The use of linear programming is impeded by the effort required
to express a model as a matrix and to collect and handle data. An
experimental interactive system called LPMODEL simplifies the
development of linear programming models. It frees the user
from the necessity of expressing the model as a matrix. LPMODEL
provides a nonprocedural language for constructing a model in
terminology that is natural to the problem, using ordinary alge-
braic expressions. With this language, the user can express a
model concisely by generic constraints which the system inter-
prets in conjunction with a data base to generate a concrete
model for optimization.

The design of the system and its terminology and data base sub-
systems are discussed. An informal description is given of the
modeling language which involves both ordinary arithmetic oper-
ations and symbolic operations with associated semantics. Expe-
rience with the system in agricultural modeling is described.

A system for constructing linear programming models
by 8. Katz, L. J. Risman, and M. Rodeh

Linear programming has become a valuable aid to decision mak-
ing in many fields; see, for example, References 1 and 2. How-
ever, the effort that is required to collect and organize data, to
express a linear programming (LP) model as a matrix, and to input
the matrix of coefficients to the computer impedes the use of this
valuable tool. Several systems have been developed to help in the
process of generating the matrix, as discussed later in the section
on other modeling systems. The computer professional now has
available powerful tools for developing mathematical program-
ming models. While some progress has been made in meeting the
needs of the less sophisticated user, the process of constructing a
model is still complicated and slow. The required data have to be
laboriously prepared, and the constraints and goal of the entity
being modeled must be expressed in terms of tables or matrices.

Copyright 1980 by International Business Machines Corporation. Copying is per-
mitted without payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright notice are
included on the first page. The title and abstract may be used without further
permission in computer-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor.

IBM SYST J @ VOL 19 @ NO 4 » 1980 KATZ, RISMAN, AND RODEH

model
properties

The increased availability of interactive terminals and the general
trend towards providing better programming tools for the user
have made it natural to consider systems that concentrate on the
construction and development of linear programming models
rather than on their solution. Thus, the experimental system dis-
cussed here, called LPMODEL, makes linear programming more
accessible to the user who is not an expert in computers or opera-
tions research. This interactive system simplifies the collection
and organization of data. It provides a language, LPM (Linear Pro-
gramming Modeling Language), which frees the user from the ne-
cessity of expressing a model as a matrix. LPMODEL generates
input for a standard linear programming system which then ac-
tually performs the optimization of the model.

To achieve the goal of accessibility, principles that have been
found useful in other applications have been employed. These
include modularity —dividing the larger task into smaller subtasks
that can be treated separately, naturalness —expressing the
model in terms natural to the domain of the problem, and abstrac-
tion —expressing the nature of the problem independently of par-
ticular details such as numerical constants. Note that directly
constructing a matrix using any programming language violates
the above principles, in particular, naturalness.

The goal of this work is not to provide yet another method for
solving linear programming problems, nor is it to provide heuris-
tic guidelines for constructing a linear programming model.
Rather, a declarative language is described which was designed to
be sufficiently expressive yet simple to learn and use, and a sys-
tem organization is presented which encourages the principles
mentioned above. This paper can be viewed as a case study in
special-purpose language and system design. Although the ex-
amples given below and the experience with the system to date
have been in agricultural planning, the system is designed to be
more generally applicable.

System design

Besides the general considerations of modularity and simplicity,
the specific properties of linear programming models can be ex-
ploited in the system and language design.

A linear programming model consists of a set of linear constraints
and a linear objective function to be minimized or maximized.
The most basic property of such a model is that it is declarative: a
problem is described and defined—no algorithm need be pre-
sented by the user for its solution, since that will be done in a
standard way for all models. Another basic property is that the
various constraints in a model are independent. Thus changing

KATZ, RISMAN, AND RODEH IBM SYST] e VOL 19 @ NO 4 e 1980

one has no effect on the others, although it does, of course, affect
the solution to the model.

In addition to these basic properties, there are some observations
that hold for many real-life linear programming models:

e Linear programming variables that fulfill logically similar roles
fall into natural groupings; e.g., on a farm natural groupings
might be the crops or the tractors.

