Application development productivity is a broad-based concern.
A system answering this concern is the IBM Health Care Support/
DL/I-Patient Care System announced by IBM in late 1977. The sys-
tem is of general importance because its application development
system architecture is not application specific and thus can be
used for the rapid development of many types of on-line systems.
It has an elegant simplicity, and it uses the standard facilities of
such operating system components as CICS/VS and DL/I. The ap-
plication productivity has been clearly and successfully demon-
strated in the real working environment of the Dallas County
Hospital District (Parkland Memorial Hospital) and other sites.
The paper provides an architectural overview followed by a de-
scription with an example of CRT (cathode ray tube) screen and
print format design and coding and an examination of a data
collection list to demonstrate the power of that facility.

Application development system: The software architecture of
the IBM Health Care Support/DL/I-Patient Care System

by D. J. Mishelevich and D. Van Slyke

As evidenced by the recent Conference on Application Develop-
ment Systems,' significant interest is beginning to focus on appli-
cation development systems and, thus, application development
productivity. True productivity enhancement must be two-sided:
for the designer/implementor on the one hand, and for the user on
the other. A major contribution in this area is the 1BM Health Care
Support/DL/1-Patient Care System (PCS) which was developed by
Duke University Medical Center with guidance from IBM as the
Duke Hospital Information System (DHIS). It is both a new soft-
ware architecture with significant productivity features and a suc-
cessfully implemented large application. PCS has been available
as an Installed User Program (1UP) from IBM since November
1977. The Dallas County Hospital District (DCHD) in Texas,
which owns and operates the Parkland Memorial Hospital (PMH),
became intimately involved with the system in mid-1977 when the
hospital became the validation site to show that DHIS was indeed
transportable. The DCHD implementation”” is called POIS (Park-
land On-Line Information System).

Copyright 1980 by International Business Machines Corporation. Copying is per-
mitted without payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright notice are
included on the first page. The title and abstract may be used without further
permission in computer-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor.

MISHELEVICH AND VAN SLYKE IBM SYST] ¢ VOL 19 ¢ NO 4 & 1980

A Hospital Information System (HIS) of this type is a comprehen-
sive on-line system with CRT (cathode ray tube) terminals (display
devices) and printers located in nursing stations and other patient
care areas and in the ancillary departments (e.g., Radiology, Lab-
oratories, Pharmacy, Central Supply, etc.). Entry of orders, in-
quiry into order status, message switching, patient profiles, medi-
cation profiles, and a number of other features, including the re-
porting of results, where appropriate, are supported.

The current DCHD system is on a System/370 Model 168-3 (eight
megabytes) with 1BM 3350 disk drives. By the summer of 1980,
over 300 CRTs (primarily IBM 3278 display devices, many with
light pens because of the primary menu-selection approach of the
HIS application) and 100 printers (primarily 1BM 3287 printers)
were installed. System control programming is MVS (Multiple Vir-
tual Storage), and the additional software consists of CICS/VS
(Customer Information Control System/Virtual Storage) and DLA
(Data Language I), TSO (Time Sharing Option), and SPF (Struc-
tured Programming Facility), as well as COBOL, PL/, assembly
language, and appropriate utilities.

The Good Samaritan Hospital in Cincinnati, where the DOS (Disk
Operating System) version of pCS was done on a System/370
Model 138, indicates that smaller CPUs are practical for use of the
system, too.**

Application development system

PCS is intended to do more than just provide an application devel-
opment system for data processing. PCS extends the application
development tool directly to professionals outside of those in data
processing and makes productive the entire application develop-
ment process from the initial conception to production to mainte-
nance/enhancement.

Some of the essential elements for productivity enhancement in
an application development system of this type are

. Data independence

. Logic independence

. Ease of logic implementation

. Ease of CRT screen design and coding

. Ease of printer format design and coding

. Application and architecture extensibility

. Ability of user personnel (non-data-processing) to perform
functions of Items 3, 4, and 5

8. Human-engineered, user-friendly production system

PCS meets these criteria, as will be demonstrated in some detail in

IBM SYST J ¢ VOL 19 & NO 4 & 1980 MISHELEVICH AND VAN SLYKE

hardware and
systems software
environment

479

architecture
overview

this paper for all items except 6, which is being effectively accom-
plished but is beyond the scope of this presentation. Item 8 is
evidenced by literally hundreds of users at Parkland from ward
secretaries to physicians who use the system effectively after
minimal training. Item 3 is accomplished via the Data Collection
List (bcL) facility.

Patient Care System architecture

A detailed architectural presentation is beyond the scope of this
paper. For additional material, the reader is referred to the avail-
able 1BM documentation® as well as a paper by the authors.™

It is important to note that a major facet of PCS is that much of the
analysis, design for, and incorporation of both the CRT screens
and printer formats is done by health-care professionals (usually
nursing or ancillary department personnel) whose skill is a de-
tailed knowledge of the application rather than data processing
expertise. We call our group of user-coordinators POIS Associ-
ates.

Having user personnel in the designer/implementor role is multi-
fold. For example, it provides for a built-in understanding of the
application problem, job enrichment, commitment to the specific
application field, and frequently even a commitment to the spe-
cific organization. This is particularly important when data pro-
cessing personnel are often very scarce and very mobile.

A graphic presentation of the on-line architecture is shown in Fig-
ure 1. As previously noted, terminal users interact with PCS via
CICS. The PCS Supervisor consists of the Supervisor Nucleus,
Symbol Table management, Nonconversational Screen Manage-
ment, Executior Debug, and Error Handler. Program control
flows through the PCS Supervisor to and from the nonsupervisory
functions which consist of the Data Collection List Processor,
Edit Facility, Data Manager, Print Manager, Conversational
Screen Manager, Security Facility, and application programs.

Each user has a User’s Work Area (UWA), which contains the
cIcS Transaction Work Area (TWA), the user’s Symbol Table and
Command Stack. The TWA contains status information which
may be used by the various supervisory and nonsupervisory pro-
grams. All functions can add to or access elements of the Symbol
Table. Programs and screens can add commands to the Command
Stack in the UWA, but only the PCS Supervisor removes/executes
them.

The screen, print format, and DCL files shown in Figure 1 are
relatively static (e.g., static in the production environment) files

MISHELEVICH AND VAN SLYKE IBM SYST J e VOL 19 e NO 4 e 1980

Figure 1 PCS architectural overview (DCL = Data Collection List; screen file is also avail-
able to the nonconversational screen manager within the PCS supervisor box)

TERMINAL

'S WORK AREA (UWA) DEVICES

PCS SUPERVISOR

NONSUPERVISOR FUNCTIONS

XOPr—H4w ODZPZZTOO

DCL PROCESSOR,
RELATED PROCESSORS,
AND APPLICATIONS

SCREEN
FILE

= MAJOR CONTROL FLOW —— = DATA FLOW >:C = VSAM FILE ACCESS (VIA CICS)

required in any PCS implementation. The DCL itself is read in from
the DCL file by the DCL processor. However, since many similar
procedures can sometimes share a DCL, the procedure file (see
below) may be accessed first to include default information spe-
cific to one procedure in the Symbol Table.

The procedure file is a relatively static application-specific file. In
the Hospital Information System context, it is a charge descrip-
tion master file. The procedure record also contains the name of a
master DCL that is used to control the application logic flow for
the procedures sharing a DCL.

The application-specific (HIS), nonstatic data is contained in DL/I
data bases and accessed via the DL/I Data Base Management Sys-
tem.

