in the in- 
dexes.  The  data  base  system may also keep  statistics  about  actual 
or intended  usage, in order  to optimize the  search  order  inter- 
nally. It now seems  that  improved optimization methods  are suffi- 
ciently developed  to make possible large-scale relational testing. 

Access paths 

Records  can  be  accessed in a relational data  base  system only 
through  the matching of field values.  There  is  no path-following 
mechanism in a relational system  that is comparable,  for  in- 
stance,  to a FIND LAST WITHIN ‘set’  operation in a CODASYL sys- 
tem or GET NEXT WITHIN PARENT in DL&. 

In  the hierarchic  or  network  approach,  access  paths are pre- 
defined in the  data  structure  seen by the  user. A programmer of a 
hierarchic  data  structure  uses  the implicit hierarchic  structure to 
navigate  through,  for  instance,  an  access  path  from a parent to a 
child segment  type.  However, any new access  requirement  that 
does  not directly follow the predefined access  paths in the  data 
structure  requires additional programming logic. 

In  the relational approach,  no  paths  are predefined in the  data 
structure  as  seen by the  user.  Because all access is accomplished 
by the matching of  field values, many different paths potentially 



potential  for  extensions  and  restructuring,  and  provides a very 
high-level interface  to  the  data  structures, as compared with data 
models that use predefined paths. 

At the  same  time,  there is increased risk of  inefficient and costly 
data  access. Since the  user  does  not  see which access  paths  are 
internally favored  over others, he cannot  decide  whether opti- 
mum paths  are being followed. 

An interesting  and  important  characteristic of the relational ap- 
proach is symmetry in data  access  for all types of access.  This 
results  from the equality of fields in the relational data  structure. 
Access in network  and  hierarchical  implementations  often  re- 
quires different coding techniques, depending on the  predefined 
path being followed. Consider,  for  example,  access  to  a  depen- 
dent segment in a DL/I hierarchy. This requires different coding 
statements, depending on whether  a predefined secondary index 
access  path  or  an  access  path implicit in the  hierarchical  structure 
is used.  The same applies  to  access VIA 'set'  as  opposed  to  direct 
access in a CODASYL network.  Therefore,  such  data  structures 
cannot be easily restructured without some effect on existing pro- 
grams  and  procedures. l5 

The  essentials of relational operations  and  access  paths may be 
summarized as follows: 

0 Relational operations work on whole tables,  ;.e.,  sets of rec- 

0 The result of each operation is a new table. 
0 Operations  are  based  on field values in the tables as the  one 

ords. 

and only means of access. 

The  characteristics of today's network and hierarchical data 
structures  are  the following: 

Network and hierarchical systems  operate on individual rec- 
ords,  one at a time. This,  however, is not an inherent  neces- 
sity,  since  set  operations on networks  and  hierarchies  are  also 
conceivable.'6 

0 The result of data  access  operations is normally a single rec- 
ord,"  since  network  and hierarchical systems work with indi- 
vidual records. 

0 Operations  are based mostly on predefined access  paths in the 
data  structures and different access  paths may require dif- 
ferent coding techniques. 

Relational  languages 

We have discussed the basic relational operations of selection, 



relational data  base  systems: how these  functions  are  provided to 
the  user through relational language facilities. Even the form of 
the language is very  important  for  the ease-of-use aspect of the 
relational approach. 

Many different languages have been defined for  use with rela- 
tional data  base  structures. Most such languages are query-type 
languages,'R"g but  there  are  also languages of the traditional type 
intended to be incorporated  into such programming languages as 
COBOL and PL/I. 

algebraic 
languages 

calculus 
languages 

display- 
oriented 

languages 

network  and 
hierarchical 

languages 

A language that explicitly provides  select,  project,  and  join is 
called a relutionul  algebraic  language. An example of an alge- 
braic relational language is SQL," which, by the  way, is the lan- 
guage used in System R." Algebraic relational languages work 
with sets of records,  that is, they work on tables as a whole. 
Other  operations  that work on  sets of records are  the classical set 
operations from mathematical  set  theory:  union,  intersection,  and 
difference. These  operators  are sometimes included in relational 
algebraic  languages, as well as special functions  for  summation, 
aggregation, and ordering. 

