The management of software engineering
Part IV: Software development practices

by M. Dyer

The 1BM Federal Systems Division began a continuing search for
new and better software development methods in the early 1950s
when it was participating in the SAGE air defense system. Since
then, members of FSD have been developing large, complex, real-
time systems exemplified by the manned spacecraft projects Mer-
cury, Gemini, Apollo, and the Space Shuttle. In such projects,
military and civilian, software development is characterized by
challenging targets and severe constraints. Schedules are tight,
workloads are heavy, computer processing must fit within re-
strictive time slices and memory allocations; yet results are to be
error-free. Added to these stringent requirements is the need to
minimize cost but still make the system robust enough to be oper-
ated and maintained by someone other than the developer.

This experience motivated the merger of things learned on-the-
job with advances in the discipline of software engineering. The
program that evolved covers design, development, and manage-
ment with the objective of intellectual control of the software en-
gineering process.

In this paper on software development, the focus is on the blend
of modern software methods with established development prac-
tices. Reducing diversity, increasing visibility, and improving
productivity in the development process are the principal means
of intellectual control of development. Improved product quality,

product transportability, and product adaptability are longer-
range goals.

The development methodology is defined in terms of practices
that recognize the increased precision introduced by modern de-
sign methods and that attempt to introduce the rigor of modern
design into the methods of software product development. Code
management practices deal with the implementation of software
and the control of its release as a product. Integration engineering
practices address plans for building software products.

Code management

Contemporary software development methods reflect modern
programming technology. Structured programming techniques,

Copyright 1980 by International Business Machines Corporation. Copying is per-
mitted without payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright notice are in-
cluded on the first page. The title and abstract may be used without further per-
mission in computer-based and other information-service systems. Permission to
republish other excerpts should be obtained from the Editor.

IBM SYST J # VOL 19 « NO 4 o 1980




programming
language

employed with high-order programming languages, are de facto
standards. The prominence of programming support libraries,
with features to support configuration management and quality
assurance functions, and the growing acceptance of top-down de-
sign methods, program design languages, and design review tech-
niques, are further evidence of new technology acceptance.

The most effective procedures used within FSD form the basis of
code management practices that support the development of soft-
ware products. These tested methods aim toward setting a mini-
mum standard for software development in the following cate-
gories:

Programming language.

Coding standards and conventions.
Computer product support software.
Hierarchical program control library.
Software development environment.

The first three categories influence the implementation of the soft-
ware, whereas the latter two focus on the packaging of the soft-
ware into a deliverable product.

Software products should be implemented with High-Order Pro-
gramming Languages (HOLs) that simplify the translation of de-
sign specifications—as documented in a design language—into
code. It is desirable that the syntax of the programming language
include control and data structures and be consistent with the
design language syntax. In the comprehensive FSD software engi-
neering program, a Process Design Language (PDL) is recom-
mended; however, no single high-order programming language
has been specified. The reason for such latitude is that FSD cus-
tomers often require their contractor to use a language that is
both appropriate for the customer’s problem environment and fa-
miliar to the customer’s programmers. Thus, the programming
language practice identifies for Department of Defense (DOD) ap-
plications languages such as FORTRAN, COBOL, JOVIAL, etc. For
National Aeronautics and Space Administration (NASA) appli-
cations, the HAL/S language is identified. For internal IBM appli-
cations, the PL/, PL/S, and APL languages are identified. Program-
mers are advised to use one high-order language per project,
which should be selected from the set of HOLs listed in the prac-
tice.

System designs, documented with a design language, are entered
in a program support library. The selection of the HOL is influ-
enced by its consistency with the design language. To extend the
list of qualified HOLs, consistency need not be provided directly
by the HOL; it can be provided by a preprocessor in the program
support library.

IBM SYST J & VOL 19 ¢ NO 4 » 1980




Table 1 Language recommendations for classes of software products

Language recommendation Class of software product

High-order language (HOL) Program development and generation
Compiler/assembler
Link editor/loader
Utilities
Library support
Data reduction
Applications

HOL with assembly assist Program development and generation
Hardware simulation
System simulation
Diagnostics

Assembly with HOL elements Executive

Assembly Data recording/measurement
Microcode

In general, programmers are advised to restrict their use of as-
sembly language to those portions of a software product involving
critical time or space constraints (and to those products imple-
mented for processors that have only assembly language sup-
port). The recommendations of the practice as of 1980 for various
classes of software products are shown in Table 1.

