
Cryptographic methods of data  protection  have  taken  on  new  im- 
portance as  computers  have  become  faster and as strong  cryp- 
tographic algorithms,  such as the Data Encryption  Standard 
(DES) ,  have  become  available.  But  a standard encipherment  tech- 
nique is only  the j r s t  step in applying  cryptography in a  comput- 
ing center.  This  paper  discusses  the Information Protection  Sys- 
tem (IPS), a  set of cryptographic  application  programs  designed 
to use  the DES algorithm in a working computing  center. In de- 
signing IPS,  several  important  augmentations of DES were formu- 
lated. IPS was first implemented to help increase computing-cen- 
ter security at  the IBM Thomas J .  Watson Research  Center and is  
now widely installed  at  other IBM locations. IPS is not an IBM 
product  and is  not available for  use outside IBM, but  many  cryp- 
tographic techniques in IPS were incorporated into  the IBM cryp- 
tographic products  announced in 1977. 
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In the third quarter of 1974, IBM’S Research Division began an 
investigation of ways  to  improve  computing-center  security  at  the 
Thomas J .  Watson  Research  Center in Yorktown Heights,  New 
York. Several  steps were taken  to improve physical security. 
Transparent  protective walls were  constructed to make access 
difficult for  unauthorized  persons.  Procedures  for changing com- 
binations on  pushbutton-code  locks were tightened,  and  other 
measures of a similar nature  were  adopted. 

Nevertheless  a  serious problem remained: Behind the locked 
doors  and  protective walls were  computing  systems with security 
exposures not related  to  their  physical  surroundings.  For  ex- 
ample,  except  for the most highly classified data, any  tape  could 
be mounted by knowledgeable users of our  computing  systems, 
which shared  a  common  operations staff and  tape  library.  In  one 
system, OS/MVT,~ any on-line data  set could be read by any job. 
And  in VM1370,2 as  later  shown by Attanasio,  Markstein,  and Phil- 
l i p ~ , ~  the  system  could be penetrated by a determined  attacker. 
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Several  alternatives  were  considered  for improving the security 
of on-line and off-line data  at  Yorktown.  The OS/MVT password 
facility was considered  for data  sets but  was  rejected  because of 
its  operational  inconvenience  and  because  the  demonstrated 
weakness in VW370 made it  difficult to justify  serious  inconve- 
nience in OS/MVT. If a “protected” OS/MVT volume could easily be 
mounted by a v W 3 7 0  user, no real  protection  existed. A manual 
record-keeping  system  to  prevent  unauthorized  mounts in VW370 
was also rejected as awkward  and  error-prone. Further, it was 
concluded that confidential data could  not be considered really 
safe if it could  be  accessed by operators, system  programmers, 
and other  users with privileged access  to  the system. 

To meet the  needs of users  who held confidential data in this envi- 
ronment,  a  cryptographic  system called the Information Pro- 
tection System ( I P S )  was  developed. By using IPS programs  to 
apply a cryptographic  transformation  to  their data,  users  have 
been able to  protect confidential information against unauthor- 
ized release.  Data in its original, ordinary form-such as  the  text 
of this paper-is termed plaintext or cleartext. After a crypto- 
graphic transformation  has  been applied-that is,  after  the  data 
has  been enciphered-the resulting data is termed ciphertext. The 
reverse of encipherment-returning ciphertext  to  its original 
plaintext form-is decipherment. While encipherment  does not 
protect a file against  accidental or malicious destruction,  the 
owner  can be confident  that  the information in an IPS-enciphered 
file  will almost  certainly  never  be  read in plaintext by an oppo- 
nent, nor will an  attempt  to modify the  data in secret be success- 
ful. 

The IPS cryptographic  system  consists of two  types of informa- 
tion: public and private. By public  information we mean the  type 
of system  employed  and  the  details of its  operation. The design of 
IPS cannot  be  kept  secret  because  any  user of the  computing  sys- 
tem can  copy  the IPS programs and  sooner or later  arrive  at  an 
understanding of the method used. (A cryptographic  system im- 
plemented in hardware is not so readily  probed,  but  in  our view 
the result is the  same:  the  techniques used can  become public 
knowledge.) A cryptographic  system  that  depends  for  its  secrecy 
on  an  opponent’s  ignorance of its method of operation will there- 
fore  not be successful.  To  provide  the  essential  element of se- 
crecy,  users  are required to supply privately known  strings of 
characters or  bits, termed keys. A key  is used to  select a transfor- 
mation from a family of cryptographic  transformations, one for 
each possible key. With a well designed cryptographic  system, 
knowledge of both  the  system and  the  key is required  to  obtain 
plaintext from ~ iphe r t ex t .~  

The IPS cryptographic  programs  use a keyed  block cipher. A 
user is required  to  provide a key in order  to obtain  encipherment 
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or decipherment  services.  The  keys  are  not  stored in the comput- 
ing system,  an  arrangement that has  both  advantages  and disad- 
vantages. The  user is inconvenienced by having to supply a key 
for  each  use of IPS, but he has the  assurance  that  no  one,  not  even 
a privileged machine operator or system  programmer,  can deci- 
pher his files unless his key can  be  intercepted while in active  use. 
Because keys are not  stored in the  system, IPS-enciphered data 
resists  attack  even if opponents  masquerade as legitimate users 
and employ the IPS system itself to aid them in their  work. 