Another  class of relational languages is that of the relutional  cal- 
culus  languages, an  example of which is  ALPHA.^' This level of 
language is even less  procedural  than relational algebra. A very 
important  characteristic of both algebraic and calculus languages 
is that  any  operation  results in a new table.  This  means  that com- 
posite  expressions can be constructed in which the result of one 
operation  become  the  operand of another. 

A third class of relational languages is that of display-oriented 
languages, as exemplified by Query-By-Example (QBE). Here, 
instead of the relational operations being specified in a linear 
statement form directly as  joins, selections,  and  projections,  they 
are  achieved by the manipulation of graphic symbols on a display 
screen. 

There  are also a few examples of query languages based  on net- 
work or hierarchical data models.18 However,  experience  shows 
that  these  are most effective when the predefined access  paths in 
the  data  structure  are  used  directly. When indirect  access  paths 
must be  used,  the  query logic that must be specified by the  user 
immediately becomes more complex even though the  query itself 
appears  to  be simple. Therefore, predefined access  paths some- 
times appear  as  asymmetry  and complexity to  the  user. 

Notes on relational theory 

When relational data  base  systems  are  studied  theoretically, dif- 



ness data processing environments. This terminology makes the 
subject  appear unnecessarily complex,  and  has  contributed  more 
than  anything  else to a misunderstanding of the  concepts of ta- 
bles. 

The following is a list of terms with the formal name usually found 
in technical  literature on the left and its everyday  data  processing 
equivalent on the right of the equivalency sign. 

Relation = table or record  type. 
Tuple = row or  record  occurrence. 
Attribute = column name  or field type. 
Element = field. 
Degree = number of columns in a table. 
Cardinality = number of rows in a table. 
Binary relations = table with two columns. 
N-ary relations = table with N columns. 
N-tuple = a  record from a table with N columns. 

There is no  corresponding  term  for domain, but it has  the follow- 
ing meaning. All values that may occur for  a specific field type 
come from a domain of all the possible values of this  type. Many 
different field types may use  the same domain. 

Even  today, many authors of research articles use their own (and 
sometimes variant) definitions of relational terminology as a start- 
ing point  for developing further  ideas.  This is a  clear indication 
that  there is still considerable evolution going on and that rela- 
tional theory may mean different things to different people. We 
therefore  conclude this section with the following more formal 
but well-established definition of a relation. 

Given sets SI, S,, . * ., S,, (not necessarily distinct), R is a relation 
on these n sets if it is a set of n-tuples, each of which has its first 
element from SI, its second element from S,, and  so  on. More 
concisely, R is a  subset of the  Cartesian  product SI x S, X . . . X 

S,. Sj is the jth domain of R .  R is said to  have  degree n.’jZ3 

Relational  design  concepts 

As with many evolving concepts,  the idea of relational data  bases 
breaks  down into several areas, some of which are quite different 
and  independent of one  another. Preceding sections  have dis- 
cussed  the tabular view of data,  data  access using such views, 
and languages that may be used. On this level,  the relational a p  
proach is an  alternative to a  hierarchicz4 or a  network a p  
p r ~ a c h . * ~ ’ ~ ~  Operational  implementations of relational systems 



A  quite different area of relational data  base  concepts  deals with 
data base design theories, which cover  the design of records.  The 
theories are  concerned with normalization and  functional depen- 
dencies in record  structure^,^' and are often  presented with much 
mathematical formalism. 

The  prime  objective of these  theories is to help define data  record 
structures  that remain stable as  the  data  base  grows. Well-defined 
record  structures avoid unnecessary  future  update  problems  and 
serve as a basis  for  future  extensions. Existing record  structures 
should not  have to  be  restructured  because of new application 
needs, although they may have to be  extended,  and new record 
structures may have  to be added. But existing  structures should 
survive  such evolution without need for  rearrangement of fields in 
existing record  structures. 

