A system for generating application program packages for use on
small computers can produce both questionnaire-tailored pack-
ages for individual users and standard packages for general dis-
tribution.

The Modular Application Customizing System
by R. D. Gordon

The development of inexpensive small computers during the
1970s has put advanced data processing capabilities within reach
of thousands of small businesses. Many are first-time users with
no particular computer expertise. They need software support of
at least a moderate level of sophistication, yet their size does not
warrant an in-house programming staff. In commercial enter-
prises, initial data processing needs are likely to be for standard
applications such as payroll, accounts receivable, and accounts
payable, and a great many software packages are available for
such applications. Usually the designers of such packages, adopt-
ing a horizontal approach, try to make them general enough for a
broad range of users in different industries.

When applications are tailored for a specific industry, however,
with specialized functions and terminology, a vertical approach is
desirable.' The vertical approach is appropriate for packages that
include billing and inventory applications, since programs suited
to one type of inventory are not likely to be completely satisfac-
tory for another.

The advantage of the vertical package is that, because it is spe-
cific, it is more efficient and easier to use. Its disadvantage is that
it applies to only a limited number of users. If a package is broad-
ened in function to apply more widely, it becomes more complex.
Although it would be possible to design an application that han-
dled, say, pricing for both lumber and poultry, such an appli-
cation might well be confusing to the people who used it. A mech-
anism for simplifying such a comprehensive and complex appli-
cation is the subject of this paper.

Copyright 1980 by International Business Machines Corporation. Copying is per-
mitted without payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright notice are
included on the first page. The title and abstract may be used without further
permission in computer-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor.

IBM SYST J @ VOL 19 ¢ NO 4 & 1980 GORDON

background

Specifically, the paper describes the Modular Application Cus-
tomizing System (MACS), a software system for generating basic
accounting applications for small computers. Through 1979 1BM
had released, for distribution in the United States, 17 application
packages developed with MACS for System/32 and System/34.
Several of the packages were produced simultaneously in ver-
sions for Canada, the United Kingdom, Australia, and Latin
America. A typical package contains about 100 programs that
handle four applications (for instance, billing, inventory, ac-
counts receivable, and sales analysis) and related housekeeping
functions, along with executable procedures and menus. The pro-
grams are written in RPG (the Report Program Generator),” the
language commonly used for commercial applications on System/
32 and System/34. The products are modular in that they can be
distributed singly or in combination, as well as in a full set, so a
user of one application can later add another. The term custom-
izing indicates that the packages can be tailored in advance by
means of a brief questionnaire.

MACS provides access to a pool of application data from which
various packages can be configured for use on a particular target
system. The programming language of the applications and the
characteristics of the target system are aspects of a specific imple-
mentation of MACS, not of the overall concept. While MACS is a
package development tool, it can also be a production vehicle for
packages tailored for individual users. This paper discusses the
current implementation of MACS for applications on System/32
and System/34. It covers the major elements of the system, ex-
plains the principles of function selection, and describes the cus-
tomizing process.

MACS had its origins in the late 1960s in a questionnaire-driven
special installation aid known as the Application Customizer
Service.’ The questionnaire permitted the user to include or omit
functions, define field sizes, and lay out reports, within the con-
text of a predetermined application design. The applications ini-
tially produced by that aid were intended for use on the smallest
configuration of the IBM System/3, a card system with 8K bytes of
core storage. The customized output consisted of printed pro-
gram-design instructions but no actual code, and the user of the
service was therefore expected to have a programmer available,
or at least a programming trainee.

As the installation service evolved, applications for the disk and
keyboard-console versions of System/3 also were offered, and the
questionnaires were translated for use in France, Germany, Italy,
and Japan. Subsequently, machine-readable program code was
added to the printed documentation, and product variations were
devised for specific industries. Publications were available to
guide users in those industries in answering the questionnaires to
produce the appropriate variation.

IBM SYST J e VOL 19 ® NO 4 e 1980

Experience with this earlier system indicated that an application
product ought not to be tied to a single comprehensive question-
naire, or at least not one that the end user would have to deal
with. For an application that contains a broad variety of func-
tions, the questionnaire becomes cumbersome and usually in-
cludes many questions that do not apply to a particular industry.
In addition, the number of combinations of answer sets, each of
which defines a unique system, poses a significant problem for
testing and for developing user education and publications. The
way a given product is to be offered is another consideration,
since questionnaire customizing is sometimes appropriate and
sometimes not. In some cases, a product may be offered with one
or more customized versions and several specialized, fixed ver-
sions. These are nontechnical considerations and are independent
of whatever process is used to construct an application. The pro-
cess should allow alternatives.

The problem addressed by the earlier customizer was entirely
technical: how to generate a customized application. The task of
releasing various versions of the same set of applications for dif-
ferent hardware configurations, in different countries, and under
different business conditions identified a more general problem:
how to derive several types of products from a common base.
Ideally, such a base could provide applications not for just one
target system, but for future systems as well.