Major factors: Data and logic independence

The productivity-enabling aspects depend on two PCS basic con-
cepts: data independence and logic independence. Even though

IBM SYST J « VOL 19 @ NO 4 » 1980 MISHELEVICH AND VAN SLYKE

data
independence

logic
independence

PCS uses CICS and DL/ as do other IBM transaction-processing
environments, a major difference is the independence in these
two areas achieved with PCS.

In a traditional (nonapplication development) on-line program-
ming environment (such as that represented by CICS and DL/),
data are generally accessed from the terminal devices or data
base via calls within the internal application program logic. In
application development environments (such as the Development
Management System (DMS)"® or the Application Development Fa-
cility (ADF)'®""), the application data are usually accessed through
higher-level functions such as screen and data base managers.
Although data may be accessed on the screens by name, the ap-
plication programs are generally limited to access by predefined
data structures as the data flow between the application pro-
grams, the data base, and the terminal devices. Also, in most
cases, no facility exists for the application designer to easily
maintain active data; therefore, repeated access to the data base
or terminal may be required.

In pCS, however, more data independence is achieved. The data
are referenced by different programs via the use of a Symbol
Table, and the data base management functions of PCS take care
of the DL/ calls. The application code need not know about the
intricacies of CICS because the PCS screen and print managers
take care of the CICS interactions. The situation is shown sche-
matically in Figure 2. The PCS application program gets its input
data from and puts its output data in the Symbol Table without
concern for either the source (CRT screen, data base, etc.) or des-
tination (CRT screen, printer, data base, etc.) of data.

The functionality of the Symbol Table is somewhat demonstrated
by conceptually similar data structures in other environments, for
example, the data area within an APL work space® or the variable
pool within SPF (Structured Programming Facility'**’). The Sym-
bol Table provides sufficient data independence so that all of the
logic required for application development can be maintained in a
modular fashion, thus allowing new application functions to be
generated out of existing modular components, programs,
screens, print formats, etc. In addition, the designer may retain
active data in the Symbol Table, thereby improving performance
and usability.

One might now reasonably ask how the relationships between ap-
plication programs, data base functions, and terminal 1/0 func-
tions are controlled.

In a traditional on-line programming environment, application
logic flow and application logic for data collection or data update
are determined internally by program logic. In application devel-
opment environments, application logic flow can usually be deter-

MISHELEVICH AND VAN SLYKE IBM SYST J ¢ VOL 19 ¢ NO 4 o 1980

Figure 2 Diagram of data independence in PCS

PCS

PCS SYMBOL DATA BASE
APPLICATION TABLE MANAGEMENT
FUNCTIONS

PCS
SCREEN AND »> TERMINAL
PRINT DEVICES

MANAGERS

mined externally to the program logic. However, externally spec-
ified application logic is generally limited to logic following a
given sequence of events (hereafter called sequence-driven
logic).

In pPcs, however, more logic independence is achieved. Appli-
cation logic flow may be specified externally to the program logic
in either screen definitions (sequence-driven logic) or in DCLs,
which will be referred to as data-driven logic. PCS is the only
known system with this facility. In either case, a modular ap-
proach is used, putting the various components together as build-
ing blocks.?' A change in the one program or screen element used
in a DCL will suffice to incorporate that change in any DCL that
invokes that element.

Sequence-driven logic flow specified in multiple screen defini-
tions may be combined at execution time (due to operator selec-
tions on multiple screens) into a logic flow holding area called the
Command Stack. Parenthetically, the use of the stack approach
contributes to the inherent structured nature of the system.

Data-driven logic flow also allows a sequence of events to be
specified. However, at execution time, some data collection
events may be skipped if the data were defaulted (by the DCL,
previous screens, or programs) or were obtained in some pre-
vious interaction with the terminal user. Thus, the potential exists
for greater terminal user productivity. Data that have been pre-
viously gathered need not be requested again during subsequent
sequences.

The situation is shown schematically in Figures 3A (a sequence-
driven approach) and 3B (a data-driven approach). In both fig-
ures, a visual representation of the application logic flow is de-
picted in the center column entitled Visual Flow. The right side of
the figure indicates that the data interaction of each of the com-
ponents is with the Symbol Table. The lieft side of each figure

IBM SYST J @ VOL 19 @ NO 4 e 1980 MISHELEVICH AND VAN SLYKE

Figure 3 Diagram of logic independen

COMMAND VISUAL
FLOW

DATA
BASE
RETRIEVAL

\ 4

ce in PCS, (A) Sequence-driven, (B) Data-driven

DATA
SYMBOL COLLECTION VISUAL SYMBOL
LIST fLOW

DATA
BASE
RETRIEVAL

SCREEN MAY
BE BYPASSED

SCREEN MAY
BE BYPASSED

¥

APPLICA-
TION
PROGRAM

APPLICA-
TION
PROGRAM

\ 4

4

T~

-

weswmmmlp = CONTROL FLOW ———» = DATA FLOW

depicts graphically the logic flow holding area corresponding to
the visual flow. Although this example is illustrated using either
type of logic, the data-driven approach is more flexible for the
terminal user.

Many application flows can be done with either approach, but
sequence-driven logic is most appropriate for flow of control, and
data-driven logic is best used where collection (or update) of data
is required.

Screen design and coding

Screen design and coding have been provided to permit users (in
this case usually health-care professionals) to easily code their
own screens. The screen images in our environment are for prac-
tical purposes all designed by the health-care professionals of the
POIS Associates group. Such design is possible because screen
coding has been greatly simplified compared with most other

MISHELEVICH AND VAN SLYKE IBM SYST J @ VOL 19 & NO 4 » 1980

techniques. Every effort has been made to extend the screen and
print format coding process to the user who is not familiar with
data processing.

Screen coding consists of providing two sets of information: (1) a
‘“‘picture’’ of how the screen looks, and (2) a list of the data ele-
ments that are to occur on the screen (involved in either input or
output). Although this information can be entered by any data
entry medium, including cards, we use the CRT as our input de-
vice.

After the above items are entered, they are processed by the
Screen Compiler. Output of the Screen Compiler is a printed re-
port showing the ‘‘picture’’ and list of data elements in hard copy
form and includes any applicable warning and error messages.

In our experience at Parkland Hospital, it is this output which is
first reviewed with the end users. Thus, the screen coding is self-
documenting since it is both coded and printed in ‘‘picture’’ for-
mat. In addition, the screen coding is executable even before any
of the programs or data bases have been established because PCS
data and logic independence allow separation of the functional
components: screens, programs, DCLs, data bases, print formats,
etc.

Once the screen flow is envisioned and coded by the designer, the
application functions can be demonstrated on line to the end user.
Our technique is to do this second review with the end users as
soon as possible since experience has shown that changes are still
likely at this stage. (The phenomenon of desire for change at this

point is real even though in most environments the paper form of
the screen design and flow would be the one implemented for
production.)

The ability to demonstrate the application functions during the
design phase is the most productive design capability of PCS.
There are several factors involved: (1) At this stage, there are no
data bases or program specifications to change, and the effect of
the changes on the design process is helpful; (2) The user is
pleased/encouraged to see a working model so soon and becomes
more involved in an earnest review of the system; (3) At least one
rework after development or production is avoided (due to the
phenomenon noted above). A critical element is that the screens
shown to the user to get user feedback are already coded for ac-
tual use.

Note that many of the idea, design, develop, test, demonstrate,
rework, educate, etc. stages can now operate in parallel. Other
time-compressing benefits accrue: (1) The designer is guided by
the early feedback from the end user and moves quickly ahead;

IBM SYST J e VOL 19 ¢ NO 4 ¢ 1980 MISHELEVICH AND VAN SLYKE

self-documenting

early demonstration
of application

menu
selection
types

Figure 4 Typical CRT screen as initially seen by the user (The question marks before each
item in the two columns on the left indicate that those items are delayed-detect-
able. Asterisks are there simply to delineate areas in which the user can key in
input.)

