Basic concepts of relational data base management systems are
described. Characteristics of the relational approach are identi-
fied and compared with present implementations of hierarchical
and network data base systems. Depending on the application, a
user may experience one or more of the following benefits of rela-
tional systems described in this paper: ease of understanding,
increased data independence, ease of use, sound theoretical
basis, and generalized data definition. Types of applications most
suited to hierarchical and network data base systems are also
compared and contrasted.

A primer on relational data base concepts
by G. Sandberg

For about a decade there has been continuously increasing inter-
est in relational data base systems, most of it initially created by
university and research activities. A series of papers published by
E. F. Codd in the early seventies are often cited as the earliest
works on the subject.’

Relational data base systems are now becoming available for op-
erational data processing installations. Examples of such systems
by IBM are Query-By-Example®® and 1Mps.* In addition, many
research prototype systems have been implemented, as ex-
emplified by System R® and 15/1-PRTV.*” A number of other rela-
tional systems are expected to become commercially available
within the next few years.®® This paper describes basic concepts
of relational data base systems and identifies potential benefits of
the relational data base approach, comparing it with present im-
plementations of hierarchic and network data base systems.

What is a relational data base system?

The most fundamental property of a relational data base system is
that data are presented to the user as tables instead of networks
or hierarchies. Thus, the data are structured in the form of rables
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Figure 1 Transformation of (a) a hi-
erarchy of two record
types into (b) the corre-
sponding relational tables
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Table 1 Relational structure of employee records

COLUMN OR FIELD

1 2 3
EMPLOYEE DEPARTMENT
NUMBER

61256 MYGIND NFSC
38972 CHEMNITZ NMC
09181 BARCLAY NFSC
74245 SANDBERG NFSC
22318 PERSSON NMC

ROW OR
RECORD

consisting of columns and rows, with the rows corresponding to
records or segments, and the columns representing fields within
the records. Table 1 is an example of a relational data structure
for employee information, with Employee as the table name.

This illustrative table contains only five rows or records, one for
each employee. Such a data base for a company of a size that
requires a data base, of course, contains many more rows. Three
facts are recorded here for each employee—employee number,
name, and department—each in a separate column of the table.

The internal data storage format is not relevant to the relational
view. This is not to say that internal access and storage tech-
niques are not important because they determine whether the
data base system performance is acceptable. Performance impli-
cations, however, are not part of the definition of the relational

view.

The important fact is that the relational view exists at the level at
which the user sees the data. The user may be, for example, a
person sitting at a visual terminal and interacting with the system
in a specialized query language or a programmer using conven-
tional programming languages like COBOL or PL/I.

Any hierarchical or network data structure can be transformed
into a set of relational tables. One technique is to convert each
predefined access path in the network or hierarchy into a key
field column in a relational table. Then all fields from the hi-
erarchy or network record are explicitly named in the relational
table. As an example: two tables may be substituted for a parent-
child record structure in a hierarchy or an owner-member set in a
CODASYL network. The first table represents the parent record
type, and the second is equivalent to the child record type, ex-
panded with the key field of the parent as an extra column. The
transformation of a hierarchy of two record types (a) into corre-
sponding relational tables (b) is illustrated in Figure 1.
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If a relational data base view is simply a view of records with the
same format, how does that differ from program views of tradi-
tional flat files that have been used for many years? The dif-
ferences include specificity of rules. The following are rules that
must be followed if the data base view is to qualify as a relational
view:

Each table contains only one record type.

Each record (row) has a fixed number of fields, all of which
are explicitly named.

Fields are distinct (atomic) so that repeating groups are not
allowed."

Each record is unique—duplicates are not allowed.

Records may come in any order; there is no predetermined
sequence.

Fields take their values from adomain of possible field values.
The same domain may be used for many different field types,
thus becoming the source of field values in different columns
in the same or different tables.

New tables can be produced on the basis of a match of field
values from the same domain in two existing tables.

