
Producing data in pictorial form is a type of computer graphics
application known as presentation graphics. One approach that
has been used for this type of graphics is a graphic support pack-
age using APL as the command language. Here discussed is the
evolution of this approach up to its currently available forms.

An APL approach to presentation graphics
by W. H. Niehoff and A. L. Jones

The use of visual display technology to present the results of pro-
grammed digital computations is as old as the stored program dig-
ital computer.' But it is the reduced costs of this technology and
its widespread application in the interactive computer environ-
ment that have rejuvenated the idea during the past decade and
made it appear new. This paper describes one adaptation of pre-
sentation graphics to a particular interactive computing environ-
ment, that of APL.' Presentation graphics is a term used to de-
scribe the subset of computer graphics applications principally
characterized by the use of graphics technology to present data in
pictorial form, enhancing discovery and comprehension of rela-
tionships and characteristics. Generally, the emphasis is on
graphic output, as opposed to those applications like computer-
aided design that depend on dynamic human interaction using
graphic input techniques. This does not imply that presentation
graphics is not interactive; interactivity may be achieved through
alternative techniques, including the use of command languages.
It is in this context that APL is particularly appropriate.

The use of APL in what can be broadly interpreted as presentation
graphics began in the late 1960s. A graphics support package that
resulted from one of these early efforts, APL GRAPHPAK, has con-
tinued to evolve in the form of two IBM Field-Developed Pro-
g r a m ~ , ~ ' ~ an IBM Programming RPQ (a customized p r ~ g r a m) , ~ and,
as recently announced, a component to be included in future re-
leases of vs APL. This most recent embodiment provides support
for IBM's newest graphics products, including the IBM 3279 Color
Display and IBM 3287 Color Printer.

Copyright 1980 by International Business Machines Corporation. Copying is per-
mitted without payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright notice are
included on the first page. The title and abstract may be used without further
permission in computer-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor.

IBM SYST J VOL 19 NO 3 1980 NIEHOFF AND JONES 367

2. P WRITE C displays sets of character strings, C , whose
positions, sizes, orientations, and attributes are defined by P .

Of course, DRAW and WRITE ultimately call isolated, lower-
level, device-dependent functions in a disciplined manner.

The display space addressing consideration is handled more
straightforwardly because it can be quantified numerically; how-
ever, an associated architectural decision affecting usability was
required. The fundamental addressing problem is caused by wide
variations in the way in which devices expect to receive coordi-
nate specifications. For example, widely used devices use one or
another of the following coordinate ranges: 0-5 1 1 , 0-1023, or 0-
4095 (all related to binary addressing schemes). Others use deci-
mal schemes, addressing the range 0-9999, for example. More-
over, while most devices have uniform spatial resolution (equal
distances per addressing unit in the x and y directions), some do
not. For example, the IBM 5103 Printer, which can be used as a
plotter,6 has resolutions of approximately 3.9 and 2.7 addresses
per millimeter in the x and y directions, respectively.

The general problem of variation is handled by introducing the
concept of a virtual device with a virtual display space character-
ized by a common address range among all actual devices. The
actual display space range and limits are defined by four numbers
carried globally in the APL workspace. These quantities are suf-
ficient to quantify devices that are rectangular and whose mini-
mum coordinates are referred to by (0, 0).

Selecting an appropriate common denominator-the range of
coordinates characterizing the virtual display space-is not obvi-
ous. At the time of selection, the graphics community generally
argued that either the ranges 0 to 1 or - 1 to 1 should be
Reviewing the pros and cons of those suggestions motivated an
assessment of how coordinates were used at this relatively low
level of GRAPHPAK. The decision made was influenced largely by
the novice user who frequently defines coordinates manually via
a keyboard. The range 0 to 100 was selected because of its identi-
fication with percentages and its ability to represent coordinates
without negative signs and frequently without decimal points.
(The upper limit of 100 does not limit resolution since the user has
the freedom to use nonintegers if desired.)

The next step was to define facilities for mapping from problem
spaces to the virtual device space as depicted in Figure 1 .

