The management of software engineering
Part lil: Software design practices

by R. C. Linger

1t is well known that large-scale software development is a diffi-
cult and complex process that demands the best design and man-
agement techniques available. Without effective principles for
structuring and organizing software design and development,
even the best-managed projects can be overwhelmed by the sheer
volume of logical complexity. What is not so well known is that
with increasing frequency, large-scale software systems are being
developed in an orderly and systematic manner according to new
design and development principles, and that these systems are
exhibiting remarkable quality in testing and use. The level of pre-
cision and rigor in their construction is itself remarkable, com-
pared to what was thought possible just a few years ago.

A major forcing factor in this emerging human capability for logi-
cal precision on a large scale has been a dramatic increase, over
the past decade, both in the availability of documented and tested
principles for software design, and in the number of software pro-
fessionals who understand and can apply them. These principles
include the structured programming and program correctness
ideas of Dahl, Dijkstra, and Hoare,? Hoare,® Linger, Mills, and
Witt,* and Wirth;*® the module and data design ideas of Dahl,
Dijkstra, and Hoare,? Ferrentino and Mills,” and Parnas;® and the
concurrent processing and synchronization ideas of Brinch Han-
sen,'’ Hoare," and Dijkstra.” Effective management principles
for organizing and controlling software development have
emerged as well, as described in Mills'' and Baker."

In 1977, the Federal Systems Division of the IBM Corporation
established a Software Engineering Program to create a set of
uniform software practices dealing with software design, devel-
opment, and management principles (as indicated in Part II, Fig-
ure 1), and to develop an educational curriculum based on the
practices. The resulting practices (some thirty in all) are the prod-
uct of an extensive review process and reflect the best thinking
and judgement of experienced software practitioners brought to-
gether from across the division.

Each practice is a terse statement of a particular aspect of soft-
ware technology, defined in terms of scope, objectives, area of

Copyright 1980 by International Business Machines Corporation. Copying is per-
mitted without payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright notice are
included on the first page. The title and abstract may be used without further
permission in computer-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor.

LINGER IBM SYST J @ VOL 19 @ NO 4 o 1980

application, methodology, and required work products. Each
practice establishes a foundation for acceptable professional per-
formance, but makes no attempt to educate to that foundation.
That is the purpose of the educational curriculum. In fact, a prac-
tice may seem mysterious indeed, without a corresponding
course to back it up!

In particular, the software design practices define principles for
specification, design, and verification of software systems, mod-
ules, data, and programs. The principles provide means to main-
tain intellectual control over complex software developments.
They have deep roots in mathematics, yet correspond closely to
concepts that have long been part of effective software design.
Their value lies in the increased discipline and order they bring to
the design process, as well as in the improved quality of the re-
sulting software products. The practices provide uniform ex-
pressive forms at each stage of design for better communication
among software designers, managers, and users. They also pro-
vide objective criteria for design analysis and evaluation, as part
of a continuing process of inspection and review.

The software design practices are organized into three groups, as
shown in Table 1. Practices in the first group, systematic pro-
gramming , deal with forms for recording individual program de-
signs, as well as techniques for program construction and veri-
fication. Methods for organizing the synchronous logic of a soft-
ware system into a hierarchy of design modules (special
combinations of programs and permanent data) are defined in the
second group, systematic design. Finally, the advanced design
group prescribes techniques for overall software system specifi-
cation and for the design of concurrent programs that must share
resources and cooperate in execution.

Software design disciplines

Three of the practices, one from each group, form a logical pro-
gression of design disciplines, that is, program design, modular
design, and real-time design. Each of these practices defines con-
cepts for a particular level of expression within the overall soft-
ware design process. The idea of these three practices, dealing
with design of programs, modules, and concurrent systems, is not
that of decomposition of subject matter. Rather the idea is that of
a sequence of building block methodologies, each of which draws
heavily on its predecessors.

Program design, the basic practice of the three, is concerned with
programs that execute and transform data independently of data
storage between executions. Modular design makes use of pro-
grams, with the one additional concept of the storage of data be-

IBM SYST J @ VOL 19 ® NO 4 » 1980 LINGER

Table 1 Software design practices

Systematic programming practices Purpose

Logical expression Prescribes mathematics-based tech-
niques for precise expression and rea-
soning that apply to all phases of soft-
ware development.