PATIENT NAME: ALICE K. SMITH
UNIT NUMBER: 073482

NURSING NOTES ALLERGIES
SELECT UP TO FOUR
* PENICILLIN

DEAF ? BLIND *
? V'S RUNNING NEEDS CONSTANT ADDITIONAL NOTES
ATTENDANCE

SPEAKS NO ENGLISH DIABETES

SEIZURES ISOLATION

(2) The end user begins to make administrative plans for incorpo-
ration of the new feature or system (a calendar time-consuming
process); (3) User manuals and other types of education and
training material can be started. The major benefit is the ability to
produce a better application design in a shorter time using fewer
resources.

Screen coding considerations

The techniques used for the simplified screen coding are of partic-
ular interest because they seem natural, and one eventually won-
ders why screen coding has not always been done this way. In
addition, the menu-selection method used in the HIS application is
“‘user friendly’’ and allows complete operation of the application
with a minimum of training. Screen coding considerations follow.

A sample screen as initially seen by the user is shown in Figure 4.
In the normal course of events in running an application, ‘‘static
data’ like ‘‘unit number is’’ or ‘‘variable data’ like ‘‘073482”°
(the unit number for the particular patient under consideration),
are transmitted from PCS to the CRT terminal. These items show
what choices are available for light-pen-mediated menu selection
by the user and/or what items are to be keyed in by the user. The
data keyed in by the user are also called ‘‘variable data.”

Menu selection is of two types: delayed-detectable , in which case
the selected item is ‘‘tagged’ as having been selected, but the
screen remains so that additional menu selections and/or key en-
tries can still be made, and immediate-detectable, in which case
the screen is transmitted back immediately to the host computer,
and a new screen is sent to the CRT.

MISHELEVICH AND VAN SLYKE IBM SYST J & VOL 19 @ NO 4 & 1980

Figure 5 Screen in Figure 4 as typically filled out by the user just before transmission of the
screen back to the host (Note that the menu-selected items in the two left-most
columns are indicated by having their question marks changed to >.)

PATIENT NAME: ALICE K. SMITH
UNIT NUMBER: 073482

NURSING NOTES ALLERGIES
SELECT UP TO FOUR
PENICILLIN AND SULFA

> DEAF ? BLIND

> V'S RUNNING NEEDS CONSTANT ADDITIONAL NOTES
ATTENDANCE

NEEDS ASSISTANCE TO
7 SPEAKS NO ENGLISH DIABETES

* GET ONTO STRETCHER

> SEIZURES > [SOLATION

Figure 6 Design layout of the screen considered in Figures 4 and 5

PATIENT NAME:

UNIT NUMBER:

NURSING NOTES ALLERGIES
SELECT UP TO FOUR

DEAF 7 BLIND

IV'S RUNNING NEEDS CONSTANT ADDITIONAL NOTES
ATTENDANCE
P A A =t

? SPEAKS NO ENGLISH ? DIABETES

SEIZURES ? ISOLATION

After the user has interacted with the screen (just prior to trans-
mission back to the host), the screen looks as shown in Figure 5.
The design layout for the screen is shown in Figure 6. Here

> fields represent variable data with the periods in-
dicating that those particular fields are for data output (from the
computer to the crT). The <,,,,,,,,,,> fields represent variable
data with the commas indicating that these particular fields are for

represent variable data with the semicolons indicating that these
particular fields are for both data output and data input. This last
representation is used since the allergy text shown in the figures
may be retrieved from the patient’s profile which is stored in the
data base and may be updated at this time. As to the pen-detect-
able fields, the ones preceded by question marks are delayed-de-

IBM SYST J e VOL 19 ¢ NO 4 e 1980 MISHELEVICH AND VAN SLYKE

tectable, whereas the exclamation point appearing just before EN-
TER in the lower right corner of the screen in Figure 6 indicates
that field is immediate-detectable.

Although not shown in the figures, it is possible to include simple
edit characters in the output or input/output variable data fields
by including the edit characters among the periods or semicolons.
Consider a date and time field internally carried as
MMDDYYHHMM or 1122791005. This field could be displayed to
the user as

CURRENT DATE AND TIME
11/22/79 10:05

with the following screen design layout:

CURRENT DATE AND TIME
<../... :

In any case, the number of characters between the less than (<)
and greater than (>) signs indicates the maximum number of
characters permitted as input and/or output in the field.

Some other considerations are:

1. The character string transmitted from the CRT terminal to the
computer for light-pen-detectable fields is called a generated
value and may or may not be the same as the phrase appearing
on the screen. For example, the word ‘‘isolation’” might be
transmitted as 007 or some other alphanumeric value.

A generated value may also be a command or set of com-
mands, which is, of course, an extremely powerful facility.
For example, if the choices on a CRT screen were

CANCEL EXAM
RESCHEDULE EXAM

and reschedule exam was selected, then the generated value
might be

$S=RCANREAS, $P=RRESCHD;

which means display the screen RCANREAS to get the reason
for the cancellation and then execute the DCL called RRESCHD.
Note that $P= invokes the DCL. A $PROG= command can also
be a component of such a command string.

Clearly the data names and values must be coordinated among
the screens, DCLs, and programs.

. Displays can include three degrees of character intensity for
the IBM 3278 display: bright, normal, and dark. Keyed-in char-
acters, characters in variable output fields, and pen-selectable
phrase strings are always of a bright intensity rather than nor-
mal. Static output fields may also be made bright by prefixing

488 MISHELEVICH AND VAN SLYKE IBM SYST J ® VOL 19 ¢ NO 4 ¢ 1980

them with a double-quote mark (**). The system also supports
the 1BM 3279 color display.

. Some data names by convention serve special purposes. For
example, SAUTO causes the same generated value (e.g., T-
STATUS=31;) regardless of what the user enters, $COMMON is
used for common functions like ENTER that are likely to ap-
pear on many screens, and $CMDO! is used to call command
strings (such as $S=RCANREAS,$P=RRESCHD;).

Again, in addition to the layout of the screen, ‘‘supplemental’’
information is also provided by the screen designer to the screen
compiler about which data names are to be associated with which
input and/or output fields. An example for an output case follows.

Let us say the layout specification calls for

ORDER ENTERED
TIME<....>

TIME<....>

The fixing of the relationship between these varable fields and
their corresponding data names can be done by specifying the
following fields in a vertical or horizontal sequence. Thus

OUTPUT....V....ORDERDAT
COLCDAT
ORDERTIM
COLCTIM

(where V indicates that a vertical precedence over left to right
sequence is being followed) is appropriate and equivalent to

OUTPUT....H....ORDERDAT
ORDERTIM
COLCDAT
COLCTIM

(where H indicates that a horizontal precedence over top to bot-
tom sequence is being followed).

