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The  management of software  engineering 
Part 111: Software  design  practices 
by R. C. Linger 

It is well known that large-scale software development is a diffi- 
cult and complex process  that  demands  the best design and man- 
agement techniques available. Without effective principles for 
structuring  and organizing software design and development, 
even the best-managed projects can  be overwhelmed by the  sheer 
volume of logical complexity. What is not so  well known is that 
with increasing frequency, large-scale software  systems are being 
developed in an  orderly and systematic manner according to new 
design and development principles, and  that  these  systems  are 
exhibiting remarkable quality in testing and  use.  The level of pre- 
cision and rigor in their construction is itself remarkable, com- 
pared to what was thought possible just  a few years ago. 

A major forcing factor in this emerging human capability for logi- 
cal precision on a large scale has been a  dramatic  increase,  over 
the  past  decade, both in the availability of documented and  tested 
principles for  software design, and in the number of software pro- 
fessionals who  understand and can apply them.  These principles 
include the structured programming and program correctness 
ideas of Dahl, Dijkstra, and Hoare,' H ~ a r e , ~  Linger, Mills, and 
Witt,4 and Wirth;5'6 the module and data design ideas of Dahl, 
Dijkstra, and Hoare,'  Ferrentino and Mills,7 and Pamas;'  and  the 
concurrent  processing  and synchronization ideas of Brinch Han- 
sen," Hoare,"  and D i j k ~ t r a . ~ ~  Effective management principles 
for organizing and controlling software development have 
emerged as well, as described in  Mills" and Baker.I5 

In 1977, the Federal  Systems Division of the IBM Corporation 
established a  Software Engineering Program to  create  a  set of 
uniform software practices dealing with software design, devel- 
opment, and management principles (as indicated in Part 11, Fig- 
ure I ) ,  and to  develop an educational curriculum based on the 
practices.  The resulting practices (some thirty in all) are  the prod- 
uct of an extensive review process  and reflect the best thinking 
and judgement of experienced  software practitioners brought to- 
gether from across  the division. 

Each  practice is a  terse  statement of a particular aspect of soft- 
ware technology, defined in terms of scope,  objectives, area of 
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application,  methodology, and required work products.  Each 
practice  establishes  a  foundation  for  acceptable  professional  per- 
formance,  but  makes no attempt to educate  to  that  foundation. 
That is the  purpose of the educational curriculum. In fact, a  prac- 
tice may seem mysterious  indeed, without a  corresponding 
course  to back it up! 

In  particular,  the  software design practices define principles  for 
specification, design,  and verification of software  systems, mod- 
ules,  data,  and  programs.  The principles provide means to main- 
tain intellectual control  over  complex  software  developments. 
They  have  deep  roots in mathematics, yet correspond closely to 
concepts  that  have long been part of effective software design. 
Their value lies in the increased discipline and  order  they bring to 
the design process, as well as in the  improved quality of the re- 
sulting software  products.  The  practices provide uniform ex- 
pressive  forms  at  each  stage of design for  better  communication 
among software  designers,  managers, and users.  They  also  pro- 
vide objective  criteria  for design analysis  and  evaluation, as part 
of a continuing process of inspection  and  review. 

The  software design practices  are  organized  into  three  groups,  as 
shown in Table 1. Practices in the first group, sysrematic  pro- 
gramming, deal with forms  for  recording individual program  de- 
signs, as well as  techniques  for program construction  and veri- 
fication. Methods  for organizing the  synchronous logic  of a soft- 
ware system  into a hierarchy of design  modules (special 
combinations of programs and permanent  data)  are defined in the 
second  group, systematic design. Finally,  the advanced  design 
group  prescribes  techniques  for  overall  software  system specifi- 
cation and for the design of concurrent  programs  that  must  share 
resources  and  cooperate in execution. 