Program expression Defines control, data, and program
structures for recording program de-
signs.

Program design Specifies a process of stepwise refine-
ment for recording structured program
designs.

Program design verification Prescribes function-theoretic techniques
for proving the correctness of struc-
tured programs.

Systematic design practices

Data design Specifies the use of abstract data objects
and operations in a high-level design
framework.

Modular design Defines techniques for designing syn-
chronous software systems, based on
state machines and design modules.

Advanced design practices

Software system specification Defines a process based on state ma-
chines for creating a specification as
the cornerstone documentation of a
software system.

Real-time design Defines a stagewise process for design-
ing asynchronous software to achieve
correct concurrent operation, with
optimization to meet real-time proc-
essing requirements.

tween executions. It permits the definition of a data processing
service for a user (a person or another module), with data storage
as an integral part of that service. A module is constructed out of
program operations plus the designation of data to be retained
(stored) after program executions. The real-time design practice
makes use of modules with the one additional concept of the
asynchronous control of concurrent module executions. That is,
a system is constructed out of modules plus the designation of
real-time priorities for their concurrent execution.

In consequence of this building block structure, the design activi-
ties of a software system are sharply defined at the three levels of
program, module, and system. At the system level, one is con-
cerned only with the control of modules, and defers matters of
user specifications and services to the module level. At the mod-
ule level, one defers matters of processing to the program level.
In summary, these design practices have the following properties.

LINGER IBM SYST] ¢ VOL 19 ¢ NO 4 * 1980

Program design is concerned with programs only, but with no
permanent storage of data between program invocations. The log-
ical model of a program is a mathematical function, which defines
the input and output characteristics of the program, but not its
internals. Elements of the program design practice are shown in
Appendix A, as an example of the format and content of an FSD
practice.

Modular design is concerned with a collection of program opera-
tions and persistent data storage facilities that (1) make up a com-
plete service to some user, and (2) represent all permissible ways
of affecting the persistent data. A module is incompletely defined
if other programs can affect its persistent data in any way—other
than through the services that the module provides. The logical
model of a module is a state machine that defines (1) the collec-
tive input and output characteristics of all the program operations
of the module and (2) the data that are persistent (i.e., the state of
the state machine).

Real-time design is concerned with the coordination and synchro-
nization of a collection of modules operating concurrently in a
computing system, possibly with multiple processors, so that
they (1) do not inadvertently interfere with one another, (2) meet
real-time deadlines as required, and (3) make sufficiently efficient
use of the computing system. The logical model of a concurrent
system design is an indeterministic state machine, which reflects
the various possible rates of execution of its constituent modules
in providing acceptable system performance to the module users.
In practice, a collection of modules may be initialized together,
then run asynchronously for some period of time on demand from
various users, and then quiesced together again. During this time,
other modules may be initialized, run, and quiesced asynchro-
nously.

The remaining software design practices support and extend this
progression of design disciplines. The practices of the advanced
design group are currently under development. The systematic
programming and systematic design practices are now described
in detail.

Systematic programming practices

The logical expression practice specifies rigorous methods of rea-
soning and expression based on mathematical principles for use
during system and program development. Logical expression in-
cludes the concepts, structures, operations, and notation of set
theory, functions, and predicate logic. These expressive forms
improve communication among designers and help clarify pro-
gram requirements, specification, and design documentation.

IBM SYST J 4 VOL 19 4 NO 4 ¢ 1980 LINGER

logical
expression

program
expression

They permit precision without vagueness in expressing design ab-
stractions, while allowing the deferral of details to later phases of
development.

It is possible to develop small programs without these standards
and with less formality, but it is practically impossible to develop
large software systems under sound engineering control at an ac-
ceptable level of reliability, productivity, and quality without an
equivalent level of formality and logical precision. The logical ex-
pression practice is the conceptual foundation for other software
engineering techniques, and helps develop familiarity with pat-
terns of thought and notation found in software engineering litera-
ture.