In this sense, design theories should apply to a  number of data 
base management systems; a systematic design procedure is de- 
sirable,  regardless of whether  the resulting records  are  grouped 
into  tables,  hierarchies, or  network^.^' Normalization  theory,  for 
example, is not an  issue in the realization of a set of record  struc- 
tures in certain data base management  systems.  Rather,  the po- 
tential  controversy lies in which data model is  most  suitable  for 
the anticipated  data  access  and manipulation of the record  struc- 
tures.  Thorough  data  base design is thus a valuable and  desirable 
practice  for all three  data  models.  The  penalty  for bad design is 
loss of data independence, the implications of which are  clear to 
experienced  users of data  base management systems. 

costs and With these basic  concepts  as a background,  one might ask what is 
benefits so dramatically new and useful in the relational view of data. An 

important  potential  drawback should be clear:  performance  for 
table  operations may not  be  acceptable. It is not  that relational 
data  base  systems  are  inherently  less efficient in handling data 
requests  than  hierarchical  and  network  implementations. On the 
contrary, they can make use of improved techniques in indexing 
and  access  methods.  The problem is that  performance may be 
experienced as being poor if the  user is encouraged  to  do work of 
comparable complexity to  that usually done with other  data  base 
systems without the same awareness of the required 110 opera- 
tions.  etc. 

The  price paid by a relational  external  interface is that  there are 
no predefined access  paths  that  the  user can explicitly take ad- 
vantage  of, as in the  hierarchical and network  approaches.  This 
does  not mean that  there  could not be optimized  paths  under the 
cover in a relational  data  base implementation. Existing rela- 
tional systems  put much emphasis on providing access  path opti- 



It is also possible that  developments in specialized  hardware  such 
as  associative  processors or logic-per-track devices might be es- 
pecially suitable for efficient relational data  access,33  and might 
further  improve  the  performance of relational data  base opera- 
tions. This,  however, is not a practical or  economical  alternative. 

We first consider  potential benefits of the relational approach; 
then we consider  the effect of that  approach  on different types of 
users. We conclude by identifying situations  where  a  network or 
hierarchical  data view is preferable  to  the relational view at  the 
present  time. 

There are five major areas  where  the relational view has its strong 
points. 

Most persons  have a common  and intuitive idea of what  a  table  is; 
the  basic  concepts  are  easy  to  understand. The  concepts  “com- 
mon”  and  “intuitive” mean that  the  idea of a data base can PO- 
tentially be more easily available to many more  users  than  those 
who understand a CODASYL set  or a DLl1 logical data base hier- 
archy. 

To some  extent, complexity in such data  base  implementations as 
CODASYL or DL/I is caused by the multiplicity of different con- 
cepts  and implementation constructs.  This, in turn,  depends on 
the  asymmetrical ways of data  access.  Separate  concepts are 
needed when predefined paths of different types  are  used. Ex- 
amples are  access  to  a  hierarchy via a  secondary  index  or  access 
through a hierarchical path. 

Up  to  the present  time,  there  have been a limited number of rela- 
tional data base implementations. One might imagine that in  fu- 
ture implementations the simplicity of the high-level relational a p  
proach to  data base  access may be compromised by implementa- 
tion particularities.  A  large,  shared data  base with many complex 
relationships among data items may need specialized facilities for 
certain crucial operations.  However, the relational concepts  are 
by their  nature  very  straightforward and uncompromising in this 
respect. To a large extent,  the simplicity we have  seen so far in 
existing systems is an important  part of the relational discipline 
itself. 

The relational data  base view deals directly and exclusively with 
rows and columns. All fields are explicitly known and seen by the 
user.  Operations on tables do not depend on any predefined ac- 
cess  paths  that  are implied in the  data  structure. 

Neither do relational data  structures depend on physical attri- 
butes of storage  structures  or on special implementation con- 
structs like secondary  processing  sequence,  concatenated logical 

IBM SYST I VOL 20 NO I 1981 SANDBERG 



parent sequence fields, or incomplete  path call conditions be- 
cause there is a  distinct  boundary  between  the  external data base 
view and  the  internal  storage of data. 

Our implied comparison with other implementations may not  be 
realistic in the  sense  that it compares  concepts of one with imple- 
mentations of another. And practical  implementations that must 
serve many different applications with a large,  shared data  base 
may require specialized language constructs to be efficient. Nev- 
ertheless,  the relational approach  provides  a new chance  to 
achieve a cleaner high-level interface. 

power  and A major reason why relational  operations are powerful and  easy 
ease of use to use is that they operate as set  access in contrast  to record-at-a- 

time access. This means  that relational operations  become  less 
procedural. Relational operators  express  more  directly  what  the 
end  result should be  rather  than describing how this  end  result 
should be  produced. That leaves  the  data  base management sys- 
tem instead of the  user to perform retrieval  and  update  operations 
at  the detailed  level. Less procedurality is a big step forward  to 
increased  productivity  and high-level data  base programming. 