Other decisions to be made prior to software implementation
dealing with project standards and conventions are the following:

e Standards for writing code.

e Standard interfaces with operating system software.

o Conventions for using a Program Support Library (PSL) sys-
tem to control the product development and obtain visibility
into the development process.

e Conventions for packaging code into controllable objects.

Standards for written code include rules for naming program and
data variables and rules regarding program commentary. Symbol
names are intended to improve the documentation of software
and ensure code readability. Commentary covers traditional pro-
logues and statement comments as well as the logical com-
mentary that evolves during the design process. Good com-
mentary makes a program intelligible to persons other than the
author, including operations personnel.

To support configuration management goals the coding practice
discusses the use of alphanumeric statement identifiers. These
identifiers permit the inclusion of version number, revision level
within version, and standard statement sequence numbers that
have proved valuable in the control of software products that
change with time.

IBM SYST J e VOL 19 @ NO 4 » 1980

coding
standards and
conventions




computer
product
support
software

Software development assumes the use of executive software in
the typical project environment for which interface conventions
must be established. Initialization/termination, interrupt han-
dling, resource allocation and management, and input/output de-
vice handling are the minimum functions to be handled by execu-
tive software. Coding these functions is both difficult and time-
consuming. The purpose of standards in this area is to introduce
consistency in using the executive,

Program Support Library (PSL) systems typically maintain source
statements in both the design and the programmming language
and provide linkage to executive software for compilation and
execution. The PSL system may provide language preprocessors
for structured language forms, as necessary. Through the PSL sys-
tem, the user is supported in interactive, batch, and dedicated
development environments. Conventions for using a PSL system
provide visibility by identifying the requirements for collecting
and reporting status information, such as segment type identifica-
tion, number of source statements, number of source statement
updates, date of last update, and current version and revision
level.

The coding practice also defines conventions for packaging code
into products, considering execution time addressability and the
packaging requirements of peripheral storage devices. A segment
of code implements a unit of function; a segment may range up to
fifty lines in length, but should not exceed a page. Trans-
portability considerations suggest that programs and data be de-
signed to be relocatable to any area in main memory for execution
without requiring any knowledge of absolute addresses. Data files
designed for storage on peripheral input/output devices are orga-
nized in logical records and require no knowledge of the physical
structures for storage devices.

Within the FSD business environment, software is routinely de-
veloped for special noncommercial machines (some of which are
FSD hardware products) with limited or no support software. The
intent of the computer product software support practice is to
establish the minimum levels of support software that should be
available or developed for these classes of machines. The prac-
tice separates computer products into data processing systems,
central processing units, peripheral storage devices, and terminal
devices. The minimum levels of support software that should be
developed and maintained as part of the hardware development
process include the following:

® Terminal device software supports decoding of keyboard in-
put entries, the generalization of the input data into standard
message formats, and the notification of input message avail-
ability. For the output side, the software uses standard mes-

IBM SYST J @ VOL 19 ® NO 4 ¢ 1980




sage formats for identifying output data, performs data encod-
ing for symbol generation, graphics generation, and display
control, handles the physical transmission of data, and mon-
itors transmission status.

® Peripheral storage device software handles the transmission
of data to and from a central processing unit and storage de-
vices, supports the definition and use of logical storage units
(files and records) that are function-dependent (as opposed to
device-dependent), processes device controls (e.g., end of
tape), and monitors transmission status.

® Processing unit software handles the identification and pro-
cessing of execution interrupts and the allocation and sched-
uling of the central processing unit resources.

® Data processing system software supports the initialization,
termination, and use of all computer products in the configu-
ration. It also provides Program Support Library (PSL) facili-
ties, language processors, linkage editor functions, and soft-
ware simulations of computer products.

By including these minimum capabilities in every hardware sys-
tem, a base exists on which the software engineering program can
build.

Programming Support Library (PSL) systems have been widely
adopted as productivity aids for the programmer. The PSL auto-
mates the processes of code capture, retention, and retrieval, as
well as program linkage, compilation, and execution, and code
modification and output listing. The same PSL can provide impor-
tant assistance in development control by segregating project
components that are complete from those in progress. The hier-

archical programming control practice identifies the need for a
library structure with at least three levels and for library proce-
dures that permit users to do the following:

Realize the productivity benefits of the PsL.
Promote programs from one level to the next.
Build program products by combining PSL entries.
Maintain source code integrity during checkout and in-
tegration.
Support software quality assurance functions.
e Support software configuration management functions.

