
Software engineering may be defined as the systematic design
and development of software products and the management of
the software process. Software engineering has as one of its pri-
mary objectives the production of programs that meet specifica-
tions, and are demonstrably accurate, produced on time, and
within budget. This paper in jive parts discusses the principles
and practices used by the IBM Federal Systems Division for the
design, development, and management of software.

The general principles of software engineering are set forth in
Part I , in which the author relates software engineering to the
wholejield of the system development process-system engineer-
ing, hardware engineering, software engineering, and system in-

' tegration. Presented briefly are overviews of the major aspects of
software engineering-design, development, and management.

Part 11, on the software engineering program, deals with the ar-
chitecture of the new discipline. Discussed is the underlying con-
cept of the software development life cycle. Based upon this foun-
dation are a series of formally documented practices that set
forth the specifics of software design, development, and manage-
ment methods, which are presented in this paper. Also presented
is an educational program whereby this discipline with its prin-
ciples and practices has been made teachable.

Part 111, on software engineering design practices, deals with ac-
tivities bounded by requirements dejinition on one side and pro-
gram implementation on the other. Three levels of design prac-
tices are defined, dealing with construction and verification of
software systems, modules within systems, and individual pro-
grams. At each stage, a new level of mathematical rigor andpre-
cision for creating and evaluating software designs is introduced.

Part IV , on software engineering development practices, dis-
cusses a methodology for translating designs into software prod-
ucts. The subject is treated under two main headings, code man-
agement and integration engineering. These are rigorous meth-
ods for building the parts and integrating them into the whole
software product that meets the design specifications.

Part V deals with the management of software engineering,
which is primarily the intellectual control of the whole software
engineering process. Intellectual control is brought about by a
technical review strategy, a cost management approach, and a
project environment for effective software development.

Copyright 1980 by International Business Machines Corporation. Copying is per-
mitted without payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright notice are in-

414 MILLS IBM SYST J VOL 19 NO 4 1980

It is one thing to talk about orderly software development, and
quite another to achieve it. The basis for this orderly control is
mathematical discipline, even though the problem being solved
by the software may not be mathematical. The key management
standards of software engineering in FSD are based on mathemati-
cal theorems about how programs can be structured, docu-
mented, and organized into larger systems, because without theo-
rems for bedrock, choices reduce to matters of management style
and individual experience.

The FSD Software Engineering Education which supports the
Program is highly mathematical for both managers and program-
mers. Set theory, logic, mathematical functions, and state ma-
chines play key roles in education, not for the sake of mathemat-
ics itself, but because practical experience has shown that that
level of precision is required in order to do more than talk about
orderly software development.

The present state of the FSD Software Engineering Program is
described in the accompanying papers.

“Software engineering program,” by D. O’Neill
“Software engineering design practices,” by R. C. Linger
“Software engineering development practices,” by M. Dyer
“Software engineering management practices,” by R. E. Quin-
nan

What is software?

Software began as a synonym for computer programs, but the
term has taken on a much more extensive meaning. The effective
use of computer hardware requires more than programs. It re-
quires well-informed users and human procedures for computer
operations, data entry, and program execution. These require-
ments call for instructions for humans of no less precision and
completeness than programs for the computers. Thus, operators’
guides, users’ guides, etc. become as important to a system oper-
ation as programs. Further, the users must understand well
enough what the computers do to correctly interpret their outputs
and intelligently prepare their inputs to meet operational objec-
tives. Thus, requirements and specifications of computer pro-
grams and systems are of vital importance to the users as well.

Although computers began as single units serving a single user at
a time, the rapid growth of multi/distributed processing systems
to serve multi/distributed users has greatly expanded the role of
software. Software is the logical glue that can hold many comput-
ers and digital devices of all kinds together in a coherent system,
which in turn interacts with many kinds of people-clerical, pro-

416 MILLS IBM SYST J VOL 19 0 NO 4 0 1980

fessional, staff specialists, and management-in the operation of
an enterprise.

