The development of interactive graphic application programs,
designed for fast response, high productivity, and moderate sys-
tem load, is difficult and time-consuming. Therefore, a structured
approach has to be employed using function distribution in sys-
tem design and application support program development.

This paper describes a comprehensive interactive graphic system
that provides an environment for development and execution of
graphic applications. It features an interactive graphic command
language, a hierarchical structure of system, semantics, and
storage, a set-oriented data concept, and library facilities.

A graphic interactive application monitor

Figure 1 Comparative aspects of
human intelligence

Definition of Human
Intelligence

e Prudence

e Comprehension
Perceptiveness
Judgment

o Adaptability
Learning ability

by J. H. Bleher, P. G. Caspers, H. H. Henn, and K. Maerker

Interactive computer graphics is a powerful productivity tool of
tremendous potential." A number of excellent workstation prod-
ucts now available on the market and a continuously improving
price/performance ratio of computer mainframes support the in-
troduction of computer graphics into more and more industries.

Significant efforts still have to be undertaken in system and appli-
cation software development to provide simplicity of installation
and ease of use for problem-solving graphic application systems.
Especially in smaller corporations and in branch offices where
trained personnel with programming skills are at a premium, the
decision to introduce graphic applications, among other consid-
erations, very much depends on the intelligence of the graphic
system offered.

Intelligence in this context describes how graphic workstations,
local or central mainframe processors, and system and appli-
cation programs support the dialogue between the user and his
graphic and associated alphanumeric data to do the job.

Copyright 1980 by International Business Machines Corporation. Copying is per-
mitted without payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright notice are
included on the first page. The title and abstract may be used without further
permission in computer-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor.

BLEHER ET AL. IBM SYST J @ VOL 19 e NO 3 e 1980

Figure 2 Intelligent graphic system

Man-machine interface

Adaptive interactive user language

Elements of
communication

Characters,
Words

Pointing

Semantic
relationship

Linear

Multidimensional

Sequential
time related

Parallel

environment related

User interface
Input devices

Alphanumeric
keyboard
{(Mnemonic)

Function
keyboard

Light pen

Cursor/crosshair
controlled by
Jjoystick,
tracking ball,

or mouse

(Menu)

Data tablet
(Menu)

User interface Alphanumeric Graphic
Qutput device display display

Intelligent graphic systems

The intelligence of a graphic system can be defined by

1. The available means of man-machine communication and in-
teraction, which is comparable to the power of comprehension
of a human being (Figure 1). Particularly useful is an inter-
active user language for communication with both alpha-
numeric information and geometric representations (Figure 2).
The physical user interface in the form of keyboards and
pointing devices allows input and manipulation of alpha-
numeric and graphic data, which are presented on displays.

. The support provided to the user in selecting the solution out
of ambiguous possibilities to solve his or her particular appli-
cation problem, which is comparable to elements of human
judgment. Examples are the selection of ambiguous inter-
section points of graphic elements, such as lines and circles,
and selection of curves and shapes out of a set.

. The dynamic adaptability of the workstation functions to indi-
vidual user needs through interactive programming, which is
comparable to the adaptability of human individuals. This
adaptability asks for predesign and implementation of a com-

IBM SYST J @ VOL 19 ¢ NO 3 ¢ 1980 BLEHER ET AL.

ease of use

Figure 3 Hierarchical system
concept

Architecture
User interfaces
System hierarchy

Structure
Interactivity
Modularity

U

Implementation
Hardware
Software

prehensive set of generic system and application functions
into the graphic system. It also requires graphic application
software to be written in an easy-to-use, application-oriented,
high-level language to allow extensions in a quick and simple
way, if necessary.

The intelligence of a graphic system is reflected by the way alpha-
numeric and graphic data are gathered, processed under user con-
trol, and presented to support different applications in changing
environments.

Intelligent graphic systems must be able to adapt easily to user
requirements to be immediately accepted for the jobs at hand.
Several system parameters are critical for ease of use:

1. The system response time tolerated by the user is related to
the complexity of the task performed, as perceived by the
user. The designer at a graphic workstation is not willing to
tolerate a long response time for seemingly trivial manipula-
tions while disregarding the computing power required for ex-
ecution but gladly waits for the results of an obviously pow-
erful transaction.

. Application-tailored data input procedures must be able to
avoid trivial repetition of commands. These commands must
be replaceable by user-definable command sequences and
macros (macroinstructions) with parameters automatically
referenced from tables. User-definable function keys and
prompting features must be available. Identification, selec-
tion, and manipulation of graphic entities must be possible for
single objects and user-definable aggregates. Dynamic graphic
object-dragging and rubber-banding features are highly in-
strumental in producing good interactivity. Menu techniques
are very helpful for tasks with complex procedures and for
casual users.