Ips-enciphered data is  now used in our computing systems in sub- 
stantial  quantity,  and its owners still enjoy convenient  access to 
their files. Although IPS does  not  provide  an  absolute  answer  to 
the  problems of computing-center  security, it has been in use at 
Yorktown and  has  been delivered to many IBM locations  over  the 
course of more than  four  years. 

The basic cryptographic  transformation used by IPS is that  speci- 
fied  by the  Data  Encryption  Standard (DES),5 which was in the 
process of being approved by the United States  Government 
when IPS was  designed. Much cryptographic work on  the al- 
gorithm had been  done  at the Research  Center in Yorktown 
Heights6-’ and  at IBM’S System Communications Division labora- 
tory in Kingston, New York.’-ll In a DES encipherment,  a 64-bit 
(eight-byte) block of plaintext data  is transformed,  under  the in- 
fluence of a 56-bit cryptographic key,  to a 64-bit block of cipher- 
text  data.  (The full key is 64 bits,  but only 56 participate in the 
encipherment. The  others  are  parity  bits.) 

By enciphering data eight bytes  at a time instead of one  at a time, 
DES greatly increases  the number of possible cryptographic sub- 
stitutions;  but  either all data  must fit the algorithm’s eight-byte 
length,  or  some  compensating  arrangement must be made.  The 
IPS method of encipherment  augments DES to  permit  the enci- 
pherment of data of any length by using a method of successive 
data-dependent  encipherment called chaining. 

In our view, the  real usefulness of IPS, going beyond  the  basic 
cryptographic  function  provided, is the  protection offered in the 
user’s  natural programming environment. 

Design  philosophy of IPS 

The goal of IPS is to offer an implementation of the  Data  Encryp- 
tion Standard  that  is  easy  to  use while providing the  Standard’s 
full cryptographic  strength, as well as  several additional features. 
The design principles of IPS are  as follows: 

No key,  or  variable  that is equivalent to  a  key,  resides  per- 
manently in the computing  system.  Keys  are the  responsibility of 
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Utilities  and  commands  are  provided  for  handling OSIVS data  sets 
and VMN70 CMS and  data  can  be  enciphered  and  deci- 
phered  from  within  user  programs  in FORTRAN, PLII, and  Assem- 
bler.  Ciphertext  jiles  produced  by  the  utilities  and  by  user  pro- 
grams  are  compatible,  provided  that  users  follow IPS conventions 
when  creatingfiles  to  be  deciphered  by  the  utilities,  or  decipher- 
ing  files  created  by  the  utilities.  For  nonsequential  access  meth- 
ods  not  supported  by  the  utilities (for example VSAM and 
BDAM’4’15), encipherment  from  within  user  programs still permits 
the  creating  of  ciphertextjiles.  When  needed,  the  use  of IPS within 
user  programs  permits  the  designing  of  applications  that  read 
and  write  data  sets  entirely  in  ciphertext,  without  ever  having  to 
exposejiles  of  plaintext. It is important  to  provide a service  that is 
sufficiently flexible to keep  users satisfied-that is,  pleased  at  the 
way IPS fits into  their  environment  and  content with the invest- 
ment of time  and effort required to introduce  cryptography  into 
their applications.  Therefore IPS supports  both  batch  and  inter- 
active use, and it makes both utilities and  subroutines  available. 
In designing IPS, it was not feasible  that  the utilities be made to 
handle all conceivable  types of data  sets (at least with the  devel- 
opment  time  available to  us), so the  subroutines  provide an im- 
portant mechanism for enciphering files  of all types  because  the 
user programs themselves will handle 110. And if user  programs 
read and write in ciphertext,  plaintext files need never  exist. 

Ips-encipheredjiles  ordinarily  contain  a  header  record to ident ib  
and  describe  them  as IPS ciphertext.  The  record  is  inserted  and 
removed  automatically  by  the  utilities,  and  it  is  passed  back  to 
those  who  use IPS f r o m  within  their  own  code. The  header  record 
includes (i) information about the  type of encipherment used, (ii) 
a time-date  stamp, (iii) the  version of IPS employed, (iv) cryp- 
tographic chaining information, ( v )  a verijication field to  warn a 
user  at time of decipherment when an incorrect key has  been  sup- 
plied, without providing information that  enables  the  correct key 
to be  recovered,  and (vi)  an  optional user  comment field. 

To the  extent  that  plaintextjiles  can  be  exchanged  between OSIVS 
and VMN70 C M S  systems,  the  corresponding  Ips-enciphered  jiles 
are  also  exchangeable,  with  encipherment  in  one  system  and 
decipherment  in  the  other,  as  needed. 

