
Producing data in pictorial form is a  type of computer  graphics 
application  known as  presentation  graphics. One approach  that 
has  been  used for this  type of graphics is a  graphic  support  pack- 
age using APL as the  command  language.  Here  discussed is  the 
evolution of this approach up to its  currently  available forms. 

An APL approach to presentation  graphics 
by W. H. Niehoff and A. L. Jones 

The use of visual display technology to present  the  results of pro- 
grammed digital computations is as old as  the  stored program dig- 
ital computer.' But it is the  reduced  costs of this  technology  and 
its widespread  application in the interactive  computer  environ- 
ment that  have  rejuvenated the idea during the  past  decade  and 
made it appear new. This  paper  describes  one  adaptation of pre- 
sentation  graphics to a  particular  interactive computing environ- 
ment,  that of APL.' Presentation  graphics is a term used to de- 
scribe the  subset of computer  graphics applications principally 
characterized by the use of graphics technology to  present  data in 
pictorial form,  enhancing  discovery  and  comprehension of rela- 
tionships and  characteristics.  Generally,  the  emphasis is on 
graphic output, as opposed to  those applications like computer- 
aided design that  depend  on  dynamic human interaction using 
graphic input techniques.  This  does  not imply that  presentation 
graphics is not  interactive;  interactivity may be achieved  through 
alternative  techniques, including the use of command languages. 
It is  in this  context  that APL is particularly appropriate. 

The use of APL in what  can be broadly  interpreted as presentation 
graphics began in the  late 1960s. A graphics  support  package  that 
resulted from one of these early efforts, APL GRAPHPAK, has  con- 
tinued to  evolve in the form of two IBM Field-Developed Pro- 
g r a m ~ , ~ ' ~  an IBM Programming RPQ (a customized p r ~ g r a m ) , ~  and, 
as recently announced, a component  to be included in future re- 
leases of vs APL. This most recent  embodiment  provides  support 
for IBM's newest  graphics  products, including the IBM 3279 Color 
Display and IBM 3287 Color Printer. 

Copyright 1980  by International Business Machines Corporation. Copying is per- 
mitted without payment of royalty provided that ( 1 )  each reproduction is done 
without alteration and (2) the Journal reference and  IBM copyright notice are 
included on the first page. The title and abstract may be used without further 
permission in computer-based and other information-service systems. Permission 
to republish other excerpts should be obtained from the Editor. 

IBM SYST J VOL 19 NO 3 1980 NIEHOFF AND JONES 367 





2. P WRITE C displays sets of character  strings, C , whose 
positions,  sizes,  orientations,  and  attributes  are defined by P . 

Of course, DRAW and WRITE ultimately call isolated,  lower- 
level, device-dependent  functions in a disciplined manner. 

The display space  addressing  consideration is handled more 
straightforwardly because it can  be quantified numerically; how- 
ever,  an associated  architectural  decision affecting usability was 
required.  The  fundamental  addressing problem is caused by wide 
variations in the way in which devices  expect to receive  coordi- 
nate specifications. For example, widely used devices  use  one or 
another of the following coordinate ranges: 0-5 1 1  , 0-1023, or 0- 
4095 (all related  to  binary  addressing  schemes).  Others  use  deci- 
mal schemes,  addressing  the  range 0-9999, for  example. More- 
over, while most  devices  have uniform spatial  resolution  (equal 
distances  per  addressing unit  in the x and y directions),  some do 
not. For example, the IBM 5103 Printer, which can  be used as a 
plotter,6  has  resolutions of approximately 3.9 and 2.7 addresses 
per millimeter in the x and y directions,  respectively. 

The  general  problem of variation is handled by introducing  the 
concept of a virtual  device with a virtual  display  space character- 
ized by a  common  address  range  among all actual  devices.  The 
actual display space range and limits are defined by four  numbers 
carried globally in the APL workspace.  These  quantities are suf- 
ficient to quantify  devices  that  are  rectangular  and  whose mini- 
mum coordinates are referred to by (0, 0). 

Selecting an  appropriate  common denominator-the range of 
coordinates  characterizing  the  virtual display space-is not obvi- 
ous. At the  time of selection,  the  graphics  community generally 
argued that  either  the ranges 0 to 1 or - 1  to 1 should be 
Reviewing the  pros  and  cons of those suggestions motivated  an 
assessment of how coordinates  were used at  this relatively low 
level of GRAPHPAK. The  decision made was influenced largely by 
the novice user  who  frequently defines coordinates manually via 
a  keyboard.  The  range 0 to 100 was selected  because of its identi- 
fication with percentages and its ability to  represent  coordinates 
without negative signs and  frequently without decimal points. 
(The upper limit of 100 does not limit resolution  since  the  user  has 
the  freedom to use nonintegers if desired.) 

