The management of software engineering
Part ll: Software engineering program

by D. O"Neill

The breadth of applications in industry today stresses software
development and has resulted in a diversity of design tech-
nologies, computer products, programming languages, support
software tools, and documentation requirements. Moving from
one application area to another can require major adjustments by
both technical people and management. These time- and energy-
consuming adjustments introduce more diversity and further
complicate an already complex process.

It is well known that software costs associated with computer
system developments have been increasing and are becoming a
critical cost element in these developments.'”"® Budget data in-
dicate that software costs may become ninety percent of system
development costs by 1985. Yet the development of reliable soft-
ware on schedule within cost has been and remains a significant
management challenge.'®*® At the same time, hardware manufac-
turing costs are being reduced by orders of magnitude. These
trends are introducing new levels of complexity into software de-
velopments as demands for system performance and reliability
are requiring greater precision in software design and develop-
ment. Potential solutions to these problems have been surveyed
by the IBM Federal Systems Division, with particular attention to
recent7 (lifzvlezlgopments in the academic and professional commu-
nities.”

The result of our research into these new developments has been
to make these developments teachable and practical in the dis-
cipline of software engineering. Software engineering has been
defined as the systematic design and development of software
products and the management of the software process. The soft-
ware engineering discipline combines design topics resulting from
university influences with the software development and manage-
ment expertise of industry. Both perspectives are necessary to
support a software engineering program that blends technology
advances with practical innovations.

The software engineering program of the IBM Federal Systems
Division demonstrates a commitment to the improving of the soft-
ware development process beyond the software technology in-
novations of structured programming, top-down development,

Copyright 1980 by International Business Machines Corporation. Copying is per-
mitted without payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright notice are in-
cluded on the first page. The title and abstract may be used without further per-
mission in computer-based and other information-service systems. Permission to
republish other excerpts should be obtained from the Editor.

IBM SYST J & VOL 19 ¢ NO 4 o 1980 O’NEILL

Figure 1 Software engineering practices organization

SOFTWARE DESIGN

SYSTEMATIC PROGRAMMING
SYSTEMATIC DESIGN
ADVANCED DESIGN

SOFTWARE DEVELOPMENT SOFTWARE MANAGEMENT
TECHNICAL REVIEWS
COST MANAGEMENT

PROGRAM MANAGEMENT

CODE MANAGEMENT
INTEGRATION ENGINEERING

and chief programmer teams. Following the advances in hard-
ware technology, this program is designed to teach the practice of
higher levels of precision in software design and develop-
ment."****® The program addresses current trends in the business
environment that demand software product quality and reduced
software costs.

The software engineering program combines development of
comprehensive practices, education in such practices, and devel-
opment of necessary support tools. The primary thrust of the
program is the preparation of uniform software engineering prac-
tices that apply modern design, practical development, and
proven management methods. Software engineering practices are
introduced through formal education to provide a broad base of
professional programmers who are able to produce software sys-
tems utilizing these disciplines. Uniform tools are provided to
support the uniform practices. Process assessment has also been
introduced to ensure that this program is being followed and to
measure its effectiveness.

A comprehensive collection of technical and managerial practices
is emerging from the combination of successful experience and
university research. These represent the best of the current un-
derstanding of the software engineering process and a proven
way of designing, developing, and managing software. Each prac-
tice defines specific work products that serve as visible inter-
mediate steps in the process. The application of the design tech-
niques produces modular designs and structured programs that
are reliable and efficient as well as adaptable to change. Software
development utilizes high-level languages and programming sup-
port library hierarchies to manage code produced in a natural se-
quence of phased increments. Management methodology pro-
vides plans and controls that ensure cost and schedule visibility
of the process, as well as technical performance measurements of
the emerging product. The relationships among software engi-
neering design, development, and management practices are
shown in Figure 1 and are discussed later in Parts III to V.

