To improve the readability of programs over existing techniques,
a new program representation termed GREENPRINT has been de-
veloped and is discussed in this paper. GREENPRINTs (the name
taken from the phosphor fluorescence of certain display terminals
and paralleling the term blueprints) are tree-structured diagrams
together with source code statements that represent the control
structure of programs. Discussed in this paper are the diagram-
ming conventions, control flow methodology, presentation
graphics, and practical experience with GREENPRINTS.

GREENPRINT: A graphic representation of structured programs
by L. A. Belady, C. J. Evangelisti, and L. R. Power

Flowcharts are the oldest graphic representations of programs.
The works of Goldstine and von Neumann contain many flow-
charts.! Largely due to processor speed and storage space limita-
tions, early programs were not structured; branching to common
code was important and occurred frequently. Later, high-level
languages appeared and programs automatically generating flow-
charts from program text were developed.” At the same time, pro-
gram structures improved. Nassi-Shneiderman Diagrams (NSDs)
were proposed much later to represent structured programs.’® In
this form, such program constructs as if-then-else and loop are
represented as nested boxes. With a high level of nesting, these
charts become wide, and their elements vary in size. HIPO charts
attempt to capture the data flow of program segments by focusing
on the representation of input data, process, and output data for
program blocks.* Combinations of NSDs and HIPOs can be found
in the literature,>® and in some instances NSDs have been auto-
matically generated.’

Further improvement can be achieved by direct input of charts
using interactive graphics. The earliest general-purpose graphics
system was Sketchpad.® More specialized approaches include
block diagramming® and, more recently, the direct input of
NSDs.'™" In the latter case, program text is automatically gener-
ated from NSDs. A recent example of the use of graphics in soft-
ware design is the TELL system,'”> where NSDs are used for de-
tailed program description.

Copyright 1980 by International Business Machines Corporation. Copying is per-
mitted without payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright notice are
included on the first page. The title and abstract may be used without further
permission in computer-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor.

BELADY, EVANGELISTI, AND POWER IBM SYST J ® VOL 19 ¢ NO 4 o 1980

The problem with the above graphics schemes is that source
statements in a program listing, as the programmer ‘‘normally”’
views them, do not line up with their associated elements in the
graphics representation. Thus, switching attention from one rep-
resentation to the other can involve a lengthy search for the cor-
responding entity.

This paper discusses a research effort to study this problem and
to try to devise an improved solution. The solution has been
called GREENPRINT after the color of the CRT display. GREEN-
PRINT diagrams, the result of the research effort and the subject of
this paper, are aligned with formatted source code listings and
can be printed side by side with them. Also, GREENPRINTS are
suited to inexpensive devices, and can be used for program de-
sign or documentation.

GREENPRINTs in general

Just as an engineer studies a blueprint, a programmer may inter-
pret two-dimensional green shapes (if the phosphor is such) at a
CRT terminal. A GREENPRINT uses interconnected shapes to show
the block structure and the control flow of a program. The de-
tailed program text—the ‘‘bill of materials’’—completes the part
specification.

Many phases of the program development/maintenance process
could use GREENPRINTs. During design, detail is suppressed, but
an overview of the entire software system is given. Later, pro-

gram logic is detailed in GREENPRINTS; then program text is writ-
ten complementing the former. Finally, in maintenance, when
more than ever the understanding of programs written by others
is crucial, GREENPRINTS, the authors believe, can increase the
productivity of program modification.

GREENPRINT was developed as a result of the authors’ own diffi-
culty, often frustration, in working with large programs written
by others. The current version, which is described here, has
evolved gradually. The authors have found it to be a useful tool.

GREENPRINT diagram

A GREENPRINT is a diagrammatic representation of a program
drawn next to its program source listing. The diagram consists of
only two types of objects —blocks and boxes. Blocks are used to
illustrate program control statements and their scope (e.g., IF, DO
WHILE); boxes are used to illustrate all other program statements.
To represent a program, objects are connected and arranged over
a virtual grid that outlines rows and columns. Rows correspond to

IBM SYST J @ VOL 19 ® NO 4 ¢ 1980 BELADY, EVANGELISTI, AND POWER

program
text

Figure 1 GREENPRINT objects
BLOCKS

Procedure Decision

program statements or groups of statements; columns correspond
to program block structure nesting.

