
A system  for  generating  application  program  packages  for  use  on 
small  computers  can  produce both questionnaire-tailored  pack- 
ages  for  individual  users  and  standard  packages  for  general  dis- 
tribution. 

The Modular  Application  Customizing  System 
by R. D. Gordon 

The  development of inexpensive small computers during the 
1970s has  put  advanced  data  processing capabilities within reach 
of thousands of small businesses. Many are first-time users with 
no particular  computer  expertise. They need software  support of 
at  least  a  moderate  level of sophistication,  yet  their size does  not 
warrant  an in-house programming staff. In commercial enter- 
prises, initial data  processing  needs  are likely to be for  standard 
applications such as  payroll,  accounts  receivable, and accounts 
payable, and a great many software packages  are available for 
such  applications. Usually the designers of such  packages,  adopt- 
ing a  horizontal  approach,  try to make them general enough for  a 
broad range of users in different industries. 

When applications are tailored  for  a specific industry,  however, 
with specialized functions and terminology, a  vertical  approach is 
desirable.' The vertical approach is appropriate  for packages that 
include billing and inventory  applications,  since programs suited 
to  one  type of inventory  are  not likely to be completely satisfac- 
tory  for  another. 

The  advantage of the vertical package is that,  because it  is spe- 
cific, it is more efficient and  easier  to use. Its  disadvantage is that 
it applies to only a limited number of users. If a package is broad- 
ened in function to apply more widely, it becomes more complex. 
Although it  would be possible  to design an application that han- 
dled, say, pricing for  both lumber and poultry, such an appli- 
cation might  well  be confusing to  the people who used it. A mech- 
anism for simplifying such  a  comprehensive  and complex appli- 
cation is the  subject of this  paper. 

Copyright 1980 by International Business Machines Corporation. Copying is per- 
mitted without payment of royalty provided that ( 1 )  each reproduction is  done 
without alteration and (2) the Journal reference and IBM copyright notice are 
included on the first page. The title and abstract may be  used without further 
permission in computer-based and other information-service systems. Permission 
to republish other excerpts should be obtained from the Editor. 

IBM SYST J VOL 19 NO 4 1980 GORDON 521 



tomizing System (MACS), a  software  system  for generating basic 
accounting  applications  for small computers.  Through 1979 IBM 
had released,  for  distribution in the United States, 17 application 
packages developed with MACS for Systed32 and Systed34. 
Several of the  packages  were produced simultaneously in ver- 
sions  for  Canada, the United Kingdom, Australia,  and  Latin 
America.  A typical package  contains  about 100 programs  that 
handle four  applications  (for  instance, billing, inventory,  ac- 
counts  receivable,  and  sales analysis) and  related  housekeeping 
functions, along with executable  procedures  and  menus.  The pro- 
grams are written in RPG (the  Report Program Generator),' the 
language commonly used  for commercial applications  on  System/ 
32 and Systed34.  The products  are modular in that  they  can  be 
distributed singly or in combination, as well as in a full set, so a 
user of one  application  can  later  add  another.  The  term custom- 
izing indicates  that  the  packages  can be tailored in advance  by 
means of a brief questionnaire. 

MACS provides  access  to a pool of application  data from which 
various  packages  can be configured for  use  on a particular  target 
system.  The programming language of the  applications  and  the 
characteristics of the  target  system  are  aspects of a specific imple- 
mentation of MACS, not of the  overall  concept. While MACS is  a 
package development  tool, it can also be a production vehicle for 
packages tailored for individual users.  This  paper  discusses the 
current implementation of MACS for  applications  on Systed32 
and Systed34.  It covers  the major elements of the  system,  ex- 
plains the principles of function  selection,  and  describes  the  cus- 
tomizing process. 

background MACS had its origins in the late 1960s in a  questionnaire-driven 
special installation aid known as the Application Customizer 
S e ~ v i c e . ~  The  questionnaire permitted the  user  to include or omit 
functions, define field sizes,  and lay out  reports, within the  con- 
text of a predetermined  application design. The applications ini- 
tially produced by that aid were intended for use on  the smallest 
configuration of the IBM Systed3, a  card  system with 8K bytes of 
core  storage.  The  customized  output  consisted of printed pro- 
gram-design instructions  but no actual code, and  the  user of the 
service was therefore  expected  to have a programmer available, 
or  at  least a programming trainee. 

As the installation service  evolved,  applications  for  the disk and 
keyboard-console  versions of System/3 also  were offered, and the 
questionnaires  were  translated  for use in France, Germany,  Italy, 
and  Japan.  Subsequently, machine-readable program code  was 
added to  the printed  documentation,  and  product  variations  were 
devised  for specific industries. Publications were available to 
guide users in those  industries in answering the questionnaires  to 
produce  the  appropriate  variation. 