The  programs  were  designed  and  coded  with  great  care,  since 
incorrect  output  is  not  easily  detected  in  ciphertext.  Similarly, 
because  misuse of the  programs  can  cause loss of  user  data,  and 
worried users  may  not  submit  their  data  to  cryptographic  trans- 
formation,  the  documentation  has  been  made  as  clear  and  help- 
ful  as  possible. 
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Augmentation of DES by chaining  (and  key-crunching) 

Certain plaintext files exhibit great  regularity, with many identical 
eight-byte blocks  (for  example,  blocks of eight blanks to fill out 
lines of computer  source  programs  to a fixed length). Normally 
under DES encipherment,  such identical blocks of plaintext yield 
identical blocks of ciphertext  (under  the  same key). Thus  the 
eight-byte blocks of blanks may be identifiable, and a rough geo- 
metric outline of regions of nonblank characters  among blank 
characters in the plaintext may be discernible in the  ciphertext. 
Repetitions of some  other  blocks may also be visible: for  ex- 
ample, identical records in the plaintext, or identical  parts of rec- 
ords when aligned with the  eight-byte DES blocks,  can  be recog- 
nized as  identical in the  ciphertext. It is doubtful whether  this 
phenomenon is a serious  weakness.  To  date no technique has 
been found that  uses it to  determine the key or  to obtain  usable 
plaintext of alphabetic or numeric files (although some of the 
structure of digitized line drawings could be visible). However, if 
the  existence of identical  blocks  can  be  concealed,  a  crypto- 
graphic system is strengthened at least intuitively because  the 
amount of information available to an  opponent is reduced. Be- 
cause of the possibility that  under  some  circumstances, with 
some ciphertexts,  an  opponent might be able to make use of repe- 
titions, an augmentation of the DES algorithm was deemed advis- 
able in IPS. 

After all the  eight-byte blocks of a record  have  been  enciphered 
using DES, there  frequently  remains a short block, a block of 
fewer  than eight bytes. A short block cannot be enciphered di- 
rectly by DES, since DES requires eight-byte inputs. It could be 
padded on  the right with zeros  or blanks and  then  enciphered,  but 
all eight bytes of the resulting ciphertext,  and  preferably informa- 
tion as  to  the  length of the  padding, would have  to  be  preserved 
for  future  decipherment,  and  the  ciphertext would be longer  than 
the original plaintext. We found  that condition undesirable be- 
cause,  for  example,  the  ciphertext might have  to  replace  the 
plaintext in some previously allocated  space, or  be written  ac- 
cording to  some  previously defined record length. Alternatively, 
some key-dependent  “simple  substitution”  encipherment could 
be designed for  short  blocks;  but if it depended only on  that block 
(and the  key), it could be  subject to cryptanalysis, especially 
when the length of the block is preserved. This exposure, al- 
though not so obvious  as  the  repetition of identical blocks, is po- 
tentially more  serious  because  some nonblank short-block plain- 
text could be discovered. 

Chaining 

To handle both  types of problems, we devised a method called 
chaining. Chaining is a process  by which each block of ciphertext 
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is made to  depend  not only on  the corresponding  plaintext  and the 
key,  but  also  on preceding ciphertext. If the  dependence  starts 
anew with each  record,  the  process is termed block  chaining; if it 
continues  across  record  boundaries, it is termed record  chaining. 
Augmentation of DES by chaining eliminates  repetitiveness in ci- 
phertext arising from  repetitive  plaintext; it provides  for the enci- 
pherment  and  decipherment of data of arbitrary length (not  neces- 
sarily multiples of eight bytes);  and it allows the  user  to  enter 
keys as long character strings. 

In the  discussions of block and  record chaining that  follow,  there 
is a possibility of confusion in our  use of the  terms block,  data 
string, and record. When we speak of enciphering a record, we 
tacitly assume that  the  data  to  be enciphered is a file on  some 
storage medium and is organized into  records,  and  that  the  natu- 
ral logical unit of encipherment is a record.  The IPS subroutines 
can also be used on  data  that is not so organized,  for  example in 
main processor  storage; and the logical unit of encipherment may 
be some data string which is defined by the  programmer. It might 
for example be a selected  portion of each  record,  the  rest being 
left unenciphered. Thus, in what follows, when we use  either rec- 
ord or data  string, in most cases  the  other term  could  be  used as 
well. In  addition, as used  here,  a block is an eight-byte  unit of 
data suitable for DES encipherment or decipherment. It should  not 
be confused with the physical data blocks of a file on a tape  or 
disk volume,  nor with the reproduction of those  blocks in input or 
output buffers. 

We term the basic chaining operation block chaining because it 
chains together  successive  eight-byte blocks of DES data.  A for- 
mal description of block chaining is given in the  Appendix. Below 
is a description of the  operation as implemented in IPS, first as- 
suming that  the  length of each  record  (or  data string) is some mul- 
tiple of eight bytes. 

First,  once  for  the  entire file, a time-dependent  eight-byte initial 
chaining value (ICV)  is generated.  Then,  for  each  record: 

0 The initial chaining value is assigned to  an eight-byte current 
chaining value. 

0 The  current chaining value (equal to  the ICV) is XORed" with 
the first plaintext block. The result is enciphered with DES, 
and  the  consequent  ciphertext is assigned to  the first block of 
output. 