O'NEILL IBM SYST J VOL 19 @ NO 4 e 1980

The software design practices introduce advanced software tech-
nology including systematic programming, systematic design,
and advanced design. Systematic programming practices involve
logical and program expression for recording designs, program
design through stepwise refinement, and program verification
using formal proof of correctness, as well as less formal methods.
Systematic design practices cover data design with data types and
structures, and modular design using state machines and mod-
ules. Advanced design practices cover concurrent design includ-
ing synchronization and real-time considerations, and software
system specification using state machine methodology.

Software development practices include code management and
integration engineering. Code management ensures that software
is uniform with respect to programming language usage, coding
standards, and conventions. This also includes software system-
building procedures and covers computer product support soft-
ware and the software development environment. Integration
engineering introduces procedures for software integration,
incremental software development, and interface specification
management. It also covers simulation and performance mea-
surement software.

Software management practices include technical reviews, cost
management, and program management. The technical reviews
are product based for the completion of each work component
of the software development life cycle. Cost management in-
cludes the practices for process and design-to-cost methodology,

and program management is designed to improve the visibility of
the software process through more effective plans and controls.

Software development life cycle

A set of activities has been defined that describes the software
process from system definition through operational support. The
activities that make up the software process are further defined in
terms of work components that identify the tasks to be per-
formed, as shown in Table 1. These activities portray software in
the enlarged perspective of the full life cycle as viewed by the
customer, and provide the basis for effective management. The
activities may overlap in time, but each must be scheduled for
completion prior to subsequent dependent activities. Many devel-
opments call for performance in all activities of the life cycle,
whereas others may involve only certain ones. Work components
have specific completion criteria in the form of work products that
are subject to technical review.

IBM SYST J e VOL 1% @ NO 4 o 1980 O’NEILL

Table 1 Software life-cycle activities

Activity

Work components

System definition

Software design

Software development
Software system test
System and

acceptance test

Operational support

Software requirements definition
Software system description
Software development planning

Functional design
Program design
Test design
Software tools
Design evaluation

Module development
Development testing

Software system test procedures
Software integration and test

System test support
Acceptance test support

System operation support

Training
Site deployment support

In many projects, support activities that are required to produce a
work product may be collected together from an organizational or
cost accounting viewpoint into a general support function. Typi-
cally, this includes project management, software configuration
management, software quality assurance, software cost engineer-
ing, administrative centers, technical publication,” financial man-
agement services, and data management. Software engineering
practices apply across the full life cycle. The correspondence be-
tween software engineering practices and the life-cycle activities
is shown in Table 2.

System definition includes definition and analysis of the software
system requirements, establishment of a software system de-
scription, and initiation of the software development planning
necessary to proceed with further development of the software
system. The software system requirements are a record of the
complete system capability, including both the software and the
environment in which the system is to operate. Because require-
ments documentation is expressed in natural language and may
lack precision, a description that is produced for the software sys-
tem only is prepared in a precise, detailed, succinct, and suf-
ficient manner using prescribed methods of expression. The soft-
ware system description must be traceable to the requirements
document and must maintain semantic correspondence with that
document. The initial software development plan is prepared on
the basis of the software system description and includes cost
management planning, schedules and external dependencies, and
resources of both people and machines.

O’NEILL IBM SYST J « VOL 19 & NO 4 & 1980

Table 2 Practices and activities relationships

Life cycle Design Development Management
activities

Advanced Systematic Systematic Code Integration Technical Cost Program
design design programming management engineering reviews management management

System . . .
definition
Software . .
design
Software
develop-
ment
Software
system
test
System and
accept-
ance test
Operational
support

Software design includes conversion of the software system de-
scription into a design, design evaluation, preparation of test de-
signs, and production of software tools. Functional designs are
composed of module designs produced according to systematic
design practices, and program designs are composed of struc-
tured programs produced from the module designs according to
systematic programming practices. The preparation of test de-
signs is performed using integration engineering practices.

The software development activity includes module development
and development testing. Module development is the final elabo-
ration of design details according to systematic programming
practices and the preparation of source language statements that
can be translated into executing code. These statements comply
with their program and module designs and are produced in ac-
cordance with code management practices. Module testing in-
cludes test procedure executions to ensure that an implemented
module complies with the specification of the software system
and is conducted according to integration engineering practices.