Specifications in natural language often prove difficult to check
for completeness, and design and implementation details can be
easily and unintentionally mixed with the specification of pro-
cessing requirements. But a compact mathematics-based notation
(for example, sets and set operations) can help define precisely
what is required at a uniform level of specification. The complete-
ness of such a specification is more easily checked, and the even-
tual designs of specified objects (such as sequential or direct-ac-
cess files) and operations (such as algorithms to test for set mem-
bership, add and delete members, etc.) are not influenced by
premature detailing. Natural language explanations of the set op-
erations can then be added for clarity, but with no requirement to
carry the full burden of specification.

The program expression practice defines requirements for the
textual language for recording program designs. This language is
intended to support the following activities:

& Stepwise design of programs with correctness verification.

e Effective communication among users, designers, and devel-
opers.

e Reading, studying, and group reviewing of program designs.

The use of a design language helps to institutionalize the design
process itself, so that design becomes a standard project activity,
with its own intermediate work product between thought and
code. For designers, there is time to schedule design progress,
and for managers there is visible evidence of that progress. The
problem of ‘‘ad hoc design in code’’ is superseded by a new me-
dium and methodology for creating and reviewing the logical
structures of a software system prior to implementation.

A definition of the Process Design Language (PDL) is maintained
in an FSD bulletin, with a formal control board, as an example
language that satisfies the requirements of the program ex-
pression practice. PDL is an open-ended specialization of natural

LINGER 1IBM SYST J & VOL 19 & NO 4 & 1980

Figure 1 Some PDL control structures

firstpart

sequence: whiledo:

do [function) [function]

firstpart firstpart while

secondpart secondpart whiletest

e vee secondpart do [function]

nthpart nthpart dopart

od od

nthpart

l

dowhiledo:
[function]

ifthenelse: FALSE TRUE
[function]
if dol [function]

iftest dopartl

then [function] while
whiletest

do2 [function]
dopart2

thenpart

else [function]

elsepart
fi od

\r

language, not a closed formal language,* and permits the design-
ing of software from a logical point of view without getting into
the physical storage and operations of specific computing sys-
tems. PDL permits precision for human expression and for direct
human translation into target programming languages.

The principal specialization of PDL from natural language occurs
in a standard outer syntax of control, data, and program struc-
tures, employing a few PDL keywords and a tabular typographic
form. Outer syntax describes how operations are sequenced and
controlled, how data are defined and accessed, and how programs
are organized. A more flexible inner syntax of PDL deals with op-
erations and tests. Outer syntax structures are applied with little
or no variation from project to project, whereas inner syntax is
intended to be specialized according to individual project needs.”

The outer syntax control structures of PDL include sequence,
fordo, ifthen, ifthenelse, case, whiledo, dountil, and dowhiledo.
Some of these structures are depicted in Figure 1 along with

IBM SYST J e VOL 19 « NO 4 o 1980 LINGER

whiletest

dopartl

@ TRUE

outer
syntax

FALSE

equivalent flowcharts; the structures are delimited by keywords
shown in boldface, with parts indented for readability in larger
contexts. In their effect on data, each of these single-entry/single-
exit structures can be precisely described by a mathematical
function that defines input and output characteristics, but de-
scribes nothing of internal operations. This function is known as
the program function of the control structure.

In addition to control structures, PDL outer syntax provides high-
level data structures, such as queues, stacks, sets, and se-
quences, together with conventions for their access.

Logical commentary, delimited in PDL programs by square brack-
ets, is an important part of the design language. One type of logi-
cal commentary, known as action or function commentary, is
used to record program functions, as shown in Figure 1. Function
commentary can precede a control structure to define its func-
tion, or be attached to do, then, else, etc., keywords to define the
function of the corresponding dopart, thenpart, elsepart, etc.
Function commentary makes program designs self-documenting
by recording intermediate abstractions in the design process.
These abstractions make use of the expressive forms of the logi-
cal expression practice. The result is designs that can be read and
understood at any level of detail.

PDL outer syntax program structures permit designs to be orga-
nized into hierarchies of small structured programs called seg-
ments. Each segment is delimited by keywords proc and corp and
is of limited size (usually a page or less of text) and complexity.
Segments are invoked in the hierarchy by statements of the fol-
lowing form:

run segmentname (parameter list)

Data objects are passed to and from segments in parameter lists,
and local data, incidental to the function of a segment, are de-
clared within the segment itself.

A miniature segment-structured program design is shown in Ap-
pendix B, along with logical commentary. Here function com-
ments attached to proc keywords define the function of each seg-
ment. The operation next on the right of an assignment symbol
(:=) reads a member from a sequence, and on the left writes a
member to a sequence.

