
The  use of linear  programming  is  impeded  by  the  efort  required 
to  express  a  model  as  a  matrix  and  to  collect  and  handle  data. An 
experimental  interactive  system  called LPMODEL simpl$es  the 
development of linear  programming  models.  It  frees  the  user 
from the  necessity of expressing  the  model  as  a  matrix. LPMODEL 
provides  a  nonprocedural  language for constructing  a  model  in 
terminology  that  is  natural to the  problem,  using  ordinary  alge- 
braic  expressions.  With  this  language,  the  user  can  express  a 
model  concisely  by  generic  constraints  which  the  system  inter- 
prets  in  conjunction  with  a  data  base  to  generate  a  concrete 
model for optimization. 

The  design of the  system  and  its  terminology  and  data  base  sub- 
systems  are  discussed. An informal  description  is  given of the 
modeling  language  which  involves  both  ordinary  arithmetic  oper- 
ations  and  symbolic  operations  with  associated  semantics.  Expe- 
rience  with  the  system  in  agricultural  modeling  is  described. 

A system  for  constructing  linear  programming  models 
by S. Katz, L. J. Risman, and M. Rodeh 

Linear programming has  become a valuable aid  to decision mak- 
ing  in many fields; see, for  example,  References 1 and 2. How- 
ever,  the effort that is required  to collect and organize data,  to 
express  a  linear programming (LP) model as  a  matrix, and to  input 
the matrix of coefficients to  the  computer  impedes  the use of this 
valuable tool.  Several  systems  have been developed  to help in the 
process of generating the matrix, as discussed later in the section 
on  other modeling systems.  The  computer professional now has 
available powerful tools  for developing mathematical program- 
ming models. While some  progress  has been made in meeting the 
needs of the  less  sophisticated  user,  the  process of constructing  a 
model is still complicated  and  slow.  The  required  data have to be 
laboriously prepared,  and  the  constraints  and goal of the  entity 
being modeled must be  expressed in terms of tables  or  matrices. 
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The  increased availability of interactive  terminals  and  the  general 
trend  towards providing better programming tools  for  the  user 
have made it natural  to  consider  systems  that  concentrate on the 
construction and development of linear programming models 
rather  than on their  solution.  Thus,  the  experimental  system  dis- 
cussed  here, called LPMODEL, makes linear programming more 
accessible  to  the  user  who  is  not  an  expert in computers  or  opera- 
tions  research.  This  interactive  system simplifies the  collection 
and  organization of data. It provides a language, LPM (Linear  Pro- 
gramming Modeling Language), which frees  the  user from the ne- 
cessity of expressing  a model as a matrix. LPMODEL generates 
input for a standard  linear programming system which then  ac- 
tually performs  the  optimization of the model. 

To  achieve  the goal of accessibility, principles that have been 
found useful in other  applications  have  been  employed.  These 
include modularity -dividing the larger task  into smaller subtasks 
that  can be treated  separately, naturalness -expressing the 
model in terms  natural to  the domain of the  problem,  and abstrac- 
tion -expressing the  nature of the problem independently of par- 
ticular  details  such as numerical  constants.  Note  that  directly 
constructing  a matrix using any programming language violates 
the  above  principles, in particular,  naturalness. 

The goal of this work is not to provide yet  another method for 
solving linear programming problems,  nor is it to provide heuris- 
tic guidelines for  constructing  a  linear programming model. 
Rather, a declarative language is described which was designed to 
be sufficiently expressive yet simple to  learn  and  use,  and  a  sys- 
tem organization is presented which encourages  the principles 
mentioned above.  This  paper  can be viewed as  a  case  study in 
special-purpose language and  system design. Although the  ex- 
amples given below and  the  experience with the  system  to date 
have  been in agricultural planning, the  system is designed to be 
more generally applicable. 