The  next step was to define facilities for mapping from problem 
spaces to  the virtual  device  space as depicted in Figure 1 .  

A problem space  (characterized by real  numbers  frequently 
called world  coordinates) is generally preferred by high-level 
users. A user will typically define, explicitly or implicitly, a  rec- 
tangular region in the problem space called the window (defined 
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Figure 2 Viewports 
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well accepted  among GRAPHPAK users.  A  user who desires  or 
needs  to  conform to  the conventional single viewport approach 
can define a nearly trivial viewport setting APL function that will 
establish  identical scaling and clipping viewports. 

An additional facility in GRAPHPAK, one  that evolved in the early 
years of development, is a  structure  on which presentation  graph- 
ics applications can be built. The first application area  that  was 
addressed  was  general plotting, a pervasive  requirement in engi- 
neering and scientific user  communities.  The package that re- 
sulted, which is described  later in the  paper,  has  proved  ex- 
ceptionally useful as a  foundation  for additional, higher-level ap- 
plications. Figure 3 illustrates  the  present application hierarchy in 
GRAPHPAK and  demonstrates  the  central role played by the plot- 
ting component. 

In particular,  two high-level components-for  contour plotting 
and  curve fitting-are built on  the facilities of the plotting com- 
ponent. Figure 4 shows  a curve-fitting example;  the curve-fitting 
component  calculates  the  characteristics of the  curve  and calls on 
the plotting component  to plot the  curve,  symbols,  and  axes. 
Then,  the  user  has all of the facilities of the plotting component 
available for  the  production of boilerplate. Figure 5 shows a 
simple contour plot of a terrain.  Here,  the  contour  component 
derives  the  constant  elevation  contours  and calls on  the  plot- 
ting component  for  the  curves and axes. Figure 6 shows  an 
application of the three-dimensional display component to view 
the  terrain  data in a different manner. Figures 5 and 6 illustrate 
the  contrast in visualization techniques  sometimes  required to 
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Figure 7 A skew transformation 
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present  the  same data  to different audiences.  Other  kinds of appli- 
cations  can  be  added to the  structure in a similar manner-gener- 
ally with ease. 

Penetrating all levels of usage of GRAPHPAK are a variety of easy- 
to-use APL tool functions, which can be used solely for their  de- 
fined purposes or in combination  to  serve as building blocks  for 
new applications. 

For  example, the tool  function XFM serves  as  a  general-purpose 
coordinate  transforming  function. It derives from its  left-hand  ar- 
gument, which is a two-plane array of corresponding  coordinates 
in two  spaces, a transformation which will  map coordinates in 
one space to  the  other.  It then  applies  the  transformation  to  the 
right-hand argument, which is a  matrix of coordinates, yielding a 
matrix of coordinates mapped accordingly into  the  other  space. 
This function,  whose simple implementation is based on  the 
primitive matrix  division and inner  product functions of APL, can 
be quite  powerful. 

For  example, if the left-hand argument  represents  correspond- 
ingly the  coordinates of the  two  sets of numbered points illus- 
trated in Figure 7, the transformation will skew the  picture as 
illustrated. Moreover, if the  transformation is “overdetermined” 
by specifying more  than  three  points in each of a  pair of two- 
dimensional spaces, a mapping is determined using the  “least- 
squares”  properties of APL matrix division. 
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In many cases, functions  are  provided simply to improve useabil- 
ity. For  example, 

DRAW (_W INTO S__VP) X F M  OBJECT 
is a single statement implementation of vector  drawing with a 
windowing transformation. Here _W and 212 are  four-element 
vectors  representing  the window and scaling viewports. The 
simple function I N T O  structures  the  two-plane  array  argument 
required  by X F M  for  the  user  who is not  acquainted with APL 
arrays.  Somewhat  natural language structures like this, relatively 
difficult to implement with flexibility in other language environ- 
ments,  are  quite  easy  for APL. 

Addressing  device  attribute  variability 

In  the  previous  section,  three  areas  were identified in which avail- 
able plotting and display devices differ widely, and  the ap- 
proaches  for handling these differences were  discussed. An addi- 
tional area-variability in graphic  attributes-deserves  separate 
discussion. 