PDL programs are composed of individual control structures
whose nesting and sequencing define a hierarchy in an algebra of
Junctions. This function-theoretic algebra provides the principal
source of power in structured programming, both by localizing
and limiting the complexity of design decisions, and by providing
a natural plan of attack for program reading, writing, and veri-

438 LINGER IBM SYST J & VOL 19 & NO 4 & 1980

fication. In program reading, a control structure can be mentally
replaced by its equivalent function with no side effects in other
parts of the program. The containing control structure may then
be likewise abstracted, and so on, to arrive at the function of the
entire program. In program writing, functions can be expanded
into equivalent control structures, again with no side effects else-
where, continuing in this fashion until the entire program is elabo-
rated in sufficient detail. Similarly, in verifying program correct-
ness, a desired function and the actual function of the corre-
sponding control structure can be compared for equivalence in a
local setting, with no regard for program operations elsewhere. A
PDL program is known to be correct when each of the control
structures in its hierarchy has been shown to be correct.

The program expression practice imposes no restrictions on PDL
inner syntax, beyond requirements for precision, conciseness,
and understandability. Expressive forms for inner syntax must be
chosen with the subject matter, level of design, and intended au-
dience taken into account. For introductory design descriptions
for general audiences, natural language may suffice. For precise
communication of designs among professional programmers,
more rigorous, mathematics-based forms may be required.

The program design practice, depicted in Appendix A, specifies a
function-based methodology for creating and recording correct
program designs. As previously noted, the methodology is based
on a view of structured programs as mathematical objects whose
program functions form an algebra of functions. The starting
point in the methodology is an intended function, which precisely
defines the operations on data that a program is to carry out. It is
a function definition in the mathematical sense, but may be de-
scribed in English, mathematics, programming notation, or other
expressive form. The principal operation in the practice is the
replacement of an intended function by an equivalent structured
program. Thus, an intended function of, for example,

z := maximum of x and y

appearing anywhere in an evolving program design, may be re-
placed by the following equivalent ifthenelse structure:

[z := maximum of x and y]
if
X >y
then
Z:= X
else
Z:=y
fi

The ifthenelse carries out data transformations identical to the

IBM SYST J o, VOL 19 ¢,NO 4 e, 1980 LINGER

program
design

439

stepwise
program
refinement

abstract intended function it replaces, which is carried forward
into the expansion as a logical comment.

In application, this process leads to stepwise program refine-
ment,” in which a program design is developed as a hierarchy of
control structure expansions, using the replacement of functions
by equivalent expansions as the only rule of construction. A re-
finement step may consist of a single new control structure, or a
miniature structured program composed of nested and sequenced
control structures. Each refinement introduces new intended
functions for subsequent refinement; resulting designs are hier-
archical by construction. Data structures are also introduced in a
hierarchical manner to support the local operations of each re-
finement. The program design segment is a natural unit of refine-
ment for each step.

Stepwise refinement is not a mechanical process. A good under-
standing of overall program and data structures, from top to bot-
tom, is required before recording segment designs. The best de-
sign is not the first design thought up, but the last; many iterations
may be required to arrive at a suitable design structure. The depth
of design varies with complexity. The design process is complete
when further refinements become obvious.

A designer verifies the correctness of each refinement step by
demonstrating that the program function of the refinement is
equivalent to its intended function. The program function defines
the actual data transformations carried out by the refinement; for
correctness, the program function must match the intended func-
tion. Thus, verification is a two-step process: (1) derive the pro-
gram function, then (2) compare it to the intended function. The
program function may be self-evident and correctness determined
by direct inspection. If the program function is not self-evident, a
simpler design should be considered. Otherwise, verification
techniques with sufficient rigor to determine correctness must be
applied.

The program function of every segment should be defined in a
logical commentary function comment. Important intermediate
program functions should be recorded as well, including those for
program parts that have been informally or formally proved cor-
rect.

The design of a small structured program in three refinement
steps is shown in Appendix C. Intermediate functions are carried
forward into successive versions as logical commentary, to docu-
ment the design amid its detailing. Note the use of design lan-
guage multiple assignments of the form a,b := c¢,d with meaning
“‘compute values ¢ and d and assign them to a and b, respec-
tively.”’