As a practical matter, only some of an application’s code is reus-
able, and a certain amount of turnover is essential. Parts of a
package become obsolete and must be removed, a common result
of moving the application from one target system to another. Im-
provements suggest themselves in some sections, either to cor-
rect deficiencies or to take advantage of new techniques. In addi-
tion, there is a continuing demand for new application function.
Over the long term, the problem is one of evolution. Within the
shorter term of a single product development cycle, the problem
is one of flexibility and control. MACS was intended as a develop-
ment vehicle that could be used in different ways and was itself
amenable to change.

Components of MACS

The main components of MACS relate to the customizing run, the
process that generates a set of applications from a questionnaire.
If the product is offered in a customized form, the customizing
run is a production run: each user fills out a questionnaire and
later receives the printed and machine-readable output of the cus-
tomization. If the product is offered in a fixed form, no question-
naire is used, and the customizing run is a development opera-
tion.

IBM SYST J @ VOL 19 ¢ NO 4 o 1980

master model

Figure 1 The building and customizing steps

QUESTION-
NAIRE
ANSWERS

INDUSTRY
CHANGES

MASTER INDUSTRY CUSTOMIZE
MODEL MODEL

\

APPLICATION
REFERENCE
MATERIAL

—_—

Aside from answers to the questionnaire, if one is used, the input
to the customizing run is known as the industry model. It contains
the source material for the application product and the symbology
that allows the source material to be customized. The processor
of the industry model, called the driver, governs the format of the
end product and to some extent its content. There are also numer-
ous service routines which make up a control program. The con-
trol program acts as the host processor and provides the driver
with various data management services, including the interface to
the industry model. As part of the model interface, the control
program interprets any customizing symbology and does the ac-
tual customizing.

The industry model is created by a prior step which uses as input
a master model, or master set of application material. This mate-
rial is combined with a set of industry changes, selections, and
overrides to convert the applications to a specific offering for a
particular industry or country. The set of changes includes a defi-
nition of the questionnaire if the product is to be customized. The
industry model is generated as a subset of the master model. This
preliminary step is equivalent to answering a master question-
naire to customize the master model. This building run is a devel-
opment process only, even if the product offering is to be custom-
ized. Figure 1 illustrates the building and customizing steps.

The control program of the customizing run and the processor of
the building run are members of a set of service programs collec-
tively known as the support system. The other functions of the
support system are:

® Macro expansion, if macros have been used in the master
model or the industry changes.

GORDON IBM SYST J @ VOL 19 ¢ NO 4 ¢ 1980

File maintenance updating of the master model, the library of
industry changes, and the macro library.

Periodic reserialization of the master model and synchro-
nization of industry changes to the new numbering.
Tracking of translatable terms and text, to assist in translating
the master model into languages other than English.

Division of the processor into support system and driver, like the
separation of application data into master model and industry
changes, is a simple but essential concept. The support system is
intended to cover development housekeeping and functions that
are unlikely to need change. The driver, on the other hand, is
expected to change. It is designed to process an industry model of
a given organization and produce certain types of output, some of
which are in RPG, the source language of the target system or
family of systems. Enhancements to the language imply changes
to the driver, as do new types of devices attached to the target
system, since new devices often require new types of output.

The customizing run is not used solely to generate the finished
product. It is used also in developing application-related test pro-
grams, test files, educational aids, cross references, and statis-
tics; and as new needs arise, they sometimes entail changes to the
driver. The support system is viewed as static, and the driver as
dynamic, with respect to long-term development, and their func-
tions have been separated intentionally to simplify maintenance.

The master model and industry model are identical in organiza-
tion and format. A set of industry changes is a supplement to the

master model, providing a questionnaire, added application func-
tion, and reworded terminology. The set of changes can include
overrides to individual lines or to large sections of text at any
point in the master model. The primary purpose of the changes,
however, is to identify those application functions from the mas-
ter model that are to be included in the industry model, and those
that are to be omitted.

Although each product might have its own set of industry changes
and therefore its own industry model, that is not necessarily the
case. A product offered in both fixed and customized versions has
a single industry model, the fixed version being produced from a
specific set of answers. If several closely related fixed products
are to be offered, they could be produced from a single industry
model with a development-only questionnaire and several sets of
answers. Ordinarily there is a choice of methods, and the decision
regarding which to use is based partly on the technical consid-
eration of similarity and partly on such factors as product release
scheduling and the organization and skill mix of the development
group.

IBM SYST J & VOL 19 & NO 4 * 1980

organizing
principles

visibility

The master model holds the definition of an application, or of
several different applications, based on a design for the target sys-
tem. It is a partitioned data set, the sections of which generally
fall into the following categories:

e Definition of the application data base: records and fields used
in more than one program; fields internal to programs; files;
algorithms for sizing fields and files; procedure sizings; data
dictionary.

Material that will become the machine-readable application
code: RPG source code; sorting specifications; report and
screen layouts; procedures; menus; system files.

Source material for miscellaneous printed information: sys-
tem descriptions; system flowcharts; operator run instruc-
tions.