The formation of new tables is a key to relational systems, and
does not apply to access methods handling flat files. The access
methods are not designed to combine such files into new files;
that is an application program responsibility.

Table operations

One of the new operations available in relational systems is the
capability of combining relational tables, called a join. Other rela-
tional operations are selection (which creates a subset of all the
records in a table), and projection (which creates a subset of the
columns in a table). A key characteristic shared by all relational
operations is that the results they produce are always new tables.
This makes it possible to provide very powerful and concise lan-
guages for the manipulation of relational data structures.

The simplest of these basic relational operations is selection, in
which certain rows in a given table are selected and used to build
a new table. A selection criterion may be, for example, that one
or more fields have a specific value: all rows satisfying this condi-
tion are selected for the new table. Table 2 gives an example of
selection. Here all rows of Table 2a in which the employee’s de-
partment is NFSC are selected for inclusion in the newly created
Table 2b.

In the next operation—projection—only certain columns in a
given table are selected and used to build a new table with fewer
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Table 2 Selection of employees in (a) who are in Department NFSC for inclusion in a new
table (b)

EMPLOYEE DEPARTMENT
NUMBER

61256 MYGIND
38972 CHEMNITZ
09181 BARCLAY
74245 SANDBERG
22318 PERSSON

EMPLOYEE DEPARTMENT
NUMBER

61256 MYGIND NFSC
(b) 09181 BARCLAY NFSC
74245 SANDBERG NFSC

Table 3 Projection using the NAME and DEPARTMENT column in (a) to form the new tabie
(b)

EMPLOYEE NAME DEPARTMENT
NUMBER

61256 MYGIND
38972 CHEMNITZ
09181 BARCLAY
74245 SANDBERG
22318 PERSSON

NAME DEPARTMENT

MYGIND NFSC
CHEMNITZ NMC
BARCLAY NFSC
SANDBERG NFSC
PERSSON NMC

columns. When the new table is built, the resulting table may
contain some rows that are identical, because in some rows val-
ues in the retained columns may be identical. Since duplicates are
not allowed in a relational table, all but one of such duplicate
rows are discarded. The basic operation is illustrated in Table 3,
in which the projection operation is performed on the Name and
Department columns in Table 3a to form the resultant Table 3b.
There are no duplicate rows in this example.
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Table 4 Join on DEPARTMENT (c) consists of MANAGER and LOCATION information in (b) combined with EMPLOYEE NUMBER and
NAME in (a)

EMPLOYEE NAME DEPARTMENT
NUMBER

61256 MYGIND
38972 CHEMNITZ
09181 BARCLAY
74245 SANDBERG
22318 PERSSON

DEPARTMENT MANAGER LOCATION

NFSC JARENO STOCKHOLM
NMC HOFFMAN COPENHAGEN

EMPLOYEE DEPARTMENT MANAGER LOCATION
NUMBER

61256 MYGIND JARENO STOCKHOLM
38972 CHEMNITZ HOFFMAN COPENHAGEN
09181 BARCLAY JARENO STOCKHOLM
74245 SANDBERG JARENO STOCKHOLM
22318 PERSSON HOFFMAN COPENHAGEN

Quite often, selection and projection are combined into the same
request. In that case, the search criterion may be that a certain
field be greater than a specified value, and only certain named
columns are of interest. The first operation selects the rows that

satisfy the size condition, and the second operation projects the
relevant columns.

The third operation—join—means that two tables are to be
merged on the basis of the values from one column in each
table." The two tables are said to be joined over the two columns.
Consider the example in which Table 4a and Table 4b are re-
quired to be joined on the basis of the Department column in each
table. When this is done, the Manager and Location columns
form the join on Department shown in Table 4c.

Conceptually, the join operation works as follows:

e Take the first row from the first table and try to find a row in
the second table with a matching value.
When a match is found, put the two rows together, forming
one new row.
Continue until the second table is exhausted.
Take the next row from the first table and search the second
table for a match again.
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® Repeat until the first table is also exhausted. The second table
has now been searched as many times as there are rows in the
first table.

