


employed with high-order programming languages, are de facto 
standards.  The  prominence of programming support  libraries, 
with features  to  support configuration management and quality 
assurance  functions,  and  the growing acceptance of top-down de- 
sign methods,  program design languages,  and design review  tech- 
niques,  are further evidence of new technology acceptance. 

The most effective procedures used within FSD form the basis of 
code management practices  that  support  the  development of soft- 
ware  products.  These  tested  methods aim toward  setting a mini- 
mum standard for software  development in the following cate- 
gories: 

Programming language. 
Coding standards  and  conventions. 
Computer  product  support  software. 
Hierarchical  program  control  library. 
Software  development  environment. 

programming The first three  categories influence the implementation of the soft- 
language ware,  whereas the  latter  two  focus  on  the packaging of the soft- 

ware  into  a  deliverable  product. 

Software  products should be implemented with High-Order Pro- 
gramming Languages (HOLS) that simplify the  translation of de- 
sign specifications-as documented in a design language-into 
code.  It is desirable  that  the  syntax of the programming language 
include control and  data  structures  and  be  consistent with the 
design language syntax.  In  the comprehensive FSD software engi- 
neering program,  a  Process Design Language (PDL) is recom- 
mended;  however,  no single high-order programming language 
has been specified.  The  reason  for  such  latitude is that FSD cus- 
tomers often require  their  contractor to use a language that is 
both  appropriate for  the  customer’s  problem  environment  and fa- 
miliar to  the  customer’s  programmers.  Thus,  the programming 
language practice identifies for  Department of Defense (DoD) ap- 
plications languages  such as FORTRAN, COBOL, JOVIAL, etc. For 
National  Aeronautics  and  Space Administration (NASA) appli- 
cations,  the H A L 6  language is identified. For internal IBM appli- 
cations,  the PL/I,  PL/S, and APL languages are identified. Program- 
mers are advised to use  one  high-order language per  project, 
which should be  selected from the  set of HOLS listed in the prac- 
tice. 

System  designs,  documented with a design language, are  entered 
in a program support  library.  The  selection of the HOL is influ- 
enced  by its consistency with the design language. To  extend  the 
list of qualified HOLS, consistency  need  not  be  provided  directly 
by the HOL; it can be provided by a preprocessor in the program 
support  library. 

I 452 DYER IBM SYST J VOL 19 e NO 4 e 1980 



Table 1 Language  recommendations  for  classes of software  products 

Language  recommendation  Class of software  product 

High-order  language (HOL) Program development and generation 
Compiler/assembler 
Link editodloader 
Utilities 

Library  support 
Data reduction 
Applications 

HOL with assembly assist Program development and generation 
Hardware simulation 

System simulation 
Diagnostics 

Assembly with HOL elements Executive 

Assembly Data recordinglmeasurement 
Microcode 

In general, programmers are advised to restrict their use of as- 
sembly language to those portions of a  software  product involving 
critical time or  space  constraints (and to those  products imple- 
mented for  processors  that  have only assembly language sup- 
port).  The recommendations of the  practice as of 1980 for  various 
classes of software  products  are shown in Table 1. 

Other decisions to be made prior to software implementation coding 
dealing with project  standards and conventions  are  the following: standards  and 

0 Standards  for writing code. 
0 Standard  interfaces with operating system software. 
0 Conventions for using a Program Support  Library (PSL) sys- 

tem to control  the  product development and obtain visibility 
into  the development process. 

conventions 

0 Conventions for packaging code  into controllable objects. 

Standards  for  written  code include rules  for naming program and 
data variables and  rules regarding program commentary. Symbol 
names are  intended to improve the documentation of software 
and ensure  code readability. Commentary covers traditional pro- 
logues and statement comments as well as the logical com- 
mentary that  evolves during the design process. Good com- 
mentary makes a program intelligible to  persons  other  than  the 
author, including operations  personnel. 

To support configuration management goals the coding practice 
discusses  the  use of alphanumeric statement identifiers. These 
identifiers permit the inclusion of version number, revision level 
within version,  and  standard  statement  sequence  numbers  that 



must be  established. Initialization/termination, interrupt han- 
dling, resource  allocation  and  management,  and  input/output de- 
vice handling are  the minimum functions to be handled by  execu- 
tive  software. Coding these  functions is both difficult and time- 
consuming. The  purpose of standards  in  this  area  is  to  introduce 
consistency in using the  executive. 