0 The  just-produced  ciphertext block is also assigned to  the cur- 
rent chaining value. 

0 The  current chaining value (equal  to ciphertext) is XoRed with 
the  next  plaintext block. The result is enciphered with DES, 
and  the  consequent  ciphertext is assigned to  the next block of 
output. 
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rent chaining value. 

plaintext. 
The  last  two steps  are  repeated  for  each additional block of 

Chaining can  be viewed as a wave of data modification and enci- 
pherment that moves from left to right along the  string of data 
being processed.  Because  each eight-byte block of plaintext is 
modified before it is enciphered,  and  each modification is dif- 
ferent,  the  resulting  ciphertext  blocks in a  record are (almost  cer- 
tainly) different whether  the  plaintext blocks are identical or 

A  data  string  composed of ten identical eight-byte  blocks is 
enciphered  into ten dzflerent eight-byte blocks of ciphertext. 

Decipherment with chaining is the inverse of encipherment with 
chaining, as follows: Each block of ciphertext is deciphered with 
DES, and  the  result is XoRed with a  current chaining value to yield 
a plaintext block. For  the first ciphertext block in a record,  the 
current chaining value is the  same as  the initial chaining value 
used during encipherment. For  each subsequent  ciphertext  block, 
the  current  chaining value is the immediately preceding  cipher- 
text block. 

Because  ciphertext  (rather  than  plaintext) is used for  the  current 
chaining value  during  encipherment,  this method of chaining has 
an  important "self-healing'' property. Chaining as described 
above might appear  to  threaten  the destruction of all data in a 
string to  the right of some point of disturbance, as from an 1/0 
error. But nothing of the kind happens. Although each  ciphertext 
block depends implicitly on all the preceding blocks in the  record, 
as well as  on  the  current  plaintext  block, it depends explicitly on 
only the immediately preceding ciphertext block and  the  current 
plaintext block (and  the  key), as follows: 

ith ciphertext block = 
DEs{key, (i - 1)st ciphertext block XOR ith plaintext block} 

From  this  equation we see  that 

ith plaintext block = 
( i  - 1)st ciphertext block XOR DES"{key, ith ciphertext block) 

Thus a plaintext block can be recovered from just  the  current  and 
immediately preceding  ciphertext blocks (and the key). Under 
this  type of chaining,  therefore,  any damage is not  propagated 
beyond the  two  blocks  at  the point of  difficulty. 

short  blocks Since  short  blocks  cannot be enciphered by DES without  increas- 
ing their  length,  another  method of equal  strength  is  required for 
enciphering them. The method we chose is to XOR the  short block 
with a  variable, secret quantity.  Such a quantity is made available 
by slightly modifying the chaining process. 
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To  encipher  a trailing short block of 1 < 8 bytes-that is, a short 
block that follows one  or more full blocks in the record-the pre- 
ceding full block of ciphertext is re-enciphered, and  the first 1 
bytes of the  result are then XoRed with the  plaintext  short  block. 
That preceding full block of ciphertext  depends  on all the  preced- 
ing blocks of the  record,  and  thus is sufficiently variable.  But it is 
visible to  an  opponent;  re-encipherment of it provides the neces- 
sary  secrecy. By this  means, trailing short-block  ciphertext  has 
the full strength of a  standard DES encipherment. 

However, to  encipher (under block chaining) a record of 1 < 8 
bytes-that is, a short record-it is XoRed with the first 1 bytes of 
the  encipherment of the initial chaining value,  since  there is no 
“preceding  ciphertext  block.”  This  encipherment is not strong,’* 
but it does superficially conceal the  short  records.  There is no 
impairment of the strength of longer  records.  Under  record  chain- 
ing (see  below), which we recommend,  and which is  the  default 
action, this problem disappears. It has  been suggested that  the 
programs should prohibit this block-chaining-but-not-record- 
chaining encipherment of short  records.  However, virtually the 
only short  records in our  experience  have  been  formatting  com- 
mand symbols in literal  text  (for  example, .sp for  “line-space” in 
SCRIFT files), and those symbols carry little information that would 
be useful to  an  opponent.  Therefore we felt that  such a prohibi- 
tion might be  unnecessarily  burdensome  to some users,  as well as 
possibly awkward logistically. For files that  contain sign$cant 
short records-for example, if all records  are short-the user 
should of course  avoid overriding the default. 

Block chaining still has  two  potential limitations. First,  identical 
records in a file have identical encipherments  because the use of 
the  same key,  data,  and initial chaining value yields the same ci- 
phertext.  In fact,  two records with a given number of identical 
initial blocks yield ciphertexts that agree in the  same  number of 
initial blocks. Second, if enough short  records  exist in the file, it 
may be  possible, as noted  above,  to decipher  them  (but  not  any 
full blocks)  without  the key. Both limitations disappear if the ini- 
tial chaining value is allowed to  vary from record  to  record 
throughout  the file. Thus if each  record is enciphered with its  own 
unique initial chaining value, all the  ciphertext  blocks are dif- 
ferent,  even if all the plaintext blocks of all the  records  are  the 
same. And the  cryptographic  weakness mentioned above  for 
short  records is removed. 