A general philosophy for application development underlies the
organizing principles of the master model. In the first place, most
elements are defined only once. The application data base, for
example, is intended for, but not restricted to, global terms. In
practice, program-internal fields are defined as if they were
global. This practice produces a consistency among programs
that makes them easier to understand, and it reduces the opportu-
nity for creating hazy definitions. It also eliminates most prob-
lems of duplicate maintenance.

A second principle is an intentional division of function. A pro-
gram is considered to consist of three parts: its internal process-
ing logic, its visible input and output (on screens and in printed
reports), and its file input and output. This concept is close to the

classic input-process-output concept, but not quite the same. The
construction of the master model separates the three, and they
are commonly assigned to different programmers. Aside from di-
viding the work, this construction leads to a certain uniformity in
the product’s visible input and output.

There are other benefits as well. One is that the application de-
signer is forced to define the output in detail beforehand, instead
of letting the programmer design it as he goes along. Another is
that, since visible and file 70 usually are simpler than the program
logic and can be completed earlier, it is possible to code them first
and then use the customizing run to produce a skeleton program
for the programmer to begin working with.

Another principle is visibility. The master model itself provides a
librarian function which guarantees that all source material that
will be in the finished product is in one place in a set organization,
so it is fairly easy to find. The simple rule is that the current ver-
sion of any code is the one in the master model, not one tucked in
a programmer’s desk drawer. An immediate benefit is that the

IBM SYST J » VOL 19 @ NO 4 & 1980

master model is a reliable reference source, not just for program-
mers but for application designers and publications writers.
Therefore, in addition to formal code inspections, spot checks are
carried out regularly. The intent to adapt existing applications to
new systems implies that a good deal of the development effort
will be devoted to redefinition and replacement. Fagan® has ob-
served that small modifications, line for line, have a higher error
frequency than wholly new modules. Making spot checking con-
venient helps reduce such errors.

Moreover, all updates must go through the support system, which
provides a clear audit trail of changes to the master model. Each
line of new and changed code in the current release level is date-
stamped to identify the update listing for that change. The update
listing shows a before-and-after image of the line. It can also show
the initials of the person who made the change and a reference
number for the documentation. Changes that are not current
show the release level at which the last activity occurred; the last
listing from that release level has a date stamp for the line. If need
be, any line of code can be traced back to its origin.

The principle of visibility lies partly in the notation scheme em-
ployed. The programs in the application product will be in RPG;
similarly, the master model notation for those programs is in RPG.
In general, those sections of the master model that represent ma-
chine-readable outputs are expressed in the language of those
outputs. The current implementation, in addition, permits alter-
nate notations for many sections and provides a macro facility
that allows macros to be defined and used anywhere. Operator
run instructions, for instance, can be coded symbolically, written
out verbatim, expressed in macros that expand into symbols or
full text, or coded using these methods in combination. Although
symbols and macros require prior planning, they are economical
and generally consistent, but they are cryptic. Thus far it seems
that nonprogrammers and master model programmers alike opt
for a more obvious notation, even when it means writing more
code.

Functions and switches

An application is an integrated set of data processing functions.
For customizing, the set is divided into two categories: intrinsic
and extrinsic. For example, the function list of an accounts re-
ceivable application could include the following:

Keep track of money owed by each customer.
Post purchases and payments.

Print statements.

Compute minimum payment.

IBM SYST J VOL 19 ¢ NO 4 ¢ 1980

characteristics

o Check money owed against credit limit.

Of this list, the first two functions, and probably the third, ordi-
narily would be considered intrinsic to accounts receivable. The
fourth function, minimum payment, applies to accounts receiv-
able for, say, a department store. Since minimum payment is not
part of every accounts receivable system, it is considered an ex-
trinsic function. The fifth function, credit limit, is probably extrin-
sic because it is possible to have a workable accounts receivable
application with no credit checking. On the other hand, an appli-
cation designer might justifiably consider credit checking essen-
tial and arbitrarily treat that function as intrinsic.

Three function characteristics of special significance are de-
scribed as quantitative, restrictive, and modal. The first function
in the above list—"‘keep track of money owed’’—has two quan-
titative characteristics: the amount of money owed and the num-
ber of customers who owe money. A restrictive characteristic is
illustrated by the third function—‘‘print statements’’ —which can
be expressed in the following mutually exclusive forms:

& Print statements for all customers.

o Print statements only for customers who owe money at
month-end.
Print statements only for customers who made a purchase this
month.
Print statements only for customers who made a purchase this
month and still owe money at month-end.

A modal characteristic signifies how a function will be used or

implemented, or both. The fifth function—*‘check money owed
against credit limit”” —implies the existence of customer credit
limits. There are at least two ways of handling them: use standard
credit limits and keep them in a table, or assign a unique credit
limit to each customer and keep it in the customer’s record. The
former is less flexible, but it uses less storage. Considerations of
storage space are of prime importance on small systems. The ap-
plications for System/32 were intended to provide satisfactory
performance on a system with 16 000 bytes of main storage and 5
million bytes of disk storage. Whatever the size of the system, the
input and output devices impose their own space requirements:
screen dimensions, diskette sector length, number of card col-
umns, printer line width.