The  late 1970s saw  an  explosion in the application of technology 
to  the graphic  presentation of data.  This explosion resulted in a 
corresponding  explosion in the  number of graphic attributes  to be 
recognized by graphic  support  programs-attributes of vectors 
like style,  width,  and  color,  to  name just a few. 

In GRAPHPAK, attributes  are  selected  by  an  encoded  element of 
an  attribute  vector  for  both individual graphic vectors  and  charac- 
ter strings. For  the most part,  the  variations  have  been  handled 
pragmatically for  each  device  supported.  However,  the  variety of 
attributes  selectable  and  experience using them  has identified a 
need for  a classification that will provide a unified treatment.  The 
taxonomy  presented  here is used as a design guide;  implementa- 
tion proposals are evaluated against it for  tests of orthogonality 
and  completeness. At the highest level of the  taxonomy,  attri- 
butes  are classified into  three  general families: appearance  attri- 
butes,  temporal  attributes,  and  reference  attributes. 

In  the family of appearance  attributes  are  those  that  directly af- 
fect  the  appearance of graphics  vectors. Within this  category are 
spatial modulation and color. Spatial modulation is a term  se- 
lected  to  describe  patterns or styles of spatial  change  associated 
with a  graphics  vector. Modulation may be axial or transverse, 
that  is,  vary  along  the length of the  graphics  vector or per- 
pendicular to  it. Combinations of axial  and  transverse modula- 
tion, of course, encompass  the familiar attributes of style  and 
thickness. The  concept of modulation extends  naturally to two- 
dimensional graphic  entities (filled polygons). Color is a general- 
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ization of intensity  and  can be represented by a  vector of descrip- 
tors in a  selected  color  space or by a color  number.  The specifica- 
tion and  treatment of color is far  from  a trivial consideration. For 
example,  for many of the  color  display  devices  available, a color 
is selected by specifying relative  proportions of the  red,  green, 
and blue primary colors. This method of specification, however, 
is not particularly suitable  for  user specification. (As a mental 
exercise,  the  reader might consider  what  proportions of these pri- 
maries would come  close to matching the  color of the  reader's 
office walls.) A more intuitively appealing method may be  to use 
the  perceptual  descriptors:  hue,  saturation,  and  lightness. 

Two  common  approaches to graphic display devices  have in- 
volved the use of refreshed  cathode-ray  tube technology (e.g., 
IBM 3250) and  direct view storage  tube technology (e.g.,  Tek- 
tronix 4015). The IBM 3277 Graphics  Attachment RPQSs1' is an em- 
bodiment that  permits use of both  the refreshed and  storage ap- 
proaches.  Since the time behavior of graphics  vectors is influ- 
enced by these  approaches,  the  attributes  that  characterize  this 
behavior are termed  temporal.  Two  temporal  attributes are iden- 
tified: persistence and periodicity. 

Persistence quantifies the longevity or permanence of a graphic 
vector, while periodicity reflects its  frequency of recurrence. In 
the  context of the IBM 3250, for  example,  the  employed  tech- 
nology  is characterized by relatively low persistence,  hence vec- 
tors must have  relatively high periodicity to be seen  at all. How- 
ever, where  direct view storage  tubes  are used in their normal 
storage mode,  vectors  are highly persistent,  hence need not be 
refreshed or be periodic  at all. 

The third attribute family also has  been motivated by character- 
istics of the IBM 3277 Graphics  Attachment RPQ. That  hardware 
provides facilities for referencing an unbound,  operator-con- 
trolled coordinate held in a tracking  register and for defining vec- 
tors with respect  to  it.  These capabilities  can be encompassed by 
a  class of attributes called reference  attributes  that  characterize 
the  independence of coordinates  and  the  base  to which they are 
referred. 

The  reference  attribute of mobility characterizes  the  degree  to 
which a  coordinate is bound.  Usually,  coordinates are completely 
immobile; that  is, they  are bound as  constants prior to  the  time of 
display. The  tracking  register  referred  to  above is an  example of a 
mobile coordinate. 

The  attribute of relativity has been associated with graphics  since 
its beginning, and it becomes  an  essential  attribute  to  take  practi- 
cal advantage of mobile coordinates. Specifically, relativity  char- 
acterizes  the origin of reference  for  a  coordinate.  In  most  casual 
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graphics applications,  coordinates  are absolute; that  is,  their  base 
of reference or relativity is to  the origin of the base or world 
coordinate  system. 