Program Support  Library (PSL) systems typically maintain source 
statements in both  the design and  the programmming language 
and provide linkage to executive  software  for  compilation  and 
execution.  The PSL system may provide language preprocessors 
for  structured language forms, as necessary. Through the PSL sys- 
tem,  the  user is supported in interactive,  batch,  and  dedicated 
development  environments.  Conventions  for using a PSL system 
provide visibility by identifying the  requirements for collecting 
and  reporting  status  information,  such as segment type identifica- 
tion,  number of source  statements,  number of source  statement 
updates,  date of last  update,  and  current version and revision 
level. 

The coding practice  also defines conventions  for packaging code 
into  products,  considering  execution  time  addressability  and  the 
packaging requirements of peripheral  storage  devices. A segment 
of code  implements  a unit of function; a segment may range  up to 
fifty lines in length,  but should not  exceed a page.  Trans- 
portability  considerations suggest that  programs  and data be de- 
signed to be relocatable to any area in main memory for execution 
without requiring any knowledge of absolute  addresses.  Data files 
designed for  storage  on  peripheral  input/output  devices are orga- 
nized in logical records  and  require  no knowledge of the physical 
structures  for  storage  devices. 

computer Within the FSD business  environment,  software  is  routinely de- 
product veloped for  special noncommercial machines (some of which are 
support FSD hardware  products) with limited or no  support  software.  The 

software intent of the  computer  product  software  support  practice is to 
establish  the minimum levels of support  software  that  should  be 
available or  developed  for  these  classes of machines. The prac- 
tice  separates  computer  products  into  data  processing  systems, 
central  processing  units,  peripheral  storage  devices,  and  terminal 
devices.  The minimum levels of support  software  that  should be 
developed  and maintained as  part of the hardware  development 
process  include the following: 

Terminal device software  supports decoding of keyboard in- 
put  entries,  the generalization of the input  data  into  standard 
message formats, and  the notification of input message avail- 
ability. For  the  output side,  the  software  uses  standard mes- 

454 DYER IBM SYST J VOL 19 NO 4 1980 



sage formats  for identifying output  data,  performs  data  encod- 
ing for  symbol  generation,  graphics  generation,  and display 
control,  handles  the physical transmission of data,  and mon- 
itors  transmission  status. 
Peripheral storage  device software  handles  the  transmission 
of data  to  and from a central  processing unit and  storage  de- 
vices,  supports  the definition and  use of logical storage  units 
(files and  records)  that  are  function-dependent  (as  opposed to 
device-dependent),  processes  device  controls  (e.g.,  end of 
tape),  and  monitors  transmission  status. 
Processing unit software  handles  the identification and  pro- 
cessing of execution  interrupts  and  the allocation and  sched- 
uling of the  central  processing  unit  resources. 
Data  processing  system software  supports  the  initialization, 
termination, and use of all computer  products in the configu- 
ration. It also  provides Program Support  Library (PSL) facili- 
ties, language processors, linkage editor  functions,  and soft- 
ware  simulations of computer  products. 

By including these minimum capabilities in every  hardware  sys- 
tem, a  base  exists  on which the  software engineering program  can 
build. 

Programming Support  Library (PSL) systems  have  been widely 
adopted as productivity aids for  the  programmer.  The PSL auto- 
mates  the  processes of code  capture,  retention,  and  retrieval,  as 
well as program linkage,  compilation,  and  execution,  and  code 
modification and  output listing. The same PSL can  provide impor- 
tant  assistance in development  control by segregating project 
components  that are complete  from  those in progress. The hier- 
archical programming control  practice identifies the  need  for a 
library  structure with at least  three  levels  and  for  library  proce- 
dures  that  permit  users  to  do  the following: 

0 Realize the  productivity benefits of the PSL. 
0 Promote  programs from one  level to  the next. 
0 Build program products by combining PSL entries. 
0 Maintain source  code integrity during checkout  and in- 

0 Support  software quality assurance  functions. 
0 Support  software configuration management functions. 

The levels of PSL should bear  a  hierarchical  relationship to  each 
other  and  include  the following as a minimum: 

0 Development  level. Programs under development, or testing 
by the  software implementer enter PSL at  this,  the  lowest, 
level of the  hierarchy.  The  implementer  interacts  directly with 
his own code as filed under his identifier. Development level 
code is seldom useful to  others  and may be  accessible only to 
its  author. 

tegration. 