LINGER IBM SYST J @ VOL 19 & NO 4 « 1980

The program design verification practice defines methods to sub-
stantiate the correctness of program designs. Verification also
assists in designing programs whose correctness is self-evident
and in detecting logical errors, if any, in both intended functions
and their corresponding program designs. Proofs may be carried
out at either a formal, recorded level, or at an informal, un-
recorded level of mental analysis.

A program design or design part is proved to be correct by prov-
ing that all its control structures are correct. The Correctness
Theorem® summarizes function-theoretic proof requirements for
the control structures of PDL. A control structure is proved to be
correct by proving that its intended function is equivalent to (or a
subset of) its program function. This demonstration is an intrinsic
part of the stepwise refinement process, so that program designs
are both refined and shown to be correct in steps of manageable
size. Formal proofs of correctness based on the Correctness The-
orem utilize systematic derivations and logical analysis to deter-
mine program functions of control structures and to compare
them to intended functions. Formal proofs are recorded using a
special proof syntax. Recording is important because formal
proofs often contain insights not found in the program designs
that are useful for subsequent design review and modification.

A miniature illustration of a formal proof for a PDL sequence pro-
gram design is shown in Appendix D. Part A defines the intended
function f of the sequence, read '‘assign the values of y and x to x
and y, respectively,”’ that is, exchange x and y.

Part B is a sequence program composed of three PDL assignment
statements (S1, S2, and S3). The Correctness Theorem states that
to be correct, the intended function f must be equivalent to (or a
subset of) the program function of the sequence, say p. The pro-
gram function of a sequence program is computed by function
composition. In this case, three functions are involved (composi-

Ve 99

tion denoted by **o’’ symbol) as follows:
p=3S830282.81

That is, compute S1 output data values from S1 input, then S2
output from S2 input (equivalent to S1 output), then S3 output
from S3 input (equivalent to S2 output). The program function
defines S3 output in terms of S1 input.

Part C is the proof itself. The program function of a sequence
program is derived by means of a systematic trace table with a
numbered row for each assignment, and a column for each data
item assigned (in this case x and y). Each table entry is an equa-
tion that relates values before the assignment to values after the
assignment. For example, the first row defines x, (the value of x

IBM SYST] ¢ VOL 19 @ NO 4 ¢ 1980 LINGER

program
design
verification

a proof
example

after the first assignment) as x, + y, (values before the first as-
signment) and also defines y, = y,, that is, y is unchanged by the
assignment.

Once the trace table equations are filled in, it is a simple matter to
derive the final values of x and y (after the third assignment), i.e.,
X, and y,, in terms of the initial values (before the first assign-
ment), i.e., X, and y,. As an example, if we write

L% 7Y,
and substitute expressions as follows:

-, —y)

the final derivations for x and y are

X, = y,and y, = X,.

Therefore, the program function p is x,y := y,x. This function is
equivalent to the intended function, and the program is indeed
correct. The proof has been recorded for later study and analysis.
Proofs for alternation and iteration control structures can be more
complex than the sequence example, but the logical procedures
to be followed in each case are known.

Informal proofs are carried out by asking and answering correct-
ness questions that verbalize the correctness conditions of the
formal proofs for each control structure. Informality does not
connote a reduction in rigor; the correctness conditions to be
proved are identical, whether formal or informal techniques are
applied.

Systematic design practices

The data design practice specifies methodology for designing
abstract data objects and operations.2? Data abstractions provide
a high-level design framework, and help keep the design process
manageable because the designer deals with fewer concepts at a
time. Design in terms of abstractions also permits changes in
data representations to be made with minimal effect on the ab-
stractions themselves.

Data types provide a basis for expressing data structures and the
operations and tests that are permissible for those structures. The
concept of data types can be applied repeatedly by stepwise re-
finements that introduce and focus on only a few structural and
operational ideas at a time. Thus, data types permit very-high-
level data structures and operations to be expressed in a form that
the designer can refine into successively lower-level structures
and operations, finally reaching an implementable level.

LINGER IBM SYST J @ VOL 19 @ NO 4 » 1980

A data type is defined as a set of data objects and a set of opera-
tions and tests among those objects. A scalar data type defines
data objects with no usable internal structure or parts. A struc-
tured data type defines objects that are data structures whose
parts are objects of other data types, scalar or structured, even
possibly of the same type.