. Failure tolerance or fail-soft features are required to help the
user to recover from operating errors. Adequate failure mes-
sages, HELP facilities and user-initiated checkpoint/restart fea-
tures (ACCEPT/REJECT), must be available. System failures
must be covered by automatic facilities allowing different lev-
els of checkpoint/restart as required with data protection and
system recovery.

From these requirements it is quite obvious that only a well-struc-
tured system and a balanced combination of hardware and soft-
ware are able to achieve such a high degree of intelligence in a
graphic system.

A hierarchical system concept allows the necessary implementa-
tion flexibility (Figure 3). A modular system structure will pro-
vide well-defined interfaces and a high level of freedom for hard-

BLEHER ET AL. IBM SYST J @ VOL 19 e NO 3 e 1980

ware or software implementation of specific system or appli-
cation functions. Care has to be taken not to increase program
path lengths and system response time through inefficient parti-
tioning.

By these means the design of an intelligent graphic system can be
made generic and almost independent of technology (hardware).

A high degree of interactivity and short response time require at
least some local intelligence in the graphic workstation as fol-
lows:

. Transmission buffer for transfer of alphanumeric characters
and vectors from the computer mainframe to the workstation
with appropriate line protocols at different line speeds suit-
able for a particular application.

. Line and character generation logic supporting different line
types and line widths. Very advantageous is a loadable char-
acter generator for user-defined fonts and symbols.

. Image (refresh) buffer, required for vector or raster displays
but not needed for storage tubes. For storage tubes with
write-through capability, the refreshing of a limited number
of vectors can be accomplished directly from the transmis-
sion buffer.

. Interactive cursor/light-pen support.

. Address calculation logic to support relative vectors for dy-
namic image manipulation (shape dragging, rubber-banding)
is highly desirable.

There are other functions, which can be located either at the
workstation or at the computer mainframe depending on the in-
teractivity required and the workstation price justified:

6. Support of high-level graphic objects like circles and conic
sections.
7. Coordinate transformation logic or programs for shift, zoom,
rotate, pan of graphic images.
. Logic for identification of graphic objects associated with
pointing information.

The central intelligence of the host computer will handle less
time-critical functions:

9. Complex alphanumeric and graphic input processing.

10. Functions to reformat, transform, and subset graphic data en-
tities for manipulation and display.

11. Application programs.

12. Fail-soft features (checkpoint/restart).

13. File handling and data base support with access authorization
and multiuser access control.

IBM SYST J & VOL 19 ¢ NO 3 & 1980 BLEHER ET AL.

structural
requirements

The boundaries between these groups are flexible and closely re-
lated to performance and price of available graphic workstations
and computer mainframes. Therefore, the system structure must
be modular, such that the distribution of functions between com-
puter mainframe and workstation can be optimized.

Graphic interactive application monitor

With the above requirements of an intelligent graphic system in
mind, a graphic program and programming system, the Graphic
Interactive Application Monitor (GIAM),” has been developed,
running on System/370 computer systems that support IBM 3277
GA workstations (Figure 4). GIAM is based on the operating sys-
tem VM/CMS (Virtual Machine/Conversational Monitor System),
using VS APL as the implementation language.

GIAM contains two program packages providing two different lev-
els of support:

. BGSS (Basic Graphic Support System) handles alphanumeric
and graphic input and display and provides some basic graphic
interactive support functions.

. BIGAM (Basic Interactive Graphic Application Monitor) is
based on BGSS and supports complex interactive application
functions and provides a high-level interactive graphic com-
mand language interface to the user.

Both program packages are designed for easy personalization of
specific application requirements by the user and for fast (inter-
active) execution of application functions. The hierarchical sys-
tem structure contains library services on various levels.

The user interfaces are simple, allowing extensions to new sets of
applications to be made rather easily. The APL implementation
language is a key ingredient for these capabilities.

The 3277 GA dual screen graphic workstation (Figure 4) has a
number of advantages for the man-machine interface in improv-
ing communication and increasing productivity:

Alphanumeric and graphic representations can be separated.
The graphic display will not be cluttered with commands and
with text inputs prior to verification and editing or with system

messages.

The alphanumeric display can also be used for prompting, for
menu selection with the keyboard or with a light pen, and for
interactive programming, if desired, leaving an undisturbed
geometric image on the graphic screen.

BLEHER ET AL. IBM SYST J e VOL 19 @ NO 3 e 1980

Figure 4 GIAM system structure

SYSTEM/370 COMPUTER

APPLICATION FUNCTIONS

>

LIBRARY
FUNCTIONS

VM/CMS

GRAPHIC WORKSTATION
1BM 3277 GA

e Representation of graphic images and identification and ma-
nipulation of graphic object are accomplished on the graphic
display using a cursor controlled by a joystick. Graphic input
is also possible through a data tablet. Hard-copy output can be
provided by a plotter attachable to the workstation.