A problem space (characterized by real numbers frequently
called world coordinates) is generally preferred by high-level
users. A user will typically define, explicitly or implicitly, a rec-
tangular region in the problem space called the window (defined

IBM SYST J VOL 19 NO 3 1980 NIEHOFF AND JONES

display
spaces

369

Figure 2 Viewports

I

"_""""""""""""""""""!

-ACTUAL DEVICE LIMITS

-CLIPPING VIEUPORT

- SCALING VIEUPORT

well accepted among GRAPHPAK users. A user who desires or
needs to conform to the conventional single viewport approach
can define a nearly trivial viewport setting APL function that will
establish identical scaling and clipping viewports.

An additional facility in GRAPHPAK, one that evolved in the early
years of development, is a structure on which presentation graph-
ics applications can be built. The first application area that was
addressed was general plotting, a pervasive requirement in engi-
neering and scientific user communities. The package that re-
sulted, which is described later in the paper, has proved ex-
ceptionally useful as a foundation for additional, higher-level ap-
plications. Figure 3 illustrates the present application hierarchy in
GRAPHPAK and demonstrates the central role played by the plot-
ting component.

In particular, two high-level components-for contour plotting
and curve fitting-are built on the facilities of the plotting com-
ponent. Figure 4 shows a curve-fitting example; the curve-fitting
component calculates the characteristics of the curve and calls on
the plotting component to plot the curve, symbols, and axes.
Then, the user has all of the facilities of the plotting component
available for the production of boilerplate. Figure 5 shows a
simple contour plot of a terrain. Here, the contour component
derives the constant elevation contours and calls on the plot-
ting component for the curves and axes. Figure 6 shows an
application of the three-dimensional display component to view
the terrain data in a different manner. Figures 5 and 6 illustrate
the contrast in visualization techniques sometimes required to

IBM SYST J VOL 19 NO 3 1980 NIEHOFF AND JONES

application
structure

Figure 3 GRAPHPAK component
hierarchy

371

EXPONENTIAL FITS

Compound Growth Rates
1963-1978: 14.0%
1963-1968: 18.9%
1968-1978: 12 .6%

P

Figure 7 A skew transformation

8 1 8‘

FROM-SPACE

62 6a3

TO-SPACE

present the same data to different audiences. Other kinds of appli-
cations can be added to the structure in a similar manner-gener-
ally with ease.

Penetrating all levels of usage of GRAPHPAK are a variety of easy-
to-use APL tool functions, which can be used solely for their de-
fined purposes or in combination to serve as building blocks for
new applications.

For example, the tool function XFM serves as a general-purpose
coordinate transforming function. It derives from its left-hand ar-
gument, which is a two-plane array of corresponding coordinates
in two spaces, a transformation which will map coordinates in
one space to the other. It then applies the transformation to the
right-hand argument, which is a matrix of coordinates, yielding a
matrix of coordinates mapped accordingly into the other space.
This function, whose simple implementation is based on the
primitive matrix division and inner product functions of APL, can
be quite powerful.

For example, if the left-hand argument represents correspond-
ingly the coordinates of the two sets of numbered points illus-
trated in Figure 7, the transformation will skew the picture as
illustrated. Moreover, if the transformation is “overdetermined”
by specifying more than three points in each of a pair of two-
dimensional spaces, a mapping is determined using the “least-
squares” properties of APL matrix division.

IBM SYST J VOL 19 NO 3 1980 NIEHOFF AND JONES

tool
functions

In many cases, functions are provided simply to improve useabil-
ity. For example,

DRAW (_W INTO S__VP) X F M OBJECT
is a single statement implementation of vector drawing with a
windowing transformation. Here _W and 212 are four-element
vectors representing the window and scaling viewports. The
simple function I N T O structures the two-plane array argument
required by X F M for the user who is not acquainted with APL
arrays. Somewhat natural language structures like this, relatively
difficult to implement with flexibility in other language environ-
ments, are quite easy for APL.

Addressing device attribute variability

In the previous section, three areas were identified in which avail-
able plotting and display devices differ widely, and the ap-
proaches for handling these differences were discussed. An addi-
tional area-variability in graphic attributes-deserves separate
discussion.

