The management of software engineering
Part V: Software engineering management
practices

by R. E. Quinnan

The 1BM Federal Systems Division software engineering program
was organized to support the design and development of software
products. This program includes design practices that deal with
the systematic decomposition of software designs into hierar-
chically related programs. This procedure results in products with
structural integrity that are easy to use, maintain, and adapt. De-
velopment practices in the software engineering program deal
with software implementation and integration engineering. The
discipline of management practices closes and strengthens the tri-
angle model of software engineering.

This part of our paper focuses on these management practices
and discusses the plans and controls they provide to monitor
progress and performance during the software life cycle. The
software engineering management practices reflect the experi-
ences of successful management teams and are familiar to most
software managers. However, the effectiveness of these practices
is significantly improved when the associated design and develop-
ment practices are implemented. Uniformity and consistency re-
sulting from good design and orderly development underlie the
predictability and responsiveness of the management practices.

Software engineering management model

Our software engineering management model is composed of
three sets of practices: (1) technical review; (2) cost management;
and (3) software program management. The technical reviews are
conducted during the development of a software product at speci-
fied checkpoints and for well-defined purposes. Cost management
prescribes a method of planning, estimating, measuring, and con-
trolling a developing software product to meet a cost objective.
The software program management practice establishes a project
environment and management relationships that foster complete,
precise, and efficient communications within and between
groups. The model is based on the software life-cycle activities
described by O’Neill in Part II of this paper.

Copyright 1980 by International Business Machines Corporation. Copying is per-
mitted without payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright notice are in-
cluded on the first page. The title and abstract may be used without further per-
mission in computer-based and other information-service systems. Permission to
republish other excerpts should be obtained from the Editor.

QUINNAN IBM SYST J & VOL 19 @« NO 4 » 1980

Table 1 Software life cycle

Activity Work components QOutputs

System Software requirements definition Software system requirements
definition specifications
Software system description Software system description
document
Software development planning Software development plan
Engineering change analysis Engineering change proposals

Software Functional design Functional design specifications
design Program design Program design specifications
Test design Test design specification
Software tools Utilities, debugging aids
Design evaluation

Software Module development Development (module) libraries
develop- Development testing Development test procedures/
ment reports

Problem analysis and correction Program modifications

Software Software system test procedures Software system test
system test procedures
Software integration and test Software system integration
library, test reports

System/ System test support System library, test reports
acceptance Acceptance test support Delivered software system/
test acceptance library

Operational ~ System operation support Level of effort assistance,
support maintenance
Training Level of effort training manuals,
courses
Site deployment support Level of effort assistance

General Project management Level of effort
support Configuration management/ Procedures, standards, library
control control
Software cost engineering Cost management practice
support
Quality assurance Audits, quality assurance plans
Administration centers/technical Level of effort
publications

Each of these activities is in turn composed of the set of work
components shown in Table 1, which identify the work per-
formed, the expected end products, and criteria for completion.
In a typical project, these activities and components overlap;
baseline releases are defined to indicate when a component out-
put has satisfied its completion criteria.

FSD projects can cover complete software product life cycles
from concept formulation through end-of-life. Quite often, how-
ever, our responsibility spans system definition through accept-
ance test with a limited responsibility for operational support.
The customer does his own requirements definition and runs his
own operations in these cases. There are also some projects, usu-
ally large ones, in which several software subcontractors share

IBM SYST J e VOL 19 ¢ NO 4 » 1980 QUINNAN

technical
reviews

Table 2 Technical reviews within the software life cycle

Software Related work components Technical reviews
life-cycle
activities

System Software requirements definition System requirements
definition Software system description Software system specification
Test plan

Software development planning Documentation outline

Software Functional design Software system design
design Integration plan

Program design Module design

Test design Test plan
Test specification

Software tools
Design evaluation

Software Module development Module implementation
development Unit test procedure

Development testing Module qualification
Test procedure

Software Software system test procedures Test procedures
system System integration and test Software system qualification
test

System and System test support Software system acceptance
acceptance Acceptance test support Documentation completion
test

Operational System operation support
support Training
Site deployment support

the workload. Our role in such situations can span any or all of
the life-cycle activities. Thus the life-cycle model provides a stan-
dard for determining the scope of software engineering in a partic-
ular project and serves as an improved communications method.
The latter is especially important on larger projects where there is
significant interaction between software engineering and other
functional groups, such as program management and systems en-
gineering.