This  characteristic  becomes  even more important in query appli- 
cations  where a user  cannot  be  expected  to specify in great  detail 
how a particular  question should be  answered.  Therefore, we 
foresee  query  applications as the first production  environments 
for relational data base systems. 

There is a parallel here involving comparisons of high-level  pro- 
gramming languages such as COBOL and FORTRAN with more ma- 
chine-oriented languages like Assembly and  Autocoder.  Today 
there is a fair  agreement  on  the benefits of high-level program- 
ming languages,  and  there well  may  be the  same  type of agree- 
ment on the set-wise approach  to  data base access as compared to 
detailed record-at-a-time techniques. 

theoretical Research  work on relational operations  has now gone  on  since 
foundation the  late  sixties,  and  this  subject is continuing to  evolve.34 A bar- 

rier to early application,  however, is that  much of this work is 
presented with a lot of mathematical formalism.35 Practitioners 
are often  sceptical of excessive formalism and  mathematical nota- 
tion.  The  theoretical  foundation of relational systems,  however, 
should not deter  the  practical  and pragmatic data processing p r e  
fessional. It means  that the results of relational operations  are 
easily predictable;  for  instance, relational operations  always pro- 
duce  the  answer in the  form of a new table. 

In this  regard,  there is a clear distinction between relational sys- 
tems  and  the more pragmatic  data base management  systems cur- 
rently in use.  Today’s  systems  are  the  result of functions gradu- 

34 SANDBERG IBM SYST J VOL 20 NO I 1981 



ally extended  or improved over  a long time as  the demand for 
additional or modified functions  has  increased.  Therefore,  some 
functions in present implementations are  more ad hoc in nature 
and do not always fit nicely with previous  concepts.  The rela- 
tional view of data,  therefore, provides an opportunity  for  cleaner 
implementations of high-level data  access. 

Both users and implementors of data  base management systems 
may benefit from this more theoretical basis for  data  base opera- 
tions. For implementors, it means  that  a relational request may be 
more easily broken up into  its component parts  and  rearranged, 
resequenced, and optimized. Intelligence may thus be transferred 
from individual program procedures  to  the  data  base management 
system. 

With regard  to data  access, most emphasis  has  been placed on 
applications of retrieval theory and far less on the more complex 
operations of updating a data  base.  Increasingly,  however, u p  
dating operations through relational views is receiving the neces- 
sary theoretical a t t e n t i ~ n . ~ ~ ’ ~ ’  Thus, because of their potential 
usefulness,  theoretical  studies  should be appreciated  and en- 
couraged. 

The language of table  operations used for  data  access may also  be 
extended  and generalized to  data  thereby allowing 
for  common  interaction among data  base  administrators,  query 
users,  and programmers.  In  contrast, different languages for data 
definition and for  data manipulation are used in CODASYL and 
DLII. This  contributes  to  complexity  and difficulties in communi- 
cation among various  user  groups. 

Even  more  important  is  the  fact  that  the  increased  power and 
flexibility in data definition may also eliminate the need for  some 
programming because  the relational user view already  expresses 
the  data that  are of particular  interest  to an application.  Thus a 
more powerful  data definition is substituted  for programming, and 
the distinction  between programming and data definition dimin- 
ishes. 

The programming effort may be further  reduced  because a rela- 
tional data definition can allow one  user’s views to be expressed 
in terms of other  users’ views. Thus many levels of views-on- 
views are possible; a user view does  not  have to refer back to  the 
stored data directly.  This  means  that  sometimes  the underlying 
stored data may even  change in structure without af€ecting many 
existing user views. Instead, a previously stored  structure  is re- 
placed by a mapping of a new user’s view. That new user  view, in 
turn,  refers back to  the new stored  structure.  The  concept of 
many levels of views-on-views is particularly powerful and valu- 
able in achieving increased data independence. Also, the data 

IEM SYST J VOL 20 NO I lw SANDBERG 



c 
base  system  becomes  more forgiving in that a previous data  base 
design can  be more easily modified with new  user views. The 
restructuring of a previous data base design is simplified because 
new structures can be  expressed in terms of older  ones  and  added 
to  the  system gradually. Many slightly different user views can all 
be  present  at  the  same  time,  thereby  reducing  maintenance re- 
quirements. 