Figure 1 shows a procedure block, a decision block, and a loop
block. Each such block consists of a pillar and at least one gate
box on the top of the pillar (the decision and procedure block may
have additional gate boxes along the pillar). Each type of block
has a different pillar to distinguish it visually. The figure also
shows a processor box, distinguished from the gate box by the
absence of any line to the right. A procedure block defines and
spans the contents of a program or subroutine. Decision blocks
represent if-then, if-then-else, and case statements. Loop blocks
correspond to iterative DO-blocks. A gate box is always part of a
procedure block, a decision block, and a loop block; a processor
box stands alone. As examples in the paper show, a GREENPRINT
representation of a program is a tree where blocks and processor
boxes are nodes with the entry at the top and exits at the bottom
or on the right. A gate box starts a subtree in the column immedi-
ately to its right. Figure 2 shows a GREENPRINT of a procedure
with a loop, three types of decision blocks, and processor boxes.
(The meaning of the **<’s on the left of pillars is discussed later.)

The processor box represents a segment of sequential statements

(straight-line code), and a gate box refers to a predicate (condi-
tion) to control either a decision or a loop. The gate at the top of a

BELADY, EVANGELISTI, AND POWER IBM SYST J @ VOL 19 ® NO 4 o 1980

Figure 2 GREENPRINT diagram of a procedure block, loop block, three forms of decision
block, and processor boxes

Procedure Loop Case If-then If-then Processor
else

BLOCKS_AND _PROCESSOR_BOX: PROCEDURE ;

DO WHILE (A);

SELECT (B);
WHEN (1)

IF C THEN

IF D THEN

procedure block points to the body of the program. Correspond-
ing text is written immediately to the right of a box. GREENPRINTS
are arranged so that there is one box in each row, and the box is
the rightmost object in that row. (Extra space may be introduced
between rows to accommodate program text.) Figure 3 shows a
GREENPRINT with associated text. It can be seen that the right
contour of a GREENPRINT follows the indentation of the text and
corresponds to the nesting of the program control structures.
Since the GREENPRINT diagram is right next to, and in the same
order as the program source text, the programmer can easily

IBM SYST J @ VOL 19 @ NO 4 ® 1960 BELADY, EVANGELISTI, AND POWER

0861 o ¥ ON ® 61 "TOA o [LSAS WHI AIMOd ANV ‘LISITAONVAH ‘AAvT1dd

3y} Jo Mo [onuod 2y} Suraea] ‘)39 oY) uo readde sAemye syd0[q
aInpad01d ‘Surssu sunnoiqns deNSN[I 0} PIsn SI YO0[q dInp
-9201d 2y], ‘wrerSoid ay} Jo 2UnIonIs Y} 2I0J2IAY) pue $YO0[q JO
uonIsodwooap Y] SBIAIL INIAINTHAD B SSOIOR UedS JYSLI-03-)J9]
v ‘weidoid € Jo a1monIs Yo0[q d1els 2y} 01 puodsaiiod syd0[q
doo[pue s¥90[q UOISIAP YIM PpasIadsIoiul $aX0q JOSSID0I]

(.. BIPSN uoneluasald,, Juipeay 3yl Jopun
Joded sy ur 1oe] passnodsip st ¢ aanSid ur sieqid uoISIdp pue
dooj jo souereadde paygipow ay]) swerdoid FuiApnis uaym ISABS
awrm jedaId e—yoeq pue 1X3) 0} WeIFerp WOIj UOHUINE YOUMS

{ZXFANT M=XIANT M

{XdANI S)_C-IERLL NIAD TIVD

{XFGNT M= (XAANT 5)X3ANT CHOMT
SHLONT S=(XIANI S)HIONIT X144QS
{INNOD SEXIAJNS=XFANI §

L1
' 1440$=(XAANIS) IXAN XIddNS

—
(
|
| S—
—

* d0S={0XYANI $)YAMOT XI14dNS

NIHL 0=X3ANI' S 4T

! L+INNOD” SEXTAANS=LINNOD SIXTJINS

NAHL LNOQO SAYOM
*AONANOEYA " XT4dNS NIW=<LNNOD XI1ddNS d1

£ (OXIAN1TSINYAS XI4dNS OL 0 A€ |=¥TINAOD M 0a

{AATSHNOAY (OXHAN IS) TUNAIDOA 1 TFYL NIO

{{XEANT M) LXAN QEOMA=XIANT M

]
==
]