Software  design  disciplines 

Three of the  practices,  one from each  group, form a logical pro- 
gression of design disciplines,  that is, program design, modular 
design, and real-time design. Each of these  practices defines con- 
cepts  for a particular level of expression within the  overall  soft- 
ware design process.  The  idea of these  three  practices, dealing 
with design of programs,  modules,  and  concurrent  systems, is not 
that of decomposition of subject  matter.  Rather  the idea is that of 
a sequence of building block methodologies, each of which draws 
heavily on its predecessors. 

Program design, the basic  practice of the  three, is concerned with 
programs  that  execute  and  transform  data  independently of data 
storage between executions. Modular design makes use of pro- 
grams, with the  one additional concept of the  storage of data be- 
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Purpose 

Prescribes mathematics-based tech- 
niques for precise expression and rea- 
soning that apply to all phases of soft- 
ware development. 

Defines control, data, and program 
structures for recording program de- 
signs. 

Specifies a process of stepwise refine- 
ment for recording structured program 
designs. 

Prescribes function-theoretic techniques 
for proving the correctness of struc- 
tured programs. 

Real-time  design 

Specifies the use of abstract data objects 
and operations in a high-level design 
framework. 

Defines techniques for designing syn- 
chronous software systems, based on 
state machines and design modules. 

Defines a process based on state ma- 
chines for creating a specification as 
the cornerstone documentation of a 
software system. 

Defines a stagewise process  for design- 
ing asynchronous software to achieve 
correct concurrent operation, with 
optimization to meet real-time proc- 
essing requirements. 



Program  design is concerned with programs  only,  but with no 
permanent  storage of data between program  invocations. The log- 
ical model of a program is a mathematical  function, which defines 
the input and  output  characteristics of the  program,  but  not  its 
internals.  Elements of the program design practice  are  shown in 
Appendix A, as  an example of the  format  and  content of an FSD 
practice. 

Modular  design is  concerned with a collection of program  opera- 
tions  and  persistent  data  storage facilities that (1) make up a com- 
plete  service to some  user,  and ( 2 )  represent all permissible  ways 
of affecting the persistent  data.  A module is incompletely defined 
if other  programs  can affect its persistent  data in any  way-other 
than through the  services  that  the module provides. The logical 
model of a module is a state machine that defines (1) the collec- 
tive input and  output  characteristics of all the program operations 
of the module and ( 2 )  the  data  that  are  persistent  (i.e.,  the  state of 
the  state  machine). 

Real-time  design is concerned with the coordination  and  synchro- 
nization of a collection of modules operating  concurrently in a 
computing system, possibly with multiple processors, so that 
they (1) do not  inadvertently  interfere with one  another, ( 2 )  meet 
real-time deadlines as required,  and (3) make sufficiently efficient 
use of the  computing  system. The logical model of a concurrent 
system design is an indeterministic state  machine, which reflects 
the  various  possible  rates of execution of its  constituent  modules 
in providing acceptable  system  performance  to  the module users. 
In  practice, a collection of modules may be initialized together, 
then  run  asynchronously  for  some  period of time on  demand  from 
various  users,  and  then quiesced together again. During this  time, 
other modules may be initialized, run, and quiesced  asynchro- 
nously. 

The remaining software design practices  support  and  extend  this 
progression of design disciplines. The  practices of the  advanced 
design group  are  currently  under  development.  The  systematic 
programming and  systematic design practices  are now described 
in detail. 

Systematic  programming  practices 

The logical expression  practice specifies rigorous methods of rea- 
soning and  expression based on  mathematical principles for  use 
during system  and program development. Logical expression in- 
cludes  the  concepts,  structures,  operations,  and  notation of set 
theory,  functions,  and  predicate logic. These  expressive  forms 
improve  communication among designers  and help clarify pro- 
gram requirements, specification, and design documentation. 
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They permit prec‘ision without vagueness in expressing  design ab- 
stractions, while allowing the  deferral of details to  later  phases of 
development. 