The input supplemental information requires a bit more specifica-
tion. For the whole screen a vertical or horizontal field sequence
must be designated. For each statement the following can or must
be specified:

1. !, 2, or < indicating immediate-detectable, delayed-detectable,
and keyed-in, respectively (mandatory)
. Data name (mandatory)
. Number of light-pen-selectable phrases (if applicable)
. Maximum number of phrases to be selected (if applicable)
. Generated values or ‘“‘AS IS’ (if applicable)

IBM SYST J ¢ VOL 19 e NO 4 e 1980 MISHELEVICH AND VAN SLYKE

As an example, let us assume that we wish a screen to enter in a
vertical sequence the name of the physician (keyed in) ordering
the procedure plus the scheduling and transportation (both to be
menu-selected). The screen layout specifications call for

ORDERING PHYSICIAN
Uinrrrssss333355998339s
SCHEDULING TRANSPORTATION
?STAT 'WHEELCHAIR
?TODAY !STRETCHER
? TOMORROW !BED

The supplemental information would be

v 003 001 STAT;TODY;TOMR;
<MDNAME
TRANSPRT 003 001 WC;ST;BD;

with definitions according to the list above. The ?SCHED fields are
listed before <MDNAME because vertical definition is requested
and the question marks are further to the left than the less than
sign. Also note that a horizontal sequence is not particularly ap-
plicable since the scheduling and transportation options are listed
in columns on the same lines. Horizontal sequence would cause
the following definitions:

H....<MDNAME
?SCHED 001 001 STAT;
'TRANSPRT 001 001 WC;
?SCHED 001 001 TODY;
'TRANSPRT 001 001 ST;
?SCHED 001 001 TOMR;
'TRANSPRT 001 001 BD;

which are much more difficult to code. In addition, a problem is
created since the operator can now select all three scheduling op-
tions.

The screen facility of PCS has been developed and implemented
not only as a very powerful component of PCS, but also as a hu-
man-engineered system that can be extremely effective when
used by a designer not familiar with data processing, such as one
of our health-care professionals. Thus, PCS application systems
(which need not be health-care related) are developed and imple-
mented in the main by users for users.

Print format design and coding

Some application development systems have a high-level method
of specifying screens, but the designer has to revert to program
code for printer output. With PCS, a high-level and spooling-type
print facility serves the designer’s needs.

MISHELEVICH AND VAN SLYKE IBM SYST] & VOL 19 « NO 4 & 1980

The procedures and conventions for print formats are generally
the same as for screens, except, of course, that only output fields
are permitted. The layout and sequential information statements
are processed by the print compiler program. There are two for-
mat types:

e Report—if several items with the same format are to occur on
the same printed page and the number of these items is not
predictable so that a new page is to be started when the cur-
rent page is filled.

Message—if report conditions are not applicable, that is, if the
length and content of the format are fixed.

Some additional considerations are:

1. The specification of repetitive lines can be abbreviated. Thus

CLINICAL HISTORY:

can be abbreviated as

CLINICAL HISTORY:
<04 LINES

. One can include a stamp on the top or bottom of the printed
data message (or report) containing the source, destination,
date, and time.

. One or more destinations and/or groups of destinations can
receive the message or report. A group might be all the nurs-
ing stations. Home (the printer associated with the station
where the message is being initiated) is a legitimate destination
and may be used along with other destinations if desired.

. Blank lines can be suppressed. For instance, in the clinical
history above, if only one line of the variable information was
keyed in, the printing of the other three that appear as blank
lines can be suppressed.

. Printout may be rerouted to the same or any alternate destina-
tion (including the system printers) for a period of 24 hours
(based on disk queuing space) after the initial print request.

Again, the print facility is another powerful tool to quickly and
economically specify the desired result and one that is easily han-

dled by appropriate non-data-processing personnel.

Data Collection List

DCLs provide the primary mechanism for data gathering and dis-
tribution (including data base and Symbol Table update). A DCL

IBM SYST J o VOL 19 ¢ NO 4 * 1980 MISHELEVICH AND VAN SLYKE

life cycle
support

provides the specification of the various data elements needed for
a given function/procedure including the source or destination of
the data. To get the data, screens may be presented and/or pro-
grams executed. A DCL does not change the logical system flow,
but once a given function/procedure is invoked, it makes sure that
the required steps are taken to complete that function/procedure.
The DCL maintains control until its function has been completed.
After screens are displayed, messages printed, and/or designated
programs executed, control returns to the DCL processor to en-
sure system flow integrity. As with the screens, design and pro-
gramming are merged to a great extent. The DCL and Symbol
Table, which are unique to PCS, are naturally linked to each other
and have a symbiotic/synergistic relationship.

Quite naturally, the bulk of DCLs in a Hospital Information Sys-
tem will deal with placing and executing orders. Examples in-
clude order entry, order display, charging, canceling orders, re-
sult reporting, and displaying a result. Other functions, such as
patient transfer, are also quite reasonable.

As an example of data collection, if one places a radiology order,
aradiology DCL would cause data entry screens to be displayed to
gather (more than one data item can be obtained via a single
screen if appropriate) procedure type, clinical history, ordering
physician, nursing history, allergies, transportation, and sched-
uling (not necessarily in that order).

Data can be obtained (1) because a default value is specified (and
not overridden), (2) from a CRT screen, or (3) from a program.
Data editing can occur regardless of data source.

A natural concept is that of orders or procedures having a life
cycle. Many systems, (e.g., parts inventory, airline reservations,
truck or rail shipping, etc.) have life cycles. However, the DCL
facility that easily and powerfully supports life cycles is unique to
pPcs. The life cycle consists of (1) Initiation, (2) Execution
phase(s), and (3) Termination (may bhave alternate forms).

Various stages in a typical order life cycle might involve (with
numerical keys to the three items just identified)

1. Order entry

2A. Verify order

2B. Record complete procedure
3A. Report final result

3B. Correct final result

An alternate form of termination could be 3C, order cancellation.
After execution of each stage in the order life cycle, the order
data may take on a new status such as unverified, outstanding,
result pending, final result, or corrected result.

MISHELEVICH AND VAN SLYKE IBM SYST J @ VOL 19 @ NO 4 o 1980

With respect to the life cycle, the DCL supports the stages of the
life cycle through the use of status codes. Each of the successive
stages is assigned a two-digit number (called status code) with
ascending sequence used to denote the relative position of that
stage in the life cycle. The execution of one stage in the DCL is
controlled by setting a T-Status (Target Status) field to the status
code value of that stage prior to execution of the DCL.

Items that will or can appear in a DCL include (1) a list of neces-
sary data elements, and (2) a list of appropriate commands.

The general form for a Data Element DCL entry is
DATANAME DEFAULT,SOURCE EDIT,ERROR;

Suppose that we wish to obtain the type of transportation to be
used for transfer of a patient from a nursing station to one of the
ancillary (service) departments such as Radiology. In this case, a
DCL entry for this item could be

ORDTRANS WC,$S=TRANSPRT,$EP=EDITTRAN SERRS=TRANSPRT;

where

1. The name of the data element is ORDTRANS (with the charac-
ters ‘“‘ORD’’ indicating this is part of an order).

. WC is the default transportation method (wheelchair).

. $S=TRANSPRT says that value is to be obtained from a screen
whose name is TRANSPRT (transportation route).

. $SEP=EDITTRAN is the name of the program to edit the input
value. Even though the particular example we are using in-
volved a default value (wC), the editing process still makes
sense since the terminal operator may be allowed to override
the default (this is not shown here).

S. $SERRS=TRANSPRT indicates that if any error is detected, the
TRANSPRT screen will be displayed again.
6. The semicolon indicates the end of this DCL entry.

Note that all of these operands are not required for each entry.
With light-pen entry it is likely that an edit program and/or error
screen is not applicable.