To customize an application, MACS requires that the application’s
functions and function characteristics be expressed in terms of
either switches or quantitative variables. A switch is an arbitrary
number assigned to a particular function or characteristic. If on,
the function or characteristic is present; if off, it is not. The entire
master model is considered a text stream, each line of which is

GORDON IBM SYST | & VOL 19 & NO 4 » 1980

conditioned by a switch or combination of switches. The switch
settings indicate whether a given line is ‘‘true’’ or ‘‘false’’ for that
customization. The customizer is a text selector: true lines are
selected, false lines are bypassed.

By and large, switches are used to indicate extrinsic functions
and modal characteristics, and quantitative variables are used to
describe quantitative characteristics. Intrinsic functions normally
are not represented, since they are implied by some higher extrin-
sic function (such as the application itself), and any customization
that included that extrinsic function would include all its intrinsic
functions. Restrictive characteristics may or may not be repre-
sented, depending on whether the implementation of a function
can be defined so that the user has the option of resolving the
conflict either when installing the application (with the further op-
tion of changing it later) or when executing the job that performs
the function.

The question of how to print statements, for example, can be an-
swered by setting a code somewhere in the application. A trade-
off is involved in defining functions to permit restrictive flexibil-
ity, since whatever option the user does not elect implies a certain
amount of dead code in the program. The presumption must be
either that the implementation is so well conceived that the
amount of dead code is minimal, or that the user will have the
need to first make one choice and later make another.

Control statements, written in what is known as model language
can be interspersed with the text of the model. The model lan-

guage provides a vehicle for comments and allows the following
basic operations:

Define a numeric or character variable.

Assign a value to a variable (by means of MOVE, ADD, SUB-
TRACT, MULTIPLY, or DIVIDE).

Insert a variable into a line of text.

Compare two variables.

Set a switch on or off.

Test a switch combination.

Test a variable’s characteristics (odd or even; actual length).

The compare and test operations are expressions that return true
or false. Subsequent lines of text, or model language statements,
can be conditioned on the truth or falsity of the previous if ex-
pression. An if expression itself can be so conditioned. The test-
switch-combination statement provides for those few complex
situations in which a line or block cannot be conditioned in a stan-
dard form and it is not worthwhile to define a separate switch to
represent the combination.

IBM SYST J » VOL 19 ¢« NO 4 » 1980 GORDON

use of
switches

model
language

The distinction between control program, driver, and model is
significant in understanding the relationship of model text to
switches and model language. A line in the model can be either
text or a model language statement; a control character identifies
the latter. Attached to each line is a switch condition. The control
program resolves the switch condition and either accepts or by-
passes the line according to whether the condition is true or false.
If the line is a model language statement, the control program
interprets and executes it; if text, the control program passes the
line to the driver. The customizing logic represented by switch
conditions and model language is thus external to the driver.

The customizing run

The customizing run has seven steps in three processing sections.
Table 1 lists the steps, along with the nature of the model data
needed. Each step produces some type of listing, which also is
noted. Each of the outputs, whether printed or machine readable,
is optional; special versions of the customizing run (to produce,
say, spacing charts only) are commonly used during develop-
ment. The first three steps involve the logical construction of the
application or set of applications. At their conclusion, all of the
application’s inputs and outputs are determined and ready to be
bound into the main product output, which will be largely ma-
chine readable.

Questionnaires

Step one resolves the questionnaire into the form needed for cus-
tomizing, namely switch settings and the quantitative values that
will be used to size the data base. The process depends on two
industry model members, EQUATE and VALIDATE. EQUATE de-
scribes the questionnaire symbolically, allowing the driver to
‘‘equate’’ an answer to a switch or a variable. VALIDATE provides
the rules for logical relationships: that mutually exclusive
switches are not on together; that a secondary function is in fact
accompanied by an appropriate higher-level function; that a
monthly volume does not exceed its corresponding annual vol-
ume.

Even for a customized application product, only a few functions
would be selected from a questionnaire. The presumption is that,
since the product is intended for a particular industry, the persons
in charge of defining the product can anticipate which functions
are universally needed, which should be left out, and which re-
quire a question in the questionnaire. It might be that businesses
in the industry are grouped into segments according to their prod-
uct lines, and the questionnaire might ask which segment. The
answer for each business, then, would determine an overall func-

GORDON IBM SYST J @ VOL 19 ¢ NO 4 o 1980

Figure 2 Application-logic questions

1-06 Which basic pricing method do you prefer? Select one:

A. One price for each item.
B. Five prices for each item, selected by operator-keyed code. (Skip
question 1-07 if this feature selected.)

If you wish to provide quantity discounts, how many quantity ranges do
you want (optional feature)?

A. Three quantity ranges.
B. Five quantity ranges.

Do you want to include matching class discount/markup?
Select one:

A. Yes.
B. No.

Standard discount/markup method. You must select one:

A. Code in customer record selects one of up to ten discount/markup
percentages.

B. Code in customer record combined with item class code determines
discount/markup percentage selected.

C. Code in customer record selects discount/markup percentage from
four fields in each item record.

Additional pricing, taxing, and discounting options (mark as many as
needed, or none).