It is possible to develop small programs without these  standards 
and with less  formality,  but it is practically impossible to develop 
large software  systems  under  sound engineering control  at  an ac- 
ceptable level of reliability, productivity,  and quality without an 
equivalent level of formality and logical precision. The logical ex- 
pression  practice  is  the  conceptual  foundation  for  other  software 
engineering techniques,  and helps develop familiarity with pat- 
terns of thought and notation found in software engineering litera- 
ture. 

Specifications in natural language often  prove difficult to check 
for completeness,  and design and implementation details  can  be 
easily and  unintentionally mixed with the specification of pro- 
cessing  requirements. But a compact  mathematics-based  notation 
(for example, sets  and  set operations)  can help define precisely 
what  is  required at a uniform level of specification. The  complete- 
ness of such a specification is more easily checked,  and  the  even- 
tual designs of specified objects  (such as sequential or direct-ac- 
cess files) and  operations (such as algorithms to  test  for  set mem- 
bership,  add  and  delete  members,  etc.) are not  influenced by 
premature  detailing.  Natural language explanations of the  set op- 
erations  can  then  be  added  for  clarity,  but with no requirement  to 
carry  the full burden of specification. 

program The program expression  practice defines requirements for  the 
expression textual language for recording program designs. This language is 

intended  to  support the following activities: 

Stepwise design of programs with correctness verification. 
0 Effective communication among users, designers,  and devel- 

0 Reading, studying,  and  group reviewing of program designs. 

The  use of a design language helps to institutionalize the design 
process  itself, so that design becomes a standard  project  activity, 
with its own intermediate work product between thought  and 
code.  For  designers,  there is time to schedule design progress, 
and  for  managers  there is visible evidence of that  progress.  The 
problem of “ad  hoc design in code” is superseded  by  a  new me- 
dium and methodology for  creating  and reviewing the logical 
structures of a  software  system  prior to implementation. 

A definition of the  Process Design Language (PDL) is maintained 
in an FSD bulletin, with a formal  control  board,  as  an  example 
language that satisfies the  requirements of the  program  ex- 
pression  practice. PDL is an  open-ended specialization of natural 

opers. 
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equivalent flowcharts;  the  structures are delimited by keywords 
shown in boldface, with parts  indented  for readability in larger 
contexts.  In  their effect on  data,  each of these  single-entrykngle- 
exit  structures  can  be precisely described by a mathematical 
function  that defines input  and  output  characteristics,  but  de- 
scribes nothing of internal  operations.  This  function is known as 
the program  function of the  control  structure. 

In addition to control  structures, PDL outer  syntax  provides high- 
level data  structures, such as  queues,  stacks,  sets,  and se- 
quences,  together with conventions  for  their  access. 

Logical  commentary, delimited in PDL programs by square  brack- 
ets, is an important  part of the design language. One  type of  logi- 
cal commentary,  known  as action or function  commentary, is 
used to record  program  functions, as shown in Figure 1. Function 
commentary  can  precede a control  structure  to define its func- 
tion,  or  be  attached  to do, then, else, etc., keywords to define the 
function of the corresponding dopart,  thenpart,  elsepart,  etc. 
Function  commentary  makes program designs self-documenting 
by recording intermediate  abstractions in the design process. 
These  abstractions make use of the  expressive  forms of the logi- 
cal expression  practice.  The result is designs that  can  be  read  and 
understood at  any level of detail. 

PDL outer  syntax program structures permit designs to  be orga- 
nized into  hierarchies of small structured programs called seg- 
ments. Each  segment  is delimited by keywords proc and corp and 
is of limited size (usually a page or less of text) and  complexity. 
Segments are invoked in the  hierarchy by statements of the fol- 
lowing form: 

run segmentname  (parameter list) 

Data  objects are  passed  to and from segments in parameter  lists, 
and local data, incidental to the  function of a segment, are de- 
clared within the segment itself. 