Some of the constraints have a similar structure. Again con-
sider a farm and assume that the water demand and supply are
given on a monthly basis. For each month, a constraint is re-
quired to express the bounds on water supply in that month,
yielding a set of constraints with similar structure.

Some aspects of a model change more often than others. In
many cases one conceptual model is applied to different sets
of numerical values. In other cases some of the groups of vari-
ables or constraints are slightly changed, whereas the model
as a whole retains its structure. We call this phenomenon ron-
uniform stability.

The above considerations led to a system for constructing linear
programming models with components for the following tasks:

1. Defining a terminology which is natural for the problem do-
main
2. Creating and maintaining a data base for associating data val-
ues with identifiers that represent known quantities in the
model
. Expressing an abstract model independently of particular val-
ues of known data

The abstract model uses the terminology that is defined sepa-
rately. It includes two syntactically distinguishable types of iden-
tifiers: those that represent unknown quantities, to which the lin-
ear programming solution will ultimately assign values (the usual
linear programming variables), and those which represent known
quantities (the linear programming technological coefficients and
other constants). In the data base, the association is made be-
tween those identifiers representing constants and their actual
values. Thus, the terminology and the data base can be viewed as
the environment of the abstract model. When the list of names
represented by a term is provided by the terminology and the
values are provided from the data base, the abstract model can be
interpreted to yield a specific concrete model that is in a form
ready for solution by a linear programming system.

Naturally, the development of the three components of a model is

not really independent: as the constraints of the abstract model
are being written, the need for additional terminology will arise,

IBM SYST J ¢ VOL 19 ¢ NO 4 ¢ 1980 KATZ, RISMAN, AND RODEH

abstract
model

and it will become clear exactly which data values are needed.
The main advantage of separating the model into three parts is
that if one part is changed, the others are often unaffected. For
example, if the particular numerical values must be updated (e.g.,
the amount of land available for farming changes, or the costs of
various items rise because of inflation), this can be done without
affecting the terminology or the abstract model. The new com-
ponents can then be recombined into a new concrete linear pro-
gramming model. Similarly, if a new crop is added to the list of
crops in the terminology, this need not influence the abstract
model, although new numerical information usually will have to
be added to the data base.

Another advantage of the system is that the data base can be up-
dated regularly and used to generate reports independently of the
linear programming context. This should help to alleviate the
common difficulty that results wherein every time a linear pro-
gramming solution is desired, a tremendous outburst of reporting
and bookkeeping is required to gather the needed information. If
this system is used as intended, the data can be collected and
entered continuously, and running a particular linear program-
ming model becomes a much less painful task.

In fact, independently of linear programming, data bases are al-
ready widely used for bookkeeping and administrative purposes.
LPMODEL can be viewed as yet another way to use an already
existing data base. In such a situation, special information-gather-
ing exclusively for linear programming becomes unnecessary.

Defining the terminology

As explained above, it is generally convenient to define a termi-
nology natural to the task at hand. In order to be precise about the
nature of the subsystem for this task, which is called terminology,
a few definitions are necessary.

A name is simply a sequence of letters, digits, and ‘_’, which
does not start with a digit and contains no blanks. There are two
kinds of names: atoms and terms. An atom is a name which in
itself represents some aspect of reality, and does not stand for
any other name in the model. Examples could be
COTTON, PLUMS, or SALARY. A term, however, is an ab-
breviation for a list of atoms. Only the terms are defined by the
Terminology system. Any name that is not given a definition in
Terminology is assumed to be an atom. Note that the same atom
may appear in several terms. If a farm were being modeled, the
definitions needed in Terminology might be:

MONTH <« MAY, JUNE, JULY
CROP + COTTON, ONIONS, GREEN_PEP, WHEAT,
PEAR, GRAPE

KATZ, RISMAN, AND RODEH IBM SYST] ® VOL 19 @ NO 4 e 1980

In more complex situations, it is convenient to ‘‘build up’’ a defi-
nition in stages, €.g.,

FIELD <« COTTON, ONIONS, GREEN_PEP, WHEAT
ORCHARD « PEAR, GRAPE
CROP « FIELD, ORCHARD

This would give CROP the same definition as previously, since
after each term has been defined, no matter how this was done, it
stands only for the associated list of atoms (which is called the
‘‘expanded’’ definition of the term). It is also legal to mix atoms
with previously defined terms in defining new terms. Thus

CROP « FIFLD, FPEAR, GRAPE

is yet another way to define the same list of crops as above.