Structured data types permit stepwise refinement by successive
replacement. In a refinement step, a scalar data type is replaced
by a structured data type, introducing additional instances of
scalar data types. The refinement process continues in this fash-
ion until the data types of the programming language at hand have
been reached. In parallel, the operations and tests of the original
scalar data type are redefined in terms of more detailed opera-
tions and tests in the structured data type. For example, a matrix
of complex numbers, regarded as a scalar data type in a high-level
design, can be expanded to a pair of real numbers. These num-
bers are then expanded to a pair of integers (exponent, mantissa).
At each step, operations and tests on the data are also reex-
pressed.

In addition to data design techniques, this practice also specifies
expressive forms for defining data organization. The detailed or-
ganization of data is often expressed in natural language or
graphic descriptions of formats, field layouts, word boundaries,
etc. Data organization, however, can be expressed with greater
clarity using mathematical techniques, such as formal grammars,
regular expressions, and recursive formulas. These techniques
emphasize hierarchical patterns in data organization, and provide
a structural framework for the design of programs that process
the data.

The modular design practice specifies a methodology for design-
ing the synchronous logic of software systems. Modular design is
the principal means for hierarchical decomposition and organiza-
tion, once an overall hardware/software system design has been
completed.” It makes use of techniques described in the program
design and program design verification practices, and introduces
two additional concepts: state machines and modules.

Briefly, a state machine is a mathematical function that can be
used to specify programs and data. A state machine m is defined
in terms of input, output, states, and transitions, as follows:

m = {((input, state), (newstate, output))}

Each member of the set defines a transition from a current state
and an input to a new state and an output (possibly null). In soft-
ware terms, the state machine m corresponds to program opera-
tions on input and state data to produce new state data and out-
put, where the data are regarded as persistent, that is, data that

IBM SYST J @ VOL 19 ¢ NO 4 e 1980 LINGER

stepwise
data
refinement

modular
design

state
machines
and
modules

specification
by intended
state
machines

survive (i.e., stored) between program executions. A module is
composed of a specification part and a design part. An intended
state machine 1s the specification part of a module, just as an
intended function is the specification part of a program. The de-
sign part of a module is normally composed of a single structured
program paired with persistent data.

The use of modular design is intended to control complexity by
organizing a design into a hierarchy of modules, where each mod-
ule hides the implementation of data and operations from module
users. Modular design also maintains data integrity by defining
the persistent data of each module to correspond to a state of the
intended state machine, and by permitting access to those data
only through the module program. This also ensures complete-
ness of the design. The intended state machine idea is a unifying
concept that helps to determine that a collection of program oper-
ations should be grouped into a module and that all required oper-
ations on the data of the module have been defined. That is, the
module carries out the correct data operations in every possible
circumstance.

Modules result in reduced complexity in system design because
they abstract out (or hide) details of representation, residency,
and format of persistent data, and the algorithmic details of data
processing. Because they provide an abstract view of data to their
users, modules are also referred to as data abstractions.

An intended state machine is a precise specification for the func-
tion of a software system or system part, such as a subsystem or
common service. Intended state machines can define services to
module users (including definition of interfaces for invoking those
services) at all levels of decomposition in a software system,
without getting into details of program design and data organiza-
tion and storage. For example, an entire synchronous text pro-
cessing system can be specified in terms of an intended state ma-
chine, as can its individual subsystems, such as text update, text
retrieval, file maintenance, etc., as well as each of its low-level
common services, such as directory management, user status
management, space allocation, etc.

The module program is the sole interface for module users and
provides the only permissible access to the persistent data of the
module. The program may reference the module programs of
other modules in carrying out its operations. (In implementation,
a module containing multiple programs accessible by users may
be a reasonable alternative, despite the complexity introduced by
multiple interfaces.) A module program’s inputs and outputs cor-
respond to the inputs and outputs of the intended state machine.
Its operations correspond to the state transitions, and its per-
sistent data correspond to a state of the intended state machine.