For the join operation to make sense, the two columns must con-
tain field values that are comparable, that is, they come from the
same domain. To illustrate this point, if there is one domain of all
possible dates, and one domain of all possible prices, it is not
reasonable to join two tables on the basis of dates in one table and
prices in the other. Relational implementations do not always
check such conditions, but leave the user to determine what is a
reasonable operation.

The method of operation for a join is very time-consuming and
expensive if implemented directly as described. That has been a
criticism of relational systems since the beginning. However, im-
proved techniques in the areas of query optimization and in-
dexing are developing, some of which are discussed in Refer-
ences 12-14. Thus, in the join operation previously discussed, if
there were an index on a column in the second table, only the
index might have to be searched. And for some rows in the first
table, no search would be required in the second table at all. Fur-
ther, if there were also an index on a column in the first table, the
search for equal values could be performed entirely in the in-
dexes. The data base system may also keep statistics about actual
or intended usage, in order to optimize the search order inter-
nally. It now seems that improved optimization methods are suffi-
ciently developed to make possible large-scale relational testing.

Access paths

Records can be accessed in a relational data base system only
through the matching of field values. There is no path-following
mechanism in a relational system that is comparable, for in-
stance, to a FIND LAST WITHIN ‘set’ operation in a CODASYL sys-
tem or GET NEXT WITHIN PARENT in DL/.

In the hierarchic or network approach, access paths are pre-
defined in the data structure seen by the user. A programmer of a
hierarchic data structure uses the implicit hierarchic structure to
navigate through, for instance, an access path from a parent to a
child segment type. However, any new access requirement that
does not directly follow the predefined access paths in the data
structure requires additional programming logic.

In the relational approach, no paths are predefined in the data
structure as seen by the user. Because all access is accomplished
by the matching of field values, many different paths potentially
exist. This means that the relational approach has considerable
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potential for extensions and restructuring, and provides a very
high-level interface to the data structures, as compared with data
models that use predefined paths.

At the same time, there is increased risk of inefficient and costly
data access. Since the user does not see which access paths are
internally favored over others, he cannot decide whether opti-
mum paths are being followed.

An interesting and important characteristic of the relational ap-
proach is symmetry in data access for all types of access. This
results from the equality of fields in the relational data structure.
Access in network and hierarchical implementations often re-
quires different coding techniques, depending on the predefined
path being followed. Consider, for example, access to a depen-
dent segment in a DL/ hierarchy. This requires different coding
statements, depending on whether a predefined secondary index
access path or an access path implicit in the hierarchical structure
is used. The same applies to access VIA ‘set’ as opposed to direct
access in a CODASYL network. Therefore, such data structures
cannot be easily restructured without some effect on existing pro-
grams and procedures."

The essentials of relational operations and access paths may be
summarized as follows:

e Relational operations work on whole tables, i.e., sets of rec-
ords.
The result of each operation is a new table.
Operations are based on field values in the tables as the one
and only means of access.

The characteristics of today’s network and hierarchical data
structures are the following:

e Network and hierarchical systems operate on individual rec-
ords, one at a time. This, however, is not an inherent neces-
sity, since set operations on networks and hierarchies are also
conceivable.'

The result of data access operations is normally a single rec-
ord,"” since network and hierarchical systems work with indi-
vidual records.

Operations are based mostly on predefined access paths in the
data structures and different access paths may require dif-
ferent coding techniques.

Relational languages

We have discussed the basic relational operations of selection,
projection, and join, and now consider a very important aspect of
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relational data base systems: how these functions are provided to
the user through relational language facilities. Even the form of
the language is very important for the ease-of-use aspect of the
relational approach.

Many different languages have been defined for use with rela-
tional data base structures. Most such languages are query-type
languages,'™" but there are also languages of the traditional type
intended to be incorporated into such programming languages as
CoBOL and PL/I."