System design 

Besides the  general  considerations of modularity and simplicity, 
the specific properties of linear programming models can be ex- 
ploited in the  system  and language design. 

model A  linear programming model consists of a set of linear  constraints 
properties and  a linear objective  function  to be minimized or maximized. 

The  most  basic  property of such a model is that it is declarative: a 
problem is described  and defined-no algorithm need be pre- 
sented by the  user  for  its  solution,  since  that will be done in a 
standard way for all models.  Another  basic  property is that  the 
various  constraints in a model are  independent.  Thus changing 
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one  has no effect on  the  others, although it does, of course, affect 
the  solution  to the model. 

In addition to  these  basic  properties,  there  are  some  observations 
that hold for many real-life linear programming models: 

0 Linear programming variables  that fulfill logically similar roles 

might be the  crops  or  the  tractors. 
0 Some of the constraints  have  a similar structure. Again con- 

sider a farm and  assume  that  the  water  demand and supply are 
given on  a monthly basis. For each  month, a constraint is re- 
quired  to  express  the  bounds on water supply in that  month, 
yielding a set of constraints with similar structure. 

0 Some  aspects of a model change more often  than  others. In 
many cases  one  conceptual model is applied to different sets 
of numerical values.  In  other  cases some of the groups of vari- 
ables or constraints  are slightly changed,  whereas  the model 
as a whole retains its structure. We call this phenomenon non- 
uniform  stability. 

The  above  considerations led to a system  for  constructing  linear 
programming models with components  for  the following tasks: 

1. Defining a terminology which is natural  for  the problem do- 
main 

2. Creating and maintaining a data base for associating data val- 
ues with identifiers that  represent known quantities in the 
model 

3. Expressing  an abstract  model independently of particular val- 
ues of known data 

The  abstract model uses  the terminology that is defined sepa- abstract 
rately.  It includes two  syntactically distinguishable types of iden- model 
tifiers: those  that  represent unknown quantities,  to which the lin- 
ear programming solution will ultimately assign values (the usual 
linear programming variables), and those which represent known 
quantities  (the linear programming technological coefficients and 
other  constants). In the  data  base,  the association is made be- 
tween  those identifiers representing  constants  and their actual 
values. Thus, the terminology and  the  data  base  can be viewed as 
the environment of the  abstract model. When the list of names 
represented by a  term is provided by the terminology and  the 
values are provided from the  data  base,  the  abstract model can be 
interpreted  to yield a specific concrete model that is in a form 
ready  for solution by a linear programming system. 

Naturally,  the  development of the three  components of a model is 
not really independent: as the  constraints of the  abstract model 
are being written,  the need for additional terminology will arise, 
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and it  will become clear  exactly which data values are  needed. 
The main advantage of separating  the model into  three  parts is 
that if one  part is changed,  the  others  are  often unaffected. For 
example, if the  particular numerical values must  be  updated  (e.g., 
the  amount of land available for farming changes, or the  costs of 
various  items rise because of inflation), this  can be done  without 
affecting the terminology or the  abstract model. The new com- 
ponents can then be recombined into a new concrete linear pro- 
gramming model. Similarly, if a new crop is added  to  the list of 
crops in the terminology, this need not influence the  abstract 
model, although new numerical information usually will have  to 
be added  to  the  data  base. 

Another  advantage of the system is that  the  data  base can be up- 
dated regularly and used to  generate  reports independently of the 
linear programming context. This should help to alleviate the 
common difficulty that  results wherein every time a linear pro- 
gramming solution is desired,  a  tremendous  outburst of reporting 
and bookkeeping is required  to  gather  the  needed information. If 
this  system is used as  intended,  the  data  can be collected and 
entered  continuously,  and running a  particular linear program- 
ming model becomes  a much less painful task. 

In fact, independently of linear programming, data  bases  are al- 
ready widely used for bookkeeping and administrative  purposes. 
LPMODEL can be viewed as yet another way to use an  already 
existing data  base.  In  such a situation, special information-gather- 
ing exclusively for linear programming becomes  unnecessary. 