Concluding remarks 

It is often  speculated  that relational implementations will gradu- 
ally replace  network  and  hierarchic  implementations.  Such spec- 
ulations  seem  too far-reaching. At the  present  time,  certain appli- 
cations  seem  to lend themselves most efficiently to a solution that 
uses  tables as a  data  structure, whereas many others  are  best 
served by data  hierarchies or networks.  The  potential  value of 
relational  data  bases will probably  not be the  same  for all types of 
users.  For  some,  the benefit will be only marginal, whereas  for 
others it  may be significant. 

end Users  who  are  not  data  processing professionals-often termed 
users end users-may see  the  greatest value in the tabular view. Such 

persons typically make unplanned  query  requests from data 
bases.  Users  sometimes find that  present  implementations are not 
completely  successful in providing clear,  precise,  and simple lan- 
guage functions using hierarchies  and  networks. Similar queries 
must often be specified differently, depending  on which pre- 
defined path in a hierarchy or network is used.  The  query lan- 
guage is thus  asymmetrical. The relational view is designed to 
provide  a  symmetrical,  simple, high-level interface for  the  query 
specifier. At the  present  time,  however, specialized skill is 
needed to properly specify queries. 

programmers For conventional  programmers,  the value of relational systems 
strongly depends  on  the  application. Often the  same or a greater 
amount of programming logic is required for using a relational 
view than when the  data  base is seen as a hierarchy or network. 
This  is particularly apparent when data  have to  be accessed  one 
record at a time. An example is a bill-of-material application, 
where  one  has  to follow the explosionhmplosion loops individ- 
ually. In  other  applications, a relational system may require many 
operations on multiple tables, whereas a hierarchical  system may 
produce  the  desired  result with a few operations  that make more 
use of the implicit hierarchical  structure of the underlying data. 

In  other  applications, a relational view may simplify the program- 
ming logic, especially when set-oriented retrieval or updating is 
applied.  In  those cases,  the simplification in logic makes  the pro- 
grams  easier to understand  and maintain and  thereby  contributes 

36 SANDBERG IBM SYST J 0 VOL 20 NO 1 1981 



to reduced maintenance costs  as well. In set  operations, the same 
operation may be applied to a number of rows in a  table, as, for 
example, increasing all prices by a given percentage in a price 
table or changing all old locations to  a new location in an  em- 
ployee table. Common among such operations is their property of 
being fairly simple and  straightforward.  Exceptions  on an  individ- 
ual basis cannot be handled, but require instead record-by-record 
processing. 

In some  applications,  however, gains made in a relational system 
by reduced procedurality may  be lost in other ways by the re- 
quirement to work with many variations of tables and with a mul- 
titude of implied relationships among them.  Because  access  paths 
are predefined and explicitly shown,  a hierarchical or network 
diagram may capture in one quick glance an immediate under- 
standing of many complex interrelationships. In contrast, it may 
often take greater time and effort to digest the  same information 
using a large set of interrelated  tables. 

The programming of many applications should benefit from rela- 
tional data definition capabilities, because data needed for  a par- 
ticular application can be more directly and precisely expressed 
to  the program. This should eliminate requirements for the pro- 
gram to deal with those  parts of a data base that  are not  of direct 
interest  to the particular application. This apparent ease of use 
may also,  to some degree, depend on such things as earlier pro- 
gramming background, education, and programming style. 

For data base  administrators  the main problems  are similar, re- 
gardless of whether they use  a relational data  base  system.  The 
administrator must still choose and define various storage o p  
tions, maintain operation procedures, and monitor performance. 
Backup and recovery procedures must  be maintained, and stor- 
age utilization must be monitored. It is possible,  however,  that 
the number of options and  alternatives  can  be reduced in a rela- 
tional implementation. One reason is the simplicity of the inter- 
face  between  external and internal definitions. Therefore, the 
data  base management system may take  over internally more and 
more of the functions handled by the  data  base  administrator. 
That may imply, however,  that useful implementation alterna- 
tives have been sacrificed for the sake of simplicity. 