A. Container charge. Calculates container charge for items whose rec-
ords carry a unit container charge.

B. Local (county/city) sales taxes. Calculates and prints two local taxes
in addition to the standard state sales tax.

C. Federal excise tax. Calculates and prints this tax, if it should be re-
quired, for selected items.

. Trade discount on invoice total. Deducts a trade (as distinct from
cash) discount from the preliminary invoice total, based either on a
customer code or an amount.

. Suggested retail price (SRP). Provides for a suggested retail price
field in item records; this field may be used for printing SRP on in-
voices and price lists.

. Pricing unit conversion. Calculates special prices for items on which
the pricing unit is different from the inventory unit of measure (for
example, wire inventoried by reel but priced by the foot).

tion mix. EQUATE, therefore, contains both unconditional switch
settings for the universally needed functions, and conditional
switch settings based on the questionnaire answers. For a fixed
product, one without a questionnaire, all settings would be un-
conditional.

To date, the questionnaires used have been of the same general
construction, with a section on application logic and sections on
sizing of the data base. Application-logic questions, as illustrated
in Figure 2, have a multiple-choice format.® Questions are num-
bered to indicate both section number and the number of the
question within a section—for example, 1-06—and answers are
indicated by letters. Answer A to question 1-06, then, is repre-

IBM SYST J o VOL 19 ® NO 4 e 1980 GORDON

quantitative
variables

Figure 3 Digital questions

1-45 Maximum unit price for one item?

A. Less than one hundred dollars
B. Less than one thousand dollars
C. Less than ten thousand dollars
D. Less than 100 thousand dollars

Maximum extended price for one item?

A. Less than one thousand dollars
B. Less than ten thousand dollars
C. Less than 100 thousand dollars

Maximum amount of one invoice?

A. Less than one thousand dollars
B. Less than ten thousand dollars
C. Less than 100 thousand dollars

Maximum number of decimals—base price/cost?

A. Two (for example, $44.25)
B. Three ($22.125)
C. Four ($11.0625)

sented as 106A. Answers are required to some questions; other
questions are optional. A question can be either conditional or
unconditional; if conditional, it can be either answered or ignored,
depending on the answer to a previous question. There may be
more than one answer to some questions. Question 1-06 in Figure
2 requires an answer and is unconditional. Question 1-07 is op-
tional and conditional. Question 1-10 allows for more than one
answer.

Questions used in sizing the data base are of three types: digital,
numeric, and direct-size. Figure 3 illustrates some digital ques-
tions, which ask the number of digits necessary to accommodate
key dollar and inventory volumes. Although the questions are in
the same multipart form as the application logic questions, the
answers are not used to set function switches, but are resolved
into quantitative variables. In other words, marking ‘‘less than
ten thousand dollars’’ is equivalent to saying ‘‘four digits.”” The
dollar questions deal with whole dollars only. A separate question
covers cents. The answers are subsequently combined to deter-
mine field lengths. The master model defines about two dozen
quantitative variables for digital answers. It is EQUATE’s respon-
sibility to provide those answers, either through a questionnaire
or by unconditional assignment. The relationships among an ap-
plication’s fields are such that these two dozen digital variables
can yield appropriate and consistent sizes for some 500 fields.

Answers to questions on processing volumes provide data for nu-
meric variables (see Figure 4). The numbers that are supplied are

GORDON IBM SYST J & VOL 19 & NO 4 & 1980

Figure 4 Numeric questions

2-09 What is the average number of line items to be printed on an invoice?

2-10 What is the typical maximum number of line items to be printed on an
invoice?
What is the maximum number of invoices and credit memos printed in a
day?

What is the maximum number of invoices and credit memos printed in a
month?

used to size files and determine disk space requirements. The dif-
ference between 100 and 500 invoices a day is of consequence
even though both values are the same length.

Direct-size questions, the third type, constitute a catch-all cate-
gory intended primarily for serial numbers and descriptions,
which are data items whose lengths do not depend on user vol-
umes.

Application data base

The second step of the customizing run is to define the terms in
the data base and map their relationships to one another (see Fig-
ure 5). Each term has a label and a title. The label is the name
used within the application code; the title is a phrase that de-
scribes the term for use in documentation. The label, the title, and
a list of attributes constitute the definition of the term. The defini-
tions are carried as text in the model and are selected by
switches.

Fields local to programs are mapped directly to programs. Other
fields are mapped to data structures or records. Just as a local
program field can appear in more than one program, a field can
occur in a number of data structures or records. Since most data
structures are unique to a given program, however, data struc-
tures generally are defined locally within programs and not as part
of the general data base. A data structure defined locally within a
program need only refer by label to the fields it contains. The
driver completes any missing part of the specification according
to the global definition. A field’s attributes may be locally rede-
fined; the local redefinition can include the label as well.