LINGER IBM SYST J e VOL 19 ¢ NO 4 e 1980

Figure 2 A module-structured design

PROGRAM
SEGMENTS

MODULE A

INTENDED
PERSISTENT
STATE MACHINE DATA

SPECIFICATION

MODULE
REFERENCE

The persistence of data in a module-structured system ranges
from permanent data base data in a resident module, which may
survive indefinitely, to local state data of transient modules,
which may survive only momentarily between successive in-
vocations within an active job or task.

Modular design is carried out by stepwise module refinement of
intended state machines and their designs. The process begins by
describing an intended state machine, which is then elaborated as
a module design consisting of a module program, persistent data,
and possible services defined by additional intended state ma-
chines. The refinement continues in this manner until the lowest-
level modules have been designed. This design process is a direct
extension to stepwise refinement of intended functions into pro-
grams that may reference additional intended functions.

Specifically, the first step in a module design is the definition of its
persistent data and the intended function of its program. Any ab-
stract objects (such as sets) in the state of an intended state ma-
chine are elaborated into persistent data using data refinement
techniques. The intended function is elaborated using stepwise
program refinement techniques. In this process, opportunities

IBM SYST J & VOL 19 &« NO 4 & 1980 LINGER

modular
design by
stepwise
refinement

correctness
verification

module
implementation

may arise to organize data and operations into new intended state
machines at a lower level, to be likewise implemented as mod-
ules. Note that during refinement, modules containing no per-
sistent data may arise. For example, it makes sense to group sci-
entific subroutine operations into a module, even though they
typically reference no persistent data.

A module program undergoes stepwise refinement into a local hi-
erarchy of program segments, any of which may run the programs
of other modules to provide access to their persistent data. Thus,
a module-structured system is composed of a hierarchy of mod-
ules with program refinements defining connections between lev-
els in the hierarchy. Figure 2 depicts an imagined module hier-
archy in graphic form.

The module defines a module state machine as all possible execu-
tions of its program on input and persistent data, just as a pro-
gram defines a program function as all possible executions on
input. A module is correct if its intended state machine is equiva-
lent to (or a subset of) its module state machine. At each refine-
ment step, a designer must demonstrate that this equivalence
holds. Much of the effort in the proof involves proving that the
module program correctly implements its intended function. This
should be done by direct inspection if possible, otherwise by veri-
fication techniques of sufficient rigor, as described in the program
design verification practice. If abstract data objects and opera-
tions are used in the intended state machine description and then
refined into more complex data objects and operations in the
module, correspondence between the levels must be demon-
strated. Finally, it must be shown that the correct persistent data
have been identified.

Many operating systems and languages do not provide adequate
implementation support for data abstraction by modules. For ex-
ample, scope rules in many languages require that files for per-
sistent data intended to be hidden in a module must actually be
declared in a higher-level module.

Concluding remarks

The software design practices summarize technical principles for
creating software system designs out of requirements. And they
define a series of development checkpoints for technical manage-
ment as well, in terms of specific intermediate work products
along the way from requirements to design. These work products
record a progression of reasoning and analysis that permits con-
tinual review and improvement of designs. The practices legiti-
mize these work products and sanction their development. Each
work product can be allocated and managed for cost and quality,
so that the state of development is never in doubt.

LINGER IBM SYST J ® VOL 19 © NO 4 ¢ 1980

Appendix A: Elements of the program design practice

Introduction
1.1 SCOPE

This practice specifies a function-based methodology for creating
and recording a correct program design to satisfy a specification
Junction.

1.2 OBJECTIVES

The use of the methodology is intended to reduce complexity and
maintain intellectual manageability in program design. This is ac-
complished by designing programs to satisfy hierarchies of func-
tions, thereby localizing design decisions and correctness demon-
strations.

1.3 APPLICATION

This practice applies to all new program designs developed by
FSD, including program designs appearing in requirements, speci-
fication, and design documentation, and stored in computer li-
braries.

1.4 AUTHORIZATION

This practice has been approved by the FSD Software Technology
Steering Group and the FSD Standards Manager.

Practice
2.1 DESIGN METHODOLOGY

2.1.1 Responsibility. An individual will be assigned responsibility
for the design of each program, whether that design is developed
as an individual activity, or as a team effort.