The late 1970s saw an explosion in the application of technology
to the graphic presentation of data. This explosion resulted in a
corresponding explosion in the number of graphic attributes to be
recognized by graphic support programs-attributes of vectors
like style, width, and color, to name just a few.

In GRAPHPAK, attributes are selected by an encoded element of
an attribute vector for both individual graphic vectors and charac-
ter strings. For the most part, the variations have been handled
pragmatically for each device supported. However, the variety of
attributes selectable and experience using them has identified a
need for a classification that will provide a unified treatment. The
taxonomy presented here is used as a design guide; implementa-
tion proposals are evaluated against it for tests of orthogonality
and completeness. At the highest level of the taxonomy, attri-
butes are classified into three general families: appearance attri-
butes, temporal attributes, and reference attributes.

In the family of appearance attributes are those that directly af-
fect the appearance of graphics vectors. Within this category are
spatial modulation and color. Spatial modulation is a term se-
lected to describe patterns or styles of spatial change associated
with a graphics vector. Modulation may be axial or transverse,
that is, vary along the length of the graphics vector or per-
pendicular to it. Combinations of axial and transverse modula-
tion, of course, encompass the familiar attributes of style and
thickness. The concept of modulation extends naturally to two-
dimensional graphic entities (filled polygons). Color is a general-

NIEHOFF AND JONES IBM SYST J VOL 19 NO 3 1980

ization of intensity and can be represented by a vector of descrip-
tors in a selected color space or by a color number. The specifica-
tion and treatment of color is far from a trivial consideration. For
example, for many of the color display devices available, a color
is selected by specifying relative proportions of the red, green,
and blue primary colors. This method of specification, however,
is not particularly suitable for user specification. (As a mental
exercise, the reader might consider what proportions of these pri-
maries would come close to matching the color of the reader's
office walls.) A more intuitively appealing method may be to use
the perceptual descriptors: hue, saturation, and lightness.

Two common approaches to graphic display devices have in-
volved the use of refreshed cathode-ray tube technology (e.g.,
IBM 3250) and direct view storage tube technology (e.g., Tek-
tronix 4015). The IBM 3277 Graphics Attachment RPQSs1' is an em-
bodiment that permits use of both the refreshed and storage ap-
proaches. Since the time behavior of graphics vectors is influ-
enced by these approaches, the attributes that characterize this
behavior are termed temporal. Two temporal attributes are iden-
tified: persistence and periodicity.

Persistence quantifies the longevity or permanence of a graphic
vector, while periodicity reflects its frequency of recurrence. In
the context of the IBM 3250, for example, the employed tech-
nology is characterized by relatively low persistence, hence vec-
tors must have relatively high periodicity to be seen at all. How-
ever, where direct view storage tubes are used in their normal
storage mode, vectors are highly persistent, hence need not be
refreshed or be periodic at all.

The third attribute family also has been motivated by character-
istics of the IBM 3277 Graphics Attachment RPQ. That hardware
provides facilities for referencing an unbound, operator-con-
trolled coordinate held in a tracking register and for defining vec-
tors with respect to it. These capabilities can be encompassed by
a class of attributes called reference attributes that characterize
the independence of coordinates and the base to which they are
referred.

The reference attribute of mobility characterizes the degree to
which a coordinate is bound. Usually, coordinates are completely
immobile; that is, they are bound as constants prior to the time of
display. The tracking register referred to above is an example of a
mobile coordinate.

The attribute of relativity has been associated with graphics since
its beginning, and it becomes an essential attribute to take practi-
cal advantage of mobile coordinates. Specifically, relativity char-
acterizes the origin of reference for a coordinate. In most casual

IBM SYST J VOL 19 NO 3 1980 NIEHOFF AND JONES

graphics applications, coordinates are absolute; that is, their base
of reference or relativity is to the origin of the base or world
coordinate system.

The benefit to be derived from an attribute classification like this
one is that a wide variety of potential and device-independent
attributes can be associated with the graphic vectors themselves.
Moreover, the attributes, geometry, and topology associated with
a picture can then be implemented as a rectangular array-a dis-
tinct advantage for an APL implementation.