The effort of doing data base design is expected  to depend highly 
on the  comprehensiveness of the data base management system. 
The more a system can take  over  the maintaining, reorganizing, 
and optimizing of access  paths  to the stored data, the less effort is 
necessary  for  a thorough data base design. A relational system 
has great potential in this area because of the clean and simple 
interface to the user. 

IBM SYST J 0 VOL 20 NO 1 1981 SANDBERG 



Flexibility in data definition is expected to simplify the design 
effort considerably to accommodate new or changed  data require- 
ments, especially in small,  private  data  bases. In private  data 
bases,  the  data  are often isolated from application to application, 
and  performance implications are  less  important. To some de- 
gree, flexibility in relational data definition may also simplify de- 
signs of larger data  bases  that  are then shared among many dif- 
ferent  applications  and  users. 

When designing individual record  structures,  designers should 
not experience much difference among types of data  base. Good 
design practices,  such  as normalization and elimination of de- 
pendencies among field types,  are desirable regardless of whether 
the resulting record  structures  are used in a  network,  a hierar- 
chical, or a  relational  system. 

summary Relational data  base  systems  present  the  user with simple, high- 
level data base  processing.  These  systems  incorporate  features 
that complement  network  and  hierarchical  systems. The follow- 
ing are  the five main complementary  features of the  relational ap- 
proach: 

0 Table  data  structures  are  easy to understand. 
0 Tables  provide  increased  data  independence as compared  to 

present  implementations of hierarchies and networks. 
Table  operations  are powerful and still easy to  use. 

0 Table operations have a sound theoretical  foundation. 
0 Table  operations may be generalized to  data definition. 

ACKNOWLEDGMENTS 
Many thanks  to Bill Kent  and Dave Schofield for much construc- 
tive criticism of earlier  versions of this  paper. 

CITED  REFERENCES ,4ND NOTES 
1 .  E. F. Codd, “ A  relational  model for  large  shared  data  banks,” Communica- 

tions ofthe ACM 13, No. 6, 377-387 (June 1970). (See  also  Reference 23 for a 
listing of other  early papers by this author.) 

2. M. M. Zloof, “Query-By-Example: a data  base language,” IBM  Systems 
Journal 16, No. 4, 324-343 (1977). 

3 .  Query-By-Example  Terminal  Users  Guide, SH20-2078, IBM Corporation; 
available  through  IBM  branch offices. 

4. Interactive  Management  and  Planning  System:  User  Guide, SBI 1-5220; IBM 
Corporation, available  through IBM branch offices. 

5 .  M. M. Astrahan, M. W. Blasgen, D.  D. Chamberlin, K. P. Eswaran,  J. N. 
Gray, P. P. Griffiths, W. F. King, R. A. Lorie, P. R. McJones,  J. W. Mehl, G. 
R. Putzolu, I. L. Traiger, B. W. Wade, and  V.  Watson,  “System R: Rela- 
tional approach  to  database  management,” ACM  Transactions  on  Database 
Systems 1, No. 2, 97-137 (June 1976). 

6. S. Todd,  “The  Peterlee Relational Test Vehicle-a system  overview,” IBM 
Systems  Journal 15, No. 4, 285-308 (1976). 

7. S. Todd, Relational  Database  Research  at the IBM UK Scient@ Centre, 
Peterlee, u Survey IY70-IY77, Report UKSC-93 (December 1977); available 
from  IBM United Kingdom Limited, Scientific Centre, Athelstan House, St. 



8. W. Kim, “Relational  database  systems,” ACM  Computing  Surveys 11, No. 3,  
185-211 (September 1979). 

9. R. G. Ross,  “Assessment of current  data base trends,” Data  Base  Mono- 
graph, No. 5 ,  R. M. Curtice,  Editor,  Q.E.D. Information Sciences, Welles- 
ley, MA (1977). 

