
practices 
Y 

by R. E. Quinnan 

The IBM Federal  Systems Division software engineering program 
was organized to  support  the design and  development of software 
products.  This program includes design practices  that deal with 
the systematic  decomposition of software designs into  hierar- 
chically related programs. This procedure results in products with 
structural integrity that  are  easy  to use, maintain, and  adapt. De- 
velopment practices in the software engineering program deal 
with software  implementation  and integration engineering. The 
discipline of management practices  closes  and  strengthens  the  tri- 
angle model of software engineering. 

This  part of our  paper  focuses  on  these management practices 
and  discusses  the plans and  controls  they  provide to monitor 
progress  and performance during the  software life cycle.  The 
software engineering management practices reflect the  experi- 
ences of successful management teams  and are familiar to  most 
software managers. However,  the effectiveness of these  practices 
is significantly improved when the  associated design and  develop- 
ment practices  are  implemented. Uniformity and  consistency  re- 
sulting from good design and  orderly  development underlie the 
predictability and  responsiveness of the management practices. 

Software  engineering  management  model 

Our  software engineering management model is composed of 
three  sets of practices: (1) technical  review; (2) cost  management; 
and (3) software program management. The  technical reviews are 
conducted during the  development of a software  product at speci- 
fied checkpoints  and  for well-defined purposes.  Cost management 
prescribes a method of planning, estimating, measuring, and  con- 
trolling a developing software  product  to meet a cost  objective. 
The  software program management practice  establishes a project 
environment  and  management relationships that  foster  complete, 
precise,  and efficient communications within and  between 
groups.  The model is based  on  the  software life-cycle activities 
described by O’Neill in Part I1 of this  paper. 

Copyright 1980 by  International Business Machines Corporation. Copying is per- 
mitted without payment of royalty provided that (1) each reproduction is done 
without alteration and (2) the Journal reference and  IBM copyright notice are  in- 
cluded on the first page. The title and abstract  may be used without  further per- 
mission in computer-based and other information-service systems. Permission to 
republish other excerpts should be obtained from the Editor. 

466 QUINNAN IBM SYST J VOL 19 NO 4 1980 





Table 2 Technical  reviews  within  the  software  life  cycle 

Software  Related work components 
life-cycle 
activities 

Technical  reviews 

System 
definition 

Software requirements definition 
Software system description 

System requirements 
Software system specification 
Test plan 

Documentation outline 

Software 
design 

Software development planning 

Functional design 

Program  design 

Test design 

Software system design 
Integration plan 

Module  design 

Test plan 
Test specification 

Software 
development 

Software tools 

Design evaluation 

Module development 

Development testing 

Software 
system 
test 

System and 
acceptance 
test 

Operational 
support 

Software system test procedures 
System integration and test 

System test support 
Acceptance test support 

Module implementation 
Unit test procedure 

Module qualification 
Test procedure 

Test procedures 
Software system qualification 

Software system acceptance 
Documentation completion 

System operation support 
Training 
Site deployment support 

the workload. Our role in such  situations  can  span any or all  of 
the life-cycle activities.  Thus the life-cycle model provides a stan- 
dard  for determining the  scope of software engineering in a  partic- 
ular project  and  serves as an improved communications  method. 
The  latter is especially important on larger projects  where  there is 
significant interaction  between software engineering and other 
functional  groups,  such as program management and  systems  en- 
gineering. 

technical It is well known that early detection of problems and errors is the 
reviews most cost-effective method of quality Since  the  person 

who generates a problem or an  error can easily overlook  it, we 
rely on technical reviews  for  thoroughness.  This  procedure brings 
the  talent of a wider group of people to  bear on each work prod- 
uct, quickly and efficiently. 

Technical  reviews  develop  a  strategy within the  software life 
cycle  that  permits  the  assessment and control of software  activ- 

I 468 QUINNAN IBM SYST J VOL 19 NO 4 1980 







v SOFTWARE DESIGN 

L 

P COSTPROPOSAL 

0 CONTRACT 

PERFORMANCE 
PLANNING PROJECT DATA 

PERFORMANCE 
MONITORING 

r" 
COST PLANNING 

ESTIMATION 





Figure 3 Design-to-cost 

+" COSTTARGET 

I""-""- 1 
DESIGN PROCESS 

L 

I 
I 
I 
I DESIGN 

BASELINE 
DESIGN 

ESTIMATE 

CAPABILITY 
DESCRIPTION  TARGET 

'ES 

, 17- I 
SYSTEM 

CALCULATE 

I 
I 
I 
I 
I 

""""""A 

Modifications or growth in the  estimated  scope of work,  devia- 
tions in expected  productivity, or erroneous initial assumptions 
may require  another cost planning and  estimation  cycle.  For  each 
iteration,  the planning data  are retained in the  project  data file for 
subsequent  cost  performance monitoring. The life-cycle model 
provides a checklist for  assessing all the implications of changes, 
and  the  project  data file provides  actual  performance  data  for cost 
planning and  estimation. 