A miniature segment-structured  program design is shown in Ap- 
pendix B, along with logical commentary.  Here  function com- 
ments  attached  to proc keywords define the function of each seg- 
ment.  The  operation next on  the right of an assignment symbol 
(:=) reads a member from a sequence,  and on the left writes a 
member to a sequence. 

PDL programs are composed of individual control  structures 
whose nesting and sequencing define a hierarchy in an algebra of 

functions. This  function-theoretic  algebra provides the principal 
source of power in structured  programming, both by localizing 
and limiting the complexity of design decisions,  and  by providing 
a  natural plan of attack  for program reading, writing, and veri- 

I 438 LINGER IBM SYST J VOL 19 NO 4 1980 



fication. In program reading, a control  structure  can be mentally 
replaced by its  equivalent  function with no side effects in other 
parts of the  program.  The containing control  structure may then 
be likewise abstracted, and so on,  to arrive  at  the  function of the 
entire program. In program writing, functions  can be expanded 
into equivalent control  structures, again with no  side effects else- 
where, continuing in this fashion until the  entire program is elabo- 
rated in  sufficient detail. Similarly, in verifying program correct- 
ness, a desired  function and the  actual function of the corre- 
sponding control  structure can be compared  for  equivalence in a 
local setting, with no regard for  program  operations  elsewhere.  A 
PDL program is known to be correct when each of the  control 
structures in its  hierarchy  has  been  shown  to  be  correct. 

The program expression  practice  imposes no restrictions on PDL 
inner syntax, beyond requirements  for  precision,  conciseness, 
and  understandability.  Expressive forms for  inner  syntax must be 
chosen with the  subject  matter, level of design,  and intended au- 
dience  taken into account.  For  introductory design descriptions 
for  general  audiences,  natural language may  suffice. For  precise 
communication of designs among professional programmers, 
more rigorous,  mathematics-based  forms may be required. 

The program design practice,  depicted in Appendix A, specifies a 
function-based methodology for creating and recording correct 
program designs. As previously noted,  the methodology is based 
on a view of structured  programs  as  mathematical  objects whose 
program functions form  an algebra of functions.  The  starting 
point in the methodology is an intendedfunction , which precisely 
defines the  operations  on  data  that  a program is to  carry out. It is 
a  function definition in the mathematical sense,  but may be de- 
scribed in English, mathematics, programming notation, or  other 
expressive  form. The principal operation in the  practice is the 
replacement of an intended  function by an  equivalent  structured 
program. Thus, an intended function of,  for  example, 

z : = maximum of x  and y 

appearing  anywhere in an evolving program design, may  be re- 
placed by the following equivalent ifthenelse structure: 

[z := maximum of x  and y] 
if 

then 

else 

fi 

The ifthenelse carries  out  data  transformations identical to the 

X’Y 

z := x 

z := y 
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abstract  intended  function it replaces, which is carried  forward 
into  the  expansion as a logical comment. 

In application,  this  process  leads  to sfepwise  program  rejine- 
m e r ~ t , ~  in which a program design is developed  as  a hierarchy of 
control  structure  expansions, using the  replacement of functions 
by equivalent  expansions as  the only rule of construction.  A  re- 
finement step may consist of a single new control  structure,  or a 
miniature structured program composed of nested and sequenced 
control  structures.  Each refinement introduces new intended 
functions  for  subsequent refinement; resulting designs are hier- 
archical by construction.  Data  structures  are  also  introduced in a 
hierarchical manner  to  support  the local operations of each  re- 
finement. The program design segmenf is a  natural unit of refine- 
ment for  each  step. 

Stepwise refinement is not a mechanical process. A good under- 
standing of overall program and  data  structures, from top  to  bot- 
tom, is required before  recording segment designs.  The  best  de- 
sign  is not the first design thought  up,  but  the  last; many iterations 
may be required to  arrive  at a suitable design structure.  The  depth 
of design varies with complexity.  The design process is complete 
when further refinements become obvious. 