A language that explicitly provides select, project, and join is
called a relational algebraic language. An example of an alge-
braic relational language is SQL,” which, by the way, is the lan-
guage used in System R.?' Algebraic relational languages work
with sets of records, that is, they work on tables as a whole.
Other operations that work on sets of records are the classical set
operations from mathematical set theory: union, intersection, and
difference. These operators are sometimes included in relational
algebraic languages, as well as special functions for summation,
aggregation, and ordering.

Another class of relational languages is that of the relational cal-
culus languages, an example of which is ALPHA.?* This level of
language is even less procedural than relational algebra. A very
important characteristic of both algebraic and calculus languages
is that any operation results in a new tabie. This means that com-
posite expressions can be constructed in which the result of one
operation become the operand of another.

A third class of relational languages is that of display-oriented
languages, as exemplified by Query-By-Example (QBE). Here,
instead of the relational operations being specified in a linear
statement form directly as joins, selections, and projections, they
are achieved by the manipulation of graphic symbols on a display
screen.

There are also a few examples of query languages based on net-
work or hierarchical data models.'® However, experience shows
that these are most effective when the predefined access paths in
the data structure are used directly. When indirect access paths
must be used, the query logic that must be specified by the user
immediately becomes more complex even though the query itself
appears to be simple. Therefore, predefined access paths some-
times appear as asymmetry and complexity to the user.

Notes on relational theory

When relational data base systems are studied theoretically, dif-
ferent terms are often found in the literature, as compared to busi-
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ness data processing environments. This terminology makes the
subject appear unnecessarily complex, and has contributed more
than anything else to a misunderstanding of the concepts of ta-
bles.

The following is a list of terms with the formal name usually found
in technical literature on the left and its everyday data processing
equivalent on the right of the equivalency sign.

Relation = table or record type.

Tuple = row or record occurrence.

Attribute = column name or field type.

Element = field.

Degree = number of columns in a table.
Cardinality = number of rows in a table.

Binary relations = table with two columns.
N-ary relations = table with N columns.

N-tuple = a record from a table with N columns.

There is no corresponding term for domain, but it has the follow-
ing meaning. All values that may occur for a specific field type
come from a domain of all the possible values of this type. Many
different field types may use the same domain.

Even today, many authors of research articles use their own (and
sometimes variant) definitions of relational terminology as a start-
ing point for developing further ideas. This is a clear indication
that there is still considerable evolution going on and that rela-
tional theory may mean different things to different people. We
therefore conclude this section with the following more formal
but well-established definition of a relation.

Givensets S, S,, - - -, S, (not necessarily distinct), R is a relation
on these n sets if it is a set of n-tuples, each of which has its first
element from § , its second element from S§,, and so on. More
concisely, R is a subset of the Cartesian product §, X §, X - - - X

1,23

S,. S, is the jth domain of R. R is said to have degree n.

Relational design concepts

As with many evolving concepts, the idea of relational data bases
breaks down into several areas, some of which are quite different
and independent of one another. Preceding sections have dis-
cussed the tabular view of data, data access using such views,
and languages that may be used. On this level, the relational ap-
proach is an alternative to a hierarchic** or a network ap-
proach.”®?® Operational implementations of relational systems
may be thought of as potential choices among DL/’ and CODASYL
implementations.”**’
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costs and
benefits

A quite different area of relational data base concepts deals with
data base design theories, which cover the design of records. The
theories are concerned with normalization and functional depen-
dencies in record structures,’’ and are often presented with much
mathematical formalism.

The prime objective of these theories is to help define data record
structures that remain stable as the data base grows. Well-defined
record structures avoid unnecessary future update problems and
serve as a basis for future extensions. Existing record structures
should not have to be restructured because of new application
needs, although they may have to be extended, and new record
structures may have to be added. But existing structures should
survive such evolution without need for rearrangement of fields in
existing record structures.