IBM SYST 1 VOL 19 NO 4 1980 DYER 



fully debugged by their  authors,  ready  to be integrated with 
other  programs  and  tested as components of a software  prod- 
uct.  Programs are promoted from the development  level to  the 
integration level;  integrated,  checked-out  software  packages 
are promoted to  the release level. 
Release  level. Software ready for delivery to  the  customer is 
stored  at  the  release  level.  In  some  cases,  users  can  execute 
the  code to  obtain operational  results;  however, it is more 
likely that  users  obtain a copy of the release level software 
product  and  run it independently of the PSL, although the PSL 
remains the  source of the  master  copy of the  latest  version of 
the  software  product. 

When a user  refers to a level of the PSL, he can  expect  to find 
current,  approved data. That  is, the development level contains 
today’s  version of the  implementer’s  work;  the  integration level 
contains only debugged programs;  the  release level contains  the 
version  authorized  for  release to  customers. PSL procedures  are 
designed to  deliver  what  the  user  expects-a single copy of data 
commensurate with development  status.  At  the  same  time,  the 
PSL may support multiple copies and  additional  levels.  Such flexi- 
bility facilitates  fallback; it supports multiple releases to different 
users  or for different purposes; it permits demotion of programs 
undergoing modification while retaining a useful earlier  version  at 
higher levels; and, in general, flexibility protects  the integrity of 
the library contents  at each  hierarchical  level. 

A  request should automatically result in a response  from  a  stan- 
dard library level. As an option,  however,  the  access mechanism 
should allow an authorized  user  to  select  data from other levels. 
Authorization  control, which governs  who can read,  write,  or 
modify library  entries, is provided by the  access  mechanism, pos- 
sibly using a password  technique. 

As a rule,  customer  delivery of software  products is made using 
source  code  data.  This  procedure  results in products  that  can  be 
created from approved  source  code  (i.e.,  free of machine lan- 
guage fixes or  patches). Customer or contractual  requirements 
may dictate the release of products  containing  patches,  but  these 
should be  considered as exceptional cases.  In such cases, manual 
control  procedures should be  used to manage patches in the  re- 
leased  software,  and normal configuration control  procedures 
should be  executed in parallel to  ensure source-level integrity of 
the released  software. 

software Because of the diversity of the  customer  set within FSD, different 
development development  environments  have  evolved to meet individual 
environment needs. A minimum set of development  procedures  have  been 

identified as applicable to the  various  environments. 

I 456 DYER 1BM SYST I VOI. 19 NO A lwn 



Table 2 Recommended development tool usage 

Activity  Interactive  Batch  Dedicated 

Library organizatiodsetup 
Design language  inputledit 
Programming  language  inputledit 
Test case inputledit 
Compilatiodassembly 

Up to 1000 statements 
Greater  than lo00 statements 

Program  link edits 
Unit test execution 

User test data 
Simulation controlled 

Hierarchical  programming 
control library 
parameter  inputledit 

library generation 
Hierarchical  programming control 

Software integration testing 
Software/hardware  integration 

Integration test data reduction 
Status report generation 

testing 

Queries 
Reports 

e 
e 
e 
e 

e 

e 

e 

e 

0 

e 
e 

e 

0 

e 

For all aspects of software development-from design through 
product release-the use of interactive terminals is encouraged. 
Batch processing, with its average twenty-four-hour turnaround, 
is restricted to the  execution of production  programs,  where  pos- 
sible. Dedicated operations, where an  entire machine is  turned 
over to one  programmer or test  team,  is similarly limited, specifi- 
cally to integration activities involving specialized hardware re- 
quiring computer  system reconfiguration. The software develop- 
ment environment  practices  are summarized in Table 2, which 
shows how the  guidance is broken down by type of activity. 