However, GIAM is not limited to specific workstation hardware,
but provides device- and application-independent interfaces
through its general structure.

The complexity of graphic representations, e.g., engineering GIAM system and

drawings, requires a well-defined organization and structure of data structures
graphic information. The prime data area of GIAM is the work-

IBM SYST J » VOL 19 @ NO 3 o 1980 BLEHER ET AL.

Figure 5 Graphic data structuring example

GRAPHIC AND
APPLICATION
DATA

WORKSPACE

500 VECTORS

280 ARCS. CIRCLES
60 DIMENSIONS
70 NOTES

TYPICAL E-SIZE
DRAWING

21K BYTES
TOTAL

TOTAL DRAWING

INTERPRETATION

J

PRESENTATION SPACE

1520 VECTORS

280 ARCS, CIRCLES 41K BYTES

ESEB”H‘}E‘ZED 260 CHARACTER STRINGS
(2200 CHARACTERS)

DATA
TOTAL DRAWING

SUBSET
USED

DISPLAY SPACE

DEVICE 200K BYTES
FORMAT 33000 VECTORS BT

TOTAL DRAWING T

SUBSET
USED

1
|
I
|
I
!
(
|
|
|
|

IMAGE SPACE *

DEVICE-DEPENDENT 128K BYTES
E.G., 150000 POINTS (PIXELS) REFRESH BUFFER
(1024 X 1024-PEL SCREEN) N

space containing both graphic and other application-dependent
data. The graphic data may not only be basic graphic elements
(such as vectors, circles, arcs, etc.) but also higher graphic ob-
jects (Figure 5). The type and number of such objects varies from
application to application. An engineering drawing, for example,
may include (1) basic graphic elements showing the geometrical
contour of the mechanical part, (2) dimensions consisting of
leader lines, arrows, and numbers, and (3) notes containing alpha-
numeric information on the drawing.

When such a workspace is to be displayed, the higher logical ob-
jects have to be broken down into basic graphic elements
through interpretation and semantic expansion. A subset of the
workspace to be used for current operations is mapped into a
presentation space which now contains only normalized appli-
cation-independent graphic data of the following types:

BLEHER ET AL. IBM SYST J e VOL 19 ® NO 3 o 1980

Geometrical objects (i.e., vectors, circles, arcs, ellipses, el-
lipse segments)

Patterns

Text objects using both hardware-generated fonts and individ-
ually spaced stroke-coded software characters

These graphic objects are still device-independent. The presenta-
tion space coordinate system represents a virtual screen. In turn,
a subset of the presentation space data actually to be displayed
has to be converted to device code, i.e., to hardware commands
that can be directly executed by the display device. These com-
mands are stored in a display space.

For storage tube and vector-refresh display devices, the com-
mands of the display space can be directly executed to gener-
ate the image on the screen. For a television monitor with pixel
buffer, however, the picture has to be first generated point-by-
point and stored in an image space. From this buffer, the screen
can be refreshed about 50 times per second.

The distribution of graphic data is reflected in the hierarchical
structure of GIAM (Figure 6). The program component BIGAM
with its design subsystem manipulates the data in the workspace.
These data are the master data of the application. Since the ob-
jects can have a large range of dimensions, all data are repre-
sented in double-precision floating-point representation, guaran-
teeing the accuracy needed for complex application calculations
(e.g., calculation of intersection points between two circles).

This high precision is no longer required in the presentation space
because the only calculations performed are directly related to
the display. Since a screen has only a limited addressing capabil-
ity (e.g., 4096 X 3072 points), fixed-point representation of data is
sufficient, allowing faster and more efficient program routines.
Thus, data are converted from floating-point to fixed-point repre-
sentation when mapped from the workspace into the presentation
space.

The presentation space is manipulated by the presentation sub-
system which is one part of the program component BGSS. The
other part is the device subsystem that converts data from the
presentation space into device orders kept in a display space that
is device-dependent. It performs the actual communication with
the workstation devices. Other devices can be supported by mod-
ifying the device subsystem.

The hierarchical structure of GIAM provides three well-defined
data interfaces for efficient and simple communication with appli-
cation programs. The lowest level is the display space from which
data can be sent directly to the device. Display spaces may be

IBM SYST J & VOL 19 ® NO 3 e 1980 BLEHER ET AL.