In this sense, design theories should apply to a number of data
base management systems; a systematic design procedure is de-
sirable, regardless of whether the resulting records are grouped
into tables, hierarchies, or networks.*® Normalization theory, for
example, is not an issue in the realization of a set of record struc-
tures in certain data base management systems. Rather, the po-
tential controversy lies in which data model is most suitable for
the anticipated data access and manipulation of the record struc-
tures. Thorough data base design is thus a valuable and desirable
practice for all three data models. The penalty for bad design is
loss of data independence, the implications of which are clear to
experienced users of data base management systems.

With these basic concepts as a background, one might ask what is
so dramatically new and useful in the relational view of data. An
important potential drawback should be clear: performance for
table operations may not be acceptable. It is not that relational
data base systems are inherently less efficient in handling data
requests than hierarchical and network implementations. On the
contrary, they can make use of improved techniques in indexing
and access methods. The problem is that performance may be
experienced as being poor if the user is encouraged to do work of
comparable complexity to that usually done with other data base
systems without the same awareness of the required 1/0 opera-
tions, etc.

The price paid by a relational external interface is that there are
no predefined access paths that the user can explicitly take ad-
vantage of, as in the hierarchical and network approaches. This
does not mean that there could not be optimized paths under the
cover in a relational data base implementation. Existing rela-
tional systems put much emphasis on providing access path opti-
mization internally that is not made visible to the user.
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It is also possible that developments in specialized hardware such
as associative processors or logic-per-track devices might be es-
pecially suitable for efficient relational data access, and might
further improve the performance of relational data base opera-
tions. This, however, is not a practical or economical alternative.

We first consider potential benefits of the relational approach;
then we consider the effect of that approach on different types of
users. We conclude by identifying situations where a network or
hierarchical data view is preferable to the relational view at the
present time.

There are five major areas where the relational view has its strong
points.

Most persons have a common and intuitive idea of what a table is;
the basic concepts are easy to understand. The concepts ‘‘com-
mon’’ and ‘‘intuitive’’ mean that the idea of a data base can po-
tentially be more easily available to many more users than those
who understand a CODASYL set or a DL/ logical data base hier-
archy.

To some extent, complexity in such data base implementations as
CODASYL or DL/ is caused by the multiplicity of different con-
cepts and implementation constructs. This, in turn, depends on
the asymmetrical ways of data access. Separate concepts are
needed when predefined paths of different types are used. Ex-
amples are access to a hierarchy via a secondary index or access
through a hierarchical path.

Up to the present time, there have been a limited number of rela-
tional data base implementations. One might imagine that in fu-
ture implementations the simplicity of the high-level relational ap-
proach to data base access may be compromised by implementa-
tion particularities. A large, shared data base with many complex
relationships among data items may need specialized facilities for
certain crucial operations. However, the relational concepts are
by their nature very straightforward and uncompromising in this
respect. To a large extent, the simplicity we have seen so far in
existing systems is an important part of the relational discipline
itself,

The relational data base view deals directly and exclusively with
rows and columns. All fields are explicitly known and seen by the
user. Operations on tables do not depend on any predefined ac-
cess paths that are implied in the data structure.

Neither do relational data structures depend on physical attri-

butes of storage structures or on special implementation con-
structs like secondary processing sequence, concatenated logical
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parent sequence fields, or incomplete path call conditions be-
cause there is a distinct boundary between the external data base
view and the internal storage of data.

Our implied comparison with other implementations may not be
realistic in the sense that it compares concepts of one with imple-
mentations of another. And practical implementations that must
serve many different applications with a large, shared data base
may require specialized language constructs to be efficient. Nev-
ertheless, the relational approach provides a new chance to
achieve a cleaner high-level interface.

A major reason why relational operations are powerful and easy
to use is that they operate as set access in contrast to record-at-a-
time access. This means that relational operations become less
procedural. Relational operators express more directly what the
end result should be rather than describing how this end result
should be produced. That leaves the data base management sys-
tem instead of the user to perform retrieval and update operations
at the detailed level. Less procedurality is a big step forward to
increased productivity and high-level data base programming.

This characteristic becomes even more important in query appli-
cations where a user cannot be expected to specify in great detail
how a particular question should be answered. Therefore, we
foresee query applications as the first production environments
for relational data base systems.