Integration  engineering 

Integration engineering has emerged as a new methodology, with 
roots in advanced software design concepts.  Therefore, in- 
tegration engineering practices  have  been organized that  support 
the phased integration of software and make integration planning 
an integral part of the modular design process.  Integration engi- 
neering encourages  the  use of the modular design techniques of 
stepwise refinement and state machine hierarchical descriptions 
to detail the integration process and manage the specification of 
system  interfaces.  These  practices  also influence the  software  de- 
sign process by introducing the ideas of incremental software  de- 



ment process to support  phased  integration.  The  integration engi- 
neering practices  have been used to integrate  software with 
software and software with hardware. The following four  prac- 
tices  have  been defined: 

0 Incremental  software  development. 
0 Software  interface specification management. 
0 Software  integration methodology. 

Simulation software. 

As a group,  these  practices  govern how a large scope of effort is 
broken  into manageable parts, how the  parts  are  interconnected, 
how they  are  reintegrated  into a software  product,  and how- 
through simulation-the process is controlled  throughout the life 
cycle. 

In any  activity  where  the job  to  be  done is too large for  one per- 
son  to  handle, it is  necessary to break the  job  apart.  The very act 
of partitioning the system  introduces  development  process prob- 
lems  because  interactive  components are more complex  than 
single entities.  Integration engineering addresses  the  plans  for 
partitioning in such a way that the pieces  can  be  developed inde- 
pendently yet come  together  at  the right time to fit software,  hard- 
ware,  and  system integration schedules. Simulation is empha- 
sized since it permits evaluation of the incomplete,  developing 
system using simulated  components in place of the  missing,  real 
components. 

incremental The development of software in increments is a key integration 
software engineering concept.  The  incremental  software  development 

development practice  provides guidelines for  developing  software  products in 
increments, for selecting  the  number of increments,  and for deter- 
mining the  capabilities needed in each  increment to  support in- 
tegration.  Software  is partitioned into  increments,  whose  devel- 
opment  is  scheduled or phased  over the total  development  cycle. 
Each  increment  is a subset of the  planned  software product, and 
provides  a  specified  system  function(s). As a minimum, partition- 
ing should satisfy the following requirements: 

0 Be natural or logical with respect to  the operational  system or 
application. 

0 Organize each  increment  to maximize the separation of its 
function(s) from function(s) in other  increments. 

0 Structure  the phasing of increment  development to minimize 
modification of previously  completed  increments  due  to  the 
implementation of subsequent  increments. 

Partitioning is addressed in the software specification and design 
process so that  increments  and  their  development  schedules  can 
be managed to protect  against project schedule  erosion. 



As a guideline for  a  top-down integration strategy, phased in- 
tegration should be supported by the following four  software in- 
crements  that would be developed in the indicated sequence: 

1. Initial increment-exercises all interfaces with operating  sys- 
tem software;  includes  selected  processing  kernels  that  repre- 
sent high-risk, system-critical  functions. 

2. Intermediate  increment -exercises explicit interface specifi- 
cations. 

3. Interim  increment -exercises  selected  system  function(s),  de- 
pending on  application  complexity. Multiple interim in- 
crements may be required first to  exercise critical (prime  sys- 
tem)  functions  and  subsequently  to  exercise  secondary  func- 
tions. I 

4. Final increment -exercises  total  system  function. 

Alternate integration strategies would be based  on variations of 
this  top-down  strategy, wherein the role of the intermediate in- 
crement  has  lesser significance. A functional  integration strategy, 
where major system capabilities are  organized  into  increments 
and  integrated in successive  phases,  exercises only those  inter- 
faces that  are significant to a specific functional capability, at  any 
given phase. A processing ,flow integration strategy similarly ad- 
dresses only subsets of the total  interfaces during a given in- 
tegration phase. 

Data recording is a key  element of a  software  system design and 
is  incorporated in a  manner  that minimizes interference  and dis- 
tortion. The software  for  each  increment is instrumented  for  mea- 
surement of such system  resources  as prime and  secondary  stor- 
age utilization. The  measurements should be performed as part of 
the  standard integration activity.  Instrumentation  that  permits in- 
terfacing with simulations of missing hardwarehoftware  function 
is also included as required.  The PSL system  can  support  this in- 
strumentation  requirement with the  use of program “stubs.” 

Data recording capabilities implemented to  support testing should 
also be employed for  operational  data  recording where possible. 
Technical  performance  estimates  can  then be accompanied by ac- 
tual  performance  measurements. As these  actual  performance 
measurements  become  available,  software simulations that may 
have  been initialized with estimates should be continually cali- 
brated to enhance  their fidelity. 