Numerous editing aids and prompts are built into this system.
Defining a new term is done as indicated above, by a left arrow.
Other commands such as PRINT, CHANGE, EXPAND, or
LIST allow the user to bring the terminology to a state where it
reflects his terms of reference.

The data base

The data base subsystem is used to associate values with the
identifiers that stand for constants in an abstract model. Again,
we will first define somewhat more precisely what can be given a
value in this system.

An identifier is either a single name (atom or term) or a series
of names separated by periods. For example, COT_MIN,
ONIONS, LABOR.CROP.MONTH, andWATER .MONTH are
all identifiers. No repetitions of the same name are allowed with-
in a single identifier.

A primitive identifier is an identifier comprised entirely of atoms,
e.g., LABOR.COTTON.MAY. An identifier is interpreted by
substituting for each of its component terms each of the atoms in
its definitions. An identifier represents the collection of all the
resulting primitive identifiers. From the example of a terminology
defined in the previous section, WATER . MONTH represents the
primitive identifiers WATER .MAY, WATER.JUNE, and
WATER.JULY.

There is a ‘‘canonical order’’ among the primitive identifiers rep-
resented by an identifier. The first primitive identifier consists of
the first atom from each term in the identifier; the next one leaves
all unchanged except the right-most term (where the next atom is
used), and so forth. Thus for WATER.CROP.MONTH, the

IBM SYST J e VOL 19 ® NO 4 e 1980 KATZ, RISMAN, AND RODEH

prompting
mode

items would be present in the order corresponding to

WATER.COTTON .MAY, WATER.COTTON.JUNE,
WATER.COTTON.JULY, WATER.ONIONS.MAY,
WATER .,ONIONS.JUNE, WATER.ONIONS.JULY,

and so forth. In all, WATER .CROP .MONTH represents the 18
primitive identifiers obtained from substituting the atoms from
the terms CROP and MONTH.

As indicated above, identifiers can be used either as variables
(when followed by a question mark) or as a way of referring to
known values, without explicitly writing the numbers in the
model, i.e., as constants. The data base system gives values to
those identifiers used as constants by associating a value with
each primitive identifier. If a primitive identifier used as a con-
stant in the model does not have a value in the data base, a default
value of zero will be given.

To assign values, an identifier is written followed by <« and a list
of numbers, one for each primitive identifier it represents, in the
canonical order.

The system has a prompting mode that is activated by not giving
all the required values for an identifier (or not giving any values at
all). This mode presents the next primitive identifier that needs a
value and waits for the value to be entered. For example, if just
COT_MIN =< is written by the user, since this is an atom, the
system will respond

COT_MIN +«

and the user is expected to enter the required value. If
WATER .MONTH + is written, the system will reply

WATER -
MAY <«

and after the user enters a number, the system will continue
JUNE <+

scanning in this way all the primitive identifiers represented by
WATER .MONTH. Ttis possible to pass back and forth from the
prompting to the regular mode of inserting a series of values at
once, or to define only relevant parts of an identifier.

If an identifier is written without the left arrow, the system will
list the names and associated values of all the primitive identifiers
it represents.

There are various editing options to add new values, update old
ones, and display the present state of the data base. As was men-

KATZ, RISMAN, AND RODEH IBM SYST J ¢, VOL 19 9gNO 4 ¢4 1980

tioned earlier, the data base can, and should, be used for obtain-
ing reports on the state of the economic entity, independently of
linear programming.