This variable initial chaining value could be  chosen by a function 
that  does  not  depend  on  the  contents of the  data  records  (as  by 
adding a constant  to  the preceding initial chaining value),  but if 
any data  records  were  lost,  the  synchronization  between  the  rec- 
ords  and  the initial chaining values would also  be  lost. We chose a 
method,  outlined  below,  that  gives good variability, and  that de- 
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procedure is unsafe.  There  are  fewer  than a million words in an 
unabridged dictionary,  and  fewer  than  a million names in a large 
telephone directory.  That  number of potential  keys  could  be 
tested in a few minutes  on  a Systed370 Model 168. Even  the  use 
of eight randomly chosen EBCDIC characters is unsafe,  because 
only about  a  third of the 256 EBCDIC characters  can be printed  at  a 
terminal, which reduces  the  available  keys by a factor of about 
1.5 X Instead, if a DES key is introduced directly, it should 
consist of 16 hexadecimal  digits,  chosen  randomly or essentially 
so (except  for  parity.) 

IPS provides  for  an  additional way of defining a key.  It  permits  the 
user  to enter a user  key of more than eight bytes,  say 16 bytes  or 
more (usually,  but  not  necessarily, printable characters  and 
blanks). With this  freedom, the  user might, for  example,  enter 
several  words  (say five or more) chosen randomly and indepen- 
dently from an unabridged dictionary.  Or  the  user might enter 
some phrase.  It is essential  that  these  choices  be made in such a 
way that  the  key  cannot practically be found by an  opponent, 
either by guesswork or by enumerating some plausible set of 
keys. 

To produce  a  suitable DES key from  such a longer user key, some 
good hashing function is needed. It should be sufficiently com- 
plicated to  produce essentially unbiased and  statistically inde- 
pendent bits in the DES key. It would not be desirable, for ex- 
ample, merely to XOR various bytes  together  to form the DES key. 
The EBCDIC representations of decimal digits and  capital  letters 
all commence with binary 11, hence  the XOR of any  number of 
these  commences with 11 or 00, so that  the leading two  bits of 
such  an XOR are perfectly  correlated,  thereby limiting the  set of 
possible keys.  More  generally,  any linear combination of biased 
or  correlated  bits will have a non-uniform distribution, which 
might be useful to an  opponent by allowing him to  search only 
over  the more likely keys. 

We solve this problem by the use of chaining. IPS enciphers  the 
long user key under  a  selected  key, with chaining, and it uses  the 
rightmost 56 bits of the resulting ciphertext as  the DES key. We 
call this  procedure key  crunching. We believe that  correlations in 
the  user key are adequately  smoothed  out by crunching. The DES 
key can be returned to the  user so that  either it or  the long key 
can be used for  future  decipherments. 

Components of IPS 

The OS/VS version of IPS has  two  components:  a utility program 
called IEBCODE for enciphering (or deciphering) sequential  data 
sets,  and a set of cryptographic  subroutines  intended  for calling 
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Data  to be deciphered by a  subroutine call is handled most easily 
if ciphertext  records are processed  one  at a time, in the same 
manner as  the  processing of ordinary  records by an  application 
that  does  not  use  cryptography.  This  natural  processing of data 
set  records by an  application  program is possible only if the unit 
of encipherment,  the data enciphered in one logical operation, is 
exactly one logical record. It  cannot,  for example,  be  a  group of 
records,  because  such a technique would force  the  application 
program to  read  and  process  records in groups. For most appli- 
cations,  substantial program changes would be required to  adopt 
such a scheme.  Therefore,  under IEBCODE, each  record in the 
data  set is enciphered  separately, so that  ciphertext  produced by 
IEBCODE can easily be read  and  processed by user  programs. 

For fixed-length records,  the unit of encipherment is the logical 
record. For variable-length records,  the unit of encipherment is 
the  data  portion of the logical record;  the  record  descriptor word 
remains in plaintext,  to be accessible to  data management rou- 
tines.  For undefined-length records,  the unit of encipherment is 
the physical data  block,  because  user programs must also treat 
each  such block as  an individual record.  For  spanned variable- 
length records,  the unit of encipherment is the  data  portion of the 
entire  spanned  record, no matter how many segments or physical 
blocks it  may occupy. By making the unit of encipherment  for 
spanned  records the entire  record  rather  than  a  record  segment, 
IEBCODE ensures  that  the  ciphertext  produced is independent of 
block size and  record  segmentation. 

For  users of IEBCODE who employ it only for  the bulk encipher- 
ment and  decipherment of data, logical record  encipherment is of 
no particular  importance. But that technique makes it possible  for 
users to exchange  data  between IEBCODE and their own cryp- 
tographic application  programs with minimal difficulty. This de- 
sign also permits  the  exchange of files between OS/VS systems  and 
the IPS CIPHER command running under vhU370 CMS. 

Logical record  encipherment  can  be  set  aside if the benefits of 
incompatibility exceed  the  costs. For  instance, it is possible  to 
imagine a scheme in which incoming plaintext records  are pro- 
cessed by a data  compaction  routine  to  save  space  and  the CPU 
time needed  to  encipher  them,  then  are placed in successive  por- 
tions of a  standardized fixed buffer, enciphered,  and  transmitted 
to an  output  data  set.  Such  a  compressed  and  enciphered file the- 
oretically could be processed by a  user program, but  that is not 
likely to  happen  for  practical  reasons. For most purposes,  and in 
the  absence of special  reasons as in the  above  example,  the logi- 
cal record  encipherment  technique is preferred. 