522 GORDON IBM SYST J VOL 19 NO 4 1980 



Experience with this earlier  system indicated that  an application 
product  ought not to  be  tied  to a single comprehensive  question- 
naire, or  at least  not  one  that  the  end  user would have to  deal 
with. For an application that  contains  a  broad variety of func- 
tions,  the  questionnaire  becomes  cumbersome  and usually in- 
cludes many questions that  do not apply to a particular  industry. 
In  addition,  the  number of combinations of answer  sets,  each of 
which defines a unique system,  poses a significant problem for 
testing and  for developing user  education  and publications. The 
way a given product is to be offered is another  consideration, 
since  questionnaire  customizing is sometimes  appropriate  and 
sometimes  not. In some  cases, a  product may be offered with one 
or more customized  versions  and  several  specialized, fixed ver- 
sions.  These are nontechnical  considerations  and  are  independent 
of whatever  process is used  to  construct  an application. The  pro- 
cess should allow alternatives. 

The problem addressed by the earlier customizer was entirely 
technical: how to  generate a customized application. The  task of 
releasing various  versions of the same set of applications for dif- 
ferent  hardware  configurations, in different countries,  and  under 
different business  conditions identified a more general problem: 
how to derive  several  types of products  from a common base. 
Ideally,  such a base could provide  applications  not  for just  one 
target  system,  but  for  future  systems  as well. 

As a  practical  matter, only some of an application’s  code is reus- 
able,  and  a  certain  amount of turnover is essential.  Parts of a 
package  become  obsolete  and must be removed, a common result 
of moving the  application from one target system  to  another. Im- 
provements suggest themselves in some sections,  either  to  cor- 
rect deficiencies or  to  take  advantage of new techniques.  In  addi- 
tion,  there is a continuing demand  for new application  function. 
Over  the long term,  the problem is one of evolution. Within the 
shorter  term of a single product  development  cycle,  the problem 
is one of flexibility and  control. MACS was  intended as a develop- 
ment vehicle that could be used in different ways  and  was itself 
amenable  to change. 

Components of MACS 

The main components of MACS relate  to  the customizing run,  the 
process  that  generates  a  set of applications from a questionnaire. 
If the  product is offered in a  customized  form,  the customizing 
run is a  production  run:  each  user fills out a questionnaire  and 
later  receives  the  printed  and machine-readable output of the  cus- 
tomization. If the product  is offered in a fixed form, no question- 
naire is used, and the customizing run is a development  opera- 
tion. 

IBM SYST J VOL 19 NO 4 1980 GORDON 523 





0 File maintenance updating of the  master  model,  the  library of 

0 Periodic reserialization of the  master model and synchro- 

0 Tracking of translatable  terms and text,  to  assist in translating 

industry  changes,  and  the macro library. 

nization of industry  changes  to  the new numbering. 

the  master model into languages other  than English. 

Division of the  processor  into  support  system  and  driver, like the 
separation of application data  into  master model and industry 
changes, is a simple but  essential  concept.  The  support  system is 
intended to cover  development  housekeeping  and  functions that 
are unlikely to need change.  The  driver,  on  the  other  hand, is 
expected to change. It is designed to  process  an  industry model of 
a given organization and  produce  certain  types of output, some of 
which are in RPG, the  source language of the target system or 
family of systems.  Enhancements  to  the language imply changes 
to  the  driver,  as do new types of devices  attached  to  the  target 
system,  since new devices  often require new types of output. 

The customizing run is not used solely to  generate  the finished 
product.  It is used also in developing application-related  test  pro- 
grams,  test files, educational  aids,  cross  references, and statis- 
tics;  and  as new needs  arise,  they sometimes entail changes to  the 
driver.  The  support  system is viewed as  static, and the  driver as 
dynamic, with respect  to long-term development, and their  func- 
tions  have been separated intentionally to simplify maintenance. 

The master model and industry model are  identical in organiza- organizing 
tion and  format. A set of industry changes is a supplement to  the principles 
master model, providing a  questionnaire,  added application func- 
tion,  and reworded terminology.  The  set of changes can include 
overrides  to individual lines or  to large sections of text  at  any 
point in the  master model. The primary purpose of the  changes, 
however, is to identify those application functions from the mas- 
ter model that  are to be included in the  industry model, and those 
that are  to be omitted. 