As a result of the pervasive role of software in a multi/distributed
processing system, it seems proper to redefine the term software
from its usual meaning of single programs to mean logical doc-
trine for the harmonious cooperation of a system of people and
machines-usually many kinds of people and many kinds of ma-
chines. In such a system, the agents of action are people and ma-
chines, with the blueprints for their action supplied by software.
A human procedure is as important to the system as a machine
procedure. People have radically different instruction sets than
machines, including an operation called “use your common
sense,” but they have instruction sets just the same. The synchro-
nization of two people or a person and a machine is as important
as the synchronization of two machines, but people often supply
self-synchronization capabilities. Even “off the shelf machines”
have an analog in “people with presently available skills.”

Thus, software consists of operational requirements for a system,
its specifications, design, and programs, all its user manuals and
guides, and its maintenance documentation. Further, this whole
software complex needs to evolve as a consistent whole as the
operation evolves, as new hardware is added, and as new people
are added. That is, software is typically a set of logical blueprints
for the operation and use of a multi/distributed processing system
by an organization of people in its natural evolution over time.

What is software engineering?

Software engineering is a growing set of disciplines and proce-
dures for the dependable development and maintenance of soft-
ware, as embodied in the FSD Software Engineering Practices,
and discussed in Reference 1. For a wider perspective, we can
identify the following four definite functions in an overall system
development process, the relationships among which are illus-
trated in Figure 1.

Software engineering stands between system engineering and
system integration, accepting from system engineering the sys-
tem software requirements and resources, and providing system
integration with the software for meeting those requirements with
those resources. Thus the total software of a system is a joint
product of system engineering and software engineering, which
begins with a defined system purpose and a defined configuration
of hardware.

Of course, operating systems, compilers, and programming sup-
port systems all represent special and specialized software sys-

IBM SYST 1 VOL 19 NO 4 1980 MILLS

Figure 1 System development

SYSTEM
ENGINEER

HARDWARE SOFTWARE
ENGINEER

SYSTEM
INTEGRA

417

tem developments, and the disciplines and procedures of soft-
ware engineering apply fully to them. But we are usually more
preoccupied with application systems, which make use of such
support systems as extensions of the hardware.

The FSD practices classify the disciplines of Software Engineering
into the following three categories:

0 Design-system design, module design, program design, and
data design, all of which culminate in source code in one or
more compilable programming languages, as well as in linkage
editor, loader, and job control languages.
Development -organization of design activities into sustained
software development, selection, and control of design sup-
port facilities, code management, test, and software in-
tegration planning and control.
Management-work breakdown and organization proce-
dures, estimation, and scheduling of personnel and computer
resources required for software design and development,
measurement and control of software design and develop-
ment.

Software engineering design

Attention to the principles of software design has focused on
three distinct areas during the past decade and has resulted in an
abundance of useful and well-tested material on the following
subjects:

0 Sequential process control-characterized by structured pro-
gramming and program correctness ideas of Dahl, Dijkstra,
and Hoare,' H ~ a r e , ~ Linger, Mills, and Witt,4 and W i ~ - t h . ~ * ~

0 System and data structuring-characterized by modular de-
composition ideas of Dahl, Dijkstra, and Hoare,' Ferrentino
and Mills,798 and P a r n a ~ . ~ .

0 Real-time and multiple/distributed processing control-char-
acterized by concurrent processing and process synchro-
nization ideas of Brinch Hansen," Hoare," and Wirth."

Software design requires the integration of these three areas into
a systematic process, as discussed in Reference 13. These design
principles provide increased discipline and repeatability for the
design process. Designers can understand, evaluate, and criticize
each other's work in a common, objective framework. As pointed
out by Weinberg,14 people can better practice egoless software
design by focusing criticisms on the design and not on the author.
These design principles also establish the criteria for more for-
malized design inspection procedures that permit designers, in-

418 MILLS IBM SYST J VOL 19 NO 4 1980

spectors, and management to better prepare, conduct, and inter-
pret the results of periodic design inspections.