Software system testing includes the preparation of testing proce-
dures followed by software integration and testing as specified in
the integration engineering practices. This is to ensure that the
implemented software system complies with specification of the
software system and the code management practices.

System and acceptance testing ensures that the software system
complies with all project-deliverable objectives. This testing also
verifies that all deliverable items exist and all reviews have been
successfully completed. Code management practices apply dur-
ing this activity.

IBM SYST J ¢ VOL 19 « NO 4 o 1980 O’NEILL

Figure 2 Software engineering

SOFT-
WARE
ENGI-

program organization

SOFTWARE
ENGINEERING
COUNCIL

NEERING
AND
TECH-
NOLOGY

ORGANI-
ZATION

SOFTWARE
TECHNOLOGY
STEERING
GROUP

Operational support includes system operation support, site de-
ployment support, and training; code management practices ap-
ply here as well. The product of a project is typically delivered to
a customer who operates it with minimal post-delivery assist-
ance. Customer procedures for change control, system evalua-
tion, and so forth apply during the operations stage of the life
cycle.

Software engineering program implementation

The main thrust of the software engineering program is to im-
prove product quality and reduce cost by implementing consis-
tent practices. A successful operation of the program also re-
quires education, tools, and measurements. Education in modern
techniques gives personnel an understanding and appreciation of
the methods defined in the practices. Tools that support these
methods ensure their effective utilization and rapid adoption. The
application of these methods and realization of their benefits re-
quire continuous assessment and feedback of results.

The software engineering program requires continuous communi-
cation between the business areas responsible for contract per-
formance and the Software Engineering and Advanced Tech-
nology group, which is the divisional organization responsible for
technology advances. Two special communication channels,
shown in Figure 2, have been established for this purpose.

A Software Engineering Council provides policy guidance in soft-
ware operations and is responsible for setting the direction of the
software engineering program. The Council, which meets quar-
terly, is composed of senior software executives. A Software
Technology Steering Group, which sponsors and reviews the
software engineering practices, formulates software technology
strategy. The latter group also generates the software investment
programs. The steering group meets monthly and is composed of
representatives from the business areas and the Software Engi-
neering and Technology Group. They are responsible for formu-
lating the software engineering practices to reflect a combination
of the best current business usage and practical new ideas from
the computer sciences. Participation of the business areas en-
sures their commitment to the program while at the same time
providing the technologists with practical insights and project
constraints.

A software engineering curriculum has been designed around
seminars and workshops, as illustrated in Figure 3. Three prereq-
uisite self-study courses and four instructor-taught courses are
available in this curriculum, which was begun in October 1977
and is to be completed in 1981. Their common objective is to

O’NEILL IBM SYST J ¢ VOL 19 e NO 4 e 1980

Figure 3 Software engineering education curriculum

PREREQUISITE TESTS

PROCESS

DESIGN PROCESS
LANGUAGE DESIGN
LANGUAGE

STUDY

SYSTEMATIC
DESIGN
WORKSHOP (SDW)
CONCEPTS
SEMINAR

SOFTWARE
MANAGEMENT
WORKSHOP
{SMW)

SYSTEMATIC SYSTEMATIC
PROGRAMMING ALGEBRA ALGER PROGRAMMING
WORKSHOP SELF RA WORKSHOP

CANDIDATE STUDY (SPW)

SYSTEMATIC
DESIGN
WORKSHOP
(SDW)

ADVANCED
DESIGN
WORKSHOP
(ADW)

LOGICAL

LOGICAL
Eé@ﬁ?ﬁ{g’\‘ EXPRESSION

BYPASS /

ANY OR ALL

*SELF-TEST

significantly improve the predictability of the software process
and the quality of the resulting product. The underlying technical
objective is to increase visibility and intellectual control over a
developing software product by the process of stepwise refine-
ment using standard conceptual models and a limited number of
basic control and data structures. The process calls for the suc-
cessive replacement of abstract designs with increasingly more
detailed designs that are known to be equivalent. The underlying
management objective is to provide complementary development
strategies, feedback mechanisms, and control techniques. Admis-
sion to these courses is arranged through Software Engineering
Program Coordinators in each business area. Table 3 summarizes
information on the expected audience, prerequisites, and dura-
tion of each course.