A  designer verifies the  correctness of each refinement step by 
demonstrating  that  the program function of the refinement is 
equivalent to its intended function. The program function defines 
the  actual  data  transformations  carried  out by the refinement; for 
correctness,  the program function must match the intended func- 
tion.  Thus, verification is a  two-step  process: (1) derive  the pro- 
gram function,  then (2) compare it to  the  intended function. The 
program function may be self-evident and correctness  determined 
by direct inspection. If the program function is not self-evident, a 
simpler design should be considered.  Otherwise, verification 
techniques with  sufficient rigor to determine  correctness must be 
applied. 

The program function of every segment should be defined in a 
logical commentary  function  comment.  Important  intermediate 
program functions should be recorded as well, including those  for 
program parts  that  have  been informally or formally proved cor- 
rect. 

The design of a small structured program in three refinement 
steps is shown in Appendix C .  Intermediate  functions  are  carried 
forward  into  successive  versions  as logical commentary,  to  docu- 
ment the design amid its detailing. Note  the use of design lan- 
guage multiple  assignments of the form a,b : = c,d with meaning 
“compute values c  and  d  and assign them  to  a and b, respec- 
tively. ’ ’ 
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The program design verification practice defines methods to sub- program 
stantiate  the  correctness of program designs. Verification also design 
assists in designing programs whose  correctness is self-evident verification 
and in detecting logical errors, if any, in both  intended  functions 
and their corresponding program designs. Proofs may be  carried 
out  at either  a  formal,  recorded  level,  or  at  an  informal, un- 
recorded level of mental  analysis. 

A program design or design part is proved to be correct by prov- 
ing that all its control  structures  are  correct.  The  Correctness 
Theorem4  summarizes  function-theoretic proof requirements  for 
the  control  structures of PDL. A  control  structure is proved to be 
correct by proving that its intended function is equivalent  to (or a 
subset of) its program function. This demonstration is an  intrinsic 
part of the  stepwise refinement process, so that program designs 
are  both refined and shown  to be correct in steps of manageable 
size.  Formal proofs of correctness based on  the  Correctness  The- 
orem utilize systematic  derivations and logical analysis to  deter- 
mine program functions of control  structures  and  to  compare 
them  to intended functions.  Formal proofs are recorded using a 
special proof syntax. Recording is important  because  formal 
proofs often contain insights not found in the program designs 
that are useful for  subsequent design review and modification. 

A miniature illustration of a formal proof for  a PDL sequence  pro- a  proof 
gram design is shown in Appendix D. Part  A defines the  intended example 
function f of the  sequence,  read “assign the values of y and  x  to x 
and  y,  respectively,”  that  is, exchange x  and y. 

Part B is a sequence program composed of three PDL assignment 
statements (Sl,  S2, and S3). The  Correctness  Theorem  states  that 
to be correct,  the  intended  function f must be equivalent  to (or a 
subset of) the program function of the  sequence,  say  p.  The  pro- 
gram function of a  sequence program is computed by function 
composition. In this case,  three  functions  are involved (composi- 
tion denoted by “0” symbol) as follows: 

p = s3 0 s2 0 s1 
That  is,  compute S1 output  data values from S1 input,  then S2 
output  from S2 input (equivalent to S1 output),  then S3 output 
from S3 input (equivalent to S2 output).  The program function 
defines S3 output in terms of S1 input. 

Part C is the proof itself.  The program function of a sequence 
program is derived by means of a  systematic trace  table with a 
numbered row for  each  assignment,  and  a column for  each  data 
item assigned (in this case x  and y). Each  table  entry is an  equa- 
tion that relates values before  the assignment to values after the 
assignment.  For  example,  the first row defines x, (the value of x 
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after the first assignment) as x, + yo (values  before  the first as- 
signment) and also defines yl = yo, that  is,  y is unchanged by the 
assignment. 