Cost  management, as  described, yields valid cost plans linked to 
technical performance.  Our  practice  carries  cost management far- 
ther by introducing design-to-cost  guidance. Design, develop- 
ment,  and management practices are applied in an integrated way 
to  ensure  that software  technical management is consistent with 
cost management. The method, illustrated in Figure 3,  consists of 
developing a  design,  estimating its cost,  and  ensuring  that  the  de- 
sign is cost-effective. To do  this,  design-to-cost goals are  estab- 

IBM SYST J VOL 19 NO 4 1980 QUINNAN 

design- 
totost 

473 



lished,  based  on  an  understanding of the capabilities of the soft- 
ware  and the related design solution. Plans to achieve  these goals 
are  developed by allocating costs to particular work components 
of the  software  system life cycle. 

Design is an  iterative  process in which each design level is a re- 
finement of the  previous level. At each  stage, design and cost 
alternatives  are  examined.  Those  that  best satisfy the project ob- 
jectives  are  prepared  for  review  and  selection by the project spon- 
sor. If no  alternative fits the  cost  target,  several  courses of action 
are available.  The  most  common  one is to go back to  the design- 
ers and  ask  for a less  costly,  and  perhaps  less  attractive, design. If 
the  target  has  been missed by a large amount-and cost is criti- 
cal-redesign may not  produce  an  answer. In this case,  the spon- 
sor  has to consider giving up some of the  planned capability of the 
system.  Otherwise, he has to recognize that  the capability cannot 
be acquired without increasing  the  cost  target.  The design pro- 
cess is followed until the program design for  a specific software 
increment  has been completed.  From  that  point,  development of 
each  increment  can  proceed  concurrently with the program de- 
sign of the  others. 

When the development  and  test of an  increment  are  complete,  an 
estimate to complete  the remaining increments is computed.  The 
algorithms used in this  computation should reflect the  various  ac- 
tual  productivity  rates  experienced in developing and testing pre- 
vious increments. An alternative plan  is prepared  and  reviewed, 
as previously described,  whenever a cost  projection is inconsis- 
tent with its cost  plan.  This may also require  changes  to  a baseline 
design. 

Thus  software  cost management practices  provide a uniform 
methodology for planning, estimating,  measurement,  and  control. 
The life-cycle definition provides  a  structure  for the identification 
of cost-estimating  parameters  and  a  standard  set of references  for 
the  entire  development  process from proposal through contract 
performance.  The  design-to-cost  practice  describes  the manage- 
ment control  procedures  that balance cost, schedule, and func- 
tional capability. 

software Practices  described  thus  far are directed  at all project  participants 
program and  department  managers.  They deal with specific details of de- 

management sign and implementation. They also cover  technical and cost-con- 
trol  procedures. One more set of practices is needed to hold the 
software engineering program together.  This final set is directed 
at  the program manager and identifies the project-level plans, 
controls,  and  technical management considerations  that  are  nec- 
essary  for effective software  development in a functional organi- 
zation.  Since, in a  functional  organization,  project  resources are 
drawn from several discipline-oriented departments,  the program 

474 QUINNAN IBM SYST J VOL 19 NO 4 1980 



manager does not have  direct line authority  over all the partici- 
pants. Program management is much like managing subcon- 
tractors in a building construction  project.  Each  subcontractor is 
highly qualified in a fairly narrow  area  and is most effective when 
carrying  out  a  task in that  area.  The program manager,  then,  must 
define tasks  clearly,  assign  them to appropriate  departments,  de- 
fine working relationships  and  technical  interfaces  between  de- 
partments,  and  establish  reports  and  controls  to  see  that  the  func- 
tional groups are carrying out their  assignments. 

Program management responsibilities include developing  and 
maintaining an  organization plan that identifies departments  in- 
volved,  their  reporting  relationships,  and individual department 
charters. A project work responsibility matrix lists each  work 
task,  the  responsible  manager,  and  the prime and  support roles of 
the  functional  groups.  The work responsibility matrix should in- 
clude  a  dependency  network  that indicates the  predecessor  and 
successor  relationships  for  each  task. All cost  accounting,  status 
reporting, management accountability,  and technical perform- 
ance  are  structured  around  the listed tasks. 