It is well known that early detection of problems and errors is the
most cost-effective method of quality control.* Since the person
who generates a problem or an error can easily overlook it, we
rely on technical reviews for thoroughness. This procedure brings
the talent of a wider group of people to bear on each work prod-
uct, quickly and efficiently.

Technical reviews develop a strategy within the software life
cycle that permits the assessment and control of software activ-

QUINNAN IBM SYST J & VOL 19 & NO 4 & 1980

ity. The strategy is associated with the life cycle just mentioned
so that the technical results of each activity can be evaluated.
Table 2 illustrates the correspondence of the technical reviews
with the software life-cycle activities and the resulting work com-
ponents. The number of actual reviews may vary, depending on
individual project characteristics. Some reviews reoccur each
time an event occurs, such as completion of a document outline.
Multiple reviews can be conducted at one time; documentation,
test, and integration reviews are normally conducted in con-
junction with other reviews. In some cases, it may be convenient
to run a review of nontechnical issues, such as contract com-
pliance, budget tracking, and resource plans, immediately before
or after a technical review. By such scheduling, technical prob-
lems may be completely resolved then and there by lining up all
the resources and administrative approvals that might be needed.

Each review in Table 2 has a stated purpose outlined as follows:

e System requirements. Determine that software requirements
for system capability are completely and correctly stated to
permit development and use by the planned system user.
Software system specification. Determine that software sys-
tem specifications are complete and correct; ensure that each
requirement for system capability can be traced through to the
delivered software product.

Test plan. Determine that the implementation of the software
system is tested against the software system specification and
that all requirements are checked out.

Documentation outline. Determine that the outline for any
planned document satisfies its objectives.

Software system design. Determine that module designs com-
ply with the software system specification and collectively im-
plement the software system specification.

Integration plan. Verify that there is a systematic approach to
the implementation and testing of the software system.
Module design. Determine that program and data designs
comply with their module designs and implement their in-
tended function.

Test specification. Verify that test methods and materials
comply with an approved test plan; evaluate functional and
performance details of the tests versus the test objectives.
Module. Verify that programs and modules are correctly im-
plemented in accordance with their design and that unit test
procedures have been established.

Test procedure. Verify that test methods and materials com-
ply with an approved test specification; evaluate the test oper-
ational scenario and machine execution control details.
Module qualification. Determine that the module complies
with the software specification; certify the module so that the
code can be promoted from the project development library to
the integration library.

IBM SYST J ® VOL 19 ¢ NO 4 o 1980 QUINNAN

cost
management

o Software system qualification. Determine that the imple-
mented software system complies with the software system
specification; certify the system so that the code can be pro-
moted from the integration library to the release library.

e Software system acceptance. Verify that the software system
complies with all project deliverable objectives; certify the
system so that the code for the software can be released to the
customer (or the integration activity in a hardware/software
system project).

® Documentation completion. Verify that the completed docu-
mentation satisfies its objectives and complies with its ap-
proved outline.

All these reviews are tools for project managers to use in assess-
ing how well objectives are being met. To a large degree, the re-
views deal with documents—specifications, test plans, test re-
ports, procedure descriptions, and, ultimately, code. Reviewers
can read the documents to assess the content and quality; they
can talk to the developers to assess the intent of the implementa-
tion and to clarify unclear statements. Intuition and judgment are
required, besides technical knowledge. Reviewers must spot
weaknesses in the work products, propose fixes, and establish
criteria for subsequent reviews to verify that the fixes are suc-
cessful. The final acceptance reviews certify that we are con-
fident that the software product is ready for the customer and can
pass his acceptance test.