“8)1YIINII0d X14d0S

1

NIHI 0=-ZX3IANI § 41

]
)
-

{0=7XFANI S

TTC M) MLd ONIY1S QHOM
)zusans?o»kzxacm s a1

-l

T #0T_XIJd0S=ZXIANLTS
* NI¥LS quOM)dLSENS=D

-
Tl

1

-

° HM(WELS) HLONAT- (ZXAANT M
JHLONZT ONINLS Q¥OM OL L=I 0d

-

{L=7X4aNI S

-
]

TTC =< {ZXJANI M)HLONIT ONINLS ddOM
JATIHM | O L-A8 XFANI M=ZXIANI M Od

[

—

[

NIHI Z<(W3IS)HLONZT 4T

—
1
L

—
{(X3ANT S)INVAS X144NS Ol L=d3INNOD M OQ e
|
|
[E—

£INNDDTSAXTAANS OL L=XdANITS Ou

1lJJ’IH.L Wlag 1T

M LSHId

= (INGODT suz{QM RN GHon

© 1007)LINI(9)LE)NTE Q3IXIL mNgnbsaa XIJdNS NIW FAvTIEA

£ ¥AQYOITA (NTYW) SNOTLAO dH0AID0Hd :13S4aNS

1X8] pajuepul U INIHANIIYO vV € aunbiy

ainjonys

¥o0iq
anes

program displayed on the right. Figure 3 is a moderately complex
example of a GREENPRINT. It shows a procedure in column one
that consists of a procedure body in the top half of column two
and a nested procedure in the bottom half of column two. The
procedure body consists of a process box for initialization fol-
lowed by a doubly nested loop (columns two and three) and a
RETURN. The innards of the double loop consist of a decision (col-
umn four) to perform another loop (column five) whose body (col-
umn six) includes an inner loop and a decision. The decomposi-
tion of each block appears in the next column along a left-to-right
scan. Notice also that all the processor boxes can be readily seen
from the right without any obstruction. The gate boxes, also seen
from the right, are partly obscured by right-angle legs exiting
from the box. Thus boxes for sequential code and predicates
(partly obscured) can be easily seen and discriminated by the
user.

The programming language delimiters DO and END, essential for
compiling the one-dimensional program text, become redundant
because they are implied by the two-dimensional arrangement of
blocks and boxes. If a GREENPRINT were used for actual coding,
these delimiters could be automatically inserted before com-
pilation for correct language syntax.

Dynamic program execution

Although a GREENPRINT is a tree, it does represent the flow of
control of a structured program. While *‘playing machine’” on a
GREENPRINT (i.e., tracing control flow), the execution sequence
generally progresses downward. Upon each entry to a block, at
most one gate forces execution to continue in the next column to
the right. The selection of a gate is determined by the truth value
of the predicate for the box. An object with no successors be-
neath it is called a terminal. The pillar of a terminal decision block
or loop block is tagged with <s on the left edge to facilitate trac-
ing.

Flowcharts explicitly draw all flow of control lines. GREEN-
PRINTs, which accentuate program block structure, omit the flow
of control lines from terminal blocks and terminal processor
boxes. Instead, the following rule is applied upon completing exe-
cution of a terminal object:

1. Move left (as suggested by the <s on terminal blocks) to the
next loop block or nonterminal decision block, whichever
comes first.

. If it is a loop block, go up to its gate box to reevaluate its
condition. If it is a nonterminal decision block, go down to the
next sequential object in the same column.

IBM SYST J » VOL 19 « NO 4 o 1980 BELADY, EVANGELISTI, AND POWER

nonstructured
flow of
control

GREENPRINTs
and other
charts

Figure 4 A GREENPRINT with
auxiliary control lines
added to form a flowchart

With a little practice this rule becomes second nature and can be
applied at a glance.