Enciphered files are identified as such by IEBCODE. A header  rec- 
ord,  the encode ID record, is written  at  the  front of each file  of 
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ciphertext.  This ID (identijication) record  contains the  date and 
time of the  run,  the version of IPS used, a security classification 
text  chosen by the  user, initializing information concerning  the 
cryptographic chaining (block or record) used in the file, an op- 
tional user comment field, and a cryptographic key test field. The 
key test field is based on the  user  key  but  does  not  contain  it. 
During subsequent  decipherment, IEBCODE can  determine  almost 
certainly, from the key test field, whether  or not the key supplied 
at  that time is the same as  the  key  used in the original encipher- 
ment,  thus providing early warning if the  user  has  inadvertently 
supplied the wrong key.  (The  key  test field consists of the XOR of 
the left and right halves of the  encipherment of the ID record time- 
and-date field under  the  user  key.  Because of the XoRing, the 
time-and-date and  key  test fields do  not exhibit matching plain- 
text  and  ciphertext.) 

When IEBCODE is used  to encipher a file, it begins by initializing 
for  encipherment  under  the  user key and writing the  encode ID 
record  into the  output file. Then  each logical record in the  input 
file is read  and  enciphered  separately,  and  its  ciphertext is trans- 
mitted to  the  output file. 

When IEBCODE is used to decipher a file, it begins by searching 
for  an  encode ID record  at  the beginning of  the file to determine 
the chaining mode and  test  the  key. If a recognizable encode ID 
record is not  found, all the  data in the file is treated as  ciphertext, 
and  the ID record  processing is bypassed.  The  ciphertext logical 
records are  then  read from the file one  at a time and  deciphered, 
and  the  plaintext  equivalents are transmitted to  the  output file. 

A cryptographic  “round  trip” using IEBCODE, from a plaintext 
file to a ciphertext file and, in a  separate  run, from ciphertext  to 
plaintext again,  naturally yields the original plaintext logical rec- 
ords.  However,  the  data  set blocking can be changed if requested 
by the  user.  And,  as mentioned above,  the method of encipher- 
ment is compatible with record-by-record  cryptographic  process- 
ing by user  application  programs. 

IEBCODE A  control  statement is required for  the  user  to specify the  func- 
control statement tion to be performed and to supply required  and  optional  param- 

eters. At the  user’s  option,  the  text of the  control  statement  can 
be printed, or  the printing can  be  bypassed  for  security  reasons. 
The  control  statement  options  are: 

Function:  Either ENCODE or DECODE must be specified. 
Cryptographic  key: A key  must be specified, but a wide vari- 
ety of key  formats is permitted,  such as direct DES keys (ex- 
pressed in hexadecimal) or long-character-string  keys (ex- 
pressed in either  character  or hexadecimal form). When hex- 
adecimal  notation is used,  commas  and blanks can  be  inserted 
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to improve  readability  without affecting the  active key charac- 
ters. If a DES key is supplied, it is used “as  is” in the  encipher- 
ment process.  Longer keys are converted to DES keys  by  the 
chained  encipherment method described  above. 

0 Security classification: A parameter  can be specified to  place  a 
classification text (in the  clear) in the ID record. 

0 Cryptographic chaining: Either  the block chaining or  record 
chaining option  can be chosen. If the  option is not specified 
with ENCODE, record chaining is assumed. 

0 ID record  comment: A comment of up  to 40 bytes of text can 
be included in the ID record, if supplied on  the  control  state- 
ment. This  comment is not  enciphered  but  remains as a single 
line of plaintext  user  documentation (of ownership,  for  ex- 
ample,  or  for file identification) in what  otherwise  (except  for 
the  security classification) is a file  of unrecognizable cipher- 
text. 

When an  error  occurs, IEBCODE attempts  to  continue  execution, error conditions 
if it is reasonable to  do so, but with an appropriate  error  message. and messages 
For many conditions,  execution  must  terminate;  but  the  text of 
the message produced,  and  an  expanded  explanation in IPS user 
documentation, are intended to get  the  user  past the difficulty in 
as  short  a  time  as possible. 

IEBCODE can  produce 49 separate  informational,  warning, or  er- 
ror messages. One  reason  for so many messages and  conditions is 
that  enciphered data  sets  are  fundamentally different from other 
data  sets in that  they look like “garbage.” When a conventional 
program produces  incorrect  output, it may be  recognizable as 
such. With cryptographic  programs,  great  care is needed to avoid 
producing files that look like garbage and really are garbage!  (It is 
not unlikely that an installation will eventually use IEBCODE with- 
out testing each file of ciphertext to  be certain it can  be deci- 
phered, in which case it  is important  that  any  errors  be  properly 
detected  and  reported.) 

IEBCODE processes a variety of sequential  data sets  and individ- IEBCODE summary 
ual partitioned-data-set  members.  Because of this flexibility, 
users generally do not need to  alter their  data  to  use the IPS cryp- 
tographic system. IEBCODE’S control  statement is easily  coded 
and provides a method  for  the simple entry of a cryptographic key 
in different formats, including character  strings with meaning to 
individual users. The large number of error messages that  can be 
produced under different circumstances,  and  their  explanatory 
texts, help users  solve difficulties quickly and  easily. 

IEBCODE is used to encipher files to be sent  between  computing 
centers  and  also  to  protect on-line data.  For application programs 
that do not call IPS subroutines  for  encipherment  and  decipher- 
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ment (see below), IEBCODE performs  these  services, typically 
with ciphertext in permanent  data  sets and plaintext in temporary 
ones. 