Applicability of APL

APL is an interesting language and seems naturally applicable to
implementing algorithms related to presentation graphics. This
aspect should not be unexpected, since among APL design prin-
ciples are goals of generality and practicality." This applicability
can be seen in several forms-its adaptability to implementing
algorithms and its orientation toward interactive use.

In particular, the native capabilities of APL adapt themselves
nicely to many of the techniques found in the graphics literature
that are matrix formulations of techniques for transforming ho-
mogeneous coordinates (e.g., References 8 and 12). For example,
if XY is a two-column matrix of coordinates of ordinary points in
two-dimensional space, the expression

0 l + (X Y , l) t . X C

relates a transformation of those points controlled by elements of
matrix C . C itself may be a compound transformation derived,
for example, from the inner products C+Tt. xR+ . X M , where
T , R , and M are 3-by-3 matrices for the fundamental transfor-
mations of translation, rotation, and magnification, respectively.
The transformations can be achieved as well in three dimensions
where the transformation matrices are 4-by-4 matrices. In fact, in
this case, perspective projection can be achieved by a matrix in-
ner product

XU@-(X Y Z , 1)+. XP

followed by a division

XY+XYZC;l 21+.XUZC;4 4 1

where matrix P contains a definition of an observer's position (0,
0, h) on the z axis as

1 0 0 0
0 1 0 0
0 0 1 -(I + h)
0 0 0 1

376 NIEHOFF AND JONES IBM SYST J VOL 19 NO 3 1980

Some techniques important to graphics are not so straight-
forwardly implemented in APL. In some cases, algorithms out-
lined in the graphics literature are not satisfactory when trans-
literated into APL implementations. This occurs because fre-
quently the algorithms were originally formulated with a bias
toward more traditional programming languages and disciplines.
In these cases, it is often rewarding (for both performance and
understanding) to rethink the requirements of the problem with
an eye toward the fundamental nature and capabilities of APL.

The interpretive implementations of APL permit more flexibility in
adapting a program for human use than would be possible in the
more traditional, compiled program environment. These charac-
teristics will be illustrated by a discussion of the GRAPHPAK plot-
ting component.

The plotting component was originally designed to serve as a gen-
eral tool for plotting APL variables, and, to a large degree, it was
modeled after the printer-plotting workspace originally provided
with APL program product^.'^ Its characteristics have been popu-
lar among users. For example, it permits simple syntactic con-
structions like

PLOT XY

where X Y is a matrix whose first column defines the abscissa val-
ues and whose second and possible subsequent columns define
sets of ordinate values; or

PLOT Y

where Y is a vector of ordinate values, and an index vector is
used by default for abscissa values; or natural language structures
like

PLOT GROSS AND NET VS T I M E

Notice that, in these examples, the user is expected to know only
enoggh APL to put his data in the form of APL variables. But, as
well, the proficient APL user may generate data in his own APL

1 functions along with interspersed calls of GRAPHPAK functions
like PLOT . This procedure is to be contrasted with the so-called
conversational approach for the novice user where a “question

i and answer” procedure is utilized. By taking the non-
i conversational, APL “tool function” approach, an APL application

programmer can easily build conversational programs on top of
the GRAPHPAK base to be used by someone who knows no APL at
all. To do the reverse is much more difficult.

The high degree of interactivity that characterizes current imple-
mentations of APL plays an important role in the development of
useful plots. It enables users to make spontaneous changes based
on judgment and desire. For example, after plotting a curve of

IBM SYST J VOL 19 NO 3 1980 NIEHOFF AND JONES 377

data (PLOT Y VS X , if a user is curious about the behavior
of Y with respect to the reciprocal of X , the curiosity can be
satisfied merely by typing PLOT Y VS +X . This ability to
make spontaneous changes is undoubtedly the most important
single factor that makes APL GRAPHPAK an attractive tool.