The general form for a Command DCL entry is

COMMAND OPERANDS(S);

Command DCL entries are easily distinguished from data element
entries because the first character of the command is always a
dollar sign ($). This is important since command and data element
entries are interspersed in the DCL as in the example below. Con-
tinuing our radiology example from above, suppose that we now
wish to send a printout of data gathered for a chest x-ray to radiol-
ogy in the form of a requisition. Typical DCL entries for this
request would be

IBM SYST J » VOL 19 ¢ NO 4 « 1980 MISHELEVICH AND VAN SLYKE

Table 1

Types of entries for a DCL

Statement
(And purpose)

Parameter(s)
(And explanations)

DATA ELEMENT
Obtain data
$RS
Perform review
function
$DM
Request external
data function
$PRINT
Request printing

DEFAULT,SOURCE,EDIT,ERROR:
(see text for details)

RSNAME;
Name of appropriate review screen

FUNCNAME=SEGNAME , FUNCNAM2=SEGNAM2;
Name of function to be performed and name
of applicable group of data
PRINTFORMAT,PRIORITY,DESTID;
Name of print format to be printed,

name of print priority symbol,

name of symbol of destination identification
None. A specified set of data

elements must already be

present in Symbol Table

$ACCT
Send accounting
data

T-PRIOR N;
T-DESTRR RADIOL;
$PRINT RADREQ,T-PRIOR, T-DESTRR;

The first two lines show data element entries with only the default
operand coded. The first entry defaults temporary data name T-
PRIOR to a value of N. The second entry defaults temporary data
element T-DESTRR to a value of RADIOL. Any data element begin-
ning with T- is by convention a temporary data element that is
used for a short time and is not stored in the data base. Note that
in more complex illustrations, the data elements T-PRIOR and T-
DESTRR could be assigned a value via a program or a screen.

The third line shows the actual print request which means exe-
cute a print command using a print format with the name
RADREQ, an output priority of N (for normal) and a destination of
RADIOL (logical destination indicating the printers in Radiology).
Note that it is the values of the second and third operands that are
used by the print request. In more complex cases, changing these
values via screen input from the CRT operator allows the priority
or destination to be changed.

Table 1 illustrates the types of entries that may be used in a DCL.
Note that CICS and DL/ calls are made for you.

It would be possible for each stage in the life cycle of an order to
be represented by a separate DCL. However, this would serve no
useful purpose since many of the data elements and commands
that must be specified in each stage of the order life cycle are
common to all stages. Therefore, a mechanism exists to combine
all stages of the life cycle into a powerful and highly compact
structure.

MISHELEVICH AND VAN SLYKE IBM SYST J e VOL 19 @ NO 4 ¢ 1980

Figure 7 Flowchart of basic order process

ENTER DCL

[DATA ELEMENT FULL DESCRIPTION
NMEUMONIC OF DATA ELEMENT

ORPROCED ORDER PROCEDURE
ORTYPE ORDER TYPE
ORCATGY ORDER CATEGORY

TAIN DATA
Ol ORCLNHX ORDER CLINICAL HISTORY

ORDATE ORDER DATE
DATA ELEMENTS ORTIME ORDER TIME
ORFREQN ORDER FREQUENCY
l ORSIGN PERSON SIGNED ON AT THE

TIME OF ORDER ENTRY
ORPERSN ORDERING PERSON

L NOTE: WITH RESPECT TO FIGURE 7 RAD = RADIOLOGY

REVIEW THE ORDER
AND MAKE CORREC-
TIONS IF NECESSARY

(PROBED "ACCEPT" ON
REVIEW SCREEN)
ACCEPT

ORDER l

?

INSERT ORDER

NG IN ORDER SEGMENT

OF PATIENT'S
DATA BASE

l

PRINT REQUEST FOR
VERIFICATION ON THE
NURSING STATION
(HOME) PRINTER

|

(PROBED “"REJECT" ON
REVIEW SCREEN)

EXIT DCL

The disposition of each entry in the DCL at any given stage is
controlled by the comparison of the one or more status elements
encoded for each line to the Target Status (T-Status). The value
of T-Status at the time the DCL is entered will determine what
stage is to be performed. Thus the same DCL can allow for such
diverse stages in the order life cycle as:

Unverified order entry

Correct order before verification

Delete order before verification

Order verification

Enter an order verified

Order-associated materials received
Recording a complete procedure (RCP)
Recording an incomplete procedure (RICP)

®NS s W~

IBM SYST] ® VOL 19 ¢ NO 4 & 1980 MISHELEVICH AND VAN SLYKE

Figure 8 Flowchart of order verifi-
cation process

GET ORDER TO BE
VERIFIED OUT OF
THE DATA BASE

!

OBTAIN
SPECIFIED
DATA ELEMENTS

!

REPLACE ORDER
WITH A VERIFIED
STATUS
IN DATA BASE

}

PRINT QUT
CARE ADDENDUM
AT NURSING
STATION

!

PRINT X-RAY
REQUISITION
IN RADIOLOGY

ORVERIFR, THE CODE FOR THE NAME OF
THE PERSON DOING THE VERIFYING,

*{ ORVERDT, THE ORDER VERIFICATION DATE,
AND

ORVERTM, THE ORDER VERIFICATION TIME

9. Report result
10. Correct result
11. Display order
12. Display result

Thus, the DCL is a powerful construct for permitting the coding of
complex but related stages that share data elements and program
calls. One can look at it as a series of statements to be executed
(with data element lines handling one data element each) with (1)
conditional invoking of each executable statement and (2) condi-
tional treatment (acquiring, changing, using the existing value,
disallowing the existing value, or using the default value in place
of) for each data element.

To illustrate this concept, let us analyze an example. We will ex-
amine a DCL for order entry, order verification, recording a com-
plete procedure (RCP), recording an incomplete procedure (RICP),
and display order. The functions RCP and RICP indicate whether
the outstanding order has been completed or definitely will not be
performed, respectively. The flowcharts and data element names
for these functions are shown in Figures 7 through 11.

The single DCL to accomplish all of the functions just described is
shown in Figure 12. A major consideration is how control over
the individual lines will be exercised, in terms of (1) which data
element statements will be relevant, and (2) which commands
($DM, $RS, etc.) will be performed in a given execution of the DCL.
One execution represents one stage such as enter orders. By us-
ing the T-Status at the time the DCL is entered, these questions
are resolved by comparison of the T-Status to the status element
or elements associated with each statement line of the DCL.

One or more status elements will appear on each DCL statement
line whether the statement is a data element line or a command
line. Thus, there is conditional control over both data and com-
mand. The three possibilities for the status elements are defined
as

Status For data elements For commands
St ALLOWED STATUS LOW RANGE
S2 REQUIRED STATUS vee or EXACT VALUE
S3 NO CHANGE STATUS HIGH RANGE

Each is a two-digit number, but how the interpretation is handled
with respect to the comparison of the status elements to T-Status
differs as to whether a data element entry or a command entry is
involved. The status names only make sense in their own context
and may be viewed simply as Status 1, Status 2, and Status 3. For
data elements, one or more status values must be supplied. For
commands, either Status 1 and Status 3 are coded or only Status 2
is coded.

MISHELEVICH AND VAN SLYKE IBM SYST J & VOL 19 @ NO 4 & 1980

With the above background, we can now apply the rules and see
how overall functions are separated. In Figure 12, the right-most
set of columns indicates the functions for which a given line (func-
tion or data element statement) will be active. The T-Status val-
ues upon entering the DCL are

Purpose
Enter an order unverified
Verify a previously entered
order
Record a complete procedure
Record an incomplete
procedure
Display order information
retrieved from the data base

Figure T-Status Function
7 10 ORDER
8 30 VERIFY

9 38
10 82

RCP
RICP

11 97 DISPLAY

In each case the line selection may be compared to the logic in the
corresponding flowchart as shown in Figures 7-11.