Figure 6 GIAM hierarchical structure

T T T T

1) i i

t
APPLICATION L EeaTon”
| FUNCTIONS
! Fene]
!

et I

y
]
APPLICA- | yain
TON 1 INTER-

[

1

1

SUB- PRETER
’ WORKSPACE ROUTINES

LIBRARY

DESIGN
SUBSYSTEM WORKSPACE

PRESENTATION FRONT END
SPACE INTERPRETER

LIBRARY

PRESENTATION PRESENTATION
SUBSYSTEM SPACE

’ DISPLAY SPACE
LIBRARY

DEVICE
SUBSYSTEM DISPLAY SPACE

T — - |

KEYBOARD CURSOR CONTROL DEVICE

used for the presentation of forms, schematics, etc., which are
basic background information for applications.

The next interface level is the presentation space. It may be used
by an application if only low precision is required, e.g., in busi-

ness and scientific data presentations.

The highest interface level is the workspace. It supports high-
precision graphic data and higher-level graphic objects.

Figure 7 shows the flow of control in GIAM and the program mod-
ules involved during a typical transaction. Input from the work-

BLEHER ET AL. IBM SYST J ¢ VOL 19 » NO 3 & 1980

Figure 7 GIAM functional structure

I

BGSS BIGAM

| |
|

DISPLAY
GENERATOR

I

DSS — PSS
MAP

i

APPLICATION BASIC MAIN APPLICATION
FUNCTIONS INTERPRETER INTERPRETER FUNCTIONS

GRAPHIC OUTPUT ? PUBLICATION
MENU DESIGN SUPPORT
FONT DESIGN ENGINEERING
PSS — DSS DESIGN
MAP CHARTING

IDENTIFY
RESOLVER

f

FRONT END | & FRONT END
FUNCTIONS INTERPRETER

ZOOM T

PARSER

ACRO
GENERATOR

INPUT
wanoler | | |

A

WORK-
STATION

station is processed and presented to the front-end interpreter. It
handles those commands mainly concerned with workstation op-
erations such as graphic picking and display formatting. Then the
input is passed either to the basic interpreter or the main inter-
preter, depending on whether BGSS or BIGAM functions are used.

Command language

GIAM has been designed to provide a unified interface to a large
variety of graphic applications and to achieve operator productiv-

IBM SYST J » VOL 19 @ NO 3 o 1980 BLEHER ET AL.

ity through a language called the Interactive Graphic Command
Language (IGCL). This language is intended to be used either by a
trained operator or by an application programmer customizing
the graphic system for a specific application and for untrained
operators. It was not designed as a language for the graphic sys-
tem programmer as was APLG,’ for example.

The purpose of IGCL and its corresponding processors is to trans-
late an input stream generated by the workstation operator or by
a high-level application program into normalized input to appli-
cation programs, which perform requested functions and initiate
feedback displayed at the workstation. Thus low-level program-
ming for new application functions and for adaptation of appli-
cation functions to new workstation hardware is not required.

Although command language interfaces for graphic systems were
proposed and implemented as early as 1966,*° they are not widely
used in graphic systems of today, mainly due to the fact that the
proposed command languages could not handle the application
data management aspects of graphic applications. IGCL provides
an embedded APL system for the manipulation of application data
as well as application programs.

The use of a command language implies that graphic input and
output must be standardized in some way. In fact, application
programmers have accepted standards for alphanumeric input
and output like READLINE and WRITELINE in order to create appli-
cation programs, which are independent from the particular ter-
minal hardware. However, though many graphic standards have

been proposed,’ there seem to be no accepted standards with re-
spect to graphic input and output, preventing the portability of
graphic application programs.

An analysis of a variety of graphic application programs indicates
that two basic graphic input operations cover almost all graphic
input requirements:

1. Entry of a point not related to any displayed graphic object,
which may or may not be located on an application-defined
grid. This function is usually implemented via a ¢rosshair cur-
sor, a tracking symbol, or a pointer on a tablet.

. Identification of displayed graphic objects for subsequent pro-
cessing. This function is usually implemented via a light-pen
pick or selection with an identification trap symbol.

In addition to these basic operations, GIAM provides an additional
EXCLUDE input operation, which allows the operator to identify
graphic objects that are to be excluded from subsequent process-
ing. The EXCLUDE and the IDENTIFY (include) operators provide a
powerful mechanism for interactive definition of sets of graphic

BLEHER ET AL. IBM SYST J ® VOL 19 ® NO 3 o 1980

objects. The GIAM implementation uses rectangular trap areas
that can be defined and placed under operator control.

GIAM provides two basic graphic output functions for display up-
date and for highlighting selected sets of graphic objects. The dis-
play update function is implemented such that any transaction
through which graphic data have been changed can be rejected.
This feature is extremely important for the user interface, giving
the operator confidence to explore the complex functions of the
graphic system on a trial and error basis.

Using the interactive graphic command language, the operator
can enter arbitrarily long command strings without entering a sep-
arator between subsequent commands. This gives the operator
the ability to initiate either very simple or very complex transac-
tions according to his skill. Command strings may be entered ei-
ther directly via a keyboard or via tablet or menu picks.