Although each  product might have its own set of industry  changes 
and  therefore its own  industry model, that is not necessarily the 
case.  A  product offered in both fixed and  customized  versions has 
a single industry model, the fixed version being produced from a 
specific set of answers. If several closely related fixed products 
are  to be offered, they could be produced from a single industry 
model with a development-only  questionnaire  and  several  sets of 

, answers. Ordinarily there is a  choice of methods,  and  the  decision 
~ regarding which to use is based partly on  the technical consid- 

eration of similarity and  partly on such  factors  as  product  release 
scheduling and  the  organization and skill  mix  of the  development 
group. 

IBM SYST J VOL 19 NO 4 0 1980 GORDON 525 



The  master model holds the definition of an  application, or of 
several different applications,  based  on  a design for  the target sys- 
tem. It is a partitioned data  set, the  sections of which generally 
fall into  the following categories: 

Definition of the  application  data  base:  records  and fields used 
in more than  one  program; fields internal  to  programs; files; 
algorithms for sizing fields and files; procedure sizings; data 
dictionary. 
Material that will become  the machine-readable application 
code: RPG source  code; sorting specifications; report  and 
screen  layouts;  procedures;  menus;  system files. 
Source material for miscellaneous printed information: sys- 
tem  descriptions;  system  flowcharts;  operator  run  instruc- 
tions. 

A  general philosophy for  application  development underlies the 
organizing principles of the master model. In the first place, most 
elements are defined only once.  The  application  data  base,  for 
example, is intended for, but  not  restricted to, global terms.  In 
practice,  program-internal fields are defined as if they  were 
global. This  practice  produces  a  consistency among programs 
that  makes  them  easier to  understand, and it reduces  the  opportu- 
nity for  creating hazy definitions. It  also  eliminates most prob- 
lems of duplicate  maintenance. 

A second principle is an intentional division of function.  A  pro- 
gram is considered to consist of three  parts:  its  internal  process- 
ing logic, its visible input  and  output (on screens  and in printed 
reports),  and its file input  and  output.  This  concept is close to  the 
classic input-process-output concept,  but not quite  the  same.  The 
construction of the  master model separates  the  three,  and  they 
are commonly assigned to different programmers. Aside from di- 
viding the work,  this  construction  leads  to a certain uniformity in 
the  product’s visible input and  output. 

There  are  other benefits as well. One is that  the application de- 
signer is forced to define the  output in detail  beforehand,  instead 
of letting the  programmer design it as he goes along. Another is 
that, since visible and file I/O usually are simpler than  the program 
logic and  can be completed  earlier, it  is possible to  code  them first 
and  then  use  the  customizing  run  to  produce a skeleton program 
for  the programmer to begin working with. 

visibility Another principle is visibility. The  master model itself provides  a 
librarian  function which guarantees  that all source material that 
will be in the finished product is in one place in a  set  organization, 
so it is fairly easy to find. The simple rule is that  the  current  ver- 
sion of any code  is  the  one in the  master  model, not one  tucked in 
a programmer’s  desk  drawer. An immediate benefit is that the 

I 526 GORDON IBM SYST J VOL 19 NO 4 1980 



master model is a reliable reference  source,  not just for  program- 
mers but  for  application  designers  and publications writers. 
Therefore, in addition to formal  code  inspections,  spot  checks are 
carried  out regularly. The intent to  adapt existing applications to 
new systems implies that  a good deal of the  development effort 
will be devoted  to redefinition and  replacement.  Fagan4  has  ob- 
served  that small modifications, line for line, have a higher error 
frequency  than wholly new modules. Making spot checking con- 
venient helps  reduce  such  errors. 

Moreover, all updates  must go through the  support  system, which 
provides a clear  audit  trail of changes to  the master model. Each 
line of new and  changed  code in the  current  release level is date- 
stamped  to identify the update listing for  that  change.  The  update 
listing shows a before-and-after image of the line. It  can also show 
the initials of the person  who made the  change  and  a  reference 
number  for  the  documentation. Changes that  are not current 
show the release level at which the  last  activity  occurred;  the  last 
listing from  that  release level has a date  stamp  for  the line. If need 
be, any line of code  can be traced back to its origin. 

The principle of visibility lies partly in the notation scheme em- 
ployed.  The  programs in the application product will be in RPG; 
similarly, the  master model notation  for  those programs is  in RPG. 
In  general,  those  sections of the  master model that  represent ma- 
chine-readable  outputs are expressed in the language of those 
outputs.  The  current  implementation, in addition, permits alter- 
nate  notations  for many sections  and  provides a macro facility 
that allows macros to be defined and used anywhere.  Operator 
run  instructions,  for  instance,  can be coded symbolically, written 
out  verbatim,  expressed in macros  that  expand  into symbols or 
full text,  or coded using these  methods in combination. Although 
symbols  and macros require  prior planning, they  are  economical 
and generally consistent, but they are cryptic.  Thus far it seems 
that  nonprogrammers  and  master model programmers alike opt 
for a more obvious  notation,  even when it means writing more 
code. 