Software systems are built to provide specific capabilities for the
user. Inevitably, the capabilities delivered depend on how much
the user can afford to spend. In government contracts, as in busi-
ness information systems, value/cost tradeoffs reflected in project
budgets place constraints on software development plans. Qur
goal is to give our managers planning and control procedures that
permit them to manage technical progress and cost at the same
time.

The cost management process, illustrated in Figure 1, starts when
the software design is sufficiently detailed to support cost esti-
mates and identify areas of risk. The planning and estimation
steps are depicted in Figure 2. By spelling out all these steps in
the cost management practice, we tend to avoid oversights.
Looking back to 1964, when many large projects were severely
underestimated, we now see that simple oversights can be identi-
fied as major sources of error.*’ Estimating methodology at that
time focused only on actual programming activity; technical sup-
port, administration, and management were routinely omitted.
Since the omissions were large—typically 150 percent of the di-
rect programming—cost target misses were large. The solution
for many years was to adjust the basic programming estimate by a
factor that compensated for omissions. Meanwhile, an effort was

QUINNAN IBM SYST J » VOL 19 ¢ NO 4 » 1980

Figure 1 Cost management process

REQUIREMENTS OTHER PROJECTS

S ——T
PRELIMINARY SYSTEM

DEFINITION AND HISTORICAL DATA
SOFTWARE DESIGN

COST PLANNING

AND
ESTIMATION

COST PROPOSAL

CONTRACT

_//

cost ©
PERFORMANCE

PLANNING PROJECT DATA

CosT
PERFORMANCE
MONITORING

ACTUAL
PERFORMANCE
CONSISTENT
WITH PLAN

COST PLANNING

AND
ESTIMATION

made to collect enough historical project data to replace the rule-
of-thumb adjustment with more reliable methods. Now, we can
tell our managers how to estimate each stage of the life cycle and
how to deal explicitly with overhead support activities.”® Our cost
management practice, moreover, reminds managers to carry out
each step without omissions. As a result, our proposals to cus-
tomers contain a cost plan that can be tracked throughout the life
cycle.

IBM SYST J & VOL 19 ¢ NO 4 » 1980 QUINNAN

Figure 2 Planning and estimating

REQUEST
FOR
PROPOSAL

—1

ASSESS
PRODUCT
REQUIREMENTS

PRELIMINARY
SOFTWARE

SYSTEM
REQUIREMENTS
AND
DESCRIPTION

e —

ASSESS PRELIMINARY
PRODUCT FUNCTIONAL
DESIGN DESIGN

; —

PRODUCT
SIZING

1 ! ! ! i

DEVELOP- WORK FLOW WORK PRODUCT cosT/
(DEPENDEN- BREAKDOWN MANPOWER FUNCTION

MENT COST PLAN
SCHEDULES CIES) STRUCTURE ESTIMATE TRADEOFFS

! 1 ! ! 1 }

SOFTWARE
DEVELOPMENT
PLAN

RISK
ASSESSMENT

FORMAL
PRICE

The cost plan contained in the proposal is refined further after
contract award. At this time, detailed budgets are prepared and
checkpoints are established. Procedures are also set up to collect
performance measurements to permit an assessment of progress
versus plan at checkpoints. The challenge in this process is that of
obtaining a direct link between costs and technical progress. The
fact that the expected amount of money has been spent by a given
date does not necessarily indicate that the project is on schedule.
Here again, our emphasis on tying the cost plan to the activities of
the life cycle helps us. Expenditures are not merely projected on
a month-by-month basis; they are related to specific work com-
ponents and completion dates. Thus, reviews assess cost status,
technical status, and expected cost status for the given technical
status. A variance between actual results and expected results
indicates potential problems or areas for improvement.

QUINNAN IBM SYST J ¢ VOL 19 « NO 4 * 1980

Figure 3 Design-to-cost

COST TARGET

CAPABILITY
DESCRIPTION

DESIGN PROCESS

RESOLVE BY

REDESIGN OF

DESIGN FUNCTIONALLY A
EQUIVALENT '

SOLUTION?