With the above rule, a GREENPRINT defines the flow of control for
structured code. Nonstructured flow of control is indicated in a
GREENPRINT by special processor boxes. Constructs such as
GOTO, CALL, RETURN, and LEAVE are such examples. As opposed
to a regular processor box containing possibly many sequential
statements, the special version always represents a single state-
ment, which is indicated in the associated text. By drawing these
boxes differently (e.g., see the GOTO boxes in Figure 6, shown
later) nonstandard flow of control can be highlighted. Auxiliary
lines can be added to a GREENPRINT to show the flow of control
for simple GOTO statements. This has not been done in the current
work, which has concentrated on moderately well-structured
code. If GOTO statements are relatively rare, merely highlighting
them is adequate, and the diagram remains clean. Also note that
the CALL statements in Figures 3 and 6 have not been highlighted
by special processor boxes because their highlighting is consid-
ered optional.

We have already shown how GREENPRINTs are related to in-
dented text. Now we show that, as a program tree, GREENPRINT
also spans a conventional flowchart. Observe the modified
GREENPRINT in Figure 4. Note that it has auxiliary exit lines from
the processor boxes drawn for the purpose of explanation.
Clearly, the move-left-on-terminal rule previously described is
equivalent to these lines. However, the resulting flowchart,
thanks to the GREENPRINT drawing rules, highlights the program
block structure. If the underlying program is GOTO-free, these
rules contain the same information as the auxiliary lines and can
therefore be omitted. Again, auxiliary lines can be added to
GREENPRINTs to flag nonstructured program flow.

Further, Figure 5 shows transformations of both a flowchart and a
Nassi-Shneiderman Diagram (NSD) into a GREENPRINT. The origi-
nal charts, Figures 5A and SE, show a loop around an if-then-
else. Both transformed charts, Figures 5B and SD, show blocks
and boxes pushed to the right. The resulting GREENPRINT, Figure
SC, is shown with auxiliary control lines added.

Uses of GREENPRINT

There were two goals behind the GREENPRINT study. The first
was to draw graphics images of existing program text. Indeed, the
very need to understand complex and often obscure code written
by others led the authors in the first place to develop GREEN-
PRINT. An experimental program driven by a Backus-Naur Form
grammar for PL/I was written to generate data for a drawing pro-

BELADY, EVANGELISTI, AND POWER IBM SYST J @ VOL 19 @ NO 4 & 1980

gram that produces a file to be displayed or printed. The best
candidates for using these automatically generated GREENPRINTS
are likely to be maintainers who must study and modify programs
unfamiliar to them.

Secondly, GREENPRINT can be a design tool, a notation to first
capture ideas as they emerge. Program design thus becomes
drawing GREENPRINTS and entering predicates for gate boxes and
sequential statements for process boxes. Since a GREENPRINT is
precise, with text associated with each box, manual translation
into conventional text is not required. Rather, an automatic trans-
formation of GREENPRINTSs and associated text into source state-
ments can precede compilation. As a result, GREENPRINT can be
the only program representation, also serving as documentation,
whether it represents design or is generated from existing code.
One of the authors designed the drawing program by using free-
hand GREENPRINTS.

GREENPRINT was originally developed specifically for use with
IBM 3270 type devices, which are today widely available to pro-
grammers. Our current, batch-oriented implementation is used
with these terminals and various types of printers. The experi-
mental GREENPRINT drawing program has been parameterized so
as to accept user-defined graphics elements corresponding to dif-
ferent source language constructs. This has encouraged user ex-
perimentation and led to the introduction of the stylized GOTO-
box in Figure 6. Figures 3 and 6, printed on a photocomposer,
were generated from the GREENPRINT drawing program by para-
metrically respecifying the GREENPRINT graphics elements, using
an appropriate font. The up-arrow in the loop pillar enhances
tracing the flow of control in Figure 3.

An interactive GREENPRINT, which has not been studied, would
require only a few commands to support the placing of blocks and
boxes at points on a grid. The machine could facilitate this pro-
cess in several ways. For example, the most recently placed ob-
ject is terminal by default but changes automatically to non-
terminal when a new block or box is suspended from it. The sys-
tem refuses to accept a second box in the same row, such as a
processor box immediately following a processor box (except for
special processor boxes) or a stand-alone gate box. Also, as a
subtree grows downward, so do all pillars of the enclosing blocks
to the left of the subtree, automatically.