LPMODEL is designed so that, in principle, another data base sys-
tem could be used for model construction instead of this special-
purpose one. The only requirement is that it be able to supply
answers to a series of requests for values that will come from the
system. These requests are generated when the user asks the sys-
tem to construct a concrete model from an abstract model so that
a linear programming matrix can be built and used as input to a
linear programming system for solution.

The abstract model

An abstract model is composed in the Linear Programming Mod-
eling Language (LPM) by listing any number of constraints and ex-
actly one objective function. The standard linear programming
formulation has the form

n
Ya,y;=b 1=i=m (the constraints) (D
i1

n
maximize 2 ;Y (the objective function) 2)
=1
A potential user of LPMODEL, e.g., a farm manager, is not ex-
pected to think in terms of a;. He may conceive of a model ver-
bally by statements such as these: (1) The total monthly water
consumption for all crops must not exceed the monthly water al-
lotment. (2) Maximize the total profit from all the crops.

The abstract mathematical notation is quite precise and concise.
However, the statement of the problem in ordinary English is
quite natural and easily understood. The language LPM endeavors
to capture some of the conciseness of mathematical notation
without losing the naturalness of ordinary language. In order to
explain some of the features of the language, the transformation
of the standard mathematical notation for a model to the notation
of LMP is demonstrated below. The set of indices {j | 1 = j = n}
models some natural sets of objects such asaset CEOP of crops
on a farm. Similarly, {i | 1 =i = m} may model a set MONTH of
months. Then Equations 1 and 2 may be rewritten as

> ayy,<b, i€ MONTH (1A)

JECROP

maximize C;y; 2A)
JECROP

Here MONTH and CROP are terms, and would be defined sepa-
rately, as discussed in the earlier section on defining terminology.

IBM SYST I ¢ VOL 19 @ NO 4 o 1980 KATZ, RISMAN, AND RODEH

The indices j and i are auxiliary variables. Replacing them by
CROP and MONTH, respectively, does not cause any confusion
provided that the multiplication is done element by element. Note
that CROP and MONTH then do the double service of identifying
the range of the indices and of acting as the index itself. (The case
of a double summation over the same set of indices causes diffi-
culties and may be avoided by renaming.) Equations 1A and 2A
are then transformed to

=<
> @ crop,mowrnYeror = Puonry (1B)
CROP

maximize . CoopYeror (2B)
CROP

Observe that the letter y designates linear programming variables.
In order to make more explicit the distinction between linear pro-
gramming variables and identifiers that represent constants, and
to allow more freedom in the choice of names, a special character
? has been chosen to follow an identifier intended as a linear pro-
gramming variable. To increase readability, descriptive names
can be used, e.g., WATER instead of a, WATER _BND instead of
b, and PROFIT for ¢. Equations 1B and 2B may be written lin-
early as follows:

S CROP: WATER.CROP.MONTH x CROP?
< WATER_BND.MONTH (10)

maximize > CROP: PROFIT.CROP x CROP? 20)

The dots within an identifier indicate that it is comprised of a
series of names, as was explained in the section on the data base.
The colon is used to separate the index of summation from the
summand.

An explicit indication of the right boundary of the summand has
been found to be helpful in avoiding misunderstanding of complex
expressions. The square brackets were chosen to represent the
‘Z’ notation in LPMODEL. The left bracket may be preceded by
the optional keyword SUM.

SUM [CROP: WATER.CROP.MONTH x CROP?)
< WATER_BND.MONTH (1D)

maximize [CROP: PROFIT.CROP x CROP?] (2D)
In many practical cases, the index of summation is equal to the
variable name mentioned in the summand (such as in > a, ;¥,) and

may be omitted. Therefore, Equations 1D and 2D may be rewrit-
ten:

[WATER.CROP.MONTH x CROP?]
< WATER_BND .MONTH (1E)

maximize [PROFIT.CROP x CROP?] (2E)

KATZ, RISMAN, AND RODEH IBM SYST J & VOL 19 & NO 4 & 1980

Note that the generic constraint (1E) represents a collection of
constraints that are logically similar, as opposed to the original
formulation where the constraints were arbitrarily numbered by
{i 1'1 =i= m}. A model consists of a number of such generic
constraints and a single objective function.