Functions  and  switches 

An application is an integrated  set of data processing  functions. 
For customizing,  the  set is divided into two  categories:  intrinsic 
and  extrinsic.  For  example,  the function list of an  accounts  re- 
ceivable application could include the following: 

0 Keep  track of money owed by each  customer. 
0 Post  purchases  and  payments. 
0 Print  statements. 
0 Compute minimum payment. 

IBM SYST J VOL 19 NO 4 1980 GORDON 527 



0 Check money owed against  credit limit. 

Of this  list,  the first two  functions,  and probably the  third,  ordi- 
narily would be considered intrinsic to  accounts receivable. The 
fourth  function, minimum payment,  applies  to  accounts  receiv- 
able for,  say, a  department  store. Since minimum payment is not 
part of every  accounts  receivable  system, it is considered  an ex- 
trinsic function.  The fifth function,  credit limit, is probably extrin- 
sic because it  is possible to have  a  workable  accounts  receivable 
application with no credit  checking. On the  other  hand,  an appli- 
cation designer might justifiably consider  credit checking essen- 
tial and  arbitrarily treat  that function as intrinsic. 

characteristics Three function characteristics of special significance are  de- 
scribed as quantitative,  restrictive,  and modal. The first function 
in the  above  list-“keep  track of money owed”-has  two quan- 
titative characteristics: the amount of money owed and  the num- 
ber of customers  who  owe  money. A restrictive characteristic is 
illustrated by the  third  function-“print statements’’-which can 
be expressed in the following mutually exclusive forms: 

Print  statements  for all customers. 
Print  statements  only  for  customers  who owe money at 

0 Print  statements  only  for  customers who made a purchase  this 

0 Print  statements  only  for  customers who made a  purchase  this 

month-end. 

month. 

month and still owe money at month-end. 

A modal characteristic signifies  how a function will be used or 
implemented, or  both.  The fifth function-“check money owed 
against credit limit”-implies the  existence of customer  credit 
limits. There are  at least  two ways of handling them: use standard 
credit limits and  keep  them in a  table, or assign a unique credit 
limit to  each customer  and  keep it in the  customer’s  record.  The 
former is less flexible, but it uses  less  storage.  Considerations of 
storage  space  are of prime  importance  on small systems.  The  ap- 
plications for Systed32 were intended to provide satisfactory 
performance  on a system with 16 000 bytes of  main storage  and 5 
million bytes of disk storage.  Whatever  the  size of the  system,  the 
input  and  output  devices  impose their own space  requirements: 
screen  dimensions,  diskette  sector  length,  number of card  col- 
umns,  printer line width. 

To  customize  an  application, MACS requires  that  the application’s 
functions  and  function  characteristics be expressed in terms of 
either  switches or quantitative  variables. A switch is an arbitrary 
number assigned to  a  particular function or characteristic. If on, 
the  function or characteristic is present; if off, it  is not.  The  entire 
master model is considered  a  text  stream,  each line of which is 

528 GORDON IBM SYST I VOL 19 NO 4 1980 







I Figure 2 Application-logic questions I 
1-06 

1-07 

1-08 

1-09 

1-10 

Which basic pricing method do you  prefer? Select  one: 

A. One price for  each item. 
B. Five  prices for  each  item, selected by operator-keyed  code.  (Skip 

question 1-07 if this  feature  selected.) 

If you wish to  provide  quantity  discounts, how  many  quantity ranges  do 
you  want  (optional feature)? 

A. Three  quantity  ranges. 
B. Five  quantity  ranges. 

Do you  want to include  matching class  discountharkup? 
Select  one: 

A. Yes. 
B. No. 

Standard  discountlmarkup method. You must select  one: 

A. Code in customer  record selects one of up  to  ten  discountharkup 

B. Code in customer  record combined  with  item class  code  determines 

C.  Code in customer  record  selects  discountharkup percentage from 

percentages. 

discounVmarkup percentage  selected. 

four fields in each item record. 

Additional pricing, taxing, and discounting options (mark as many as 
needed,  or  none). 

A. Container charge.  Calculates  container  charge  for items whose  rec- 
ords  carry a  unit container  charge. 

B. Local  (county/city) sales  taxes. Calculates and prints two local taxes 
in addition to  the  standard  state sales tax. 