To teach programming to a novice, to train programmers, to stim-
ulate insight of designers, or to facilitate the exploration of alter-
native designs, media other than printers and display terminals
come to mind. Imagine, for instance, prefabricated and possibly
colored magnetic blocks and boxes placed on a metal board with
a marked grid. Programming or its demonstration could then be-

IBM SYST J o VOL 19 ® NO 4 ¢ 1980 BELADY, EVANGELISTI, AND POWER

Figure 5 Transformations from a

flowchart and an NSD to
a GREENPRINT: (A)
Flowchart; (B) Trans-
formed flowchart; (C)
GREENPRINT; (D)
Transformed NSD; (E)
NSD

DO WHILE (A) ;

{F B(l) THEN

|
|
|
|
.‘
|
|
J

0861 ® ¥ ON ® 61 TOA o [1SAS WHI YIMOd ANV ‘LLSITIONVAH ‘AQv1dd

"Sunsy
ndino sy} 03 weigeIp INIMINITIO 3y} puddde L[reuondo o3 1oid
-wod v 10§ djeudordde pue [njasn oq pinom 11 ‘Spod 22In0s 9y} Jo
asred e woly Apoatip padnpold oq ued weldelp LNININITID oY)
0UIS “SINIMIINHHID JO a1njed) anbun pue [njosn AI3A B SI 3p0d
92In0s 3y} 0) weidelp INIMINTIYD 94} Jo dduapuodsaiiod Ies
-urf ‘opis-Aq-opis ayJ, ‘weidoad 931n0s Y] apisaq pajud weierp
INRIINTTEO 9y} Jo Sunsy Adod prey e SuiApnis Aq paysidwodoe
9q ued sty [, ‘werdord xoiduwos e Jurpue)siopun ur sdais 11y 9y) Jo
JUO S1J0NU0D JO MOY 9] SuIpuR)SISPU() ‘SINIAINTTAD JO 9sn 3y}
wolj 1solw pajgauaq aaey swerford xardwos ‘ofref ‘sonodead uy

adoudlIadxa [eonoead | NIHINIIHD
‘Sun1eouISuUa [BdLI}093 Ul pasn pleogpedlq

® 0} Je[IWIS 9q P[NOM SIYJ, "S33J} OJUI SUOISIOAP puk ‘sdoo[‘saxoq
Jossao04d Jo sjuowoSuelle JUIIPIP Jo uoneIo[dxd dY} QWOd

—

|
|
—l 1

‘Y4 SNHL Q09 ‘IAILIY ION #/ NAHL NOHLAEI=-AILOVOOHd 41

[]

HIv¥d DAS dSN 'ON

1

14ESN<-I30T OLOD

-

7L ¥T9<-AD0T=4D0T
“9a0d NOSYI¥ FAVS 1Z79040089d =2A0DU

EHE
[Nzze==] r‘[

ANILNOY ¥OWAT LNOEY FIAS ON £93HOIA0OD OLOD

[—-m -

23A0D NYNLI¥ A00D NAHL 0=-F400d 4T

00D NYOLIA LIS ! AONLAO0Ud =TA00H

$SAYAAY NANLIY TYOLSAY £00X18<-AD07= 1 ¥T8<-000T

134 LIX3 AO¥HA 1TV ION A1 0=30004
FALLOV LON DO¥d ENVW aaoauammmvs@aa

ANING HIOV TT¥D #/ CHLAY TTYO

SSTYAQY ANIIN (Lxmauoa)xacw MAYLIPOU<-TI0T

1SIT Wivd NI ¥0a¥ 20dd 1nd #/ 1d504d D=904d 99U<-FI0T
$STYaAY ANTLOO¥ MAN d0 L3S «/ 199dvOLY=20011
990dY_0QY NAKL SINILNOY MAN TTV A9¥Nd »/

¥ILNIOE TLOLY dN 1AS w/ MLdDITOLY=¥Ld TIJLY

¥id 890 SNTA »/* 89080Y<-EONAD0NA | 1400 H=1d00aH

-

NOILAO JIdID>3dS NO 135 «/ 1140dS=1d0034

NOILdO NO L¥§ {1d0DS=1d0%aY

‘0¥ NO1SSES d1 NAHL $2=1d00dd 41 :dSNOA
3579

NOT1JO ANY NO LIS { LAOANY=1d003d
|
NEHL NOLIED=ACONSONd 4T
ANV SNAA

/» OT¥ESNH NO qISvd HIVd INVL {LAYTHOE OL0D
/x HASH AIZTYOHLNY FLYIIANT {NOLTED=SNLOYD0dd
0 T

04008
/- 0¥2Z Ol SYANY NOVEagad LIS «/
dd NI_Hd0D_1SINCTA md dODAN=0THO0
/.Lssnbsm ¥ HLIM 3ATIOV SI Noa.uaa NLiova09d
Sty Sawy 5avs 2avs £dD07T=€ | A¥SO0Ud
/u ASN INTHEAOD HAVS Z00T=ABNNTEL-AD0T
O4NT NANLZY FAYS &/ {300T=00XTE<-AI0T