IPS subroutines 

Users  are  encouraged  to call IPS subroutines from their own FOR- 
TRAN, PL/I Optimizing and Checkout Compiler, or Assembler pro- 
grams. When calling IPS from an application program,  the  user 
passes  data in  main storage and  receives  data from IPS the  same 
way. I/O is the user’s responsibility and is handled in the usual 
way according to  the programming language chosen.  Since  the 
subroutines  depend on the  chosen programming language for al- 
most all operating system services  (the major exception is the 
OWVS TIME macro), we have found that they work equally well  in 
any os/vs system  and in VW370 CMS, and  that  ciphertext produced 
in any of these  systems  can be deciphered in any other. 

One advantage of encipherment by a  subroutine  call, mentioned 
above  under The ZEBCODE utility program, is that no plaintext 
need ever  exist  on  external files. Instead,  the  user program reads 
enciphered data from a file and  deciphers it only at  the time of 
use, and likewise enciphers  data before writing it to  a file. There- 
fore no plaintext data need ever  exist  outside of  main storage (ex- 
cept for transient  residence in  paging data  sets). 

IPS subroutines  can  also be used for enciphering and deciphering 
nonsequential files, which cannot be processed by IEBCODE. Of 
particular interest  are nonsequential files from which only se- 
lected  records  are  read  at any one time. The  use of IPS subrou- 
tines avoids  the cost of deciphering an  entire file  in order  to  ac- 
cess only a few records.  In  such  applications, block chaining gen- 
erally is more appropriate  than  record chaining. 

Encipherment by a  subroutine call also allows users to select  the 
data  that is to be enciphered in a file. If only certain fields  of each 
record are  to  be  concealed,  for example customer name and  ad- 
dress,  those fields can  be enciphered by a subroutine call,  and  the 
remainder of the  record left in plaintext. This procedure  can  save 
a significant amount of CPU time if large files are being processed. 
If necessary, the various confidential parts of records  can be enci- 
phered under different keys, making it possible to grant selective 
access to  the  enciphered material according to  the  distribution of 
keys.  In  these  cases  also, block chaining is more appropriate  than 
record chaining. 

In  general,  the  subroutines  for different languages work in similar 
ways. Each  set  has  four  entry points: two  for  encipherment  and 
two for  decipherment. One of each  pair is an initializer, to which 
the  cryptographic key and the processing options  are given. Ini- 
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tialization normally is performed  once  for  each  run.  The  other 
routine in each  pair performs the actual  encipherments or deci- 
pherments,  one call for  each  record. We decided to  separate  the 
initialization function from the encipherment or decipherment 
function to  save  the time that  otherwise would be  required to ini- 
tialize IPS working storage  before  processing  each  piece of data. 

When the encode initializer is called, it is given the  key,  the  secu- 
rity classification, and  the  cryptographic chaining option.  The  en- 
code initializer prepares  a table to speed  the  encipherments  under 
the specified key,  prepares  for  chaining,  and  passes  back  the  en- 
code ID record, which the  user may optionally write  into the out- 
put file to identify the  data.  The  encode ID record is identical  to 
that  produced  by IEBCODE. When the decode initializer is called, 
it is given the key and  the  optional  encode ID record if saved  at 
the time of encipherment,  or  the chaining information if needed 
because  the ID record is missing. The decode initializer prepares 
the  table  for  decipherment  under the specified key and  prepares 
for chaining according  to  the ID record or  the user  argument. 

When the encoder is called, it is passed  the plaintext and  the  area 
where it  is to place  the  corresponding  ciphertext.  This area can  be 
the  plaintext  area  itself,  since the routine  can  process data  “in 
place.” When the decoder is called, it is passed  ciphertext  and 
the  area  where it is to place the  corresponding  plaintext, which 
similarly can be the  ciphertext  area itself for  “in  place”  decipher- 
ment. 

The  required  attributes of the  data  to  be enciphered  are  natural to 
the programming language the  user has  chosen,  to  the  extent  that 
we could arrange  this.  That  is, in Assembler language, a  user is 
expected to pass the addresses of the input and  output  data  areas 
and their  length.  In FORTRAN, a  user is expected  to  pass FORTRAN 
variables (usually arrays)  for  the  data  areas, and an integer vari- 
able containing their length (in bytes).  In PL/I, a user is asked  to 
pass either fixed or varying character  strings,  or  a  mixture. If PLII 
data of other  types is to  be  processed,  the  user is instructed 
to either  pass BASED fixed-length character  strings  (whose  point- 
ers  address  the  data  to  be  processed),  or define and initialize 
structures  that  imitate P U P S  character  string  descriptors,  and 
call IPS through  alternate  entry  points  declared with OPTIONS 
(ASSEMBLER). 