The benefit to  be  derived from an  attribute classification like this 
one is that  a wide variety of potential and device-independent 
attributes  can  be  associated with the graphic vectors  themselves. 
Moreover,  the  attributes,  geometry,  and topology associated with 
a  picture  can  then be implemented as  a rectangular array-a dis- 
tinct advantage  for an APL implementation. 

Applicability of APL 

APL is an interesting language and  seems naturally applicable to 
implementing algorithms related to presentation  graphics.  This 
aspect should not be unexpected, since among APL design prin- 
ciples are goals of generality and practicality." This applicability 
can be seen in several forms-its adaptability to implementing 
algorithms and  its orientation toward interactive use. 

In particular, the native capabilities of APL adapt  themselves 
nicely to many  of the  techniques found in the graphics literature 
that  are matrix formulations of techniques  for transforming ho- 
mogeneous coordinates (e.g., References 8 and 12). For example, 
if XY is a two-column matrix of coordinates of ordinary  points in 
two-dimensional space, the expression 

0 l + ( X Y , l ) t . X C  

relates  a  transformation of those  points controlled by elements of 
matrix C .  C itself may be a compound transformation derived, 
for example, from the  inner  products C+Tt.   xR+ . X M  , where 
T , R , and M are 3-by-3 matrices  for  the fundamental transfor- 
mations of translation,  rotation,  and magnification, respectively. 
The  transformations  can be achieved as well  in three dimensions 
where the  transformation  matrices  are 4-by-4 matrices. In  fact, in 
this  case,  perspective projection can  be achieved by a matrix in- 
ner product 

XU@-( X Y Z ,  1 )+.  XP 

followed by a division 

XY+XYZC;l 21+.XUZC;4 4 1  

where matrix P contains  a definition of an  observer's position (0, 
0, h) on  the z axis as 

1 0 0  0 
0 1 0  0 
0 0 1 -(I + h)  
0 0 0  1 
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Some  techniques  important to graphics  are  not so straight- 
forwardly implemented in APL. In  some  cases, algorithms out- 
lined in the graphics  literature are not  satisfactory  when  trans- 
literated  into APL implementations.  This  occurs  because  fre- 
quently the  algorithms  were originally formulated with a bias 
toward  more  traditional programming languages and disciplines. 
In  these cases, it is often  rewarding (for both  performance  and 
understanding) to rethink  the  requirements of the problem with 
an  eye  toward  the  fundamental  nature  and capabilities of APL. 

The  interpretive  implementations of APL permit more flexibility in 
adapting a program for human use  than would be possible in the 
more traditional, compiled program environment.  These  charac- 
teristics will  be illustrated by a  discussion of the GRAPHPAK plot- 
ting component. 

The plotting component was originally designed to  serve  as a gen- 
eral tool for plotting APL variables, and, to a large degree, it was 
modeled after the printer-plotting  workspace originally provided 
with APL program  product^.'^ Its characteristics  have  been  popu- 
lar among users.  For  example, it permits simple syntactic  con- 
structions like 

PLOT XY 

where X Y  is a matrix whose first column defines the  abscissa val- 
ues and whose second and possible  subsequent  columns define 
sets of ordinate  values; or 

PLOT Y 

where Y is  a  vector of ordinate  values,  and an index  vector is 
used by  default  for  abscissa  values; or natural language structures 
like 

PLOT GROSS AND  NET VS T I M E  

Notice that, in these  examples,  the  user is expected to know  only 
enoggh APL to put his data in the form of APL variables.  But, as 
well, the proficient APL user may generate  data in  his own APL 

1 functions along with interspersed  calls of GRAPHPAK functions 
like PLOT . This  procedure is to be contrasted with the so-called 
conversational  approach  for  the  novice  user  where a “question 

i and  answer”  procedure is utilized. By taking the non- 
i conversational, APL “tool function”  approach,  an APL application 

programmer can easily build conversational  programs  on top of 
the GRAPHPAK base  to  be used by someone  who  knows no APL at 
all. To  do  the  reverse is much more difficult. 

The high degree of interactivity  that  characterizes  current imple- 
mentations of APL plays an  important role in the  development of 
useful plots. It enables  users to make spontaneous  changes  based 
on judgment  and  desire.  For  example,  after plotting a  curve of 
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data ( PLOT Y VS X , if a user is curious  about  the  behavior 
of Y with respect  to  the reciprocal of X ,  the  curiosity  can  be 
satisfied merely by typing PLOT Y VS +X . This ability to 
make spontaneous  changes is undoubtedly  the  most  important 
single factor  that  makes APL GRAPHPAK an attractive  tool. 