The language LPM extends the concepts implicit in the above ex-
ample. It allows inequalities or equalities between arithmetic ex-
pressions involving variables and constraints. The grammar of
the language given in Appendix A enforces the linearity require-
ment that a variable may not be multiplied by a variable. A non-
linear expression is a syntactic error that is detected by the com--
piler and causes an error message to be printed. A more complex
example of a generic constraint is

[MONTH: CROP: WATER.CROP.MONTH x CROP?]
+ [WATER.LIVESTOCK x LIVESTOCK?]
< WATER_BND + WATER.EXTERNAL_ _SUPPLY?

It should be noted that the arithmetic operations are permitted
between constants, whose values are defined in the data base,
and variables, whose values are undefined during the construc-
tion of the model. Numerical values are associated with variables
only at the final stage in the solution of a model.

The semantics of arithmetic operations in LPM appear straight-
forward to the user. The syntax is intentionally quite close to the
familiar notation for arithmetic expressions used in high school
algebra. The treatment by the LPMODEL system of operations in-
volving primitive constants is fairly standard, whereas ex-
pressions involving terms defined in Terminology lead to the
creation of implicit loops.

However, arithmetic operations involving variables must be
treated quite differently by the system. They represent essentially
symbolic operations that are not executed arithmetically by
LPMODEL but determine the constraints and objective function in
a model.

Implementation

The goals that influenced the high-level system and language de-
sign also affected the implementation decisions that are not vis-
ible to the user. For example, the connections of the abstract
model with the terminology and the data base are delayed to as
late a stage of the processing as possible. This delay is again moti-
vated by the greater stability of the abstract model, so that com-
putation will not be unnecessarily repeated. In addition, the inde-
pendence of the constraints is reflected strongly in the implemen-
tation.

IBM SYST J e VOL 19 ¢ NO 4 e 1980 KATZ, RISMAN, AND RODEH

Figure 1 Combining an abstract model, a terminology, and a data base

‘ ABSTRACT MODEL (

COMPILER

CONSTANT TERMS USED TERMS USED
IDENTIFIERS N CONSTANTS IN VARIABLES

‘ USER'S TERMINOLOGY C

TERMINOLOGY SYSTEM

EXPANSION OF EXPANSION OF
TERMS USED IN TERMS USED
CONSTANTS IN VARIABLES
USER’'S DATA BASE

DATA BASE SYSTEM

CONSTANT IDENTIFIERS
WITH THEIR VALUES

‘{ CODE ‘

EXECUTOR

SUBMODELS

(CONCRETE LINEAR (
COMPOSER PROGRAMMING MODEL

processing The processing may be summarized as follows (see Figure 1):

1. The abstract model is compiled alone, without any knowledge
of the environment (i.e., the terminology or the data base).
The result for each line is a section of code in a programming
language. This code requires a terminology and data values as
input, and in conjunction with some standard system func-
tions, will produce a concrete submodel. In addition to the
code itself, the data base references mentioned in every line of
the model are produced, as well as two sequences of terms—
those which are used in constants and those used in variables.

514 KATZ, RISMAN, AND RODEH IBM SYST J e VOL 19 @ NO 4 o 1980

. Next, the lists of atoms associated with the relevant variables
are obtained from the Terminology system.

. The lists of atoms associated with the terms used in data base
references are found. These help determine exactly which
data base values are required.

. The data base is used to obtain the values for the requests from
1 using the information from 3.

. The code generated in 1 is then executed for each line of the
model, with the results of 2 and 4 as input, producing a collec-
tion of independent concrete submodels, one for each line.

. Finally, the submodels are combined into one large concrete
model, where all appearances of the same primitive variable
are associated. Later, a system for solving concrete linear pro-
gramming models may be applied.

Note that if a single line of the abstract model is changed, steps 1
through 5 above for all the other lines are unaffected and need not
be repeated. If changes are made in the data base, steps I through
3 are unaffected, and a new terminology leaves 1 unaffected.