The levels of PSL should bear a hierarchical relationship to each
other and include the following as a minimum:

o Development level. Programs under development, or testing
by the software implementer enter PSL at this, the lowest,
level of the hierarchy. The implementer interacts directly with
his own code as filed under his identifier. Development level
code is seldom useful to others and may be accessible only to
its author.

IBM SYST J ¢, VOL 19 ¢,NO 4 41980

hierarchical
programming
control
library




software
development
environment

Integration level. This level contains developed programs,
fully debugged by their authors, ready to be integrated with
other programs and tested as components of a software prod-
uct. Programs are promoted from the development level to the
integration level; integrated, checked-out software packages
are promoted to the release level.

Release level. Software ready for delivery to the customer is
stored at the release level. In some cases, users can execute
the code to obtain operational results; however, it is more
likely that users obtain a copy of the release level software
product and run it independently of the PSL, although the PSL
remains the source of the master copy of the latest version of
the software product.

When a user refers to a level of the PSL, he can expect to find
current, approved data. That is, the development level contains
today’s version of the implementer’s work; the integration level
contains only debugged programs; the release level contains the
version authorized for release to customers. PSL procedures are
designed to deliver what the user expects—a single copy of data
commensurate with development status. At the same time, the
PSL may support multiple copies and additional levels. Such flexi-
bility facilitates fallback; it supports multiple releases to different
users or for different purposes; it permits demotion of programs
undergoing modification while retaining a useful earlier version at
higher levels; and, in general, flexibility protects the integrity of
the library contents at each hierarchical level.

A request should automatically result in a response from a stan-
dard library level. As an option, however, the access mechanism
should allow an authorized user to select data from other levels.
Authorization control, which governs who can read, write, or
modify library entries, is provided by the access mechanism, pos-
sibly using a password technique.

As a rule, customer delivery of software products is made using
source code data. This procedure results in products that can be
created from approved source code (i.e., free of machine lan-
guage fixes or patches). Customer or contractual requirements
may dictate the release of products containing patches, but these
should be considered as exceptional cases. In such cases, manual
control procedures should be used to manage patches in the re-
leased software, and normal configuration control procedures
should be executed in parallel to ensure source-level integrity of
the released software.

Because of the diversity of the customer set within FSD, different
development environments have evolved to meet individual
needs. A minimum set of development procedures have been
identified as applicable to the various environments.

IBM SYST J @ VOL 19 @ NO 4 & 1980




Table 2 HRecommended development tool usage

Activity Interactive Batch Dedicated

Library organization/setup
Design language input/edit
Programming language input/edit
Test case input/edit
Compilation/assembly
Up to 1000 statements
Greater than 1000 statements
Program link edits
Unit test execution
User test data
Simulation controlled
Hierarchical programming
control library
parameter input/edit
Hierarchical programming control
library generation
Software integration testing
Software/hardware integration
testing
Integration test data reduction
Status report generation
Queries
Reports

For all aspects of software development—from design through
product release—the use of interactive terminals is encouraged.
Batch processing, with its average twenty-four-hour turnaround,
is restricted to the execution of production programs, where pos-
sible. Dedicated operations, where an entire machine is turned

over to one programmer or test team, is similarly limited, specifi-
cally to integration activities involving specialized hardware re-
quiring computer system reconfiguration. The software develop-
ment environment practices are summarized in Table 2, which
shows how the guidance is broken down by type of activity.

Integration engineering

Integration engineering has emerged as a new methodology, with
roots in advanced software design concepts. Therefore, in-
tegration engineering practices have been organized that support
the phased integration of software and make integration planning
an integral part of the modular design process. Integration engi-
neering encourages the use of the modular design techniques of
stepwise refinement and state machine hierarchical descriptions
to detail the integration process and manage the specification of
system interfaces. These practices also influence the software de-
sign process by introducing the ideas of incremental software de-
velopment and establishing criteria for partitioning the develop-

IBM SYST J @ VOL 19 ¢ NO 4 ¢ 1980




incremental
software
development

ment process to support phased integration. The integration engi-
neering practices have been used to integrate software with
software and software with hardware. The following four prac-
tices have been defined:

o Incremental software development.

e Software interface specification management.
e Software integration methodology.