C.  Federal  excise  tax. Calculates and prints  this tax, if it should be  re- 
quired, for selected  items. 

D.  Trade  discount  on invoice total.  Deducts a trade (as distinct from 
cash)  discount  from the  preliminary  invoice total, based either  on a 
customer  code or an  amount. 

E. Suggested  retail  price (SRP). Provides for a suggested  retail  price 
field in item records;  this field may be used for printing SRP  on in- 
voices and price  lists. 

F. Pricing unit conversion. Calculates  special prices  for items on which 
the pricing unit is different  from the inventory unit of measure (for 
example, wire inventoried by reel  but  priced by the foot). 

tion mix. EQUATE, therefore,  contains  both unconditional switch 
settings  for  the universally needed  functions,  and  conditional 
switch settings based on  the  questionnaire  answers.  For a fixed 
product,  one without a  questionnaire, all settings would be un- 
conditional. 

To date,  the questionnaires used have been of the  same  general 
construction, with a section  on application logic and  sections  on 
sizing of the  data  base. Application-logic questions,  as  illustrated 
in Figure 2, have a multiple-choice f ~ r m a t . ~  Questions  are num. 
bered  to indicate both  section  number  and the number of the 
question within a  section-for  example, 1-06-and answers are 
indicated by letters.  Answer  A  to  question 1-06, then, is repre- 

IBM SYST 1 VOL 19 NO 4 1980 GORDON 531 



Figure 3 Digital  questions 

1-45  Maximum  unit  price for one item? 

A. Less than one hundred dollars 
B.  Less than one thousand dollars 
C. Less than ten thousand dollars 
D. Less than 1 0 0  thousand dollars 

1-46  Maximum extended price for one item? 

A. Less than one thousand dollars 
B. Less than ten thousand dollars 
C .  Less than  100 thousand dollars 

1-47  Maximum  amount of  one invoice? 

A.  Less than one thousand dollars 
B.  Less than ten thousand dollars 
C. Less than 100 thousand dollars 

1-48  Maximum  number of decimals-base price/cost? 

A. Two (for example, $44.25) 
B. Three ($22.125) 
C. Four ($11.0625) 

sented as 106A. Answers are required  to  some  questions;  other 
questions are optional.  A  question  can  be  either  conditional or 
unconditional; if conditional, it can  be  either  answered or ignored, 
depending on  the  answer  to a  previous  question.  There may be 
more than  one  answer to some questions. Question 1-06 in Figure 
2 requires an  answer  and is unconditional. Question 1-07 is op- 
tional and  conditional. Question 1-10 allows for  more  than  one 
answer. 

quantitative Questions used in sizing the  data  base  are of three  types: digital, 
variables numeric,  and  direct-size.  Figure 3 illustrates  some digital ques- 

tions, which ask  the  number of digits necessary to accommodate 
key dollar  and  inventory  volumes. Although the  questions  are in 
the  same multipart form as  the application logic questions, the 
answers  are  not used to  set function  switches,  but  are  resolved 
into  quantitative  variables.  In  other  words, marking “less  than 
ten  thousand  dollars” is equivalent  to saying “four digits.” The 
dollar  questions  deal with whole dollars  only.  A  separate  question 
covers  cents.  The  answers  are  subsequently combined to  deter- 
mine  field lengths. The  master model defines about  two  dozen 
quantitative  variables  for digital answers.  It is EQUATE’S respon- 
sibility to  provide  those  answers,  either  through  a  questionnaire 
or by unconditional assignment.  The  relationships among an  ap- 
plication’s fields are  such  that  these  two  dozen digital variables 
can yield appropriate  and  consistent  sizes  for some 500 fields. 

Answers to questions  on  processing  volumes  provide  data  for nu- 
meric variables  (see  Figure 4). The  numbers that  are supplied are 

532 GORDON IBM SYST I VOL 19 NO 4 19RO 





within a field in a record;  this  was  the only technique  available 
prior to  the introduction  (with Systed34) of the RPG data  struc- 
ture  concept. 

files A file is a record-holding entity,  the  records having the same  for- 
mat or different formats.  It  has a width dimension, which must  be 
sufficient to  accommodate  the longest record  format.  A file 
wholly contained  on  disk  also has a capacity  dimension,  ex- 
pressed as a record  count.  The  two dimensions are  converted by 
the  driver to  standard  units, known  as segments, for  the  device in 
question.  The model defines the size of a segment. For  Systed32 
and Systed34, the  segment is a 2560-byte block. 