An experimental version of LPMODEL with the above design is
presently implemented in APL on an IBM System/370 Model 168.
Most of the system has also been implemented on a small com-
puter, the IBM 5110. At present, the concrete model which is the
result of LPMODEL is solved by the linear programming package in
STATPACK of APL.” Large models cannot be handled by this pack-
age, and the intention is ultimately to connect the result of LPMOD-
EL to MPSX/370 (Mathematical Programming System Extended/
370).* The use of a small computer is being investigated so that
the more frequent uses of the system can be done locally and
inexpensively. These uses include updating the data base, defin-
ing terminology and abstract models, and obtaining reports. The
actual execution of large linear programming models would still
have to be done on a central computer.

Other modeling systems

Much recent work in mathematical programming systems has
centered on the problem of model development and matrix gener-
ation.

A number of powerful matrix generating and report writing sys-
tems, such as the IBM MGRW (Matrix Generator and Report
Writer),” are available. These systems facilitate the definition and
manipulation of tables of data using a dictionary of terminology
and generate a matrix to be input to MPSX/370 for optimization.
Whereas MPSX/370 requires a matrix to be input by column, MGRW
permits a matrix to be generated by row or by column.

IBM SYST J e VOL 19 ¢ NO 4 e 1980 KATZ, RISMAN, AND RODEH

Another approach is taken by the extended control language,
ECL, of MPSx/370.* This system provides a convenient interface
between the programming language PL/1 and MPSX/370. The user
can write PL/I programs that generate and modify matrices, place
an MPSX/370 input ‘‘deck’’ in a PL/I structure, and invoke MPSX/370
for the solution. The user’s PL/I program can access PL/I-based
data files and data base systems.

Note that in the above systems, the user is required to conceive
of a model as a matrix. Then, using either a special table-oriented
language or a general-purpose language, the user describes the
elements to be entered in each row and column of the matrix and
in the right-hand side of the model. The user is assumed to be
familiar with MPSX/370 and its input requirements. Similarly, the
user who is willing and able to “*build”’ a matrix representing a
model using APL code can then continue in that system by in-
voking the linear programming package in STATPACK of APL.’

Progress toward meeting the needs of the less sophisticated user
is exemplified in the following systems.

The GPLAN system developed at Purdue University is a network
data base management system implemented in FORTRAN.® The
query language user can ask the system to run linear program-
ming for a matrix extracted from the data base.

MPOS, the multipurpose optimization system developed at North-
western University,” accepts algebraic input of a model in stan-
dard algebraic form; e.g., the user expresses the constraint 2X +
3Y = 100 directly. Constraints in algebraic form must be of a very
limited sort, closely tied to the matrix formulation. There is no
provision for generic constraints, and each individual concrete
constraint must be input with its explicit numerical coefficients.

LMC is the linear modeling capability of the conversational mod-
eling language developed at Yale University.” The LMC language
permits the formulation of linear programming models and pro-
vides an interface with MPSX/370. Specification of a model is in
two stages, ‘‘equations’’ and ‘‘parameterization.”’ Constraints
are specified in English-like statements in which the user de-
scribes the linear programming matrix in words. Numerical val-
ues of coefficients are then given in assignment statements, called
the parameterization. No provision for an interface with an inde-
pendent data base is discussed in Reference 8.

One of the referees has pointed out that a recent working paper
by Fourer and Harrison® contains an independent proposal for a
linear programming system with a high-level declarative language
similar in its philosophy to LPMODEL, though quite different in
form. Their proposed system has not been implemented. That pa-
per also contains an extensive discussion of previous linear pro-
gramming and matrix-generation systems.