1 10. This is the  only  normalization requirement  for a relational data  base.  The 2nd, 
3rd, and 4th normal  form all represent  improved qualities in record  structures. 
These normal forms, however, are not  required for implementation in a rela- 

11. A join may also be performed on  two  columns in the  same table as well as on 
multiple  columns  simultaneously. , 12. S. B. Yao, “Optimization of query  evaluation algorithms,” ACM  Transac- 
tions  on  Database  Systems 4, No. 2, 133-155 (June 1979). 

1 13. M. W. Blasgen and  K. P. Eswaran,  “Storage and access in relational data 
bases,” IBM Systems Journal 16, No. 4, 363-377 (1977). 1 14. T. Haerder,  “Implementing a generalized access path  structure for a rela- 
tional database  system,” ACM  Transactions  on  Databuse  Systems 3,  No. 3,  
285-298 (September 1978). 

~ 

15. J. P. Fry and E.  H. Sibley, “Evolution of data-base management systems,” 
ACM  Computing  Surveys 8, No. 1, 7-42 (March 1976). 

16. C.  J.  Date,  “An  architecture  for high-level language database  extensions,” 
Proceedings  of  the 1977 SEAS  Anniversary  Meeting, Cambridge,  England, 

17. In the  case of DL/I path calls,  the  result of a  retrieval may be a  few records 
along the hierarchical  path  instead of just one single record. 

18. H. Lehman  and A. Blaser, Query  Languages in Datu  Base  Systems, Research 
Report TR79.07.004, IBM Heidelberg  Scientific Center,  Tiergartenstrasse 15, 
6900 Heidelberg,  Germany (1979). 

19. A. Pirotte,  “Fundamental  and  secondary issues in the design of non-proce- 
dural  relational  language,” Proceedings of the  5th  International  Conference 
on  Very  Large  Data  Bases, Rio de  Janeiro, October 1979,  239-250  (1979); 
available  from  the  Association for Computing  Machinery, 1133 Avenue of  the 
Americas, New  York,  NY 10036. 

20. D.  D. Chamberlin, M. M. Astrahan, K. P.  Eswaran,  P.  P. Griffiths, R. A. 
Lorie,  J. W. Mehl, P. Reisner,  and B. W. Wade, “SEQUEL 2: A unified 
approach to data definition, manipulation, and  control,” IBM Journal of Re- 
search  and  Development 20, No. 6, 560-575 (November 1976). 

21. M. W. Blasgen,  M. M. Astrahan,  D.  D. Chamberlin, J .  N. Gray, W. F. King, 
B. G.  Lindsay,  R. A. Lorie,  J. W. Mehl, T. G. Price,  G. R. Putzolu, M. 
Schkolnick, P.  G. Selinger, D. R. Slutz, H. R. Strong, I. L. Traiger, 9. W. 
Wade,  and  R. A. Yost,  “System R: An architectural  overview,” IBM  Sys- 
tems Journal 20, No. 1 ,  41-62 (1981, this issue). 

22. E. F. Codd,  “A  data base  sublanguage founded  on  the relational  calculus,’’ 
ACM  SlGFtDET  Workshop  on  Data  Description,  Access,  and  Control, San 
Diego, CA, 35-68 (1971). 

23. D. D. Chamberlin, “Relational data  base management systems,” ACM Com- 
puting  Surveys 8, No. 1, 43-66 (March 1976). 

24. D. C. Tsichritzis and F. H.  Lochovsky,  “Hierarchical  data base  management: 
A survey,” ACM  Computing  Surveys 8, No. 1, 105-123 (March 1976). 

25. T. W. Olle, The Codasyl  Approach  to  Data  Base  Management, John Wiley & 
Sons,  Inc.,  New  York (1978). 

26. R. W. Taylor  and R. L. Frank,  “CODASYL  data  base  management  sys- 
tems,” ACM  Computing  Surveys 8, No. 1, 67-103 (March 1976). 

27. W. C.  McGee,  “The information  management  system IMSNS;  Part 11: Data 
base facilities,” IBM  Systems  Journal 16, No. 2, 96-122 (1977). 

28. Series 600l6000 Integrated  Data  Storage  Reference  Manual, CPB-1565; Hon- 
eywell lnformation  Systems,  Incorporated, Honeywell  Plaza,  Minneapolis, 
MN 55408. 