Files are included in the  data  base definition for  either of two 
reasons.  The first is that  their  record  layouts are needed in pro- 
gram input  and  output specifications, with the specific exclusion 
of files that  are primarily displays.  The  second is that  they  need 
physical disk space. All application disk files are  included,  since 
they  meet  the  second  criterion. Most meet  the first as well, but 
not all. A work file used by a SORT program,  for  instance, is never 
used  directly by an application program, but it uses disk space. A 
printer file is excluded  because it is a display.  A  diskette file  is 
excluded  because it is both  read  and  written by a utility, not an 
application program,  and it uses no disk space.  The disk image of 
that  diskette file  is included,  however. 

The mapping of records  to  a file establishes  the file’s record 
length in most cases.  Exceptions  are files with no defined records. 
For such files, the  width is defined explicitly. Capacity is also 
defined explicitly where  relevant.  In  both cases,  the explicit defi- 
nition is derived,  through model language computations, from 
quantitative  variables.  Record length and  capacity are two of a 
file’s attributes;  record padding is a third. For certain  access 
methods,  there  are efficiencies in assigning a file a record length 
greater  than it needs if the result is a length that is a submultiple of 
the  disk’s  sector  length.  This relationship is expressed as 

SIK - R = P 

where S is the  sector  length, R the length of the file’s longest 
record, P the  amount of pad, and K the  largest whole number that 
yields a positive whole number  for P. S is supplied from the 
model, and R is determined  from  the file’s record  list. P i s  derived 
by the  driver.  Since the intent of padding is to  increase  a  63-byte 
record to 64 bytes,  but  not  necessarily  to similarly lengthen a 33- 
byte  record,  the model also supplies a pad allowance, A ,  ex- 
pressed  as a decimal fraction.  The pad is accepted  and  added to 
the  record length only if 

P / ( P  + R) < A .  

A  fourth  attribute is overhead  space,  expressed  as  extra  segments 

534 GORDON IBM SYST J VOL 19 NO 4 1980 



to  be  added  to  a file’s total size (in effect, a  capacity pad) or  as  the 
factors  necessary to  derive a file’s index.  The  last  attribute is a 
file-type code  for files with miscellaneous characteristics  that do 
not comfortably fall within the general width/capacity definition. 
An example is a  record  address file, whose records  cannot  cross 
sector  boundaries. 

A  procedure is a series of job steps,  each of which involves the 
execution of a program. Programs  that  create or delete files use or 
relinquish disk space.  A file is considered to  be a permanent file, a 
work file, or an  intermediate file. A  permanent file, once created, 
is always  present. A work file is created  and  deleted within the 
same  procedure. An intermediate file is created by one  procedure 
and  deleted by another. 

A procedure may or may not  be  able  to  reuse  its own space. If 
not, its size is the  sum of the  sizes of its work files plus the  sizes of 
the  intermediate files that must be present when it executes. If  it 
can  reuse  its own space,  its  size is the  space required by its larg- 
est  job step-that  is,  the sum of the  sizes of the work files and 
intermediate files present  at  that  point.  For  an application or set 
of applications  to be usable  on  a given disk configuration, there 
must be sufficient disk  capacity  for  execution of the largest proce- 
dure  as well as  for all permanent files and  any  other  permanent 
disk occupants  such  as  libraries  and  control files. This  critical- 
point testing of disk space is the  purpose of mapping files to pro- 
cedures  as  part of the  data  base definition. 

The  data  base  step of the customizing run is the  one in which 
conceptual  changes to  the driver  and model are most likely as 
different target  systems  introduce  advancements in the  technique 
of data base  management.  The definitions of records  and files 
used by MACS, for  instance,  are applicable at  present  but may not 
remain so. The MACS architecture is intended  to be resilient 
enough to permit this  type of evolution. 

Reports  and  screen  displays 

The laying out of reports  and  screen  displays,  the third step of the 
customizing run,  completes  the logical construction of the appli- 
cation.  A  report or  screen display is a visible output.  A  typical 
report has a heading which appears  on  every  page,  a body in col- 
umnar  format,  and  column  totals  on  the  last page. In some cases, 
the heading-body-totals arrangement is nested. For  instance, a 
sales  report by region probably has an  overall heading, a body 
that  consists of a heading,  body,  and  totals  for  each region, and 
then grand totals. 

The  purpose of the  layout step is to  assemble  aesthetically  ac- 
ceptable visual outputs  for  any variation of a customized  product. 
The model provides generalized  layouts.  The  driver  completes 

IBM SYST J VOL 19 NO 4 1980 GORDON 



Figure 6 Layout of a report in groups and columns 

, 
HEADING 

- 
" 

10 

" 

" 

20 

" 

" 

40 

" 

- 

" 

50 

" 

-COLUMN 
HEADINGS 

- BODY 

c. TOTALS 

the  layout by positioning all fields in a manner  compatible with 
the sizing of the  data  base. For design purposes,  an  application's 
data  base has a default size  that is realistic  for  every field. The 
designer  who  lays out a  report  or screen display inevitably has in 
mind some  probable  set of switches  that will be on, and as a result 
designs the original layout as a specific case. 