KATZ, RISMAN, AND RODEH IBM SYST J] @ VOL 19 & NO 4 & 1980

Conclusion

So far several problems from agriculture have been successfully
formulated in LPMODEL. Among these have been the question of
how much of each kind of fish to raise in some fishponds, analy-
ses of whether to dry up fishponds or uproot orchards so that the
land could be used for raising cotton, and linear programming for
entire farms. Both farm managers with and without previous lin-
ear programming experience have used LPMODEL. The users have
adapted to the notation very rapidly (after only one or two in-
troductory explanations), and the abstract models have helped
the farmers perfect the statement of the real constraints on the
farms. In these experiments, the typical size of the final matrix
has been 10 to 50 variables and less than 100 constraints. Pres-
ently, using a workspace of 128K, the APL procedures that solve
the linear programming cannot handle much larger matrices, but
this restriction will not be present in future versions of LPMODEL.

Typically, after the initial formulation and solution of the model,
the results are analyzed by the users, and this leads to further
refinements. We identified four basic types of changes to the ini-
tial model:

. Fine tuning—minor changes that affect only the data base,
e.g., adjusting prices or production ceilings.

. Simple extension—new restrictions that fit into existing ge-
neric constraints. For example, incorporating a new crop in-
volves adding it to the list of crops in the terminology and
inserting its relevant data into the data base, but the abstract
model often need not be changed.

. Restriction—midstream reevaluation due to changed circum-
stances from earlier versions of the model. Some variables of
the original model become constants (since their values may
no longer be changed), and some additional constraints are
added to the model.

. Reformulation—changes to a few constraints and addition of
new constraints as some aspect of the model is seen to be an
inaccurate description.

As expected, the numerical constants in the data base were modi-
fied most often, the terminology was changed next most often,
and the abstract model was surprisingly stable.

LPMODEL as now implemented is an experimental realization of
the design goals discussed above. Although all problems from ag-
riculture that have been treated were easily expressible in the lan-
guage, the desire for simplicity led us to somewhat restrict the
expressive power of the language LPM. Extensions are being con-
sidered to strengthen the existing language by permitting more
general subscript calculations involving the Terminology.

IBM SYST J VOL 19 ®« NO 4 » 1980 KATZ, RISMAN, AND RODEH

The planned interface of the language with other data base man-
agement systems, such as IMS, will also enhance the applicability
of the system.

The use of this system for report generation and even cost ac-
counting is also being considered. LPMODEL identifiers and ex-
pressions involving only constants (i.e., referring to known val-
ues in the data base) can be used to specify reports and tables to
be printed. For example, CROP.FERT .MONTH would show
fertilizer requirements for each crop in each month. For cost ac-
counting, the user would enter LPMODEL expressions involving
constants, which would be recomputed at will using the updated
values in the data base.

Our experience with LPMODEL has demonstrated the merits of an
approach to model construction that does not require the user to
conceive of a model as a matrix, but rather permits him or her to
formulate a model concisely using ordinary algebraic expressions
and terminology that is natural to the problem at hand.

ACKNOWLEDGMENT

We wish to express our appreciation to Zvi Weiss and Ingrid
Schwarz of the IBM Israel Scientific Center and to Ilan Amir of
the Technion, Israel Institute of Technology, Department of Agri-
cultural Engineering, for their valuable participation which made
this work possible.

Appendix A: The syntax of the LPM language

The production rules below define a simple-precedence grammar
for a sentence (sent) in the LPM language.

(name)—>{input name)
(identifier)—{(name) | (identifier).{input name)
(const factor)—{(number) | (identifier) | ((const exp))!
[{const sum)
{const sum)—{const expl)] | (name):(const sum)
{const term1)—{const factor) | {const terml) X {const factor)!
{const term1) + {const factor)
{const term)—>{(const term1)
{const expl)— (const term)|—{const term)l
(const expl)+(const term)Kconst expl) —(const term)
(const exp)—(const expl)
{variable factor)—(identifier)?!({variable exp))!
[(variable sum)
(variable sum)—(variable exp1)]i(name):{variable sum)
(variable terml)—>(variable factor)l
(variable term 1) X (const factor)|
(const term) X({variable factor)
{variable term1)+(const factor)