2.1.2 Stepwise Refinement. Beginning with a specification func-
tion, a program design is created and recorded as a hierarchy of
control structure expansions by the process of stepwise refine-
ment, using the Axiom of Replacement as the only rule of con-
struction. Data structures are also introduced in a hierarchical
manner, to support the local operations of each refinement. The
program design segment is a natural unit of refinement for each
step. Stepwise refinement is not a mechanical process, and a good
understanding of overall program and data structure is required
before commencing segment design. The depth of design will
vary with complexity; the refinement process should terminate at
the point where further refinements become obvious.

2.1.3 Stepwise Reorganization. In complex design situations, the
strategy of stepwise reorganization should be considered, to keep

IBM SYST J ¢ VOL 19 » NO 4 o 1980 LINGER

448

correctness arguments manageable by designing for function
first, and reorganizing for efficiency later.

2.1.4. Correctness Verification. At each refinement step, the de-
signer must be able to convince himself and others that the pro-
gram function of the refinement is equivalent to its specification
(or intended) function. The program function of the refinement
may be self-evident, and the correctness determination made by
direct inspection. If the program function is not self-evident, a
simpler design should be considered; otherwise, correctness veri-
fication techniques with sufficient rigor to verify correctness must
be applied.

2.1.5 Logical Commentary. The program function of every seg-
ment should be defined or referenced in a logical commentary
action comment. Important intermediate program functions
should also be defined, including those for program parts which
have been informally or formally proven correct. Status com-
ments should be included where appropriate, as well.

2.1.6 Design Modification. Program designs should be modified as
necessary, both to correspond to redefinition of their specifica-
tion functions, and to reflect any design improvements discov-
ered in implementation. Verification considerations apply to all
design modifications.

2.2 WORK PRODUCTS

Program designs in the documentation specified in section 1.3
should be developed using the methodology specified in section
2.1. Program designs should be kept current and always available
for study and review.

Appendix B: A miniature segment-structured program
design

proc oddeven(output, input) [set next consecutive output se-
quence members to 1 or 0 depending on whether corresponding
input sequence members are odd or even]
var input, output: sequence of integer
var X: integer
while
input # empty
do [next(output) := oddeven(next(input))]
X := next(input)
if
x>0
then [convert positive x odd or even into 1 or 0]
run positive(x)
else [convert nonpositive x odd or even into 1 or 0]
run nonpositive(x)

LINGER IBM SYST J » VOL 19 ¢ NO 4 ¢ 1980

fi
next(output) := x
od
corp

proc positive(x) [convert positive x odd or even into 1 or 0]
var X: integer
while
x>1

X:=x-2
od
corp

proc nonpositive(x) [convert nonpositive x odd or even
into 1 or 0]
var X: integer
while
x<0
do
X:=x+2
od
corp

Appendix C: A structured program in three refinement steps

step 1:
proc maxmin(x,y,t,n)
var X,y,n: integer
var t: array(l..n) of integer
X,y := max(t(1:n)), min(t(1:n))
corp

step 2:
proc maxmin(x,y,t,n) [x,y := max(t(1:n)),min(t(1:n))]
var X,y,n: integer
var t: array(l..n) of integer
Xy :=t(1), t(l)
[x,y := max(x,t(2:n)),min(y,t(2:n))]
for
i=2tonbyl
do
X,y := max(x,t(i)),min(y,t(i))
od
corp

step 3:
proc maxmin(x,y,t,n) [X,y := max(t(1:n)),min(t(1:n))]
var X,y,n: integer
var t: array(1..n) of integer
x,y 1= t(1), t(1)

IBM SYST J ¢ VOL 19 ¢ NO 4 e 1980 LINGER

450

[x,y := max(x,t(2:n)), min(y,t(2:n))]
for
i=2tonbyl
do [X,y : = max(x,t(i)),min(y,t(i))]
if
t) > x
then
X = t(i)
fi
if
ti) <y
then
y :=t()
fi
od
corp

Appendix D: A miniature correctness proof

A. Intended function
Oxy:=yx

B. Program
(SN

C. Proof
trace table:

row assignment

1 X:=X+Yy
2 y:=X-—Yy
3 X:=X-—Yy

derivations:

=X, Y,
=X - (xl - yl)
= yl
Therefore
p=&xy:=yx) =f

pass

The author is located at the IBM Federal Systems Division, 10215
Fernwood Road, Bethesda, MD 20034.

LINGER IBM SYST J ¢ VOL 19 ® NO 4 o 1980