The  concept used in MACS for generalizing layouts is that  the pri- 
mary characteristic of any visual output is vertical alignment. A 
column of figures on a report is a list of numbers, usually with an 
explanatory heading, in vertical alignment. Similarly, a name- 
and-address block positioned  to show through  the opening of a 
window envelope  exhibits  vertical alignment. In MKS, such  ar- 
rangements are called columns, and  horizontal  rows of columns 
are called groups. It  turns  out  that  a  report or screen display can 
be  described in its entirety in terms of groups  and  columns. A 
layout in the model is coded  as RPG output specifications without 
actual  output  positions,  but with a map to  its  groups  and  columns. 
For  screen displays that  double as input formats,  the  layout iden- 
tifies the input fields so that  the  driver  can  derive  the  input  layout 
as well. 

Figure 6 shows  the  layout of a  report in groups  and  columns. A 
group  consists of several  lines,  not all of which print at  the  same 
time. Group B in the  illustration includes column headings, report 
body,  and  totals-three  distinct  output  conditions.  Each unique 
output condition in a group is called a logical  line. An individual 
line image is known as a physical  line. A double-line set of col- 
umn headings is an  example of a single logical line with two  phys- 
ical lines. MACS identifies a group by a letter,  and a column by a 

536 GORDON IBM SYST I VOL 19 NO 4 1980 



two-digit number; the notation B20, for  example,  refers to column 
20 in group B. A field or  constant  occurs  on a physical line. In lieu 
of an  actual print position, it carries a reference that assigns it to a 
column. Multiple terms  on  a physical line can  be assigned to  the 
same  column. Column B20 is thus  represented  by  terms or  sets of 
terms  on several different physical lines. The widest set  estab- 
lishes the width of the column. 

Within a column, a term  can  be displayed flush left, flush right, or 
centered. If there is only  one  term,  the width of the  term defines 
the  width of the  column. If the physical line has more than one 
term in a particular  column, the outermost  terms are aligned with 
the column edges,  and  the  interior  terms  are aligned with the 
outer  terms. Dummy terms  are  used  to  leave  space  between 
terms in a column. A column  on  a  physical line can be double- 
defined-that is, defined with one  set of terms  and  then redefined 
with ,another.  That would be  done,  for  instance,  to print one  or 
the  other of different constants  at  the  same  point,  each  condi- 
tioned by its own output indicator. 

The  concept of groups  and  columns allows the driver to  deter- 
mine all the column widths  and  then lay out  the report or screen 
display without  reference  to  the  vertical dimension. Each  group 
becomes  a linear representation of column widths  (see  Figure 7). 
The  map in the  industry model supplies the guidelines for han- 
dling that representation. It gives any  attributes  for  columns: 
space  between  columns, alignment of columns in different 
groups, specific print  position.  The  widest  group  establishes the 
width of the  report,  just  as  the widest set of terms  establishes the 
width of a column. A group  can  be  shown flush left, flush right, or 
centered with respect  to  the  widest  group. A group  can  also  be 
spread to  the limits of the printer’s width: the  outermost  columns 
are flush left and flush right with free  space  distributed equally 
between  columns. If the  report  as a whole is narrower  than the 
printer’s  width,  the  entire  report  can  be  set flush left, flush right, 
or  centered with respect  to  the print margins. 

If a group is too wide for  the  output  device,  the  driver  can define 
it (in the linear  representation)  either as self-contained in one line 
or  as having a format that occupies as many lines as  necessary. 
The multiline format  subsequently is applied to  the group’s  phys- 
ical lines, as  appropriate,  converting  any single lines to  two  or 
more.  This solution is  used in other  report-generating  processors, 
such as RPG’s auto  report  function. 

Columns of a self-contained  group  are  disposed of one  at a time 
until the group fits. This  procedure is applicable when not all col- 
umns are essential. For this  purpose,  each  column in a  group can 
be assigned a priority class.  The rightmost column in the  lowest 
remaining priority class is dropped,  and  the  driver  continues  de- 

IBM SYST J * VOL 19 * NO 4 - 1980 GORDON 





described earlier.-They differ from one  another mostly in the-de- 
tails of format and handling, not in substance.  Further,  they  are 
independent of one  another,  and  the  order of processing is arbi- 
trary.  Step  four is for  accessory  documentation,  either  diagrams 
or text.  It applies only to customized  products. For a fixed prod- 
uct,  the equivalent  material would be supplied in a publication. 