& Simulation software.

As a group, these practices govern how a large scope of effort is
broken into manageable parts, how the parts are interconnected,
how they are reintegrated into a software product, and how—
through simulation—the process is controlled throughout the life
cycle.

In any activity where the job to be done is too large for one per-
son to handle, it is necessary to break the job apart. The very act
of partitioning the system introduces development process prob-
lems because interactive components are more complex than
single entities. Integration engineering addresses the plans for
partitioning in such a way that the pieces can be developed inde-
pendently yet come together at the right time to fit software, hard-
ware, and system integration schedules. Simulation is empha-
sized since it permits evaluation of the incomplete, developing
system using simulated components in place of the missing, real
components.

The development of software in increments is a key integration
engineering concept. The incremental software development
practice provides guidelines for developing software products in
increments, for selecting the number of increments, and for deter-
mining the capabilities needed in each increment to support in-
tegration. Software is partitioned into increments, whose devel-
opment is scheduled or phased over the total development cycle.
Each increment is a subset of the planned software product, and
provides a specified system function(s). As a minimum, partition-
ing should satisfy the following requirements:

e Be natural or logical with respect to the operational system or
application.
Organize each increment to maximize the separation of its
function(s) from function(s) in other increments.
Structure the phasing of increment development to minimize
modification of previously completed increments due to the
implementation of subsequent increments.

Partitioning is addressed in the software specification and design
process so that increments and their development schedules can
be managed to protect against project schedule erosion.

IBM SYST J e VOL 19 ¢ NO 4 1980




As a guideline for a top-down integration strategy, phased in-
tegration should be supported by the following four software in-
crements that would be developed in the indicated sequence:

. Initial increment —exercises all interfaces with operating sys-
tem software; includes selected processing kernels that repre-
sent high-risk, system-critical functions.

. Intermediate increment —exercises explicit interface specifi-
cations.

. Interim increment —exercises selected system function(s), de-
pending on application complexity. Multiple interim in-
crements may be required first to exercise critical (prime sys-
tem) functions and subsequently to exercise secondary func-
tions.

. Final increment —exercises total system function.

Alternate integration strategies would be based on variations of
this top-down strategy, wherein the role of the intermediate in-
crement has lesser significance. A functional integration strategy,
where major system capabilitics are organized into increments
and integrated in successive phases, exercises only those inter-
faces that are significant to a specific functional capability, at any
given phase. A processing flow integration strategy similarly ad-
dresses only subsets of the total interfaces during a given in-
tegration phase.

Data recording is a key element of a software system design and
is incorporated in a manner that minimizes interference and dis-
tortion. The software for each increment is instrumented for mea-
surement of such system resources as prime and secondary stor-
age utilization. The measurements should be performed as part of
the standard integration activity. Instrumentation that permits in-
terfacing with simulations of missing hardware/software function
is also included as required. The PSL system can support this in-
strumentation requirement with the use of program *‘stubs.”’

Data recording capabilities implemented to support testing should
also be employed for operational data recording where possible.
Technical performance estimates can then be accompanied by ac-
tual performance measurements. As these actual performance
measurements become available, software simulations that may
have been initialized with estimates should be continually cali-
brated to enhance their fidelity.

Specification and control of interfaces is required for effective
system development. Figure 1 indicates the potential interfaces
found in systems that are typical of the FSD business area. The
interface specification practice establishes criteria for managing
interfaces for any of the following conditions:

IBM SYST J ¢ VOL 19 ¢ NO 4 o 1980

software
interface
specification
management




Figure 1 Software system interfaces

SENSOR

HARDWARE/HARDWARE

OTHER

SIGNAL
—_—
~ PERSONS CONDITIONING SYSTEMS

HARDWARE/PERSON HARDWARE/HARDWARE

|
|
|
I
|

SIGNAL
DISPLAYS PROCESSING COMMUNICATIONS

SOFTWARE/PERSON SOFTWARE/SOFTWARE

I HARDWARE/HARDWARE HARDWARE/HARDWARE HARDWARE/HARDWARE
SOFTWARE/HARDWARE SOFTWARE/HARDWARE SOFTWARE/HARDWARE I
| SOFTWARE/SQFTWARE l

DATA
PROCESSING

o The interfacing elements are different in type (software, hard-
ware, or person).

e The hardware and software controlling the interface are under
concurrent development.
The hardware and software controlling the interface are sepa-
rately developed, whether for contractual, geographical, or
organizational reasons.