Specification and control of interfaces is required  for effective software 
system  development.  Figure 1 indicates the  potential  interfaces interface 
found in systems that  are typical of the FSD business  area. The specification 
interface specification practice  establishes  criteria  for managing management 
interfaces  for  any of the following conditions: 

IBM SYST J VOL 19 NO 4 1980 DYER 459 



Figure 1 Software  system interfaces 

SENSOR 

r - PERSONS SIGNAL 
CONDITIONING 

OTHER c - 
SYSTEMS 1 

I 
I 

I 

I 
I I 
I I 

I I 

SOFTWARE/PERSON  SOFTWARE/SOFTWARE 

I HARDWARE/HARDWARE 
HARDWARE/HARDWARE 

SOFTWARE/HARDWARE SOFTWARE/HARDWARE 
HARDWARE/HARDWARE 
SOFTWARE/HARDWARE I 
SOFTWARE/SOFTWARE 

"""" J 

0 The interfacing elements  are different in type  (software,  hard- 
ware,  or  person). 

0 The  hardware  and  software controlling the interface  are  under 
concurrent  development. 

0 The hardware  and  software controlling the  interface are sepa- 
rately  developed,  whether  for  contractual, geographical, or 
organizational reasons. 

The  detailed  data  include an interface specification determined 
through  stepwise refinement as part of software design. These 
specifications are  recorded  and  controlled,  either as separate 
documents  or  as  part of the software specification. They  contain 
descriptions of the  external  appearance  and  procedural  protocols 
of each  participant at  an interface.  The specification can  cover 
connector  layouts, signal levels,  functions available at  the  inter- 
face,  and  rules  for making contact  and invoking functions  across 
the  interface. As a minimum, the following interfaces should be 
specified: 

0 Interfaces  between  software  and  hardware: 

Interfaces  between  support software and  computer  prod- 
ucts, such as  processors, when these  products  are  part of 
the development effort. 

460 DYER IBM SYST J VOL 19 NO 4 1980 



The programmable instruction  set  (whether hardwired or 
microprogrammed) for  the  selected  central processing unit, 
as normally documented in a principles of operation man- 
ual. 

Interfaces with application-specific hardware  that is part of 
the system  under  development. 

0 Interfaces  between  two  software  products: 

Interfaces  between  software  under  development  and  exist- 
ing support  software  products,  such as operating  systems 
whose use is planned  for  the  system  development. 

Interfaces  between  software  products  that  are physically 
separated in different processors  and logically connected 
through an intercomputer  channel mechanism. 

Interface with shared system-level data  structures.  This in- 
terface is of critical significance with distributed  software 
architecture. 

0 Interfaces  between a software  product  and the person using it. 
The interfaces  between the software and  intended  system 
users normally involve  expansion and clarification of an  estab- 
lished software/hardware or software/software specification. 

Given an  incremental  development plan and  a well-defined set of 
system  interfaces,  integration  can  proceed  smoothly,  without the 
delays  that  are  caused when components fail to fit together. 

Integration is a  controlled  process by which software  increments 
are integrated in environments that-at successive integration 
phases-more fully approximate  the  intended  software  system 
function. Effective control  requires planning, design consid- 
eration,  and  product  management. Though the emphasis is on 
software  integration, the methods are equally applicable to  a 
larger system  environment  that  includes the integration of soft- 
ware  and  hardware  components. 

Planning for software integration should be initiated as part of the 
software design activity  and should support  the  development of 
software specifications. These specifications record  the  system- 
atic refinement of software  requirements  to the program level and 
are based  on  documented system-level requirements.  Integration 
considerations  are  factored  into  the  software design so that  the 
software design supports  the partitioning rules  for  incremental 
development. Specifically, the design reflects a separation of sys- 
tem function(s) that  can  be comprehensively tested  and  that  per- 
mits the structuring of integration increments.  The design also 
permits  the testing of all specified system  requirements. The 
specification of the  software  functions identifies the  system  re- 