Step five produces  the  application  source  code:  programs,  control 
specifications for  sorting,  and  the like. One of the  outputs is a 
machine-readable  directory  for  such material so that it can  be ar- 
ranged appropriately on  the product’s  distribution medium, and 
so items  can  be  duplicated if necessary.  The  transfer  to  the  actual 
distribution medium is  separate from the customizing run,  to  per- 
mit an intervening compilation step if object code is delivered. 
Step six produces  machine-readable  data files, either  test  data  or 
control information needed  for  an  application’s  housekeeping 
functions. 

In  each of these  three  steps,  the  driver  binds  the  data  base  to  the 
product  output by incorporating  record  layout  descriptions and 
field definitions into the printed data  entry  instructions;  inserting 
record  lengths, blocking factors, file sizes,  and field lengths and 
positions  throughout  programs,  control  specifications,  and  proce- 
dures;  formatting  the  records  for  the  machine-readable  data files; 
and  attaching input and  output specifications for  records,  screen 
displays,  and  reports  to all programs. During this  process the 
driver  counts lines of code  and makes up  cross  references to  the 
main product  output.  The  line-count  statistics are helpful for  de- 
velopment  management. The  cross  references identify where 
every field was used across all application programs in the  pack- 
age. 

Limitations 

The customizing system  has  two principal limitations. The first is 
that it clearly is not interactive.  The  questionnaire and validation 
steps could be made interactive with minimal difficulty, but the 
rest of the customizing run is a serial process  as  presently  con- 
ceived.  There  has  been  some  work in this area, however.  Current 
application  packages  produced  through MACS include programs 
that allow a  user to change  answers  to  questions  about  processing 
volume and  thereby  revise  the disk space  requirements.  Since the 
process  does not involve recompiling of application  programs, it 
is fairly rapid.  The  development of data  base  systems may permit 
a corresponding  advance in the  methods of sizing records, fields, 
and possibly reports. 

IBM SYST J 0 VOL 19 0 NO 4 I980 GORDON 539 



The  other limitation is that MACS requires  no  particular  sequence 
of development and,  as a result,  provides no guidance  for  devel- 
opment.  There is no single starting  point,  no  section of the  master 
model that must be done first when developing a new application. 
The  reason is that MACS is not  an application design aid.  But  ap- 
plication design is of course  the first step,  and  the design must  be 
complete  and internally consistent, particularly with regard to 
switches  and  data  base  items, which will be defined globally. 
MACS is easiest  to use in a development  cycle  that  has definite 
design-review-coding stages. 

Summary 

MACS is a  development  tool  intended to  address  the practical 
problem of mass  producing  standard small-business computer  ap- 
plications in a variety of configurations. This  paper  has  described 
the  current  implementation of the  tool, which consists of four ele- 
ments:  support  system,  driver,  master  model,  and  industry-spe- 
cific changes.  The  support  system  consolidates  master model and 
industry  changes to form the  industry  model, which in turn is 
processed by the  driver, using services of the  support  system, in a 
customizing run  to  produce tailored application  packages. The 
driver,  master model, industry  changes,  and customizing run  are 
defined by the specific implementation; the  one  described  here 
has  been used for  several  years  to  produce Systed32 and  Sys- 
tend34 programming packages. 

The  thesis of MACS is that  code is reusable, that  the investment in 
design and programming of one application package can be re- 
tained as  the initial capital  for the next, so long as it is kept in an 
accessible form. An implementation of "X is based  on  the  way 
the driver  and  master model are  conceived  and  designed, as well 
as on  the intent of the customizing run. A formal definition of the 
system would be silent on  those matters.  The  current implemen- 
tation is straightforward,  not  revolutionary;  the customizing run 
described  here is essentially assembly followed by simple text 
selection. 

One might wonder  whether,  for  instance,  a design language could 
be used  instead of RPG notation  for  the  application  code itself. 
The language could be  translated  into RPG or,  say, COBOL, since 
that would clearly expand  the package potential of the  master 
model. Indeed,  such  a language could be  used. As a  practical 
strategy,  however,  that  approach would be  premature  since it 
would depend on development of the language, a  better  under- 
standing of structured  design  than now exists,  and  an  established 
working theory of how to apply the principles of  structured  pro- 
gramming to RPG. But it is not unlikely that all the pieces might 
fall into  place  for  some  future  implementation. 

540 GORDON IBM SYST J VOL 19 NO 4 1980 



GORDON 541 