The detailed data include an interface specification determined
through stepwise refinement as part of software design. These
specifications are recorded and controlled, either as separate
documents or as part of the software specification. They contain
descriptions of the external appearance and procedural protocols
of each participant at an interface. The specification can cover
connector layouts, signal levels, functions available at the inter-
face, and rules for making contact and invoking functions across
the interface. As a minimum, the following interfaces should be
specified:

e Interfaces between software and hardware:

Interfaces between support software and computer prod-
ucts, such as processors, when these products are part of
the development effort.

IBM SYST J @ VOL 19 @ NO 4 e 1980




The programmable instruction set (whether hardwired or
microprogrammed) for the selected central processing unit,
as normally documented in a principles of operation man-
ual.

Interfaces with application-specific hardware that is part of
the system under development.

e Interfaces between two software products:

Interfaces between software under development and exist-
ing support software products, such as operating systems
whose use is planned for the system development.

Interfaces between software products that are physically
separated in different processors and logically connected
through an intercomputer channel mechanism.

Interface with shared system-level data structures. This in-
terface is of critical significance with distributed software
architecture.

o Interfaces between a software product and the person using it.
The interfaces between the software and intended system
users normally involve expansion and clarification of an estab-
lished software/hardware or software/software specification.

Given an incremental development plan and a well-defined set of
system interfaces, integration can proceed smoothly, without the
delays that are caused when components fail to fit together.

Integration is a controlled process by which software increments
are integrated in environments that—at successive integration
phases—more fully approximate the intended software system
function. Effective control requires planning, design consid-
eration, and product management. Though the emphasis is on
software integration, the methods are equally applicable to a
larger system environment that includes the integration of soft-
ware and hardware components.

Planning for software integration should be initiated as part of the
software design activity and should support the development of
software specifications. These specifications record the system-
atic refinement of software requirements to the program level and
are based on documented system-level requirements. Integration
considerations are factored into the software design so that the
software design supports the partitioning rules for incremental
development. Specifically, the design reflects a separation of sys-
tem function(s) that can be comprehensively tested and that per-
mits the structuring of integration increments. The design also
permits the testing of all specified system requirements. The
specification of the software functions identifies the system re-

IBM SYST J » VOL 19 @« NO 4 » 1980

software
integration
methodology




quirement(s) to be tested. In addition, the identified inputs and
outputs represent a basis for preparing test plans.

Software integration plans are recorded in controlled documents
containing the following minimum information:

Scheduled phasing of the integration increments.

System functions included in each increment.

Test plans to be executed for each increment with an assess-
ment of the test coverage for the system functions embodied
in the increment. (The successful execution of these test plans
defines the exit condition from integration.)

Support requirements for each increment in terms of system
hardware simulation, tools, and project resources.

Criteria for demonstrating that the increment is ready for in-
tegration. These criteria, a subset of the test plan for the in-
crement, define the exit condition from the unit test.

Quality assurance plans for the tracking and follow-up of er-
rors discovered during the integration process.

Software integration plans should take account of total system
integration and test plans and organize increments to support the
system-level planning requirements. This is particularly impor-
tant in major systems developments involving significant num-
bers of hardware and software elements. In such developments,
hardware plans identify the separate integration and test of hard-
ware, using software diagnostic tools, prior to the integration of
hardware with system software. Incremental development of the
system software can support the phased integration of a total sys-
tem by providing subsets of the system software to assist in the
total system integration.

Procedures that define the integration process at each increment
are developed using refinement techniques that are conducted in
parallel with the stepwise refinement of the software design. The
procedures document the results of detailing test plans into a hier-
archy of test cases to be executed during the integration activity.

When multiple functions must be included in a single integration
increment, a stepwise integration within the increment is per-
formed. Functions are integrated, one at a time, building on the
existing stable base with single functions tested independently for
dependability and readiness. The concept of dependability re-
quires careful control of modifications to functions during in-
tegration. Modifications in response to problems found during the
integration testing process must be made. However, modification
for function growth—as directed by approved Engineering
Change Proposals (ECPs)—should be phased into subsequent in-
tegration increments.