There is a parallel here involving comparisons of high-level pro-
gramming languages such as COBOL and FORTRAN with more ma-

chine-oriented languages like Assembly and Autocoder. Today
there is a fair agreement on the benefits of high-level program-
ming languages, and there well may be the same type of agree-
ment on the set-wise approach to data base access as compared to
detailed record-at-a-time techniques.

Research work on relational operations has now gone on since
the late sixties, and this subject is continuing to evolve.” A bar-
rier to early application, however, is that much of this work is
presented with a lot of mathematical formalism.® Practitioners
are often sceptical of excessive formalism and mathematical nota-
tion. The theoretical foundation of relational systems, however,
should not deter the practical and pragmatic data processing pro-
fessional. It means that the results of relational operations are
easily predictable; for instance, relational operations always pro-
duce the answer in the form of a new table.

In this regard, there is a clear distinction between relational sys-

tems and the more pragmatic data base management systems cur-
rently in use. Today’s systems are the result of functions gradu-
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ally extended or improved over a long time as the demand for
additional or modified functions has increased. Therefore, some
functions in present implementations are more ad hoc in nature
and do not always fit nicely with previous concepts. The rela-
tional view of data, therefore, provides an opportunity for cleaner
implementations of high-level data access.

Both users and implementors of data base management systems
may benefit from this more theoretical basis for data base opera-
tions. For implementors, it means that a relational request may be
more easily broken up into its component parts and rearranged,
resequenced, and optimized. Intelligence may thus be transferred
from individual program procedures to the data base management
system.

With regard to data access, most emphasis has been placed on
applications of retrieval theory and far less on the more complex
operations of updating a data base. Increasingly, however, up-
dating operations through relational views is receiving the neces-
sary theoretical attention.”®”” Thus, because of their potential
usefulness, theoretical studies should be appreciated and en-
couraged.

The language of table operations used for data access may also be
extended and generalized to data definition,>*’ thereby allowing
for common interaction among data base administrators, query
users, and programmers. In contrast, different languages for data
definition and for data manipulation are used in CODASYL and
DLA. This contributes to complexity and difficuities in communi-
cation among various user groups.

Even more important is the fact that the increased power and
flexibility in data definition may also eliminate the need for some
programming because the relational user view already expresses
the data that are of particular interest to an application. Thus a
more powerful data definition is substituted for programming, and
the distinction between programming and data definition dimin-
ishes.

The programming effort may be further reduced because a rela-
tional data definition can allow one user’s views to be expressed
in terms of other users’ views. Thus many levels of views-on-
views are possible; a user view does not have to refer back to the
stored data directly. This means that sometimes the underlying
stored data may even change in structure without affecting many
existing user views. Instead, a previously stored structure is re-
placed by a mapping of a new user’s view. That new user view, in
turn, refers back to the new stored structure. The concept of
many levels of views-on-views is particularly powerful and valu-
able in achieving increased data independence. Also, the data
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programmers

base system becomes more forgiving in that a previous data base
design can be more easily modified with new user views. The
restructuring of a previous data base design is simplified because
new structures can be expressed in terms of older ones and added
to the system gradually. Many slightly different user views can all
be present at the same time, thereby reducing maintenance re-
quirements.

Concluding remarks

It is often speculated that relational implementations will gradu-
ally replace network and hierarchic implementations. Such spec-
ulations seem too far-reaching. At the present time, certain appli-
cations seem to lend themselves most efficiently to a solution that
uses tables as a data structure, whereas many others are best
served by data hierarchies or networks. The potential value of
relational data bases will probably not be the same for all types of
users. For some, the benefit will be only marginal, whereas for
others it may be significant.