1830334 SNONCAHONAS 34 LSNW NEHL TINN=¥LIdATI0 41 dSTd
"
K}

weib0id pasmonns Apood e J0 INIHIN33HD ¢ ainbiy

0s§

It has been discovered that GREENPRINTs produced from poorly
structured source code are of special value. Although GREEN-
PRINTs take maximal advantage of the block structuring ex-
pressed in source code control structures, they are not restricted
to them. Indeed, the desired benefits of block structuring can eas-
ily be subverted by a few GOTO statements. Figure 6 is an ex-
ample of this, being a portion of an actual systems program recog-
nized as a maintenance problem. The GREENPRINT diagram high-
lights a poorly structured sequence of code that the neatly
indented source code hides. Notice the following about the se-
quence starting at the label RUNSPANY: (a) it can be reached only
by a GOTO; (b) it consists of three blocks—a decision block, fol-
lowed by a processor box, followed by a decision block; and (c)
the only way to exit this sequence is via one of the two GOTO
statements in the third block. Consequently, this sequence, al-
though nominally embedded within one leg of a decision block,
could be moved elsewhere without affecting the logic of the pro-
gram, thus improving the structure of the code. This flaw in the
code was discovered in a few moments by inspecting the GREEN-
PRINT. Examination of a traditional, automatically generated
flowchart of this same program did not reveal this flaw. The in-
dented source code masked the flaw, and, because it is poorly
structured, the program is not expressible as an NSD.

A side issue of user experience concerns source program com-
ments. Although comments are usually a valuable form of pro-
gram documentation, they often do not describe a program’s flow
of control. They may instead document data structures, or de-
scribe the intent of a program at a more abstract level. Con-
sequently, some users have observed that suppressing comments

in a GREENPRINT clarifies the flow of control of a program by
eliminating nonessential information primarily concerned with
other aspects of the program.

We propose the following research topic: Deduce certain pro-
gramming measures from size and shape characteristics of
GREENPRINTs. For example, the jaggedness of the right contour
could be used to characterize or classify programs with respect to
structure, style, or complexity.

A hypothesis could be studied that the average width of a GREEN-
PRINT is proportional to the expected reading rate of a program-
mer or the comprehension complexity of a program based on the
following expression:
Ttotal

Average width = > K,

Trotar =1
where K is the number of occupied columns in row r and r, ,, is
the number of rows in the GREENPRINT; and the total complexity

C is given by the following equation:

IBM SYST J @ VOL 19 ¢ NO 4 o 1980 BELADY, EVANGELISTI, AND POWER

complexity

GREENPRINTs
as overviews

Figure 7 A high-level GREEN-
PRINT with two detailed
GREENPRINTS

-3 ¥k

r
rtotal r=1

where S is the total number of program statements. This com-
plexity measure accounts for both the average nesting and the
total length of a program. Since the processor box count does not
contain the number of sequential statements in the program, the
length of the program S is used.

Sometimes an overview of a large program is required at the ex-
pense of detail. Two methods are envisioned for this. In the first,
which has not been studied in depth, a box or block may stand for
an undetailed program segment of any size, and it may contain
the name of the segment. In this manner, a subtree can be re-
placed by a named processor box. Such a facility is important
while designing in a top-down fashion. Also, a block, similar to a
decision block, can represent a program segment that determines
which gate is to receive control. Such a block can be more general
in the sense that it gives control to different gates, depending on
an algorithm. Figure 7 shows a summary GREENPRINT at the top
and detailed GREENPRINTs SUB and DEC below. SUB (for subrou-
tine) illustrates a detailed GREENPRINT and DEC (for decision) rep-
resents a program that plays the role of a case-statement predi-
cate. DEC transfers control at exits 1 or 2, thus—at both levels—
representing actions to be performed. The pillar of the high-level
block is altered to indicate that it is not a standard block. Extend-
ing this notion, GREENPRINTs can be used to represent any tree-
structured information. By the appropriate design of pillars,
boxes, and connectors, the entities and their relations can be de-
picted graphically.