Please note in the lines of DCL code that 11 of the 31 lines serve
more than one function because most of the common elements
are supported. If we added just one more line after Line 18,
S2 = 31, COMMAND=$DM, OPERAND=ISRT=0RDER;, we would
get a sixth stage, ‘‘enter order verified.”

Thus, one can see that all of the stages in an order life cycle can
be encoded in a compact fashion (almost always a single page)
using the powerful DCL construct.

Other end-user-oriented features

While DCL, screen, and print format coding form the basis for the
designer interface for those not working in data processing, other
PCS facilities also play an important part in its end-user orienta-
tion. Some of these facilities are PCS Data Manager, Edit, Execu-
tion Debug, Security, and Error Handler. A brief discussion of
each of these features follows.

Data Manager

The Data Manager provides simple commands to access single or
multiple segments/records without the need for programming.
For instance, a line in a DCL shows

$DM REPL=HPBASIC,GET=0RDERINF;

using the Data Manager command to: first, replace (REPL) Hospi-
tal Patient Basic (HPBASIC) information updated in the Symbol
Table onto the data base, and second, retrieve (GET) order infor-
mation (ORDERINF) about that patient. The general user is prob-
ably not aware that HPBASIC is a segment in the patient data base,

IBM SYST] ¢ VOL 19 « NO 4 o 1980 MISHELEVICH AND VAN SLYKF

Figure 9 Flowchart for record com-
plete procedure

ENTER
DCL

RETRIEVE ORDER
FROM DATA BASE

!

INSURE PRICE
FOR PROCEDURE
IS AVAILABLE

!

{

ORPRICE=PRICE FOR

THE ORDEPR

REVIEW ACT!ON
VIA REVIEW SCREEN
MECHANISM

ACCEPT
RCP

L

REPLACE ORDER
IN THE
DATA BASE

!

SEND
ACCOUNTING DATA
TO ACCOUNTING
SYSTEM

EXIT DCL

Figure 10 Flowchart for record in-
compiete procedure

ENTER DCL

RETRIEVE ORDER
FROM DATA BASE

!

FOR

OBTAIN REASON
RICP

]

REPLACE ORDER
IN DATA BASE

!

PRINT NOTIFICATION
OF RICP AND REASON
FOR IT AT THE
NURSING STATION

EXIT DCL

* DATA ELEMENT NAME IS REASCN

1 HNURSTA = NURSING STATIONS WHERE RICF
NOTIFICATION IS TO BE PRINTED (FROM
LOCATION SEGMENT OF DATA BASE)

497

Figure 11

Flowchart for display or-
der

ENTER DCL

RETRIEVE ORDER
FROM DATA BASE

!

DISPLAY SCREEN

EXIT DCL

whereas ORDERINF is a group of segments in the orders data base.
The designer need only know that certain data names (generally
key fields) need to be acquired before issuing a $DM request to
retrieve or update a group of fields. The Data Manager automati-
cally takes care of setting up the DL/ or VSAM (Virtual Storage
Access Method) request, issuing the call(s), checking for errors,
converting the data to display format, checking access security at
the segment and field level, and mapping the data in or out of the
Symbol Table. These functions are all handled automatically by
the Data Manager using a compact, memory-resident data direc-
tory which is generally set up by the installation’s Data Base Ad-
ministrator. The function is called Data Manager rather than Data
Base Manager because data may come from non-data-base
sources such as VSAM files or even asynchronous input (e.g., via a
Series/1 computer). The Pcs-Data Manager was developed at the
Cedars-Sinai Medical Center in Los Angeles.”*?

Edit

The Edit facility is designed to edit any field using a shorthand
specification provided by the screen, DCL, or one of the installa-
tion’s predefined edit tables. For instance, the following DCL lines

EDITQNTY T(NN)L(003/RJO)R(001-535);
QNTY $S=KEYINQTY $ET=EDITQNTY ,$ERRS=ERSCREEN;

show the coding of the shorthand edit specifications (first line)
and the Edit command (second line, command $ET=EDITQNTY).
The Edit specification (EDITQNTY) can be used by one or more
edit commands to check several fields. The specification ensures
that: the type must be numeric, T(NN); the length is three and if
not, it is right-justified using zero as the fill character, L(003/RJ0);
and the range must be between one and 535 inclusively, R(001-535).
This example shows three of the functions typically used by the
designer. However, Edit provides 16 other functions such as DT
— date, F — format, V — value is, VN — value not, and OV —
override. Many of the functions such as Type shown above also
have several subfunctions. Type has NN — numeric, NS — nu-
meric signed, AA — alpha, AN — alphanumeric, and NM —
name (last name comma first name). If the field is in error, Edit
also provides standard flag, short, and/or normal error messages,
and the designer may also code special error message text. PCS-
Editzx?s developed by the Sisters of Charity Hospitals in Hous-
ton.””

Execution Debug

Just as assembler programmers have the CICS/vVS On-Line Test/
Debug II facility to single step transactions at the machine in-
struction level, and COBOL programmers have the CICS Execution
Diagnostic Facility to single step their transactions at the CICS
command level, so do non-data-processing designers also need

MISHELEVICH AND VAN SLYKE IBM SYST J & VOL 19 & NO 4 & 1930

Figure 12 Sample Data Collection List

EXPLANATIONS
FOR THIS PAPER ONLY
FUNCTIONS IN WHICH
STATUS COMMAND LINE ACTIVE
— ORDATA (See Note 1 Below)
REF PASS S1 S2 S3 NAME OPERAND(S) O V RCP RICP D
(See Note 2) TARGET STATUS 10 30 38 82 97

$DM GET=O0ORDER; RCP RICP D
$DM GET=0RDER; v
ORPROCED (See Note 3)
ORTYPE RAD;
ORCATGY (See Note 3)
ORCLNHX $S=RADCLHX;
ORDATE $PROG=SYSDT;
ORTIME $PROG=SYSTM;
ORFREQN $S=RADFREQ,SEP=FREQEDIT
ORSIGN $PROG=SISIGN;
ORPERSN $S=0ORDPERSN;
ORPRICE $EP=PRICE,$SERRS=PRICE;
$RS RREVIEW;
$RS RADRCP;
ORVERIFR $S=0ORVERIFR;
ORVERDT $PROG=SYSDT;
ORVERTM $PROG=SYSTM;
REASON $S=RICPREAS;
$DM ISRT=0ORDER;
$DM REPL=0ORDER;
89 $DM REPL=0ORDER;
82 T-PRIOR N;
89 S$ACCT
32 T-DESTID HOME;
$PRINT RORVER,T-PRIOR,T-DESTID;
82 HNURSTA $PROG=DOGETLOC;
$PRINT CANREAS, T-PRIOR,HNURSTA;
32 $PRINT RADADD,T-PRIOR,T-DESTID; \'%
97 $RS RADDISP;
30 35 T-DESTRR RADIOL; v
30 35 $PRINT RADREQ,T-PRIOR,T-DESTRR; \Y

Note 1: O = Order (Refer to Figure 7), V = Verify Order (Refer to Figure 8), RCP = Record a Complete Procedure
(Refer to Figure 9), RICP = Record an Incomplete Procedure (Refer to Figure 10), and D = Display Order (Refer to
Figure 11). The respective T-STATUS values are 10 for 0, 30 for V, 38 for RCP, 82 for RICP and 97 for D. Control is
expressed through the use of the T-STATUS value operative at the time the DCL is entered. The value of T-STATUS is
generally set by the CRT operator selecting a function such as Enter Orders.

N OO~ N B WD

CQCOQ0O00O0O0O O
<< <<<<

Note 2: The Pass column is just before the first Status column. When the DCL is finished, all the listed data elements are
deleted except those that have been encoded with *‘PASS”’ (indicated by placing a P in this column) in which case the
data element can be used by the succeeding routine or routines.