Defining  the  terminology 

As explained above, it  is generally convenient to define a  termi- 
nology natural to  the  task  at  hand. In order  to be precise  about the 
nature  of  the  subsystem  for  this  task, which is called terminology, 
a  few definitions are necessary. 

A name is simply a  sequence of letters, digits, and '-', which 
does  not  start with a digit and contains no blanks. There are  two 
kinds of names:  atoms  and  terms. An atom is a name which in 
itself represents  some  aspect of reality,  and  does not stand  for 
any  other name in the model. Examples could be 
COTTON,  PLUMS, or S A L A R Y .  Aterm, however, is an ab- 
breviation  for  a list of atoms. Only the  terms  are defined by the 
Terminology system. Any name that is not given a definition in 
Terminology is assumed  to be an  atom.  Note  that  the same atom 
may appear in several  terms. If a farm were being modeled, the 
definitions needed in Terminology might be: 

MONTH f M A Y ,   J U N E ,   J U L Y  
CROP 4 COTTON,  O N I O N S ,  GREEN-PEP,   WHEAT,  

PEAR,   GRAPE 
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I 

~ 

In more complex situations, it is convenient  to “build up” a defi- 
nition in stages,  e.g., 

I 

~ F I E L D  + COTTON,   ONIONS,   GREEN-PEP,  WHEAT 
~ ORCHARD + PEAR,   GRAPE 

CROP + F I E L D ,  ORCHARD 

This would give CROP the  same definition as previously,  since 
after  each  term has been defined, no matter how this was done, it 
stands only for  the  associated list of atoms (which is called the 
“expanded” definition of the  term). It is also legal to mix atoms 
with previously defined terms in  defining new terms.  Thus 

CROP f F I E L D ,   P E A R ,   G R A P E  

is yet another way to define the same list of crops  as  above. 

Numerous editing aids  and  prompts  are built into this system. 
Defining a new term is done  as indicated above, by a left arrow. 
Other  commands  such as PRINT,   CHANGE,  EXPAND, or 
L I S T  allow the user to bring the terminology to a state  where it 
reflects his terms of reference. 

The data base 

The  data  base  subsystem is used to associate values with the 
identifiers that  stand  for  constants in an  abstract model. Again, 
we will first define somewhat more precisely what can be given a 
value in this system. 

An identijier is either a single name (atom or term) or a series 
of names  separated  by periods. For example, COT-MIN, 
O N I O N S ,  LABOR.CROP.MONTH,andWATER.MONTH are 
all identifiers. No repetitions of the  same  name  are allowed with- 
in a single identifier. 

A primitive identifier is an identifier comprised entirely of atoms, 
e.g., LABOR.  COTTON.  MAY.  An identifier is interpreted by 
substituting  for  each of its  component  terms  each of the  atoms in 
its definitions. An identifier represents  the collection of all the 
resulting primitive identifiers. From  the  example of a terminology 
defined in the previous section, WATER.  MONTH represents the 
primitive identifiers WATER.  MAY,   WATER.  JUNE, and 
WATER.   JULY.  

There is a “canonical  order” among the primitive identifiers rep- 
resented by an identifier. The first primitive identifier consists of 
the first atom from each  term in the identifier; the  next  one  leaves 
all unchanged except  the right-most term (where  the next atom is 
used),  and so forth.  Thus  for WATER.  CROP.MONTH, the 
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prompting 
mode 

items would be present in the  order  corresponding to 

WATER.  COTTON.  MAY,  WATER.  COTTON.  JUNE, 
WATER.   COTTON.   JULY,   WATER.  O N I O N S .  MAY, 
WATER.  O N I O N S .  JUNE,   WATER.  O N I O N S .  J U L Y ,  

and so forth.  In  all, WATER.   CROP.  MONTH represents  the 18 
primitive identifiers obtained from substituting  the  atoms from 
the  terms CROP and MONTH. 