Users who are not data processing professionals—often termed
end users—may see the greatest value in the tabular view. Such
persons typically make unplanned query requests from data
bases. Users sometimes find that present implementations are not
completely successful in providing clear, precise, and simple lan-
guage functions using hierarchies and networks. Similar queries
must often be specified differently, depending on which pre-
defined path in a hierarchy or network is used. The query lan-
guage is thus asymmetrical. The relational view is designed to

provide a symmetrical, simple, high-level interface for the query
specifier. At the present time, however, specialized skill is
needed to properly specify queries.

For conventional programmers, the value of relational systems
strongly depends on the application. Often the same or a greater
amount of programming logic is required for using a relational
view than when the data base is seen as a hierarchy or network.
This is particularly apparent when data have to be accessed one
record at a time. An example is a bill-of-material application,
where one has to follow the explosion/implosion loops individ-
ually. In other applications, a relational system may require many
operations on multiple tables, whereas a hierarchical system may
produce the desired result with a few operations that make more
use of the implicit hierarchical structure of the underlying data.

In other applications, a relational view may simplify the program-
ming logic, especially when set-oriented retrieval or updating is
applied. In those cases, the simplification in logic makes the pro-
grams easier to understand and maintain and thereby contributes
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to reduced maintenance costs as well. In set operations, the same
operation may be applied to a number of rows in a table, as, for
example, increasing all prices by a given percentage in a price
table or changing all old locations to a new location in an em-
ployee table. Common among such operations is their property of
being fairly simple and straightforward. Exceptions on an individ-
ual basis cannot be handled, but require instead record-by-record
processing.

In some applications, however, gains made in a relational system
by reduced procedurality may be lost in other ways by the re-
quirement to work with many variations of tables and with a mul-
titude of implied relationships among them. Because access paths
are predefined and explicitly shown, a hierarchical or network
diagram may capture in one quick glance an immediate under-
standing of many complex interrelationships. In contrast, it may
often take greater time and effort to digest the same information
using a large set of interrelated tables.

The programming of many applications should benefit from rela-
tional data definition capabilities, because data needed for a par-
ticular application can be more directly and precisely expressed
to the program. This should eliminate requirements for the pro-
gram to deal with those parts of a data base that are not of direct
interest to the particular application. This apparent ease of use
may also, to some degree, depend on such things as earlier pro-
gramming background, education, and programming style.

For data base administrators the main problems are similar, re-
gardless of whether they use a relational data base system. The
administrator must still choose and define various storage op-
tions, maintain operation procedures, and monitor performance.
Backup and recovery procedures must be maintained, and stor-
age utilization must be monitored. It is possible, however, that
the number of options and alternatives can be reduced in a rela-
tional implementation. One reason is the simplicity of the inter-
face between external and internal definitions. Therefore, the
data base management system may take over internally more and
more of the functions handled by the data base administrator.
That may imply, however, that useful implementation alterna-
tives have been sacrificed for the sake of simplicity.

The effort of doing data base design is expected to depend highly
on the comprehensiveness of the data base management system.
The more a system can take over the maintaining, reorganizing,
and optimizing of access paths to the stored data, the less effort is
necessary for a thorough data base design. A relational system
has great potential in this area because of the clean and simple
interface to the user.
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summary

Flexibility in data definition is expected to simplify the design
effort considerably to accommodate new or changed data require-
ments, especially in small, private data bases. In private data
bases, the data are often isolated from application to application,
and performance implications are less important. To some de-
gree, flexibility in relational data definition may also simplify de-
signs of larger data bases that are then shared among many dif
ferent applications and users.

When designing individual record structures, designers should
not experience much difference among types of data base. Good
design practices, such as normalization and elimination of de-
pendencies among field types, are desirable regardless of whether
the resulting record structures are used in a network, a hierar-
chical, or a relational system.

Relational data base systems present the user with simple, high-
level data base processing. These systems incorporate features
that complement network and hierarchical systems. The follow-
ing are the five main complementary features of the relational ap-
proach:

e Table data structures are easy to understand.
e Tables provide increased data independence as compared to
present implementations of hierarchies and networks.
Table operations are powerful and still easy to use.
Table operations have a sound theoretical foundation.
Table operations may be generalized to data definition.
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