CHANGE
CAPABIL-
ITY?

NO

BASELINE
DESIGN MODIFY MODIFY

CAPABILITY COST
s\/r—' DESCRIPTION TARGET

ESTIMATE
CcosT

YES @
ESTle
GREATER THAN

COST PLAN?

DEVELOP AND
TEST NEXT
INCREMENT

DELIVERABLE
SYSTEM

CALCULATE
ESTIMATE

TO
COMPLETE

Modifications or growth in the estimated scope of work, devia-
tions in expected productivity, or erroneous initial assumptions
may require another cost planning and estimation cycle. For each
iteration, the planning data are retained in the project data file for
subsequent cost performance monitoring. The life-cycle model
provides a checklist for assessing all the implications of changes,
and the project data file provides actual performance data for cost
planning and estimation.

Cost management, as described, yields valid cost plans linked to
technical performance. Our practice carries cost management far-
ther by introducing design-to-cost guidance. Design, develop-
ment, and management practices are applied in an integrated way
to ensure that software technical management is consistent with
cost management. The method, illustrated in Figure 3, consists of
developing a design, estimating its cost, and ensuring that the de-
sign is cost-effective. To do this, design-to-cost goals are estab-

IBM SYST J ¢ VOL 19 @ NO 4 o 1980 QUINNAN

design-
to-cost

software
program
management

lished, based on an understanding of the capabilities of the soft-
ware and the related design solution. Plans to achieve these goals
are developed by allocating costs to particular work components
of the software system life cycle.

Design is an iterative process in which each design level is a re-
finement of the previous level. At each stage, design and cost
alternatives are examined. Those that best satisfy the project ob-
jectives are prepared for review and selection by the project spon-
sor. If no alternative fits the cost target, several courses of action
are available. The most common one is to go back to the design-
ers and ask for a less costly, and perhaps less attractive, design. If
the target has been missed by a large amount—and cost is criti-
cal —redesign may not produce an answer. In this case, the spon-
sor has to consider giving up some of the planned capability of the
system. Otherwise, he has to recognize that the capability cannot
be acquired without increasing the cost target. The design pro-
cess is followed until the program design for a specific software
increment has been completed. From that point, development of
each increment can proceed concurrently with the program de-
sign of the others.

When the development and test of an increment are complete, an
estimate to complete the remaining increments is computed. The
algorithms used in this computation should reflect the various ac-
tual productivity rates experienced in developing and testing pre-
vious increments. An alternative plan is prepared and reviewed,
as previously described, whenever a cost projection is inconsis-
tent with its cost plan. This may also require changes to a baseline
design.

Thus software cost management practices provide a uniform
methodology for planning, estimating, measurement, and control.
The life-cycle definition provides a structure for the identification
of cost-estimating parameters and a standard set of references for
the entire development process from proposal through contract
performance. The design-to-cost practice describes the manage-
ment control procedures that balance cost, schedule, and func-
tional capability.

Practices described thus far are directed at all project participants
and department managers. They deal with specific details of de-
sign and implementation. They also cover technical and cost-con-
trol procedures. One more set of practices is needed to hold the
software engineering program together. This final set is directed
at the program manager and identifies the project-level plans,
controls, and technical management considerations that are nec-
essary for effective software development in a functional organi-
zation. Since, in a functional organization, project resources are
drawn from several discipline-oriented departments, the program

QUINNAN IBM SYST J @ VOL 19 @ NO 4 e 1980

manager does not have direct line authority over all the partici-
pants. Program management is much like managing subcon-
tractors in a building construction project. Each subcontractor is
highly qualified in a fairly narrow area and is most effective when
carrying out a task in that area. The program manager, then, must
define tasks clearly, assign them to appropriate departments, de-
fine working relationships and technical interfaces between de-
partments, and establish reports and controls to see that the func-
tional groups are carrying out their assignments.