The language elements of the interactive graphic command lan-
guage are:

Command identifier (mnemonic)
Number

Character string

Expression

Macro designator

Explicit delimiter

The command language uses the APL character set. How-
ever, any character set is applicable within character strings
or text variables in order to allow applications with special
or multiple fonts. Identifiers serve to denote function invoca-
tions within the system: Reserved identifiers are defined with
Gl1aM, and application-defined identifiers can be defined by the
application programmer and may be used to invoke application
functions. Reserved identifiers are used to invoke the standard
input functions, e.g., MG (move grid = get point on grid) or I
(identify graphic objects), or to control command execution, e.g.,
BEGIN, END, REPEAT, ACCEPT, IF, ELSE.

A macro designator specifies the activation of a macro. It con-
sists of the identifier designating the macro and a list of actual
parameters enclosed in parentheses, e.g., BOX (40 20).

A number is a valid number according to APL conventions. A
character string is a sequence of characters enclosed by quote
marks. An expression is a valid APL statement enclosed in paren-
theses, e.g., (2 x X - 3) or (X « SIN 30). Blanks
and ends of lines are considered as separators between language
elements. The semicolon serves as explicit separator. It separates

IBM SYST J e VOL 19 @ NO 3 e 1980 BLEHER ET AL.

Figure 8 Geometrical construction

DISPLAY

with 1GCL

1GCL COMMAND

IC CROTP 60 5 I

command strings that have to be evaluated consecutively and is
mostly used within macros.

A valid command may consist of an expression, a macro designa-
tor preceded by the EXEC or MACRO identifier, or a command
identifier followed by any number of command identifiers, num-
bers, character strings, expressions, or explicit delimiters. Any
number of commands can be entered in a command stream. Ap-
plication functions can be invoked within expressions as standard
APL functions or as BIGAM application functions which are in-
voked via command identifiers. Command identifiers, numbers,
character strings or APL variables can be passed to GIAM appli-
cation programs as parameters. The command language pro-
cessor does not check the syntax of application-defined com-
mands. Every GIAM application function has to check the syntac-
tic and semantic validity of the input parameters. Because most
GIAM application functions allow a large number of input parame-
ter combinations, a system-provided syntax check is of limited
value and would complicate the linkage of application functions.

Most application functions that generate graphic objects require
one or a number of points as user input. These points may or may
not be related to objects already defined. The interactive graphic
command language provides a set of move commands that allow
the operator to define points with complex relationships to exist-
ing graphic objects on the fly. System functions are provided to
resolve these point-defining command sequences into coordinates
that are then passed to the application functions. Using this facil-
ity, an application function which, for example, was designed to
draw a circle with the center point and a point on the circle as
parameters, can handle a variety of geometrical constraints that
usually must be explicitly defined and programmed in the appli-
cation program. The graphic system also maintains a graphic pa-
rameter represented by a current point and an angle that are dis-
played with a dot and an arrow on the screen. The current point
and angle are usually used by application functions that require at
least one point as parameter.

Figure 8 shows a typical geometrical construction using IGCL.
With the first command, ¥A 30 I, the current point is moved
from the circle center to the intersection point with the circle and
a line (invisible) that has an angle of 30 degrees passing through
the center of the circle. The intersection point is computed with
the full precision available in the system (double precision, float-
ing point). The user indicates with the location of the identifying
pick 11 which one of the two possible intersection points should
be selected. The second command, VD I, draws a vector down
to the intersection point with the circle. In this case, there is only
one possible solution, and the location of the second identifying pick
12 is uncritical. The third command, IC CROTP 60 5 I,

BLEHER ET AL. IBM SYST J @ VOL 19 ¢ NO 3 e 1980

moves the current point to the circle center (IC — I3) and copies
and rotates this vector five times by 60 degrees to complete the
hexagon. The current point in the circle center defines the center
of rotation, and the identify operation 14 selects the set of graphic
objects to be rotated.

A more skilled operator may perform the same geometrical con-
struction with two transactions with the command strings:

MA 30 I VD I

IC CROTP 60 5 T

or even in a single transaction using the command string:
MA 30 I VD I ACC IC CROTP 60 5 I

Although IGCL is very concise, complex operations may require
quite a bit of operator action. In order to free the operator from
repetitive entry of often-used command strings, a MACRO facility
is provided within IGCL. A circle with the inscribed hexagon can
be drawn, e.g., with a single macro call HEX (20), provided
the macro HEX is available in the system. A macro can be en-
tered in BIGAM either via text entry using an editor or in an inter-
active-by-example mode. In order to define a macro BOX, which
draws a rectangular box with width W and height H, the operator
may enter the following commands:

MACRO BOX (W<«u40 H«20) Start macro definition; define
parameters W and H.