As indicated  above, identifiers can be used either as variables 
(when followed by a  question mark) or as  a way of referring to 
known values,  without explicitly writing the numbers in the 
model, i.e.,  as  constants.  The  data  base  system gives values to 
those identifiers used as  constants by associating a value with 
each primitive identifier. If a primitive identifier used as a con- 
stant in the model does  not  have  a value in the  data  base,  a default 
value of zero will be given. 

To assign values, an identifier is written followed by c and  a list 
of numbers,  one  for  each primitive identifier it represents, in the 
canonical  order. 

The  system has a prompting mode that is activated by not giving 
all the  required  values  for an identifier (or not giving any values at 
all). This mode presents the next primitive identifier that  needs a 
value and waits for  the value to be entered.  For  example, if just 
COT-MIN 4 is written by the  user,  since this is an  atom,  the 
system will respond 

COT-MIN f 

and the user is expected  to  enter  the required value. If 
WATER.  MONTH 4 is written,  the  system will reply 

WATER - 
MAY + 

and  after  the  user  enters  a  number,  the  system will continue 

JUNE f 

scanning in this way all the primitive identifiers represented  by 
WATER.  MONTH. It is possible  to  pass  back  and  forth from the 
prompting to  the regular mode of inserting a  series of values at 
once,  or  to define only  relevant  parts of an identifier. 

If an identifier is written without the left arrow,  the  system will 
list the names and associated values of all the primitive identifiers 
it represents. 

There  are various editing options  to  add new values,  update old 
ones,  and display the  present  state of the  data  base. As was men- 
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tioned  earlier,  the data  base  can,  and  should,  be used for  obtain- 
ing reports  on the state of the economic entity, independently of 
linear programming. 

LPMODEL is designed so that, in principle, another  data  base  sys- 
tem could be used for model construction  instead of this special- 
purpose  one. The only requirement is that it be  able to supply 
answers to a series of requests  for values that will come from the 
system.  These  requests are generated when the user  asks  the  sys- 
tem to  construct a  concrete model from an  abstract model so that 
a  linear programming matrix can be built and used as input to a 

~ linear programming system  for solution. 

1 The abstract model 

An abstract model is composed in the  Linear Programming Mod- 
eling Language (LPM) by listing any number of constraints  and ex- 
actly one objective function.  The  standard  linear programming 
formulation has  the form 

j=1 

n 
maximize 2 cjyj (the objective function) ( 2 )  

A potential user of LPMODEL, e.g., a farm manager, is not  ex- 
pected to think in terms of a,. He may conceive of a model ver- 
bally by statements  such as these: (1) The  total monthly water 
consumption  for all crops must not exceed  the monthly water al- 
lotment. (2) Maximize the  total profit from all the  crops. 

j= 1 

The  abstract mathematical notation is quite  precise and concise. 
However,  the  statement of the problem in ordinary English is 
quite natural  and easily understood.  The language LPM endeavors 
to  capture some of the  conciseness of mathematical notation 
without losing the  naturalness of ordinary language. In order  to 
explain some of the  features of the language, the  transformation 
of the  standard mathematical notation  for  a model to  the notation 
of LMP is demonstrated  below.  The set of indices { j  I 1 5 j 5 n} 
models some  natural sets of objects  such as a set CROP of crops 
on  a  farm. Similarly, {i I 1 5 i 5 m} may model a set MONTH of 
months.  Then  Equations 1 and 2 may be rewritten as 

I l E C R O P  
~ 

maximize 1 cj yj (2A) 
~ JECROP 

~ Here MONTH and CROP are  terms,  and would be defined sepa- 
rately, as discussed in the earlier section on defining terminology. 
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The indices j and i are auxiliary variables. Replacing them by 
CROP and MONTH, respectively,  does  not  cause any confusion 
provided  that  the multiplication is done element by element. Note 
that CROP and MONTH then  do  the  double  service of identifying 
the range of the indices and of acting as  the  index itself. (The case 
of a double summation over  the same set of indices causes diffi- 
culties  and may  be avoided by renaming.) Equations 1A and 2A 
are  then  transformed to 