From a control  viewpoint, program management responsibility 
includes ensuring  system  requirement  traceability through design 
and test, providing an  architecture  control methodology, and 
managing computer  resource loading reserves.  These  reserves 
are determined at design time to  accommodate design and imple- 
mentation uncertainties. 

Each  functional  group-hardware engineering, software engi- 
neering, product  assurance, etc.-must respond to the program 
manager with a plan of action  and  a commitment to  carry  out  that 
plan to fulfill the  assigned responsibility. 

The  software  function  produces a Software Development Plan 
(SDP) that  describes  each assigned task from the  work responsibil- 
ity matrix.  The  description should cover  product  schedule,  inter- 
mediate milestones and  schedules,  and  external  dependencies 
with required  scheduled  dates.  The program manager is respon- 
sible for monitoring and controlling the  external  dependencies 
specified by the  software  function.  The SDP is updated monthly 
and  incorporates  accomplishments,  problems,  and plans for the 
subsequent month. It is used as a control  document within the 
software  function  and as a coordination  document in the program 
manager’s office. 

Concluding remarks 

The  software management practices  describe  the plans and  con- 



tion to increase  the visibility and  understanding of its developing 
product.  Cost  management  emphasizes cost estimation planning 
and  control. Program management emphasizes effective commu- 
nication between  the  software  function  and the other  functions  on 
the  project.  The  technical  reviews  and  design-to-cost  practices 
integrate  the  application of the design and  development  practices 
with the management of the software  process. Collectively, these 
components of software engineering define a structured  and  pre- 
dictable  approach to managing software  projects. 

Application of these  practices in the  Federal  Systems Division 
has improved  our ability to predict program behavior.  Capability, 
cost, and  schedule still vary from initial program estimates; how- 
ever,  the variances are typically less than  experienced in the  past. 
Early identification of deviations from plan has led to timely cor- 
rective  action.  The  net  result is that  the  integrated  software engi- 
neering practices of FSD permit  us  to deliver high-quality, cost- 
effective software  products with low business risk. 

CITED  REFERENCES 
1. H. D. Mills, “Software  development,” IEEE Transactions o n  Software  Engi- 

neering  SE-2, No. 4, 265-273 (December 1976). 
2. 0. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, Structured  Programming, 

Academic Press,  Inc., New  York (1972). 
3. C. A. R. Hoare,  “An axiomatic  basis for  computer programming,” Communi- 

cations of the  ACM  12, No. 10, 576-583 (October 1969). 
4. R. C. Linger, H. D. Mills, and B. L. Witt, Structured  Programming:  Theory 

and  Practice, Addison-  Wesley Publishing Co.,  Inc., Reading, MA (1979). 
5. N. Wirth, Systematic  Programming:  An  Introduction, Prentice-Hall, Inc., 

Englewood Cliffs, NJ (1976). 
6. N. Wirth, Algorithms + Data  Structures = Programs, Prentice-Hall, Inc., 

Englewood Cliffs, NJ (1973). 
7. A. B. Ferrentino  and H. D. Mills, “State machines and their  semantics in 

software  engineering,” Proceedings of IEEE Comsac ’77, IEEE Catalog No. 
77Ch1291-4C, 242-251, IEEE  Service  Center, 445 Hoes  Lane,  Piscataway, 
NJ 08854 (1977). 

8. H.  D. Mills, On  the  development of systems of people  and  machines, 
Springer-Verlag, New York (1975). 

9.  D.  L.  Parnas,  “The  use of precise  specifications in the development of soft- 
ware,” Proceedings of IFIP Congress 77, Toronto,  August 8-12, 1977, B. 
Gilchrest, Editor,  North-Holland Publishing Co., New York (1977), pp. 861- 
867. 

10. P. Brinch Hansen, The  Architecture of Concurrent  Programs, Prentice-Hall, 

1 

1: 

1: 

Inc., Englewood Cliffs, NJ (1977). 
1. C. A. R. Hoare,  “Monitors: An operating system  structure  concept,” Com- 

munications of the  ACM 17, No. 10, 549-557 (October 1974); “Corrigen- 
dum,” Communications of the  ACM 18, No. 2, 95 (February 1975). 

2. N. Wirth, “Toward a  discipline of real-time  programming,” Communications 
of the  ACM 20, No.  8, 577-583 (August 1977). 

3. H. D. Mills, “Software engineering,” Science  195, No. 4283, 1149-1205 
(March 18, 1977). 

14. G. M. Weinberg, The  Psychology of Computer  Programming, Van Nostrand 

15. F.  T.  Baker, “Chief programmer  team management of production  program- 
Reinhold Co., New  York (1971). 

ming,” IBM Systems Journal  11, No. 1, 56-73 (1972). 

476 QUINNAN IBM SYST J VOL 19 NO 4 1980 