Program management responsibilities include developing and
maintaining an organization plan that identifies departments in-
volved, their reporting relationships, and individual department
charters. A project work responsibility matrix lists each work
task, the responsible manager, and the prime and support roles of
the functional groups. The work responsibility matrix should in-
clude a dependency network that indicates the predecessor and
successor relationships for each task. All cost accounting, status
reporting, management accountability, and technical perform-
ance are structured around the listed tasks.

From a control viewpoint, program management responsibility
includes ensuring system requirement traceability through design
and test, providing an architecture control methodology, and
managing computer resource loading reserves. These reserves
are determined at design time to accommodate design and imple-
mentation uncertainties.

Each functional group—hardware engineering, software engi-
neering, product assurance, etc.—must respond to the program

manager with a plan of action and a commitment to carry out that
plan to fulfill the assigned responsibility.

The software function produces a Software Development Plan
(SDP) that describes each assigned task from the work responsibil-
ity matrix. The description should cover product schedule, inter-
mediate milestones and schedules, and external dependencies
with required scheduled dates. The program manager is respon-
sible for monitoring and controlling the external dependencies
specified by the software function. The SDP is updated monthly
and incorporates accomplishments, problems, and plans for the
subsequent month. It is used as a control document within the
software function and as a coordination document in the program
manager’s office.

Concluding remarks

The software management practices describe the plans and con-
trols for the software engineering environment. These plans and

IBM SYST J & VOL 19 ¢ NO 4 e 1980 QUINNAN

controls reflect the business responsibility of the software func-
tion to increase the visibility and understanding of its developing
product. Cost management emphasizes cost estimation planning
and control. Program management emphasizes effective commu-
nication between the software function and the other functions on
the project. The technical reviews and design-to-cost practices
integrate the application of the design and development practices
with the management of the software process. Collectively, these
components of software engineering define a structured and pre-
dictable approach to managing software projects.

Application of these practices in the Federal Systems Division
has improved our ability to predict program behavior. Capability,
cost, and schedule still vary from initial program estimates; how-
ever, the variances are typically less than experienced in the past.
Early identification of deviations from plan has led to timely cor-
rective action. The net result is that the integrated software engi-
neering practices of FSD permit us to deliver high-quality, cost-
effective software products with low business risk.

CITED REFERENCES

1. H. D. Mills, **Software development,”” IEEFE Transactions on Software Engi-
neering SE-2, No. 4, 265-273 (December 1976).

2. O. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, Structured Programming,
Academic Press, Inc., New York (1972).

3. C. A. R. Hoare, ** An axiomatic basis for computer programming,”’ Communi-
cations of the ACM 12, No. 10, 576-583 (October 1969).

. R. C. Linger, H. D. Mills, and B. L. Witt, Structured Programming: Theory
and Practice, Addison-Wesley Publishing Co., Inc., Reading, MA (1979).

. N. Wirth, Systematic Programming: An Introduction, Prentice-Hall, Inc.,
Englewood Cliffs, NJ (1976).

. N. Wirth, Algorithms + Data Structures = Programs, Prentice-Hall, Inc.,
Englewood Cliffs, NJ (1973).

. A. B. Ferrentino and H. D. Mills, ‘*State machines and their semantics in
software engineering,”” Proceedings of IEEE Comsac ’77, IEEE Catalog No.
77Ch1291-4C, 242-251, IEEE Service Center, 445 Hoes Lane, Piscataway,
NJ 08854 (1977).

. H. D. Mills, On the development of systems of people and machines,
Springer-Verlag, New York (1975).

. D. L. Parnas, ‘‘The use of precise specifications in the development of soft-
ware,”’ Proceedings of IFIP Congress 77, Toronto, August 8-12, 1977, B.
Gilchrest, Editor, North-Holland Publishing Co., New York (1977), pp. 861~
867.

. P. Brinch Hansen, The Architecture of Concurrent Programs, Prentice-Hall,
Inc., Englewood Cliffs, NJ (1977).