C a c R O p , M O N T H y c R o ,  5 b M O u T "  i1B) 
CROP 

maximize ~ C R o p ~ c R o p  (2B) 
CROP 

Observe  that  the  letter y designates  linear programming variables. 
In order  to make more explicit the distinction between linear pro- 
gramming variables and identifiers that  represent  constants,  and 
to allow more freedom in the choice of names, a special character 
? has  been  chosen to follow an identifier intended as a linear pro- 
gramming variable. To  increase  readability,  descriptive  names 
can be used,  e.g., WATER instead of a ,  WATER-BND instead of 
6 ,  and P R O F I T  for c.  Equations 1B and 2B may be written lin- 
early as follows: 

I WATER-BND .MONTH (IC) 

maximize 1 CROP:  PROFIT  .CROP x CROP? (2C) 

The  dots within an identifier indicate that it is comprised of a 
series of names, as was explained in the  section  on  the  data  base. 
The colon is used to  separate  the index of summation from the 
summand. 

An explicit indication of the right boundary of the summand has 
been found to be helpful in avoiding misunderstanding of complex 
exmessions.  The  sauare  brackets were chosen  to  represent  the 

the  optional keyword SUM. 

SUM [ C R O P :  WATER.CROP.MONTH x C R O P ? ]  
I WATER-BND .MONTH i1D) 

maximize [ C R O P :   P R O F I T .  CROP x CROP? 1 (2D) 

In many practical cases,  the index of summation is equal  to the 
variable name mentioned in the summand (such as in Cia i j y i )  and 
may be omitted.  Therefore,  Equations 1D and 2D  may be rewrit- 
ten: 

[ WATER.  CROP .MONTH x CROP? ] 
I WATER-BND .MONTH 

maximize [ PROFIT .   CROP x CROP? ] (2E) 
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Note  that  the generic constraint (1E) represents a collection of 
constraints  that  are logically similar, as opposed  to  the original 
formulation where the  constraints were arbitrarily numbered by 
{ i  I 1 I i I m}. A model consists of a number of such  generic 
constraints  and  a single objective function. 

The language LPM extends  the  concepts implicit in the  above ex- 
ample. It allows inequalities or equalities between  arithmetic  ex- 
pressions involving variables  and  constraints.  The grammar of 
the language given in Appendix A  enforces  the linearity require- 
ment that a variable may not be multiplied by a variable. A non- 
linear expression is a  syntactic  error  that is detected by the com- 
piler and  causes an error message to be printed.  A more complex 
example of a generic constraint is 

[MONTH : CROP:  WATER.  CROP .MONTH x CROP? ] 
-+ [ W A T E R . L I V E S T O C K  x L I V E S T O C K ? ]  
I WATER-BND t WATER.   EXTERNAL-SUPPLY? 

It should be noted  that the arithmetic  operations  are  permitted 
between  constants,  whose values are defined in the  data  base, 
and  variables, whose values are undefined during the  construc- 
tion of the model. Numerical values are  associated with variables 
only at  the final stage in the solution of a model. 

The semantics of arithmetic  operations in LPM appear straight- 
forward  to  the  user.  The  syntax is intentionally quite close to  the 
familiar notation  for  arithmetic  expressions used in  high school 
algebra.  The  treatment by the LPMODEL system of operations in- 
volving primitive constants is fairly standard,  whereas  ex- 
pressions involving terms defined in Terminology lead to  the 
creation of  implicit loops. 

However,  arithmetic  operations involving variables must be 
treated  quite differently by the  system. They represent essentially 
symbolic operations  that  are not executed arithmetically by 
LPMODEL but  determine the constraints  and objective function in 
a model. 