29. UNIVAC I100 Series,  Datu  Management  System  (DMS 1 1 0 0 )  Schemu  Defi- 

I 

, tional data  base. 

I 

315-420 (1977). 



30. Integrated  Database  Management  System  Program  and  Reference, Cul- 
linaue Corporation, 20 William St., Wellesley, MA 02181. 

31. C.  Been, P. A. Bernstein,  and N. A. Goodman,  “A sophisticated  introduction 
to  database normalization theory,” Proceedings  of  the  4th  International  Con- 
ference on Very  Large  Data  Buses,  West  Berlin,  September 1978, 113-124 
(1978); available from the  Association for Computing  Machinery, 1133 Ave- 
nue of the  Americas, New York,  NY 10036. 

32. J .  J.  Janko,  “Relational design of an IMS database,” Database, Online  Con- 
ferences,  Limited, Uxbridge,  Middlesex,  England (1977). 

33. G. G.  Langdon, “A note on  associative  processors  for  data management,” 
ACM  Transactions on Database  Systems 3, No. 2, 148-158 (June 1978). 

34. E. F. Codd,  “Extending the database  relational model to  capture  more mean- 
ing,” ACM  Transactions on Database  Systems 4, No. 4, 397-434 (December 
1979). 

35. A. V.  Aho, C.  Been, and J. D. Ullman, “The  theory of joins in relational 
databases,” ACM  Transactions on Database  Systems 4, No. 3,279-314 (Sep- 
tember 1979). 

36. F. Bancilhon, “Supporting view updates in relational data  bases,” Pro- 
ceedings  of  the  IFIP Working  Conference on Data  Base  Architecture, Ven- 
ice, Italy,  June 1979, North-Holland  Publishing Company,  Amsterdam (1979), 

37. U. Dayal and P. A. Bernstein,  “On  the updatability of relational  views,” 
Proceedings  of  the  4th  International  Conference  on  Very  Large  Data  Buses, 
West Berlin, September 1978,  368-377 (1978); available  from the Association 
for Computing Machinery, 1133 Avenue of the Americas, New  York,  NY 
10036. 

pp. 213-234. 

GENERAL  REFERENCES 
C.  J.  Date, An  Introduction  to  Database  Systems, Second  Edition,  Addison-Wes- 
ley Publishing Company, Reading, MA (1977). 
1978 New  Orleans  Database  Design  Workshop  Report,  Proceedings  of  the  5th 
International  Conference on Very  Large  Data  Bases, Rio de  Janeiro,  October 
1979,  328-339 (1979); available from  the Association for Computing  Machinery, 
1133 Avenue of the Americas, New  York,  NY 10036. 
W. Kent, Data  and  Reality,  Basic  Assumptions in Data  Processing  Reconsidered, 
North-Holland  Publishing Company,  Amsterdam (1978). 
M. E.  Senko,  “Data  structures  and  data  accessing in data  base  systems  past, 
present,  future,” IBM  Systems  Journal 16, No. 3,  208-257 (1977). 
J .  P. Fry  and  E.  H.  Sibley,  “Evolution of data  base management systems,” ACM 
Computing  Surveys 8, No. 1, 7-42 (March 1976). 
A. S .  Michaels, B. Mittman, and C.  R.  Carlson,  “A comparison of the relational 
and CODASYL  approaches  to  data-base  management,” ACM  Computing Sur- 
veys 8, No. 1, 125-150 (March 1976). 
C. J.  Date  and E. F. Codd,  “The relational and  network  approaches: Comparison 
of the  application  programming interface,” ACM  SIGMOD  Workshop on Data 
Description,  Access,  and  Control, Ann Arbor,  MI, R. Rustin, Editor, 11-41 
(1974). 

D. Smith and  J.  Smith, “Relational database machines,” Computer 12, No. 3,28- 
38 (March 1979). 
S. Su, “Cellular-logic  devices: Concepts  and applications,” Computer 12, No. 3,  
11-25 (March 1979). 

The author is located  at  the IBM Nordic Field Systems  Center, 
Oddegatam 5 ,  Kista, S-163 92 Stockholm,  Sweden. 

Reprint Order  No. G321-5139. 

40 SANDBERG IBM SYST J VOL 20 NO 1 1981 