VE (W) Draw a vector to the right of
length W.

VU (H) Draw a vector up the length

of H.

VL (W) Draw a vector to the left of
length W.

VD (H) Draw a vector down the
length of H.

EOM End of macro definition.

In this interactive macro definition mode, the operator can visu-
ally check every step and reject any command line in case of er-
ror. The above macro can be used immediately after definition
with arbitrary parameters. BOX (20 20), for example, will
generate a box with W = 20 and H = 20. Macros can be nested up
to any level and are stored together with graphic data, application
data, and application functions in BIGAM workspaces.

It should be pointed out that the end user (e.g., the untrained
operator) does not have to learn the IGCL commands. The appli-
cation programmer will personalize GIAM for the application by
such means as function keys, menus, and mnemonics, which then
become the application-specific repertoire of the end user.

IBM SYST J @ VOL 19 @ NO 3 o 1980 BLEHER ET AL.

Library functions and data base

Related to the hierarchy of subsystems in GIAM is a correspond-
ing hierarchy of external storages with three library levels:

® A workspace library associated with the design subsystem

® A presentation space library associated with the presentation
subsystem
Adisplay space library associated with the device subsystem

In these libraries, GIAM workspaces, presentation spaces, and
display spaces, respectively, can be stored permanently during a
work session for later reference. According to their different in-
formation content, they provide an additional tool to tailor GIAM
to the special needs of an application.

A workspace primarily contains application data. Besides the
geometric elements that make up the picture, it may contain
structural information. This allows geometric elements to be
grouped together to form higher-level objects organized in tree
structures.

In general, BIGAM supports interrelated sets of geometrical and
structural data, combined with user-definable BIGAM variables
(geometric or nongeometric, e.g., standards, notes, dimensional
information), as real data. However, it also supports virtual data
consisting of BIGAM functions and macros (geometric or non-
geometric, e.g., DRAW BAR GRAPH, SELECT MESSAGE, CALCU-
LATE AREA) that are invoked at execution time.

Groups, variables, functions, and macros are named entities.
They are stored in workspaces and may be directly accessed,
copied, and evaluated.

Presentation spaces may contain reference data supporting the
interaction of the user with the screen content. Furthermore, they
may contain application reference data, such as fonts and pat-
terns, and system reference data, such as menus. The graphic
data are represented in a normalized device-independent form
consisting only of basic geometric elements. Thus the presenta-
tion spaces can also be used as data interfaces to plotter programs
for hard-copy output generation.

Display spaces contain device-dependent data that can be used to
display application-specific patterns or overlays on the screen.
This is graphic information which serves as reference only and is
not for interaction (e.g., form layouts, basic design patterns,
etc.). They are stored directly as device commands in the display
space so that no display generation is necessary each time they
are referred to.

BLEHER ET AL. IBM SYST J e VOL 19 # NO 3 ® 1980

For each of the three library types a set of the usual service func-
tions such as LOAD, STORE, COPY, DROP, QUERY, etc. is provided.
In addition, a three-level access control hierarchy is implemented
for each of the three library types:

e Private libraries may only be accessed by the owner.

e Project libraries may be commonly used by a restricted group,
e.g., people working at the same project.
Public libraries are available for widespread use within an ap-
plication or an installation.

Both public and project libraries may be protected by passwords.

Application function environment

As a basic application monitor, GIAM is open to any application
requiring interactive graphic support. Although a lot of features
are provided for tailoring the user interface (e.g., function keys,
menus, macros) it may be necessary to introduce new commands
and high-level application programs for the solution of appli-
cation-specific tasks. According to its hierarchical structure,
GIAM provides two well-defined environments for extensions by
user-written application functions: the BIGAM environment and
the BGSS environment.

Each environment is described by a set of data areas used for
manipulation of graphic objects by application functions and a set
of basic service routines to simplify such manipulations. Figure 9

shows the logical layout of the BIGAM application function envi-
ronment. The arrows represent the flow of data; the names beside
the arrows describe some of the service routines.

Graphic objects are stored as matrices in the workspace (Figure
10). There is one matrix for each type of graphic object, with one
entry for each individual object. In addition, there is a further set
of matrices, with a one-to-one correspondence to the above ones,
which contain attribute information.

The workspace contains all the graphic objects of a picture. Most
commands, however, are only applied to a subset of these ob-
jects. Such a subset may be selected by a sequence of picking
operations on the screen. In this case, a set of indices to the
picked objects is built up by GIAM in the Work Index (wI). This
index may be used to select graphic objects either to be erased
from the screen or to be transferred from the workspace to a work
area called X-space for further manipulation.

The application function interacts with the graphic data in the X-
space. If needed, additional reference information is available in

IBM SYST J e VOL 19 e NO 3 e 1980 BLEHER ET AL.