The three prerequisite self-studies prepare students to read the
professional literature and to communicate in the workshops us-
ing the language of mathematics and a software design language.
Prerequisite tests are administered by business area coordinators
in algebra, Process Design Language (PDL), and logical expression
(basic concepts and the notations of set theory and symbolic
logic).

A Systematic Programming Workshop (SPW) advocates a particu-
lar discipline for the design of sequential programs modeled on
mathematical functions. Designs are expanded from abstract
statements of a program’s intended function, using PDL, which is
a programming-like design language. At each step, a design state-

IBM SYST J ® VOL 19 @ NO 4 « 1980 O'NEILL

Table 3 Software education summary

Course Audience Prerequisites Duration

Self-study All programmers Programming Logical expression 10-15 hours
and analysts experience Algebra 1/2-1 hour
Process Design Language 6-10 hours

Systematic All programmers Algebra, 8 1/2 days
Programming and analysts Process Design
Workshop and others Language
(SPW) designated by Logical expression
management

Systematic Key programmers Satisfactory
Design and analysts completion of
Workshop and others Systematic
(SDW) designated by Programming
management Workshop

Advanced Software designers Satisfactory
Design and architects completion of
Workshop designated by Systematic
(ADW) management Design
Workshop

Software All software Satisfactory
Management managers and completion of
Workshop selected SDW or SDW
(SMWw) technical concepts
personnel seminar

ment is replaced by a simple function-equivalent program whose
components are simpler intended functions. By restricting these
replacement programs to a limited set of program structures, the

equivalence of successive versions of the design is more readily
verified.

A Systematic Design Workshop (SDW) extends the stepwise-re-
finement discipline of SPW to include the design of sequential pro-
grams with retained data, modeled on finite-state machines. State
machines provide for encapsulating collections of data, with ac-
cess limited to a fixed set of related programs. Concepts are in-
troduced that allow the designer to relate initial abstract represen-
tations of state data to later, more specific representations.

An Advanced Design Workshop/Seminar (ADW/S) extends the de-
sign concepts of SDW to include the design of concurrent systems,
modeled on networks of communicating state machines. The de-
signer is asked to view the overall system as a state machine, and
then to partition state data to define a network of state machines.
Each input is identified with a path through the network. Several
options for introducing and controlling concurrency within this
framework are discussed. The approach is applicable to a wide
variety of hardware configurations.

O’NEILL IBM SYST J @ VOL 19 e NO 4 ¢ 1980

The Software Management Workshop (SMW) includes a review of
concepts of FSD’s functional organization, and the specific role of
the software engineering function. The primary emphasis is on
the principles underlying FSD’s software standards and practices,
in the context of management of the software product, the techni-
cal methodology, the organization, the development environ-
ment, and the customer.

Education has been carried out by a small group of instructors
drawn from the professional programming cadre in FSD. This was
a departure from the traditional method of using full-time educa-
tors who have less actual programming experience. The courses
themselves represented new offerings, much more technical than
most internal training programs. The level of difficulty was also
high, for job-related required courses. Nevertheless, student
achievement has been excellent, and course evaluations by the
students have been highly favorable.

A principal software investment priority is the development of
the tools needed to reinforce software engineering and establish
an environment of modern methods. Current emphasis is on two
tools, a system development laboratory and a programming sup-
port library, because of their applicability to multiple facets of the
program.

The software development laboratory establishes a more com-
plete and uniform programming environment. The laboratory in-
cludes interactive, batch, and dedicated development facilities
for design creation, program generation, simulation, and target
machine execution. The implementation of this discipline uses
proven off-the-shelf development software tools that are in-
tegrated to address the software development process. This ap-
proach isolates validation of system design to the software design
activity, implementation to the software development activity,
and software-hardware interaction to the system test activity.
The laboratory approach provides the system developer with a
single interface for the entire software development process.