In all of these cases illustrated above, PLOT examines the data
and derives x- and y-scaling factors that will ensure that the
plotted data will fit within the plot area. The factors are chosen
in general so that the data will fill the frame as fully as possible
while maintaining reasonable value labels to be associated with
axis tick marks. This automatic scaling approach avoids the
necessity for the user to specify scale factors or limit values.
Early experience with PLOT showed that users did not necessar-
ily want PLOT to produce axis labels, annotations, title blocks,
etc. (to be referred to as “boilerplate” for ease of reference). For
example, the user may determine on inspection of the picture that
the argument provided to PLOT was incorrect and may not want
to wait for rendering of the boilerplate. For this reason, GRAPH-
PAK always renders the data representation first, then requested
boilerplate. This approach can be especially important if the plot-
ting device is as slow as a mechanical plotter.

After the desired data representation is rendered, the user has the
ability to add customized boilerplate at will through the use of
appropriate APL functions that are provided.

This characteristic of avoiding binding program behavior into a
fixed, single-minded sequence gives the user the flexibility
needed to respond appropriately to the appearance and form of
the visual presentation.

For the cases where the user desires to specifically override
default characteristics, a dyadic form of PLOT called SPLOT
(for “Specified Plot”) is provided. Its left-hand argument per-
mits:

1 . Specifying the plot frame limits to be used (overriding auto-

2. Inhibiting drawing of axes
3. Producing plots using symbols and/or vectors
4. Controlling the attributes of the vectors produced
5. Selecting linear or logarithmic axes
6. Automatically producing axis labels

matic derivation)

In addition, a variety of “tool functions” are provided for the
production of boilerplate. They include:

1. An axis generator that controls tick mark placement, tick mark
length and attributes, and axis offset

378 NIEHOFF AND JONES IBM SYST J VOL 19 NO 3 1980

10- lOOr
9 -
a -
7 - 90-

5- 80-

r 70-

6 -

G
Y c' 3 -

4-

described previously, where attributes are defined by a collection
of orthogonal and universally appropriate characteristics. I

challenge of The variety and nature of the characteristics of families of graphic
graphic data elements motivate a natural requirement for data structures more

representation general than present APL arrays. The concepts of proposed APL
general arrays14 are promising, permitting the representation of
attribute, geometric, and topological information by non-
homogeneous, list-like structures. General arrays may be ideal
for representing fundamental graphic elements, segmented dis-
play entities, and higher-level graphic structures. The challenge is
to discover the best means of representing the desired structures
and manipulating them with the proposed facilities.

challengeof As the thought concerning the marriage of APL and graphics
unification grows in maturity, it becomes more appropriate to think about

treating graphics entities as more primitive elements of the lan-
guage. Graphics entities are defined by numerical, attribute, and
topological information. The challenge is to enclose this informa-
tion in a manner that represents a natural, compatible, general,
and useful extension of the present language. Approaches should
seek facilities for structuring and transforming graphic entities
and for communicating them to and from visualization devices in
a consistent framework that is in the spirit of APL.

An additional broad area of challenge is the continued search for
formulations of graphics-related algorithms that promote natural
(hence usually efficient) implementations in APL.

Finally, there is the challenge of providing facilities that are genu-
inely easy to use. The fundamental approach of GRAPHPAK has
been largely successful: It uses a simple set of command-like APL
statements to maintain the flexibility and generality characteristic
of APL, while retaining the ability to use functions as tools or
building blocks to develop new, unforeseen applications.

Satisfying these challenges should involve an ideal: unifying a
two-dimensional means for communication-graphics-with a
technique for COInmUniCatiOn-APL. The language, influenced by
somewhat traditional applications and by one-dimensional com-
munication means, has proved admirably adaptable to presenta-
tion graphics. But it is the spirit of APL that will motivate discov-
ery of ways of satisfying the challenges that are characterized by
generality, richness, and utility. And the nature of APL and its
current implementations will facilitate exploring possible ap-
proaches, evaluating alternatives, and ultimately meeting the
challenges.

I 380 NIEHOFF AND JONES IBM SYST J 8 VOL 19 8 NO 3 1980

NIEHOFF AND JONES 381