Implementation 

The goals that influenced the high-level system and language de- 
sign also affected the implementation decisions  that  are not vis- 
ible to  the  user.  For  example,  the  connections of the  abstract 
model with the terminology and the  data  base  are delayed to  as 
late  a  stage of the  processing  as possible. This delay is again moti- 
vated by the  greater stability of the  abstract model, so that  com- 
putation will not be unnecessarily  repeated. In addition,  the  inde- 
pendence of the  constraints is reflected strongly in the implemen- 
tation. 

IBM SYST J VOL 19 NO 4 1980 KATZ. RISMAN. AND RODEH 513 



Figure 1 Combining an abstract model, a  terminology,  and  a data base 

COMPILER 

IN VARIABLES 

EXPANSION OF EXPANSION OF 

CONSTANTS IN  VARIABLES 
TERMS USED 

I 7- 

DATA BASE SYSTEM 

CONSTANT IDENTIFIERS 
WITHTHEIRVALUES 

EXECUTOR 

COMPOSER CONCRETE LINEAR 
PROGRAMMINGMODEL 

processing The processing may be summarized  as follows (see Figure 1): 

1. The  abstract model is compiled alone, without any knowledge 
of the  environment (i.e.,  the terminology or the  data  base). 
The result for  each line is a section of code in a programming 
language. This  code  requires  a terminology and  data values as 
input, and in conjunction with some standard  system  func- 
tions, will produce a concrete submodel. In addition to  the 
code itself, the  data base  references mentioned in every line of 
the model are  produced,  as well as two  sequences of terms- 
those which are  used in constants  and  those used in variables. 
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2. Next,  the lists of atoms  associated with the relevant  variables 
are  obtained from the Terminology system. 

3. The lists of atoms  associated with the  terms used in data  base 
references  are  found.  These help determine  exactly which 
data  base values are  required. 

4. The data base is used to obtain  the values for the requests  from 
1 using the information from 3. 

5. The  code  generated in 1 is then  executed  for  each line of the 
model, with the  results of 2 and 4 as input, producing a collec- 
tion of independent  concrete  submodels,  one  for  each line. 

6 .  Finally, the  submodels  are combined into  one large concrete 
model, where all appearances of the  same primitive variable 
are  associated. Later, a system  for solving concrete linear pro- 
gramming models may  be applied. 

Note  that if a single line of the  abstract model is changed,  steps 1 
through 5 above  for all the other lines are unaffected and need not 
be repeated. If changes are made in the  data  base,  steps 1 through 
3 are unaffected, and  a new terminology leaves 1 unaffected. 

An experimental  version of LPMODEL with the above design is 
presently implemented in APL on  an IBM Systed370 Model 168. 
Most of the  system  has also been implemented on a small com- 
puter,  the IBM 5 110. At present,  the  concrete model which is the 
result of LPMoDEL is solved by the linear programming package in 
STATPACK of APL.3 Large models cannot be handled by this pack- 
age,  and  the intention is ultimately to  connect  the result of LPMOD- 
EL to MPSW370 (Mathematical Programming System  Extended/ 
370).4 The use of a small computer is being investigated so that 
the more frequent  uses of the  system  can be done locally and 
inexpensively. These  uses include updating the  data  base, defin- 
ing terminology and  abstract models, and obtaining reports. The 
actual  execution of large linear programming models would still 
have to be done  on a central  computer. 

Other  modeling  systems 

Much recent work in mathematical programming systems  has 
centered  on  the problem of model development  and matrix gener- 
ation. 