Figure 9 GIAM application function environment

APPLICATION FUNCTION
WORKSPACE

Al
GET OBJECT SAVE

GET DISPLAY ATTRIBUTE
LOAD

RETURN P((JODE CONCATENATE SUBSET

0-0
1-ERROR ‘:-__--er|>
COoPY

\ APPLICATION

FUNCTION QUTPUT

X-SPACE

SET

GRAPHIC REFERENCE SET
MANIP-
ULATION

CURRENT
ET INDEX
POINT — G

CURRENT
ANGLE

WORKSTATION

BIGAM
BASE MACHINE

CHARACTER
BUFFER

Figure 10 Generic BIGAM data internal tables. Examples are the pick table containing the param-
formats eters of the function call in a standardized format and the point
TYPE-ORIENTED GRAPHIC ELEMENT MATRIX table containing the coordinates of points selected with the aid of

— DOUBLE PRECISION FLOATING POINT raphi ointing commands
GENERIC RELATIVE , graphic p g)

REFERENCE POINTIDIMENSIONAL ATTRIBUTES]

] Since GIAM is implemented in APL, the full power of this language
RELATED DISPLAY ATTRIBUTE MATRIX is available to the_ user to program his specific f‘unctlons.. He has

16 BITS PER ENTRY to comply only with a few simple GIAM conventions having to do
ON/OFF B Shoe| FONT | Lie with naming functions and variables, managing the pick table, as-
signing return codes, and displaying messages. The above-men-
tioned service routines assist the application programmer, pro-
viding a variety of basic facilities for managing and manipulating

data in the GIAM application function environment.

Embedding APL into GIAM allows very productive programming
of completely new application functions, e.g., isometric represen-
tation of parts (2!/2 D) and generation of input data for finite ele-
ment analysis and for numerical control (NC) of machines.

After an application function has been written, it is linked to GIAM

by means of a command utility. Then it can be used like any of the
standard GIAM commands.

BLEHER ET AL. IBM SYST J e VOL 19 ¢ NO 3 o 1980

GIAM user facilities

GRAPHIC
TERMINAL FONT DOCUMENT FONT/PATTERN
LIBRARY LIBRARY LIBRARY

OVERLAY APPLICATION
LIBRARY LIBRARY

GIAM APPLICATION FUNCTIONS

INTERACTIVE GRAPHIC
COMMAND LANGUAGE

FUNCTION MACRO
LIBRARY LIBRARY

EXPRESSION MACRO
INTERPRETER FACILITY

PROMPT

MENU
LIBRARY

Application-related interface tailoring

Graphic systems must be tailored to specific applications. An en-
gineering drafting system for building-contractor use, for in-
stance, has to support totally different procedures and drafting
standards than an engineering drafting system used for mechani-
cal design. Even within mechanical design and drafting appli-
cations, the standards may vary from country to country or even
among corporations.

GIAM addresses this problem with a number of facilities that allow
the customization of the general-purpose graphic system with a
minimum of (APL) programming or with no programming at all.
The general strategy is to use the graphic system itself for the
customization and the documentation of the resulting special ap-
plication system. A set of hierarchically organized tools provided
by GIAM may be used for application tailoring as shown in Figure
11.

The customization usually requires macros as well as overlay

forms and menus that are drawn with the general-purpose system
and stored in menu and overlay libraries for subsequent use. The

IBM SYST J ® VOL 19 ¢ NO 3 = 1980 BLEHER ET AL.

macros can be defined either to optimize often-used procedures
to boost operator productivity or to provide a simplified user in-
terface with graphic and alphanumeric prompting and user guid-
ance.

Standard libraries, which hold groups of graphical data (e.g.,
standard parts) as well as application data and functions, can also
be created. A PROFILE macro may be used to customize the work-
station, e.g., to define the function keys, the display parameters,
and defaults of the graphic display. The PROFILE macro may also
load application-specific fonts, menus, and reference data.

In addition to the BIGAM facilities for application tailoring, a set of
BGSS facilities are provided. These BGSS facilities allow the appli-
cation programmer to define symbols or special fonts that are
used to program the graphic workstation hardware to improve the
efficiency of the graphic system.

A simple example for application customization is shown in Fig-
ure 12. A number of elementary functions for the drafting of flow-
charts are assembled in a BIGAM workspace. When the user loads
this workspace, the PROFILE macro is executed, an overlay dis-
play space explaining the available functions is displayed, and the
workstation is properly set up. Special application macros are in-
voked via function keys; e.g., function key 12 is used for the gen-
eration of a function box. When the operator hits this key, he is
prompted to enter the text for the function box. An adequate size
for the surrounding box is computed using BIGAM functions, and
finally, the text and the surrounding box are generated. All the
application-specific functions and macros are contained in a
BIGAM workspace FLOW. The code of the basic BIGAM system is
not changed, which simplifies code maintenance and update. In
this case, the Interactive Graphic Command Language is not used
by the operator at all, which is adequate for this simple appli-
cation.