Records are external collections of fields that are input to pro-
grams or output from them as a set; they are merely formats.
They differ from data structures essentially in that records are
associated with files and thus have the physical implication of an
input or output device. A record can contain a data structure, in
that a field can have subfields, and subfields can be mapped

IBM SYST J VOL 19 ¢ NO 4 o 1980 GORDON

Figure 5 Data base mapping reia-
tionships

PROGRAM

within a field in a record; this was the only technique available
prior to the introduction (with System/34) of the RPG data struc-
ture concept.

A file is a record-holding entity, the records having the same for-
mat or different formats. It has a width dimension, which must be
sufficient to accommodate the longest record format. A file
wholly contained on disk also has a capacity dimension, ex-
pressed as a record count. The two dimensions are converted by
the driver to standard units, known as segments, for the device in
question. The model defines the size of a segment. For System/32
and System/34, the segment is a 2560-byte block.

Files are included in the data base definition for either of two
reasons. The first is that their record layouts are needed in pro-
gram input and output specifications, with the specific exclusion
of files that are primarily displays. The second is that they need
physical disk space. All application disk files are included, since
they meet the second criterion. Most meet the first as well, but
not all. A work file used by a SORT program, for instance, is never
used directly by an application program, but it uses disk space. A
printer file is excluded because it is a display. A diskette file is
excluded because it is both read and written by a utility, not an
application program, and it uses no disk space. The disk image of
that diskette file is included, however.

The mapping of records to a file establishes the file’s record
length in most cases. Exceptions are files with no defined records.
For such files, the width is defined explicitly. Capacity is also
defined explicitly where relevant. In both cases, the explicit defi-
nition is derived, through model language computations, from
quantitative variables. Record length and capacity are two of a
file’s attributes; record padding is a third. For certain access
methods, there are efficiencies in assigning a file a record length
greater than it needs if the result is a length that is a submultiple of
the disk’s sector length. This relationship is expressed as

S/K—-—R=P

where § is the sector length, R the length of the file’s longest
record, P the amount of pad, and K the largest whole number that
yields a positive whole number for P. S is supplied from the
model, and R is determined from the file’s record list. P is derived
by the driver. Since the intent of padding is to increase a 63-byte
record to 64 bytes, but not necessarily to similarly lengthen a 33-
byte record, the model also supplies a pad allowance, A, ex-
pressed as a decimal fraction. The pad is accepted and added to
the record length only if

P/(P + R) < A.

A fourth attribute is overhead space, expressed as extra segments

IBM SYST J & VOL 19 @ NO 4 ¢ 1980

to be added to a file’s total size (in effect, a capacity pad) or as the
factors necessary to derive a file’s index. The last attribute is a
file-type code for files with miscellaneous characteristics that do
not comfortably fall within the general width/capacity definition.
An example is a record address file, whose records cannot cross
sector boundaries.

A procedure is a series of job steps, each of which involves the
execution of a program. Programs that create or delete files use or
relinquish disk space. A file is considered to be a permanent file, a
work file, or an intermediate file. A permanent file, once created,
is always present. A work file is created and deleted within the
same procedure. An intermediate file is created by one procedure
and deleted by another.

A procedure may or may not be able to reuse its own space. If
not, its size is the sum of the sizes of its work files plus the sizes of
the intermediate files that must be present when it executes. If it
can reuse its own space, its size is the space required by its larg-
est job step—that is, the sum of the sizes of the work files and
intermediate files present at that point. For an application or set
of applications to be usable on a given disk configuration, there
must be sufficient disk capacity for execution of the largest proce-
dure as well as for all permanent files and any other permanent
disk occupants such as libraries and control files. This critical-
point testing of disk space is the purpose of mapping files to pro-
cedures as part of the data base definition.

The data base step of the customizing run is the one in which
conceptual changes to the driver and model are most likely as
different target systems introduce advancements in the technique
of data base management. The definitions of records and files
used by MACS, for instance, are applicable at present but may not
remain so. The MACS architecture is intended to be resilient
enough to permit this type of evolution.

Reports and screen displays

The laying out of reports and screen displays, the third step of the
customizing run, completes the logical construction of the appli-
cation. A report or screen display is a visible output. A typical
report has a heading which appears on every page, a body in col-
umnar format, and column totals on the last page. In some cases,
the heading-body-totals arrangement is nested. For instance, a
sales report by region probably has an overall heading, a body
that consists of a heading, body, and totals for each region, and
then grand totals.

The purpose of the layout step is to assemble aesthetically ac-

ceptable visual outputs for any variation of a customized product.
The model provides generalized layouts. The driver completes

IBM SYST J & VOL 19 ¢ NO 4 & 1980

procedure space

Figure 6 Layout of a report in groups and columns

COLUMNS

T
GROUP A { I 10 |<—HEAD\NG

-

COLUMN
HEADINGS

GROUP B

fe—— TOTALS

the layout by positioning all fields in a manner compatible with
the sizing of the data base. For design purposes, an application’s
data base has a default size that is realistic for every field. The
designer who lays out a report or screen display inevitably has in
mind some probable set of switches that will be on, and as a result
designs the original layout as a specific case.