KATZ, RISMAN, AND RODEH IBM SYST J © VOL 19 ® NO 4 ® 1980

(variable term)—(variable term1)
(variable expl)—(variable term)|—{variable term)!
{variable expl) +{const term})|
{variable expl)—(const term)!
{variable exp1)+(variable term)|
{variable exp1)—(variable term)|
{const expl)+{variable term)
(const expl)—(variable term)
(variable exp)—(variable expl)
(r)y—>=<|=l=
(sent)—{const expl) (r) (variable exp)!
(variable exp1) (r) (const exp)!
(variable exp1) (r) (variable exp)|
{const exp)Kvariable exp) MAXIMI ZE (variable exp)|
MINIMIZE (variable exp)

Appendix B: Summary of a simplified model in LPMODEL

Terminology:

FIELD <« COTTON, ONION
CROP « FIELD, PEAR, AVOCADO
MONTH « MAY, JUNFE, JULY

Data base entries (note that the entries not appearing, such as
WATER.ONION .MAY, will be given the value zero when re-
quested.):

LAND : 2700 LABOR_TOT : 5850
FIFELD LAND : 1850 LABOR

WATER _BND : COTTON : 2.9
MAY : 200000 ONION : 2.7
JUNE : 260000 PEAR : 1.0

JULY : 270000 AVOCADO : 1.5

WATER : PROFIT:
COTTON : COTTON : 6453
MAY : 65 ONION : 6110

JUNE : 80 PEAR

481y
JULY : 90

AVOCADO : 8813

ONION

JUNE CEIL

COTTON : 2000
PEAR : ONION : 250
JUNE PEAR : 500

AVOCADO
JUNE : 75
JULY : 85

IBM SYST J & VOL 19 ® NO 4 o 1980 KATZ, RISMAN, AND RODEH

Abstract model:

SUM [CROP: CROP?] < LAND
(overall land constraint)

SUM [FIFLD: FIELD?] < FIELD_LAND
(land constraint for field crops)

SUM [CROP: WATER.CROP.MONTH x CROP?]
< WATEFR _BND.MONTH
(monthly water constraint)

SUM [CROP: LABOR.CROP x CROP?]
< LABOR_TOT
(labor constraint)

CROP? < CEIL.CROP
(production ceiling for each crop)

MAXIMIZE [CROP: PROFIT.CROP x CROP?]
(objective function)

This simplified model will create a matrix with four columns and
10 rows. If there were 20 crops, over 12 months, the matrix would
have 20 columns and 35 rows.

CITED REFERENCES

1. S. 1. Gass, Linear Programming, McGraw-Hill Book Co., Inc., New York
(1974).

2. W. Orchard-Hayes, Advanced Linear Programming Computing Techniques,
McGraw-Hill Book Co., Inc., New York (1968).

. IBM APL Statistical Library, SH20-1841-1, IBM Corporation; available
through IBM branch offices.

. L. Slate and K. Spielberg, '*The Extended Control Language of MPSX/370 and
possible applications,”” IBM Systems Journal 17, No. 1, 64-81 (1978).

. IBM MGRW, Matrix Generator and Report Writer, Primer, GH19-5042-1,
IBM Corporation; available through IBM branch offices.

. R. Bonczek, C. Holsapple, and A. Whinston, ‘‘Mathematical programming
within the context of a generalized data base management system,”’
R.A.L.R.O. Operations Research 12, No. 2, 117-139 (1978).

. C. Cohen and J. Stein, Multipurpose Optimization System, User’'s Guide,
Manual No. 320, Vogelback Computing Center, Northwestern University,
Evanston, IL (1975).

. R. Mills, R. Fetter, and R. Averill, **A computer language for mathematical
program formulation,’” Decision Sciences 8, No. 2, 427-444 (1977).

. R. Fourer and M. J. Harrison, A Modern Approach to Computer Systems for
Linear Programming , Working Paper 988-78, Alfred P. Sloan School of Man-
agement, Massachusetts Institute of Technology, Cambridge, MA (1978).

The authors are located at the IBM Israel Scientific Center, Com-
puter Science Building, Technion City, Haifa, Israel.

Reprint Order No. G321-5135.

KATZ, RISMAN, AND RODEH IBM SYST J e VOL 19 @ NO 4 e 1980