Once the  trace table equations  are filled in, it is a simple matter to 
derive  the final values of x  and y (after the  third assignment), i.e., 
x3 and y3, in terms of the initial values (before  the first assign- 
ment), i.e., x. and yo. As an  example, if we write 

x3 = x, - Yz 
and  substitute  expressions as follows: 

x3 = x, - (x1 - Y,) 
- y1 
- Y O ?  

- 
- 

the final derivations  for  x  and y are 

x3 = yo and y3 = xo. 

Therefore,  the program function  p is x,y : = y,x. This  function is 
equivalent to  the intended  function,  and  the program is indeed 
correct.  The proof has  been  recorded  for  later  study  and  analysis. 
Proofs for  alternation  and  iteration  control  structures  can be more 
complex than  the  sequence  example,  but  the logical procedures 
to be followed in each  case  are known. 

Informal proofs  are  carried  out by asking and answering correct- 
ness questions that verbalize the  correctness  conditions of the 
formal proofs for  each  control  structure. Informality does  not 
connote  a  reduction in rigor;  the  correctness  conditions to be 
proved  are identical, whether formal or informal techniques are 
applied. 

Systematic  design  practices 

data The  data design practice specifies methodology for designing 
design abstract  data  objects  and  operation^.^^ Data  abstractions  provide 

a high-level design framework,  and  help  keep  the design process 
manageable because  the  designer  deals with fewer  concepts  at a 
time. Design in terms of abstractions  also  permits  changes in 
data  representations  to  be made with minimal effect on  the ab- 
stractions  themselves. 

Data types provide a basis for  expressing data  structures  and  the 
operations  and  tests  that are permissible for  those  structures.  The 
concept of data  types  can be applied repeatedly by stepwise re- 
finements that  introduce  and  focus  on  only a few  structural  and 
operational  ideas at a  time.  Thus,  data  types permit very-high- 
level data  structures  and  operations  to be expressed in a form that 
the  designer  can refine into  successively lower-level structures 
and  operations, finally reaching an implementable level. 
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A data  type is defined as a set of data  objects  and a set of opera- 
tions and  tests among those  objects. A scalar  data  type defines 
data  objects with no usable internal structure  or  parts. A struc- 
tured  data  type defines objects  that  are data  structures  whose 
parts  are  objects of other  data  types, scalar or structured,  even 
possibly of the  same  type. 

Structured  data  types  permit  stepwise refinement by successive 
replacement.  In  a refinement step, a  scalar data  type is replaced 
by a  structured  data  type, introducing additional instances of 
scalar data types.  The refinement process  continues in this  fash- 
ion until the  data  types of the programming language at hand have 
been reached. In parallel,  the  operations  and  tests of the original 
scalar data type  are redefined in terms of more detailed opera- 
tions  and  tests in the  structured  data  type.  For  example, a matrix 
of complex numbers,  regarded as a scalar data  type in a high-level 
design,  can be expanded to a pair of real numbers.  These num- 
bers are then  expanded to a  pair of integers (exponent,  mantissa). 
At each  step, operations  and  tests  on  the  data are also reex- 
pressed. 

In  addition  to  data design techniques,  this  practice also specifies 
expressive  forms  for defining data  organization.  The  detailed  or- 
ganization of data is often  expressed in natural language or 
graphic  descriptions of formats, field layouts, word boundaries, 
etc.  Data  organization,  however,  can be expressed with greater 
clarity using mathematical techniques,  such as formal grammars, 
regular expressions,  and  recursive formulas. These  techniques 
emphasize  hierarchical  patterns in data  organization,  and  provide 
a structural  framework  for  the design of programs  that  process 
the  data. 