A  number of powerful matrix generating and  report writing sys- 
tems,  such  as  the IBM MGRW (Matrix Generator and Report 
Writer),5  are available. These  systems facilitate the definition and 
manipulation of tables of data using a  dictionary of terminology 
and  generate  a matrix to be input to MPSW370 for  optimization. 
Whereas MPSW370 requires  a matrix to be input by column, MGRW 
permits  a matrix to be generated by row or by column. 
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Another  approach is taken by the  extended  control language, 
ECL, of MPSW370.4 This  system  provides  a  convenient  interface 
between  the programming language PL/I and MPSXi370. The  user 
can  write PWI programs  that  generate  and modify matrices,  place 
an MPSW370 input “deck” in a P L / ~  structure,  and invoke MPSXi370 
for  the  solution.  The  user’s PL/I program can  access  Pubbased 
data files and data  base  systems. 

Note  that in the  above  systems,  the  user is required to conceive 
of a model as a matrix. Then, using either  a special table-oriented 
language or a general-purpose language, the  user  describes  the 
elements  to be entered in each row and column of the matrix and 
in the right-hand side of the model. The  user is assumed  to be 
familiar with MPSW370 and its input requirements. Similarly, the 
user  who is willing and able  to  “build”  a matrix representing  a 
model using APL code  can  then  continue in that  system by in- 
voking the linear programming package in STATPACK of APL.3 

Progress  toward meeting the needs of  the  less sophisticated user 
is exemplified in the following systems. 

The GPLAN system  developed  at  Purdue University is a  network 
data base management system implemented in FORTRAN.‘ The 
query language user  can  ask  the  system  to run linear program- 
ming for  a matrix extracted from the  data  base. 

MPOS, the multipurpose optimization system developed at  North- 
western Un i~e r s i ty ,~  accepts algebraic input of a model in stan- 
dard algebraic form; e.g.,  the user  expresses  the  constraint 2X + 
3 Y 5 100 directly.  Constraints in algebraic form must be  of a  very 
limited sort, closely tied to  the matrix formulation.  There is no 
provision for generic constraints,  and  each individual concrete 
constraint must be input with its explicit numerical coefficients. 

LMC is the linear modeling capability of the  conversational mod- 
eling language developed  at Yale University.’ The LMC language 
permits the formulation of linear programming models and pro- 
vides an interface with MPSW370. Specification of a model is in 
two  stages,  “equations”  and  “parameterization.”  Constraints 
are specified in English-like statements in which the  user  de- 
scribes  the linear programming matrix in words. Numerical val- 
ues of coefficients are then given in assignment statements, called 
the  parameterization.  No provision for  an  interface with an inde- 
pendent data base is discussed in Reference 8. 

One of the  referees has pointed out  that  a  recent working paper 
by Fourer and Harrison’ contains an independent proposal for  a 
linear programming system with a high-level declarative language 
similar in its philosophy to LPMODEL, though quite different in 
form.  Their  proposed  system  has not been implemented. That pa- 
per also  contains  an  extensive discussion of previous linear pro- 
gramming and matrix-generation systems. 
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The planned interface of the language with other  data base man- 
agement  systems, such as IMS, will also enhance  the applicability 
of the  system. 

The use of this  system  for  report  generation  and  even  cost  ac- 
counting is also being considered. LPMODEL identifiers and  ex- 
pressions involving only constants (i.e., referring to known val- 
ues in the  data base) can be used to specify reports  and  tables  to 
be printed.  For  example, CROP.  FERT. MONTH would show 
fertilizer  requirements  for  each  crop in each  month.  For  cost  ac- 
counting,  the  user would enter LPMODEL expressions involving 
constants, which would be  recomputed at will using the  updated 
values in the  data  base. 

Our  experience with LPMoDEL has demonstrated  the merits of an 
approach  to model construction  that  does  not  require  the  user to 
conceive of a model as  a  matrix, but rather  permits him or her to 
formulate  a model concisely using ordinary algebraic expressions 
and terminology that is natural  to  the problem at hand. 
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Appendix A: The  syntax of the LPM language 

The  production  rules below define a  simple-precedence  grammar 
for  a  sentence  (sent) in the LPM language. 