IBM SYST J * VOL 19 * NO 4 * 1980 DYER 





Table 3 Primary  roles of simulation software 

Stage in Type of simulation  software 
life cycle ~~~ - 

Procewor Interface  Environment  Computer  system  Application  system 

System 
definition 

Software 
design 

Software 
development 

Software 
system test 

System/ 
acceptance 
test 

Operations  and 
maintenance 

Unit test 
support 

Test and 
integration 
support 

Acceptance 

support 

Training  and 
maintenance 
support 

test 

Test and 
integration 
support 

Acceptance 

support 

Training  and 
maintenance 
support 

test 

Requirements Concept formulation 
allocation analysis 
analysis 

Design tradeoff 
analysis 

Design control 
analysis 

Design change Formulative design 
analysis change analysis 

The Program Support  Library (PSL) system  provides  facilities  for 
the  storage of test-case  libraries and for  the segregation of soft- 
ware  elements included in an integration increment. A group  sep- 
arate from the software developers should have responsibility for 
planning the  software  integration  process,  for developing the in- 
tegration procedures,  and  for integrating the software  according 
to these  procedures. 

Simulation can be effective in several ways in most software  de- sirnulation 
velopments.  In  the  early  stages, when little actual  software  ex- software 
ists, simulation by analytical  methods  can be used to  evaluate 
designs and  check  algorithms. Later,  as working code  becomes 
available,  simulators  can  supplement it to  support  system  tests. 
After release, simulation is still helpful in training and as  an up- 
dating aid. Various support roles for simulation software are 
listed in Table 3.  Five  types of simulation software  are  shown 
with their primary roles  arranged in life-cycle sequence.  The sim- 
ulation software  practice  recommends  that simulation be used  for 
the  indicated  purposes  to  the  extent justified by the  nature,  size, 
and budget of the  project. 

Processor simulation permits  software  development  to  proceed 
independently of processor  development.  The simulator consists 
of software  representing  the  instruction-level  operations of the 
proposed  processor.  Support  services, including dumps,  snap- 
shots,  traces,  and timing routines  are normally provided. 

IBM SYST J VOL 19 NO 4 1980 DYER 463 



components of a system-hardware,  software,  system  operators. 
The  simulator is software or hardware  representing  the  behavior 
of each  component when its  functions are invoked. It can be used 
to provide  responses  expected from missing components  and to 
verify the  correct  implementation of interface  protocols. 

Environmental  simulation provides controlled  conditions in 
which to develop  and  check out systems  under  development.  The 
simulator  represents  the  functional  behavior of the  hardware, 
software,  and  operational  environment  external  to  the  system un- 
der development. It is usually implemented as software  and  run 
on  a  separate machine from  the  development  software.  The  sepa- 
rate machine can, of course, be a real machine or a virtual ma- 
chine. During a  simulation,  the  environment  can be represented 
by function  responses  as in an interface simulation or it can be set 
up as a script  to  drive  a  set of tests. In the  latter  mode,  for  ex- 
ample,  a traffic control  software  system could be driven by a 
script that supplies traffic slowly to  test basic  functions,  faster to 
test real-time performance, and still faster  to  test peak-load or 
overload  behavior. 

Computer  system  simulation, as defined in the simulation soft- 
ware  practice, is an aid to  decision-makers  concerned with the 
effect of a design change  on  a complex system. Mathematical 
models are used to  represent  computer  system  resources  and 
their utilization in terms of program path  lengths, memory alloca- 
tion, disk accesses,  etc.,  as defined by the software design for a 
given operational  scenario. Initial designs are modeled at a fairly 
gross level. As the design matures,  the models get more precise. 
At each  stage,  the models support tradeoff analyses of alternative 
design decisions. After the first release of a  software  product,  the 
same modeling approach  can be used with performance  measure- 
ments  to  obtain  quite  precise  evaluations  of design change pro- 
posals. 

Application  system  simulation uses  software  to simulate a  phys- 
ical process  associated with an application problem for which a 
system solution may or may not be implemented. The simulation 
is actually  an  alternative to  actual system  development. Simula- 
tions  to  determine  the feasibility of a system  concept or the  re- 
quirements  for  a  proposed  system solution are typical of this sim- 
ulation type. 

Concluding remarks 

ment of large-scale,  complex  software  products  for  various gov- 

464 DYER IRM SYST I vn1. 19  Nn 4 1 9 8 1 1  



DYER 465 