In all of these  cases  illustrated  above, PLOT examines  the  data 
and  derives x- and y-scaling factors  that will ensure  that  the 
plotted  data will  fit within the plot area.  The  factors  are  chosen 
in general so that the  data will fill the  frame as fully as possible 
while maintaining reasonable value labels to be associated with 
axis  tick  marks.  This  automatic scaling approach  avoids the 
necessity  for  the  user to specify scale  factors  or limit values. 
Early  experience with PLOT showed that users did not  necessar- 
ily want PLOT to produce  axis  labels,  annotations,  title  blocks, 
etc. (to be  referred to  as “boilerplate”  for  ease of reference).  For 
example,  the user may determine  on  inspection of the picture that 
the argument provided  to PLOT was  incorrect and may not  want 
to wait for  rendering of the  boilerplate.  For  this reason, GRAPH- 
PAK always  renders  the  data  representation first, then  requested 
boilerplate. This  approach  can  be especially important if the plot- 
ting device is as slow as a mechanical  plotter. 

After  the  desired  data  representation is rendered,  the  user  has  the 
ability to  add  customized  boilerplate at will through the use of 
appropriate APL functions  that are provided. 

This characteristic of avoiding binding program behavior  into  a 
fixed, single-minded sequence gives the  user  the flexibility 
needed to  respond  appropriately to  the appearance  and form of 
the visual presentation. 

For  the  cases  where  the  user  desires  to specifically override 
default characteristics,  a  dyadic form of PLOT called SPLOT 
(for “Specified Plot”) is provided. Its left-hand argument  per- 
mits: 

1 .  Specifying the plot frame limits to be used (overriding auto- 

2. Inhibiting drawing of axes 
3. Producing plots using symbols  and/or  vectors 
4. Controlling the  attributes of the  vectors  produced 
5. Selecting linear or logarithmic axes 
6. Automatically producing  axis labels 

matic derivation) 

In  addition,  a  variety of “tool  functions”  are  provided  for  the 
production of boilerplate.  They  include: 

1. An axis generator  that  controls  tick mark placement,  tick mark 
length and  attributes,  and  axis offset 
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described  previously,  where  attributes  are defined by a collection 
of orthogonal  and universally appropriate  characteristics. I 

challenge of The  variety  and  nature of the  characteristics of families of graphic 
graphic  data elements  motivate a natural  requirement  for  data  structures  more 

representation general  than  present APL arrays.  The  concepts of proposed APL 
general arrays14 are promising, permitting  the  representation of 
attribute,  geometric,  and topological information by non- 
homogeneous, list-like structures.  General  arrays may be ideal 
for  representing  fundamental  graphic  elements,  segmented dis- 
play entities,  and higher-level graphic  structures.  The challenge is 
to discover  the  best  means of representing  the desired structures 
and manipulating them with the  proposed facilities. 

challengeof As the  thought  concerning the marriage of APL and  graphics 
unification grows in maturity, it becomes  more  appropriate  to  think  about 

treating  graphics  entities as more primitive elements  of the lan- 
guage. Graphics  entities are defined by numerical, attribute,  and 
topological information.  The  challenge is to  enclose  this informa- 
tion in a  manner that  represents a natural,  compatible,  general, 
and useful extension of the  present language. Approaches should 
seek facilities for  structuring  and transforming graphic  entities 
and  for  communicating  them to  and from visualization devices in 
a consistent  framework  that is in the spirit of APL. 

An additional broad  area of challenge is the  continued  search  for 
formulations of graphics-related  algorithms  that  promote  natural 
(hence usually efficient) implementations in APL. 

Finally, there is the challenge of providing facilities that  are genu- 
inely easy  to  use. The fundamental  approach of GRAPHPAK has 
been largely successful: It uses  a simple set of command-like APL 
statements  to maintain the flexibility and generality characteristic 
of APL, while retaining the ability to use functions as tools or 
building blocks to develop  new,  unforeseen  applications. 

Satisfying these challenges should involve an ideal: unifying a 
two-dimensional means  for communication-graphics-with a 
technique  for COInmUniCatiOn-APL. The language, influenced by 
somewhat  traditional  applications  and by one-dimensional com- 
munication means,  has  proved admirably adaptable to presenta- 
tion graphics. But it is the  spirit of APL that will motivate  discov- 
ery of ways of satisfying  the challenges that  are  characterized by 
generality,  richness,  and utility. And the nature of APL and its 
current  implementations will facilitate exploring possible ap- 
proaches,  evaluating  alternatives,  and ultimately meeting the 
challenges. 
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