Software engineering development

Although the primary thrust of software engineering is embodied
in design, the organization and support of design activities into
sustained software development is an equally important activity,
as discussed in References 1, 15, and 16. The selection of design
and programming languages and their support tools, the use of
library support systems to maintain and monitor a design under
development, and the implementation of a test and integration
strategy will all affect the design process in major ways. The dis-
ciplines and procedures needed to sustain software development
must be scrutinized and chosen as carefully as design principles.

Intellectual control is the key to orderly software development. It
is made possible by a sequence of logically equivalent software
descriptions, beginning with high-level specifications and pro-
ceeding through successively lower-level specification refine-
ments until the level of source code is reached. Successive de-
scriptions can be baselined and validated to milestones, so that
the intermediate progress of software development is more vis-
ible to management. This activity of creating a sequence of more
and more detailed specification refinements of an initial specifica-
tion is the process of top-down development.

The intellectual control and management of design abstractions
and details is the basis for the development discipline. Design and
programming languages are required that can deal with procedure
abstractions and data abstractions, with system structure, and
with the harmonious cooperation of multi/distributed processes.
Library support systems are required that can handle the conve-
nient creation, storage, retrieval, and correction of design units,
and provide the overall assessment of design status and progress
against objectives.

The first guarantee of quality in design is in well-informed, well-
educated, and well-motivated designers. Quality must be built
into designs, and cannot be inspected in or tested in. Never-
theless, any prudent development process verifies quality
through inspection and testing. Inspection by peers in design, by
users or surrogates, by other financial specialists concerned with
cost, reliability, or maintainability not only increases confidence
in the design at hand, but also provides designers with valuable
lessons and insights to be applied to future designs. The very fact
that designs face inspections motivates even the most con-
scientious designers to greater care, deeper simplicities, and
more precision in their work.

IBM SYST J VOL 19 NO 4 1980 MILLS 419

Management from a software engineering viewpoint is primarily
the management of a design process, and represents an equally
difficult intellectual activity. While the process is highly creative,
it must still be estimated and scheduled, so that the various parts
of the design activity can be coordinated and integrated into a
harmonious result, and so that users and other functions of sys-
tem development can plan on this result. The intellectual control
that comes from well-conceived design and development dis-
ciplines and procedures is invaluable in this process. Without that
intellectual control, even the best managers face hopeless odds in
trying to see the work through.

To meet cost/schedule commitments based on imperfect estima-
tion techniques, a software engineering manager must adopt a
manage-and-design-to-cost/schedule process. That process re-
quires a continuous and relentless rectification of design objec-
tives with the cost/schedule needed to achieve those objectives.
Occasionally, a brilliant new approach or technique which in-
creases productivity and shortens time in the development pro-
cess may simplify this. But usually, the best possible approaches
and techniques have already been planned, and a shortfall or
windfall in achievable software requires consultation with the
user to make the best choices among function, performance, cost,
and schedule. The intellectual control of software design not only
allows better choices in a current development, but also stimu-
lates subsequent improvements in function or performance for a
well-designed baseline system resulting from the current develop-
ment.

In software engineering, there are two parts to an estimate-mak-
ing a good estimate and making the estimate good. The software
engineering manager must see that both parts are right in addition
to ensuring the right function and performance. That is not an
easy task and never will be, but there is help on the way, as de-
scribed in the companion articles and in the references.

ACKNOWLEDGMENTS
The authors thank FSD President John B. Jackson for giving them
as well as other developers and students of the software engineer-
ing program the leadership and means to implement this program.
We also thank James A. Bitonti for setting for us the goal of de-
veloping a written base of procedures for the educational program
and project compliance accountability.

The author is located at the IBM Federal Systems Division, 10215
Fernwood Road, Bethesda, MD 20034.

420 MILLS