The modular design practice specifies a methodology for design- 
ing the  synchronous logic of software systems. Modular design is 
the principal means for  hierarchical decomposition and organiza- 
tion,  once an overall  hardwarehoftware  system design has been 
c~mpleted.”~ It makes use of techniques  described in the program 
design and program design verification practices,  and  introduces 
two  additional  concepts: state  machines and modules. 

Briefly, a state machine is a mathematical function  that  can be 
used to specify programs  and  data. A state machine m is defined 
in terms of input, output,  states,  and  transitions,  as follows: 

m = {((input,  state),  (newstate,  output))} 

Each  member of the  set defines a transition from a  current  state 
and  an input to a new state  and  an  output (possibly null). In soft- 
ware  terms,  the  state machine m  corresponds  to program opera- 
tions  on  input and state  data  to produce new state  data  and  out- 
put, where  the  data are regarded as persistent, that  is,  data that 
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survive (i.e., stored)  between program executions.  A module is 
composed of a specification part and a design part. An intended 
state  machine is the specification part of a  module, just  as  an 
intended  function is the specification part of a program. The  de- 
sign part of a module is normally composed of a single structured 
program paired with persistent  data. 

The  use of modular design is intended to  control complexity by 
organizing a design into  a  hierarchy of modules,  where  each mod- 
ule hides the implementation of data  and  operations from module 
users. Modular design also maintains data integrity by defining 
the  persistent data of each module to  correspond  to a state of the 
intended  state  machine,  and by permitting access  to those  data 
only through  the module program. This also  ensures  complete- 
ness of the design. The intended  state machine idea is a unifying 
concept  that helps to  determine  that  a  collection of program oper- 
ations should be grouped  into  a module and that all required oper- 
ations on  the  data of the module have been defined. That is,  the 
module carries  out  the  correct  data  operations in every  possible 
circumstance. 

Modules result in reduced complexity in system design because 
they  abstract  out  (or hide) details of representation,  residency, 
and  format of persistent data, and  the algorithmic details of data 
processing. Because they  provide an  abstract view of data  to their 
users, modules are  also  referred to  as data  abstractions. 

An intended state machine is a precise specification for  the  func- 
tion of a software  system or system part, such as a subsystem  or 
common service.  Intended  state  machines  can define services  to 
module users (including definition of interfaces  for invoking those 
services) at all levels of decomposition in a  software system, 
without getting into  details of program design and  data organiza- 
tion and  storage. For example, an  entire  synchronous text pro- 
cessing  system  can  be specified in terms of an  intended state ma- 
chine, as can  its individual subsystems,  such as text update,  text 
retrieval, file maintenance, etc.,  as well as each of its low-level 
common  services,  such  as  directory  management,  user  status 
management,  space  allocation, etc. 

The module program is the sole interface for module users and 
provides  the only permissible access  to  the persistent data of the 
module. The  program may reference the module programs of 
other modules in carrying  out  its  operations. (In implementation, 
a module containing multiple programs  accessible by users may 
be  a  reasonable  alternative,  despite the complexity introduced by 
multiple interfaces.)  A module program’s  inputs  and  outputs  cor- 
respond  to the  inputs  and  outputs of the intended  state  machine. 
Its operations  correspond to  the  state transitions,  and  its  per- 
sistent  data  correspond to a state of the intended state machine. 
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Figure 2 A module-structured design 
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The persistence of data in a  module-structured  system  ranges 
from permanent  data  base  data in a resident  module, which may 
survive indefinitely, to local state  data of transient  modules, 
which may survive only momentarily between  successive in- 
vocations within an  active  job or task. 

Modular design is carried  out by stepwise  module  refinement of 
intended  state  machines  and  their  designs.  The  process begins by 
describing an intended  state  machine, which is then elaborated  as 
a module design consisting of a module program,  persistent  data, 
and  possible  services defined by additional  intended state ma- 
chines.  The refinement continues in this  manner until the  lowest- 
level modules have  been designed. This design process is a direct 
extension  to  stepwise refinement of intended  functions  into  pro- 
grams  that may reference additional intended  functions. 