(name)+(input  name) 
(identifier)+(name) I (identifier).(input  name) 
(const  factor)-+(number) I (identifier) I ((const  exp))l 

(const  sum)+(const  expl)] I (name):(const sum) 
(const  terml)+(const  factor) I (const  term1) X (const  factor)l 

(const terml) + (const  factor) 
(const  term)-+(const  term1) 
(const exp1)- (const  term)I-(const  term)l 

(const  exp)-+(const  exp  1 ) 
(variable factor)+(identifier)?I((variable exp))l 

[(variable sum) 
(variable  sum)+(variable  expl)]l(name):(variable  sum) 
(variable  terml)+(variable  factor) I 

[(const sum) 

(const expl)+(const term)I(const expl)  -(const  term) 

(variable  term  1 ) x (const  factor ) I 
(const  term) x(variab1e factor)l 
(variable  term1 )+(const  factor) 
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(variable  term)+(variable  term1 ) 
(variable expl )+(variable term) I -(variable term)I 

(variable expl)  +(const  termjl 
(variable  exp1)-(const  term)I 
(variable expl)+(variable term)I 
(variable expl ) -(variable term) I 
(const  expl  )+(variable  term) I 
(const  exp1)-(variable  term) 

(variable exp)-+(variable expl ) 
(r)+<l=lz 
(sent)+(const expl)  (r) (variable exp)l 

(variable expl ) (r) (const  exp) I 
(variable expl)  (r) (variable  exp)l 
(const  exp)l(variable exp)IMAXIMIZE(variableexp)l 
M I N I M I Z E  (variable exp) 

I Appendix B: Summary of a simplified  model  in LPMODEL 

Terminology: 

F I E L D  f COTTON, O N I O N  
CROP + F I E L D ,   P E A R ,  AVOCADO 
MONTH f M A Y ,   J U N E ,   J U L Y  

Data  base  entries  (note  that  the  entries  not  appearing,  such as 
WATER.  O N I O N .  MAY, will be given the  value  zero when re- 
quested.): 

LAND : 2 7 0 0  LABOR-TOT : 5 8 5 0  

WATER-BND : COTTON : 2 . 9  
MAY : 2 0 0 0 0 0  O N I O N  : 2 . 7  
JUNE : 2 6 0 0 0 0  PEAR : 1 .O 
J U L Y  : 2 7 0 0 0 0  AVOCADO : 1.5 

F I E L D - L A N D  : 1850 L A B O R  : 

WATER : 
COTTON : 

MAY : 6 5  

J U L Y  : 9 0  
J U N E  : a 0  

O N I O N  : 
JUNE : 6 0  

PEAR : 
JUNE : 5 3  
J U L Y  : 6 4  

P R O F I T :  
COTTON : 6 4 5 3  
O N I O N  : 6110 
P E A R  : 4814 
A V O C A D O  : a 8 1 3  

C E I L  : 
COTTON : 2 0 0 0  
O N I O l V  : 2 5 0  
PEAR : 5 0 0  
A V O C A D O  : a o o  

I AVOCADO : 
JUNE : 7 5  
J U L Y  : a 5  
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SUM [CROP:  CROP?] I LAND 
(overall land constraint) 

(land constraint  for field crops) 

SUM [CROP: WATER.CROP.MONTH x CROP?] 
I WATER-BND .MONTH 

(monthly  water  constraint) 

SUM [CROP: LABOR.CROP x CROP?] 
I LABOR-TOT 

(labor  constraint) 

CROP? I CEIL.CROP 
(production ceiling for each  crop) 

MAXIMIZE [CROP: PROFIT.CROP x CROP?] 
(objective  function) 

This simplified model will create  a matrix with four columns and 
10 rows. If there  were 20 crops,  over 12 months,  the matrix would 
have 20 columns  and 35 rows. 
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