The integrated development discipline uses commercially sup-
ported large-scale operating systems to aid in the reduction of
life-cycle costs. With time-shared resources, small projects and
large projects alike can use the total technology without incurring
the expense of a large dedicated resource.

The programming support library helps organize and control a
programming project. It serves as the means of communication
among development personnel and forms a standard interface be-
tween programmers and the system development laboratory. The
programming support library is designed to provide a complete
hierarchical library facility. As such the library supports the code

IBM SYST J @ VOL 19 ® NO 4 ¢ 1980 O’NEILL

management and machinability needs associated with process de-
sign language during design, and it supports programming lan-
guages during module development, software integration, and
product release. Thus this library is a key element in the appli-
cation of software engineering technology. It is a collection of
computer programs, disk-resident libraries, and operating proce-
dures that provide facilities for programmers to store, edit, com-
pile, and execute programs under development. Typically, the li-
brary produces summary statistics and analyses of such activities
as storing, compiling, and executing programs.

Software engineering process assessment

One of the best ways of estimating future software development
efforts and schedules is to rely on past experience. Yet few man-
agers have access to recorded development data. A data base and
retrieval system that can be used by line management to retrieve
single-project development data as well as composite reports of
selected categories of software makes possible a comparison of
one manager’s experience with that of managers of comparable
efforts. The data base is also a source of information on software
development.®* In this role, it can support evaluations of the ef-
fectiveness of the software engineering program.

Individual projects may involve several categories of software, -
such as application, diagnostic, and support software. Appli-
cation software can be further broken down by such character-
istics as real-time signal processing, process control, and on-line
graphics.

Data are associated with specific life-cycle activities, each of
which is evaluated to determine key data parameters to be col-
lected. Quantitative data and, more subjectively, project success
judgments are included. The criteria for determining the per-
tinence of data are useful to software managers for characterizing
and estimating the size of software projects.

Concluding remarks

Recent advances in software technology have necessitated a
coordinated program involving people, tools, and practices. Edu-
cation through a rich curriculum of software engineering courses
is well underway. The development of tools that establish the
proper environment for good programming is in progress, and
software engineering practices are assembled and ready for use.

This program reflects an understanding of the software develop-
ment process. With a realistic assessment of traditional methods,

O’NEILL IBM SYST J e VOL 19 ¢ NO 4 e 1980

software engineering includes a comprehensive collection of
technical and management practices that can be applied today.
Beginning with software system requirements recorded in source
libraries, advanced techniques are now available to permit the
conceptual abstraction, modularization, and structuring of de-
signs that reduce complexity to manageable proportions and im-
prove the completeness and correctness of the resulting software
product. Modern development tools and uniform code manage-
ment practices support orderly code generation in high-level lan-
guages, with storage in hierarchical libraries from which patch-
free, quality source code products are delivered. Integration engi-
neering is emerging as a distinct organizational function with a
foundation of advanced technology. Management practices pro-
vide the methodology for balancing cost, schedule, performance,
and quality perspectives.

As a result, software product quality can be dramatically im-
proved by the routine application of modern design practices that
contribute directly to program correctness and error avoidance
through simplified and understandable designs. The manage-
ability of software can be improved through uniform practices
that govern plans, controls, and cost management, and through
technology innovations that greatly improve the visibility of the
software product for more effective management and control.
Productivity improvements result primarily from the improve-
ments in software product quality and the elimination or reduc-
tion of software errors. This reduces error detection and correc-
tion during testing. In addition to simplified designs, broader us-
age of higher-level programming languages and improved support
tools also contribute to productivity gains.

Taken together, the software engineering discipline is a broad at-
tack on the problems faced by the software community.?® By
emphasizing methodology and theoretical foundations, FSD has
attempted to establish a common level on which each individual
can build to the full extent of one’s own creative ability. The
benefit has been steady improvement in measured results over a
sustained period of time.

The author is located at the IBM Federal Systems Division, 18100
Frederick Drive, Gaithersburg, MD 20780.

IBM SYST J ¢ VOL 19 @ NO 4 o 1980 O’NEILL

431