IBM SYST J ¢ VOL 19 ® NO 4 ¢ 1980




Table 3 Primary roles of simulation software

Stage in
life cycle

Type of simulation software

Processor Interface

Environment Computer system

Application system

System
definition

Software
design

Software
development

Software
system test

System/
acceptance
test

Unit test
support

Test and
integration
support

Acceptance
test
support

Requirements
allocation
analysis

‘Design tradeoff
analysis

Design control
analysis

Test and
integration
support

Acceptance
test
support

Concept formulation

analysis

Formulative design
change analysis

Design change
analysis

Training and
maintenance
support

Operations and
maintenance

Training and
maintenance
support

The Program Support Library (PSL) system provides facilities for
the storage of test-case libraries and for the segregation of soft-
ware elements included in an integration increment. A group sep-
arate from the software developers should have responsibility for
planning the software integration process, for developing the in-
tegration procedures, and for integrating the software according
to these procedures.

simulation
software

Simulation can be effective in several ways in most software de-
velopments. In the early stages, when little actual software ex-
ists, simulation by analytical methods can be used to evaluate
designs and check algorithms. Later, as working code becomes
available, simulators can supplement it to support system tests.
After release, simulation is still helpful in training and as an up-
dating aid. Various support roles for simulation software are
listed in Table 3. Five types of simulation software are shown
with their primary roles arranged in life-cycle sequence. The sim-
ulation software practice recommends that simulation be used for
the indicated purposes to the extent justified by the nature, size,
and budget of the project.

Processor simulation permits software development to proceed
independently of processor development. The simulator consists
of software representing the instruction-level operations of the
proposed processor. Support services, including dumps, snap-
shots, traces, and timing routines are normally provided.

IBM SYST J » VOL 19 ¢ NO 4 » 1980




Interface simulation permits parallel development of the major
components of a system—hardware, software, system operators.
The simulator is software or hardware representing the behavior
of each component when its functions are invoked. It can be used
to provide responses expected from missing components and to
verify the correct implementation of interface protocols.

Environmental simulation provides controlled conditions in
which to develop and check out systems under development. The
simulator represents the functional behavior of the hardware,
software, and operational environment external to the system un-
der development. It is usually implemented as software and run
on a separate machine from the development software. The sepa-
rate machine can, of course, be a real machine or a virtual ma-
chine. During a simulation, the environment can be represented
by function responses as in an interface simulation or it can be set
up as a script to drive a set of tests. In the latter mode, for ex-
ample, a traffic control software system could be driven by a
script that supplies traffic slowly to test basic functions, faster to
test real-time performance, and still faster to test peak-load or
overload behavior.

Computer system simulation, as defined in the simulation soft-
ware practice, is an aid to decision-makers concerned with the
effect of a design change on a complex system. Mathematical
models are used to represent computer system resources and
their utilization in terms of program path lengths, memory alloca-
tion, disk accesses, etc., as defined by the software design for a
given operational scenario. Initial designs are modeled at a fairly
gross level. As the design matures, the models get more precise.
At each stage, the models support tradeoff analyses of alternative
design decisions. After the first release of a software product, the
same modeling approach can be used with performance measure-
ments to obtain quite precise evaluations of design change pro-
posals.

Application system simulation uses software to simulate a phys-
ical process associated with an application problem for which a
system solution may or may not be implemented. The simulation
is actually an alternative to actual system development. Simula-
tions to determine the feasibility of a system concept or the re-
quirements for a proposed system solution are typical of this sim-
ulation type.

Concluding remarks

The IBM Federal Systems Division has pioneered the develop-
ment of large-scale, complex software products for various gov-

IBM SYST ] & VOL 19 & NO 4 & 1980




ernment agencies. The software engineering program has at-
tempted to blend the best aspects of this unique experience with
evolving software technologies to establish a set of uniform soft-
ware development practices. These practices include code man-
agement activities for software implementation that promote the
use of uniform, consistent techniques and tools for improved pro-
ductivity and quality. These practices also address integration en-
gineering activities for software product development and focus
on the control of the most difficult aspect of software develop-
ment—the coordination of independently developed, closely re-
lated, complex elements. Control is achieved by careful system
partitioning, incremental product construction, and constant
product evaluation. Overall, the FSD software development prac-
tices stress product visibility, dependable tools, easily under-
stood procedures, and positive feedback at project checkpoints.
The practical result of this approach has been an increase in the
manageability of FSD contracts.

The author is located at the IBM Federal Systems Division, 10215
Fernwood Road, Bethesda, MD 20034.

IBM SYST J @ VOL 19 # NO 4 1980 °