Summary

With the graphic workstation and computer hardware available at
an attractive price today, graphic system development no longer
has to concentrate on low-level optimization of application code.
The main emphasis can now be put on ease of use, ease of pro-
gramming, and ease of application system management and main-
tenance. The Graphic Interactive Application Monitor, GIAM, has
been developed to provide an intelligent graphic base system that
can easily be used and customized by application programmers as
well as by end users.

It has been shown that by proper structuring of a system and with
the use of a high-level, pragmatic, and user-extendable language,

BLEHER ET AL. IBM SYST J e VOL 19 ® NO 3 e 1980

Figure 12 Example for application tailoring

THIS WORKSPACE CONTAINS MACROS AND
FUNCTIONS FOR THE GENERATION OF FLOWCHARTS
VERSION: 12/02/79

FUNCTION KEY ASSIGNMENT:

ENTER BIGAM
COMMAND

ACCEPT LAST

TRANSACTION REJECT LAST

TRANSACTION
AND REDISPLAY

GRID 15: 25 2.5 mm

TO REJECT TRANSACTION ENTER' REJ

YOU MAY ENTER ANY OTHER BIGAM
OMMAND, EG.. VR 20 VD MG
ACTIVE VIEWPORT ¢ 0

INIT WORKSPACE: FLOW

USER ID:
WORKSPACE NAME.

O O N N D O N O O

B N N N N N N N N e by R R

a powerful and highly flexible graphic base system, which
achieves excellent user productivity with a minimum of appli-
cation program development, can be implemented.

ACKNOWLEDGMENTS

The initial GIAM prototype was a product of many endeavors, be-
ginning with a customer joint study in 1976 with contributions
from F. Gracer and R. N. Wolfe from 1BM Research at Yorktown

IBM SYST J & VOL 19 & NO 3 ¢ 1980 BLEHER ET AL.

402

Heights, NY. A special effort by 1BM Fellow W. F. Beausoleil to
provide the group with early 3277 GA hardware was highly appre-
ciated through a critical phase of the project.

The authors would like to acknowledge also a special debt to P.
Grunau from 1BM Germany Graphic Products Marketing and to
H. Fleming and U. Weissflog from the 1BM Germany Program
Product Development Center, who were instrumental in the re-
lease of GIAM as an International Field Program (IFP) for 1BM Eu-
rope.

CITED REFERENCES AND NOTE

1. T. P. Kurlak, Computer Aided Design and Manufacturing Industry CADICAM,
Review and Outlook, Institutional Report, Merrill Lynch, Pierce, Fenner and
Smith, Inc., Securities Research Division, New York (September 1979).

. GIAM is available as an International Field Program only from IBM Europe.

. W. K. Giloi and J. Encarnacao, ‘‘APLG—An APL-based system for inter-
active computer graphics,”” AFIPS National Computer Conference 43, 521~
528 (1974).

. L. G. Roberts, ‘A graphical service system with variable syntax,’” Communi-
cations of the ACM 9, No. 3, 173-176 (March 1966).

. R. A. Morrison, ‘““‘Graphic language translation with a language independent
processor,”’ AFIPS Conference Proceedings, Fall Joint Computer Conference
31, 723-731 (1967).

. Graphic Standards Planning Committee, ‘‘Computer Graphics,”” Quarterly Re-
port on SIGGRAPH-ACM 11, No. 3 (Fall 1977).

GENERAL REFERENCES

K. P. Beier and H. Nowacki, ‘*Konzept und Realisierung eines Rechnersystems
fuer rechnergestuetzten Entwurf,”” HANSA-Schiffahrt-Schiffbau-Hafen 116, No.
8, 631-637 (1979).

W. M. Newman and R. F. Sproull, Principles of Interactive Computer Graphics,
Second Edition, McGraw-Hill Book Co., Inc., New York (1979).

H. Nowacki, ‘‘Grundsoftware fuer technische Rechneranwendungen,”’ Hand-
buch der Werften, Verlag Schoetter & Co., Hamburg (1978), pp. 19-67.

F. Gracer, R. N. Wolfe, and W. J. Fitzgerald, A Graphic Application Develop-
ment Facility, Research Report RC 7896, IBM Corporation (October 9, 1979);
available through IBM branch offices.

The authors are located at the IBM System Products Division
Development Laboratory, 220 Schoenaicher Strasse, 7030
Boeblingen, Germany.

Reprint Order No. G321-5132.

BLEHER ET AL. IBM SYST J e VOL 19 ® NO 3 e 1980