. C. A. R. Hoare, ‘“Monitors: An operating system structure concept,”” Com-
munications of the ACM 17, No. 10, 549-557 (October 1974); '*Corrigen-
dum,”” Communications of the ACM 18, No. 2, 95 (February 1975).

. N. Wirth, “‘“Toward a discipline of real-time programming,’”’ Communications
of the ACM 20, No. 8, 577-583 (August 1977).

. H. D. Mills, *Software engineering,”” Science 195, No. 4283, 1149-1205
(March 18, 1977).

. G. M. Weinberg, The Psychology of Computer Programming, Van Nostrand
Reinhold Co., New York (1971).

. F. T. Baker, ‘*Chief programmer team management of production program-
ming,”” IBM Systems Journal 11, No. 1, 56-73 (1972).

QUINNAN IBM SYST J e VOL 19 ¢ NO 4 o 1980

. M. A. Jackson, Principles of Program Design, Academic Press, Inc., New
York (1975).

. B. W. Boehrn, ‘‘Software and its impact: A quantitative assessment,”’ Data-
mation 14, No. 5, 48-59 (May 1973).

. R. W. Wolverton, ‘‘The cost of developing large-scale software,”” IEEE
Transactions on Computers C-23, No. 6, 615-636 (1974).

. T. C. Jones, "‘Measuring programming quality and productivity,”” IBM Sys-
tems Journal 17, No. 1, 39-63 (1978).

. C. E. Walston and C. P. Felix, ** A method of programming measurement and
estimation,”’ IBM Systems Journal 16, No. 1, 54-73 (1977).

. R. Yeh, Editor, Current Trends in Programming Methodology, Vol. 1, Pren-
tice-Hall, Inc., Englewood Cliffs, NJ (1977).

. G. J. Myers, Composite/Structured Design, Van Nostrand Reinhold Co.,
New York (1978).

. R. C. McHenry and C. E. Walston, ‘*Software life-cycle management: Weap-
ons process developer,”” IEEE Transactions on Software Engineering SE-4,
No. 4, 334-344 (July 1978).

. F. P. Brooks, The Mythical Man-Month: Essays on Software Engineering,
Addison-Wesley Publishing Co., Inc., Reading, MA (1975).

. C. L. McGowan and R. C. McHenry, ‘‘Software management,”” Research
Directions in Software Technology, P. Wegner and W. Wolf, Editors; to be
published.

. E. A. Goldberg; '*Applying corporate software development policies,”” Soft-
ware Development: Management, the Seventy-First Infotech State of the Art
Conference, London, May 12-14, 1980, Infotech, Ltd., Maidenhead, England
(1980).

. E. W. Dykstra, '*Co-operating sequential processes,”” Programming Lan-
guages, Academic Press, Inc., London (1968), pp. 43-112.

. M. V. Wilkes, "*The outer and inner syntax of a programming language,’’ The
Computer Journal 11, 260-263 (May-November 1968).

. B. H. Liskov and S. N. Zilles, **An introduction to formal specifications of
data abstractions,”’ Current Trends in Programming Methodology, Vol. 1, R.
Yeh, Editor, Prentice-Hall, Inc., Englewood Cliffs, NJ (1977), pp. 1-32.

. M. E. Fagan, "'Design and code inspections to reduce errors in program de-
velopment,”” IBM Systems Journal 15, No. 3, 182-211 (1976).

. J. D. Aron, ‘‘Estimating resources for large programming systems,’’ Software
Engineering, Concepts and Techniques, P. Naur, B. Randell, and J. N. Bux-
ton, Editors, Petrocelli/Charter, New York (1976).

. M. R. Seldon, Life Cycle Costing: A Better Method of Government Pro-
curement, Westview Press, Inc., Boulder, CO (1979).

The author is located at the IBM Federal Systems Division, 18100
Frederick Pike, Gaithersburg, MD 20760.

Reprint Order No. G321-5133.

IBM SYST J @ VOL 19 « NO 4 o 1980 QUINNAN 477