The concept used in MACS for generalizing layouts is that the pri-
mary characteristic of any visual output is vertical alignment. A
column of figures on a report is a list of numbers, usually with an
explanatory heading, in vertical alignment. Similarly, a name-
and-address block positioned to show through the opening of a
window envelope exhibits vertical alignment. In MACS, such ar-
rangements are called columns, and horizontal rows of columns
are called groups. It turns out that a report or screen display can
be described in its entirety in terms of groups and columns. A
layout in the model is coded as RPG output specifications without
actual output positions, but with a map to its groups and columns.
For screen displays that double as input formats, the layout iden-
tifies the input fields so that the driver can derive the input layout
as well.

Figure 6 shows the layout of a report in groups and columns. A
group consists of several lines, not all of which print at the same
time. Group B in the illustration includes column headings, report
body, and totals—three distinct output conditions. Each unique
output condition in a group is called a logical line. An individual
line image is known as a physical line. A double-line set of col-
umn headings is an example of a single logical line with two phys-
ical lines. MACS identifies a group by a letter, and a column by a

GORDON IBM SYST J & VOL 19 & NO 4 & 1980

two-digit number; the notation B20, for example, refers to column
20 in group B. A field or constant occurs on a physical line. In lieu
of an actual print position, it carries a reference that assignsitto a
column. Multiple terms on a physical line can be assigned to the
same column. Column B20 is thus represented by terms or sets of
terms on several different physical lines. The widest set estab-
lishes the width of the column.

Within a column, a term can be displayed flush left, flush right, or
centered. If there is only one term, the width of the term defines
the width of the column. If the physical line has more than one
term in a particular column, the outermost terms are aligned with
the column edges, and the interior terms are aligned with the
outer terms. Dummy terms are used to leave space between
terms in a column. A column on a physical line can be double-
defined —that is, defined with one set of terms and then redefined
with another. That would be done, for instance, to print one or
the other of different constants at the same point, each condi-
tioned by its own output indicator.

The concept of groups and columns allows the driver to deter-
mine all the column widths and then lay out the report or screen
display without reference to the vertical dimension. Each group
becomes a linear representation of column widths (see Figure 7).
The map in the industry model supplies the guidelines for han-
dling that representation. It gives any attributes for columns:
space between columns, alignment of columns in different
groups, specific print position. The widest group establishes the
width of the report, just as the widest set of terms establishes the
width of a column. A group can be shown flush left, flush right, or
centered with respect to the widest group. A group can also be
spread to the limits of the printer’s width: the outermost columns
are flush left and flush right with free space distributed equally
between columns. If the report as a whole is narrower than the
printer’s width, the entire report can be set flush left, flush right,
or centered with respect to the print margins.

If a group is too wide for the output device, the driver can define
it (in the linear representation) either as self-contained in one line
or as having a format that occupies as many lines as necessary.
The multiline format subsequently is applied to the group’s phys-
ical lines, as appropriate, converting any single lines to two or
more. This solution is used in other report-generating processors,
such as RPG’s auto report function.

Columns of a self-contained group are disposed of one at a time
until the group fits. This procedure is applicable when not all col-
umns are essential. For this purpose, each column in a group can
be assigned a priority class. The rightmost column in the lowest
remaining priority class is dropped, and the driver continues de-

IBM SYST J e VOL 19 » NO 4 » 1980

horizontal
alignment

Figure 7 One-dimensional layout

GROUPA — —— ——
GROUP B
GROUP C
GROUP D
GROUP E

Table 1 Customizing run

Customizing step Model content Printout

Logical construction
of application

1. Resolve questionnaire ® Questionnaire image ® Summary of questions
and validate answers ® Syntax rules for and answers

answers

® Relationships of
answers to switches

o Relational rules for
switches and quanti-
tative variables

2. Construct data base e List of fields, data o Data dictionary
structures, records, e Contents of data
and files, and their structures, files,
attributes records

e Data base map ® Analysis of disk
space

3. Construct reports e Generalized layouts ® Spacing charts
and screen
displays

Main product output

4. Produce miscellaneous ® Text or symbology e Operating
documents appropriate to instructions
document e Flowcharts

5. Produce machine- ® Program calculation e Menus
readable code logic ® Procedures
¢ Procedures ® Program source code
e Screen specifications

6. Produce machine- e Source data for e Contents of system
readable files files files and test data

Reference material

7. Produce cross- o Cross-references
references o Statistics

leting columns according to this rule until the group fits. For a
report that contains both critical information and supportive in-
formation, the column-dropping strategy provides an aesthetic re-
sult where a group is too wide.

A major advantage of defining reports and screen displays as gen-
eralized layouts is that subsequent changes can be made in-
expensively. It is often the case that a report looks different than
it did on the original printer spacing chart and needs some minor
changes. Or an enhancement to a program may call for new out-
put fields. With a generalized layout, a field can be moved a space
or two, or a new column can be inserted in the middle of the
report, and the driver will adjust the entire format accordingly.