Note 3: ORPROCED (Order Procedure) and ORCATGY (Order Category) are determined before the DCL is entered
when the CRT operator selects the procedure to be ordered such as Chest X-Ray. Procedure Information is accessed
from the procedure file). Note that these fields cannot be changed since the T-STATUS in each case is greater than S3,
the no-change status.

the PCS Execution Debug to single step their application at the
functional component level.

The Execution Debug facility dynamically displays trace and
status information allowing the designer to examine the Com-
mand Stack to view execution logic flow immediately prior to the

IBM SYST J ¢ VOL 19 » NO 4 o 1980 MISHELEVICH AND VAN SLYKE

execution of each command. If necessary, the Command Stack
can be modified by keying the appropriate application logic flow.
Also, fields (data names and values) available in the Symbol
Table may be displayed, and fields may be added, modified, or
deleted. The application flow may be resumed at the designer’s
option, and the updated Command Stack and Symbol Table will
be used in the logic flow.

This feature is very useful in testing the application logic. In addi-
tion, it allows each functional component (screen, DCL, program)
to be individually tested. Thus, all components can be designed,
developed, and tested in parallel. This is one of the major benefits
of PCS applicable to designers and coders, including those who
are familiar or unfamiliar with the operational details of data pro-
cessing.

Security

As a system becomes more end-user oriented, the importance of
security increases, since the user is guided as to how all the func-
tions work and is no longer limited by a lack of know-how. PCS
sign-on security requires that all functions be accessed after the
user has identified himself or herself. Each individual user has
access and demographic information stored in the User Profile
data base. Users are limited to functions initiated from their own
specific master screens (this technique is similar to one used by
many installations with IBM’s Structured Programming Facility,
which is menu-selection driven). The user sign-on identifier,
name, and security level are carried in the Symbol Table and may
be included in data base segments, screen format, print formats,
etc. as an audit trail of that user’s access to the system. And as an

additional security measure, the user’s security level is compared
by the Data Manager against the segment or field level security
before the data are accessed.

Error Management

Error Management is invoked automatically when an abnormal
PCS return code from any component is detected by the PCS su-
pervisor. Each error is defined in the PCS Error File and contains
the user error message (end-user oriented), the system error mes-
sage (more specific information in data processing terms), the
transaction dump option (no dump is generally needed to solve
the problem), an optional user-written error program (if special
handling of this error is required), and an optional error screen
(this is used frequently) to be displayed to the user. If an error
occurs, the user error message is displayed to the terminal user,
the system error message is logged on the CICS system printer,
requested error options are taken, and, unless prevented by the
options taken (and this is unlikely), the terminal user is restored
to normal operation. In general, the terminal user does not have
to sign on again and may continue at the last successful function.

MISHELEVICH AND VAN SLYKE IBM SYST J @ VOL 19 ¢ NO 4 o 1980

Review of the system

Now that the basic architecture has been covered along with the
coding of data collection lists, screens, and print formats, it is
appropriate to discuss several aspects of PCS.

Fundamental components of any on-line computing system in-
clude people on the one hand and the software/hardware on the
other. Whereas in most systems the people quite typically are
categorized as being either ‘‘users’’ or ‘‘programmer/analysts,”’
PCs is different. As a productivity-oriented application develop-
ment system, PCS materially benefits from incorporating the user
as a designer/implementor in addition to the programmer/analyst.
The pairwise bidirectional relationships of the three people com-
ponents with the development system and the production system
are shown in Figure 13. Note that the user as a designer/imple-
mentor overlaps both the production and the development sys-
tems. The potential complexities are evident, but in practice the
mode is one of simplicity.

Parenthetically, depending on the individual situation, there may
be a separate CICS component for a user training system facility,
or the development system may be used for this purpose (as we
generally do). In the latter case, there is a logical, conceptual dif-
ference in this interaction of the user with the development sys-
tem as opposed to the user as a designer/implementor actually
doing development, so Figure 13 remains valid.

PCS enables effective interaction to occur in the real world.

Although PCs was developed and first applied in a health-care set-
ting, there is nothing to preclude its application in nonhealth
areas. At the Dallas County Hospital District (Parkland Memorial
Hospital) we are using it for financial/administrative functions
such as patient accounting and payroll/personnel. Because of the
productivity aspect of the system, we would expect it to be
widely applied outside the health industry.

PCS lends itself to extension. Modifications have been done or are
going on in some customer sites in such areas as branching within
a DCL (the so-called $IF facility), allowance for addition of new
commands (command interface), and allowance for explicit in-
direct data names (‘‘@’ operand). The Edit and the Data Man-
ager are architectural extensions.

Some 90 percent of the CRT screens and printer formats are coded
by our group of health-care professionals (POIS Associates) as op-
posed to being done by programmer/analysts. In another environ-
ment, the personnel would be the users to be found in that setting.
In our experience, for a system with a large number of CRT

IBM SYST J e VOL 19 @ NO 4 o 1980 MISHELEVICH AND VAN SLYKE

user as
designer/
implementor

Figure 13 Relationships
people and
components

USER
DESIGNER/
IMPLEMENTOR

PRCDUCTION

among
system

DEVELOPMENT

PROGRAMMER/ANALYST
DESIGNER/IMPLEMENTOR

general
applicability

architecture
extensibility

productivity

screens and a large number of print formats to be coded, PCS sig-
nificantly enhances productivity. Clearly this will be application
dependent, but the power of PCS in facilitating screens and print
format development will aid materially in almost any on-line sys-
tem. The fact that the mainstream IBM operating system com-
ponents (OS or DOS), such as CICS and DL/, are used also facili-
tates the applicability, and since PCS handles and thus simplifies
CICS and DL/ calls, it only improves the situation still further.

As to development productivity enhancement, we estimate that
the effect has been improvement by a factor of four at a minimum
when judged against other systems, even when they use CICS, DL/
I, SPF, and TSO. For example, the Radiology System took only
three months to develop using PCS and would have taken at leasta
year otherwise. This four-to-one factor does not include what we
believe to be a better first production design implementation.

In terms of application maintenance, which is almost always an
ongoing critical activity, our experience leads us to estimate a
productivity enhancement by a factor of ten at a minimum as
compared with other systems. On several occasions POIS Associ-
ates have made changes in a few hours that would have taken a
data processing professional several weeks in a situation where
there was no application development system. Productivity, of
course, is the key since projects also have life cycles. With the
current rapidly accelerating time frames, a facility for quick de-
velopment and easy change is mandatory for increasing produc-
tivity.

Conclusion

By presenting an architectural overview of PCS, this paper has
demonstrated how application development system criteria are
met. Such criteria included (1) data independence, (2) logic inde-
pendence, (3) ease of logic implementation (in PCS via the screen
coding and the data collection list mechanism), (4) ease of CRT
screen design and coding, (5) ease of printer format design and
coding, (6) application and architecture extensibility (the Edit and
the Data Manager are examples of architectural extensions), (7)
ability of user personnel (not data processing personnel) to per-
form criteria 3, 4, and 5, and (8) a human-engineered, user-
friendly, production system (actually demonstrated by routine,
daily use). An important sidelight is that there are commercially
available packages that are pCS-based and allow transfer of tech-
nology to immediately enhance productivity of the receiving
groups. An example is the Patient Care System-Radiology In-
stalled User Program developed at the Dallas County Hospital
District.”** The application of these concepts has been success-
ful, and again it must be stressed that they are not tied to a given
application and thus are ‘‘industry-independent.”’