In the second method for overview, as exemplified in Figures 3
and 6, all blocks and boxes can be shrunk horizontally and verti-
cally, even to a single character, thus allowing the display of the
control flow of a large program in a smaller area. Figures 3 and 6
were automatically generated and then printed with an appropri-
ately small print font. In addition, some of the program source
text was elided in Figure 3.

Concluding remarks

GREENPRINT as a graphics representation of program control
structure is unique in that its objects—blocks and boxes—appear
from top to bottom in the same order as the associated program
text. The two representations can thus be studied and worked
with concurrently. Other advantages, some shared by conven-
tional flowcharts and NSDs, include the capability of automati-
cally generating GREENPRINTS from program text and generating
control statements from a GREENPRINT. GREENPRINTS can be dis-

BELADY, EVANGELISTI, AND POWER IBM SYST J @ VOL 19 @ NO 4 e 1980

played on inexpensive terminals. In addition, the exactness of
GREENPRINTs suggests the possibility of developing program
complexity metrics based on purely geometric properties. But
this and the extension of the GREENPRINT approach to include
structure and flow of data remain interesting research topics at
this time.

ACKNOWLEDGMENTS

The authors wish to thank J. Cavanagh for nourishing GREEN-
PRINT when it was a seedling, and H. Ellozy for actively using the
program and discovering uses in analyzing poorly structured
parts of programs.

CITED REFERENCES

1. H. H. Goldstine and J. von Neumann, ‘‘Planning and coding problems for an
electronic computing instrument,”” John von Neumann, Collected Works,
Volume V, A. H. Taub (General Editor), The Macmillan Company, New
York (1963), pp. 80-235.

. L. M. Haibt, ‘‘A program to draw multilevel flow charts,”” Proceedings of the
Western Joint Computer Conference, The Joint IRE-AIEE-ACM Computer
Conference, San Francisco, CA, March 3-5, 1959, published by the Institute
of Radio Engineers (now IEEE), New York (1959), pp. 131-137.

. 1. Nassi and B. Shneiderman, ‘‘Flowchart techniques for structured program-
ming,”” ACM SIGPLAN Notices 8, No. 8, 12-26 (August 1973).

. J. F. Stay, ‘‘HIPO and integrated program design,”’ IBM Systems Journal 15,
No. 2, 143-154 (1976).

. N. Chapin, ‘‘New format for flowcharts,”” Software—Practice and Experi-
ence 4, No. 4, 341-357 (October-December 1974).

. K. T. Orr, Structured Systems Development, Yourdon, Inc., New York
(1977).

. P. Roy and R. St-Denis, “‘Linear flowchart generator for a structured lan-
guage,”” ACM SIGPLAN Notices 11, No. 11, 58-64 (November 1976).

. I. E. Sutherland, ‘‘Sketchpad, a man-machine graphical communication sys-
tem,”” AFIPS Conference Proceedings, Spring Joint Computer Conference
23, 329-346 (1963).

. L. A. Belady, M. W. Blasgen, C. J. Evangelisti, and R. D. Tennison, ‘A
computer graphics system for block diagram problems,’’ IBM Systems Jour-
nal 10, No. 2, 143-161 (1971).

. N. Ng, A Graphical Editor for Programming Using Structured Programming ,
Research Report RJ2344, IBM Research Laboratory, 5600 Cottle Road, San
Jose, CA 95193 (1978).

. R. Williams and G. M. Giddings, ‘‘A picture-building system,”’ IEEE Trans-
actions on Software Engineering SE-2, No. 1, 62-66 (March 1976).

. P. G. Hebalkar and S. N. Zilles, TELL: A System for Graphically Represent-
ing Software Designs, Research Report RJ2351, IBM Research Laboratory,
5600 Cottle Road, San Jose, CA 95193 (1978).

The authors are located at the IBM Thomas J. Watson Research
Center, P.O. Box 218, Route 134, Yorktown Heights, NY 10598.

Reprint Order No. G321-5137.

IBM SYST J @ VOL 19 ¢ NO 4 @ 1980 BELADY, EVANGELISTI, AND POWER 553