Specifically, the first step in a module design is the definition of its 
persistent  data  and  the  intended  function of its program. Any ab- 
stract  objects  (such as sets) in the  state of an  intended state ma- 
chine  are  elaborated  into  persistent data using data refinement 
techniques. The intended  function is elaborated using stepwise 
program refinement techniques.  In  this  process,  opportunities 
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correctness 
verification 

may arise  to  organize data and  operations  into new intended  state 
machines at a lower  level,  to  be likewise implemented as mod- 
ules.  Note that during refinement, modules containing no per- 
sistent  data may arise.  For example, it makes  sense to group sci- 
entific subroutine  operations  into a module,  even  though  they 
typically reference  no  persistent data. 

A module program  undergoes  stepwise refinement into a local hi- 
erarchy of program  segments,  any of which may run  the  programs 
of other modules to provide  access to their  persistent data.  Thus, 
a  module-structured  system is composed of a hierarchy of mod- 
ules with program refinements defining connections  between lev- 
els in the  hierarchy. Figure 2 depicts an imagined module hier- 
archy in graphic  form. 

The module defines a module sfare machine' as all possible  execu- 
tions of its program on input and  persistent  data,  just  as a pro- 
gram defines a program function as all possible executions on 
input.  A module is  correct if its  intended  state machine is  equiva- 
lent to (or a  subset of) its module state machine. At each refine- 
ment step, a designer must demonstrate  that  this  equivalence 
holds. Much of the effort in the  proof involves proving that  the 
module program correctly implements its  intended  function.  This 
should be done by direct  inspection if possible,  otherwise by veri- 
fication techniques of sufficient rigor, as described in the program 
design verification practice. If abstract  data  objects  and  opera- 
tions  are  used in the intended  state machine description  and  then 
refined into  more  complex  data  objects  and  operations in the 
module,  correspondence  between  the levels must be demon- 
strated.  Finally, it must be  shown that  the correct  persistent  data 
have  been identified. 

Many operating  systems  and languages do not  provide  adequate 
implementation support  for  data  abstraction by modules. For ex- 
ample,  scope  rules in many languages require  that files for  per- 
sistent  data  intended to  be hidden in a module must actually be 
declared in a higher-level module. 

Concluding remarks 

The  software  design  practices  summarize technical principles  for 
creating  software  system designs out of requirements. And they 
define a  series of development  checkpoints  for  technical manage- 
ment as well, in terms of specific intermediate  work  products 
along the way from  requirements to design.  These  work  products 
record a progression of reasoning and  analysis  that  permits  con- 
tinual review and  improvement of designs.  The  practices legiti- 
mize these  work  products and sanction  their  development.  Each 
work  product  can be allocated  and managed for  cost  and  quality, 
so that  the  state of development is never in doubt. 
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next(output) : = x 
od 

COrP 
proc positive(x) [convert positive x odd or even  into 1 or 01 

var x: integer 
while 

x >  1 
do 

x : = x - 2  
od 

corp 

proc nonpositive(x) [convert  nonpositive x odd or even 
into  1 or 01 

var x: integer 
while 

x < o  
do 

x : = x + 2  
od 

corp 

Appendix C: A structured  program in three  refinement  steps 

step 1: 
proc maxmin(x,y,t,n) 

var x,y,n: integer 
var t: array( 1. .n) of integer 
x,y := max(t(l:n)), min(t(1:n)) 

COrP 
step 2: 

proc maxmin(x,y,t,n)  [x,y := max(t(l:n)),min(t(l:n))] 
var x,y,n: integer 
var t: array( 1. .n) of integer 
x,y := t(l), t(1) 
[x,y := max(x7t(2:n)),min(y,t(2:n))] 
for 

do 

od 

i =   2 t o n b y  1 

x,y := rnax(x,t(i)),min(y,t(i)) 

cow 
step 3: 