MISHELEVICH AND VAN SLYKE IBM SYST J ¢ VOL 19 » NO 4 » 1980

The implementation of a large on-line information system is a
huge task. PCS has greatly aided in accomplishing the task. Hav-
ing sample screen and printer formats from a productive appli-
cation given to us as well as the PCS application development sys-
tem was extremely helpful. Although we did not install the appli-
cations without modification (occasionally significant because of
functional differences or because of adding desired features), in
the majority of cases, we would not have had to do so. Even
though other industries will likely also come up with large appli-
cations replete with actual screens and printer formats, this is not
necessary for high productivity and effectiveness.

PCS has enabled us to literally weave the POIS (Parkland On-line
Information System) Hospital Information System into the fabric
of our institution rather quickly. The Patient Care System (per-
haps preferably designated in a general context as PCS— Produc-
tivity Creating System) is powerful and easily applied.

CITED REFERENCES

1. M. L. Zolliker, Proceedings of a Conference on Application Development
Systems, ACM SIGBDP Database 11 (120 pages) (1980).

2. D.]. Mishelevich, ‘‘Installation of the IBM Patient Care System at the Park-
land Memorial Hospital,”” Electronic Computing Health Oriented Boondocks
7, 36-56 (1978).

. D. J. Mishelevich and L. D. Cranfill, ‘‘On-line hospital information systems,"’
THISS (Texas Hospital Information Systems Society) Installation Planning
Guidelines, 43-54 (1978).

. B. G. Hudson, D. J. Mishelevich, E. 1. Mize, and J. R. Roberts, ‘“POIS —The
Parkland On-Line Information System,’’ Electronic Computing Health Ori-
ented Boondocks 8, 65-116 (1979).

. D.J. Mishelevich, B. G. Hudson, D. Van Slyke, L. D. Cranfill, E. 1. Mize, A.
L. Robinson, H. C. Brieden, J. Atkinson, J. R. Willis, and J. Robertson,
*“The Parkland On-Line Information System (POIS): Installation of the IBM
Health Care Support/Patient Care System at the Parkland Memorial Hospi-
tal,” in press, 1979 National Computer Conference Proceedings in Comput-
ers in Health Care (1980).

. D. J. Mishelevich, B. G. Hudson, and E. 1. Mize, ‘‘Parkland system: POIS
update,”’ in press, Electronic Computing Health Oriented Boondocks (1980).

. D. J. Mishelevich, B. G. Hudson, D. Van Slyke, E. 1. Mize, A. L. Robinson,
H. C. Brieden, J. Atkinson, and J. G. Robertson, Jr., ‘“The POIS (Parkland
On-Line Information System) implementation of the IBM Health Care Sup-
port/Patient Care System,”’ in press, Proceedings of the Fourth Annual Sym-
posium on Computer Applications in Medical Care (1980).

. Health Care Support/DL/I Patient Care System Availability Notice, G320-
5756-2 (Unlicensed Material) — Program No. 5796-ANY, IBM Corporation
(1977); available through IBM branch offices.

. Patient Care at Good Samaritan Hospital, Application Brief, GK20-1203-0
(Unlicensed Material), IBM Corporation (1980); available through IBM
branch offices.

. Health Care Support/DL/I Patient Care System Program Description/Opera-
tions Manual, SH20-1955-0 (Unlicensed Material) — Program No. 5796
ANY, IBM Corporation (1977); available through IBM branch offices.

. Health Care Support/DL/I Patient Care System Terminal Operators Guide,
SH20-1956-0 (Unlicensed Material) — Program No. 5796ANY, IBM Corpo-
ration (1977); available through IBM branch offices.

IBM SYST J ¢ VOL 19 ¢ NO 4 o 1980 MISHELEVICH AND VAN SLYKE

. Health Care Support/DL/I Patient Care System Systems Guide , 1.Y20-2306-0
(Licensed Material) — Program No. 5796-ANY, Feature 8922, IBM Corpora-
tion (1977); available through IBM branch offices.

. Health Care Support/DL/I Patient Care System Design and Coding Guide,
LY20-2307-0 (Licensed Material) — Program No. 5796-ANY, Feature 8923,
IBM Corporation (1977); available through IBM branch offices.

. D. J. Mishelevich and D. Van Slyke, ‘‘An overview of the software archi-
tecture of the IBM Health Care Support/Patient Care System,”” Proceedings
of the 1980 Conference on Application Development Systems (Special Issue
of the ACM Special Interest Group on Business Data Processing Database)
11, 64-75 (1980).

. Development Management System/Customer Information Control System/
Virtual Storage: General Information Manual, SH20-2195-2, IBM Corpora-
tion (1979); available through IBM branch offices.

. IMS Application Development Facility: General Information Manual, GB21-
9869-1, IBM Corporation (1978); available through IBM branch offices.

. IMS Application Development Facility: Program Description/Operations
Manual, SH20-1031-3, IBM Corporation (1978); available through IBM
branch offices.

. A. Hassitt and L. E. Lyon, ‘““An APL emulator on System/370,”” IBM Sys-
tems Journal 15, No. 4, 358-378 (1976).

. TSO-3270 Display Support and Structured Program Facility (SPF/TSO) Ver-
sion 2.2 Program Reference Manual, SH20-1975-1, IBM Corporation (1978);
available through IBM branch offices.

. TS0-3270 Display Support and Structured Program Facility (SPF/TSO) Ver-
sion 2.2 Program Logic Manual, 1.Y20-2339-1, IBM Corporation (1978);
available through IBM branch offices.

. S. N. Zilles and P. G. Habalker, ‘‘Graphical representation and analysis of
information systems design,”” ACM SIGBDP Database 11, 93-98 (1980).

. Patient Care System —Data Manager Availability Notice , G320-6343-0 (Unli-
censed Material) — Program No. 5796-AYQ, IBM Corporation (1980); avail-
able through IBM branch offices.

. Patient Care System —Data Manager Program Description/Operations Man-
ual, SH20-6142-0 (Unlicensed Material) — Program No. 5796-AYQ, IBM
Corporation (1980); available through IBM branch offices.

. Patient Care System —Edit Availability Notice , G320-6344-0 (Unlicensed Ma-
terial) — Program No. 5796-AYR, IBM Corporation (1980); available through
IBM branch offices.

. Patient Care System —Edit Program Description/Operations Manual, SH20-
6143-0 (Unlicensed Material) — Program No. 5796-AYR, IBM Corporation
(1980); available through IBM branch offices.

. Patient Care System—Radiology Availability Notice, G320-6092-0 (Unli-
censed Material) — Program No. 5796-AWJ, IBM Corporation (1979); avail-
able through IBM branch offices.

. Patient Care System —Radiology Program Description/Operations Manual,
SH20-2159-0 (Unlicensed Material) — Program No. 5796-AWJ, IBM Corpo-
ration (1979); available through IBM branch offices.

. Patient Care System—Radiology Terminal Operators Guide , SH20-2160-0 (Un-
licensed Material) — Program No. 5796-AWJ, IBM Corporation (1979); avail-
able through 1BM branch offices.

D. J. Mishelevich is located at the Department of Medical Com-
puter Science, University of Texas Health Science Center at Dal-
las, 5323 Harry Hines Boulevard, Dallas, TX 75235; D. Van Slyke
is with the IBM Data Processing Division, Stemmons Empire
Building, 8435 North Stemmons Freeway, Dallas, TX 75247.

Reprint Order No. G321-5134.

MISHELEVICH AND VAN SLYKE IBM SYST J @ VOL 19 ® NO 4 » 1980