IBM SYST J ® VOL 19 ® NO 4 e 1980

Main product output

Steps four, five, and six of the customizing run, as outlined in
Table 1, are straightforward text-selection processes of the type
described earlier. They differ from one another mostly in the de-
tails of format and handling, not in substance. Further, they are
independent of one another, and the order of processing is arbi-
trary. Step four is for accessory documentation, either diagrams
or text. It applies only to customized products. For a fixed prod-
uct, the equivalent material would be supplied in a publication.

Step five produces the application source code: programs, control
specifications for sorting, and the like. One of the outputs is a
machine-readable directory for such material so that it can be ar-
ranged appropriately on the product’s distribution medium, and
so items can be duplicated if necessary. The transfer to the actual
distribution medium is separate from the customizing run, to per-
mit an intervening compilation step if object code is delivered.
Step six produces machine-readable data files, either test data or
control information needed for an application’s housekeeping
functions.

In each of these three steps, the driver binds the data base to the
product output by incorporating record layout descriptions and
field definitions into the printed data entry instructions; inserting
record lengths, blocking factors, file sizes, and field lengths and
positions throughout programs, control specifications, and proce-
dures; formatting the records for the machine-readable data files;
and attaching input and output specifications for records, screen
displays, and reports to all programs. During this process the
driver counts lines of code and makes up cross references to the
main product output. The line-count statistics are helpful for de-
velopment management. The cross references identify where
every field was used across all application programs in the pack-
age.

Limitations

The customizing system has two principal limitations. The first is
that it clearly is not interactive. The questionnaire and validation
steps could be made interactive with minimal difficulty, but the
rest of the customizing run is a serial process as presently con-
ceived. There has been some work in this area, however. Current
application packages produced through MACS include programs
that allow a user to change answers to questions about processing
volume and thereby revise the disk space requirements. Since the
process does not involve recompiling of application programs, it
is fairly rapid. The development of data base systems may permit
a corresponding advance in the methods of sizing records, fields,
and possibly reports.

IBM SYST J » VOL 19 « NO 4 e 1980

The other limitation is that MACS requires no particular sequence
of development and, as a result, provides no guidance for devel-
opment. There is no single starting point, no section of the master
model that must be done first when developing a new application.
The reason is that MACS is not an application design aid. But ap-
plication design is of course the first step, and the design must be
complete and internally consistent, particularly with regard to
switches and data base items, which will be defined globally.
MACS is easiest to use in a development cycle that has definite
design-review-coding stages.

Summary

MACS is a development tool intended to address the practical
problem of mass producing standard small-business computer ap-
plications in a variety of configurations. This paper has described
the current implementation of the tool, which consists of four ele-
ments: support system, driver, master model, and industry-spe-
cific changes. The support system consolidates master model and
industry changes to form the industry model, which in turn is
processed by the driver, using services of the support system, in a
customizing run to produce tailored application packages. The
driver, master model, industry changes, and customizing run are
defined by the specific implementation; the one described here
has been used for several years to produce System/32 and Sys-
tem/34 programming packages.

The thesis of MACS is that code is reusable, that the investment in
design and programming of one application package can be re-
tained as the initial capital for the next, so long as it is kept in an
accessible form. An implementation of MACS is based on the way
the driver and master model are conceived and designed, as well
as on the intent of the customizing run. A formal definition of the
system would be silent on those matters. The current implemen-
tation is straightforward, not revolutionary; the customizing run
described here is essentially assembly followed by simple text
selection.

One might wonder whether, for instance, a design language could
be used instead of RPG notation for the application code itself.
The language could be translated into RPG or, say, COBOL, since
that would clearly expand the package potential of the master
model. Indeed, such a language could be used. As a practical
strategy, however, that approach would be premature since it
would depend on development of the language, a better under-
standing of structured design than now exists, and an established
working theory of how to apply the principles of structured pro-
gramming to RPG. But it is not unlikely that all the pieces might
fall into place for some future implementation.

IBM SYST J & VOL 19 & NO 4 & 1980

CITED REFERENCES

1. L. B. Marienthal, ‘*Selling small business systems,”’ Datamation 24, No. 10,
86-90 (October 1978).

2. Introduction to RPG 1I, IBM Systems Library, order number GC21-7514,
available through IBM branch offices.

3. Application Customizer Service System/3 Application Description, IBM Sys-
tems Library, order number GH20-0628, available through IBM branch of-
fices.

. M. E. Fagan, ‘‘Design and code inspections to reduce errors in program devel-
opment,”’ IBM Systems Journal 15, No. 3, 182-211 (1976).

. Figure 2 reproduces part of the Hardware Distributors Management Account-
ing System Questionnaire, IBM Systems Library, order number GH30-0066,
available through IBM branch offices.

The author’s mailing address is IBM Corporation, General Sys-
tems Division, 2800 Sand Hill Road, Menlo Park, CA 94025.

Reprint Order No. G321-5136.

IBM SYST J ¢ VOL 19 ¢ NO 4 » 1980 GORDON 541