In  the IPS subroutines, difficulties are divided into  two  classes, 
warnings and errors. And, like many other  programs, the IPS sub- 
routines  take  corrective  action  and  continue,  perhaps  after  a 
warning message, when a minor difficulty arises.  But  because 
there is a danger of transmitting wrong data in the belief that it is 
valid ciphertext, IPS terminates  a  user program in the  presence of 
a serious  error.  Because  termination is implemented with FOR- 
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TRAN and PL/I language features,  not  the  system ABEND macro, 
users  can  easily  override  the  termination if they  choose. Termi- 
nation occurs if all of the following three  conditions hold: 

0 A difficulty defined as  an IPS error has occurred-for example, 
the  user  has  supplied a cryptographic key shorter  than  the DES 
minimum, or  has requested  that a negative number of data 
bytes  be  enciphered. (IPS warnings, resulting for example 
from a request  to encipher a zero-byte  record,  do  not  cause 
termination.) 

0 The  user  has called IPS from a language for which the  pro- 
tection is defined;  that  is, PUI in all cases,  or FORTRAN if the 
installation’s  system  programmers  have  prepared FORTRAN’S 
extended error handling facility for  use by IPS. 

0 The  user  has  not  prepared  for  the possibility of such errors; 
that is, he has  not called the FORTRAN ERRSET routine, or not 
supplied a  suitable PL/I ON-Unit. 

In  other  words, if a  user is willing to handle errors,  and signals 
that  fact by establishing  the  correct FORTRAN or PWI error envi- 
ronment, IPS will not  terminate the program in the  presence of an 
error. But if the  user permits an  error  to occur  and  has  not  pre- 
pared  for it, IPS will terminate the program to prevent  destruction 
of the user’s data. 

We gave a  great  deal of thought to this problem before deciding to 
provide for  the  termination of user  programs,  but implemented it 
because we felt that  users  should  be  protected from serious  er- 
rors.  It would be  possible  for a user who supplies erroneous argu- 
ments to  write  either  nonsense  data or actual plaintext under  the 
impression that it is valid ciphertext. If our indicative return 
codes were ignored in such  situations,  the  result  could  be a seri- 
ous loss, which we decided  to  guard  against  to  the  extent pos- 
sible. To be sure,  the protection is not  perfect. It is not  present in 
an Assembler language environment,  and it is  lost if the user 
takes  the  bypass  actions offered in our  user  documentation. But 
these  risks  have to  be taken if careful  users  are  to  be allowed to 
continue in execution. 

Warning and  error messages have as much variety  and  detail as 
those  for  the IEBCODE utility, but  they  are modified to  report in 
terms of the programming language chosen. Assembler language 
users may choose from two  versions of the IPS subroutines:  one 
that  presents  only a return code,  or one  that  presents  both  the 
return  code  and  formatted error messages. FORTRAN and PWI 
users will  find messages in the  standard  output print file unless 
suppressed by standard language features (ERRSET in FORTRAN, 
ON-units  in PL/I). 

A limitation of the subroutines is their vulnerability to  any  user 
error in which the IPS tables are overlaid by user  data.  For ex- 
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ample,  except in PLlI with SUBSCRIPTRANGE enabled, it is pos- 
sible to  store  data outside  the  boundaries of arrays. If such  an 
operation  should  alter the IPS tables,  the  encipherment  process 
would give incorrect  results while appearing  to  be  correct. 

Any programmer  can  encipher information interactively  by in- 
cluding calls to IPS subroutines in his own interactive  programs. 
In  this  sense, IPS has  always  been available to TSO and VM/370 
application programmers.  But  for  secretarial use, and  for  pro- 
grammers who  want  a  convenient way to encipher  entire files, IPS 
includes a CIPHER command for VM/370 CMS files13 and  another  for 
TSO sequential data sets." 

The VMl370 CMS CIPHER command is a copy utility combined with 
encipherment. With the encode option, CIPHER creates  an enci- 
phered  copy of a CMS disk file. With the decode option, it creates 
a plaintext copy of a previously enciphered file. This  command 
provides the  easiest way to  use IPS in the CMS environment. CI- 
PHER is invoked either from a terminal or from a CMS EXEC file 
(one that  contains a sequence of CMS commands  to  be  executed). 
It is commonly used  to  encipher confidential documents that oth- 
erwise could not  be  stored  on  line,  and  to  encipher confidential 
material to be sent from one location to  another  over  the IBM 
VM/370 network." The command itself initiates all terminal  inter- 
action  and 110, and it calls the IPS cryptographic  subroutines  for 
encipherments  and  decipherments.  The  ciphertext  produced by 
CIPHER is IPS standard  ciphertext.  That  is,  each file  of ciphertext 
contains  an identifying record  (the  encode ID record) at  the begin- 
ning, and  each  record in the CMS file  is enciphered  separately  for 
convenient  use by application programs.  This  format is the  same 
as that  used by the IEBCODE utility in OS/VS systems,  and we have 
found that  the oS/vs and CMS systems  can  exchange  ciphertext 
without difficulty. 

The TSO CIPHER command  can  be used in MVS2' to encipher se- 
quential data  sets  and individual partitioned-data-set  members 
during a TSO session. CIPHER itself initiates all terminal  inter- 
action,  then  invokes IEBCODE for  data  set 110 and cryptographic 
services.  Thus it ensures compatibility of ciphertexts  between 
batch  and  interactive  uses. 

Applications of IPS 

IPS first went into  active use in November 1975 at the IBM Thomas 
J. Watson Research  Center  to  encipher on-line data  sets  that con- 
tained confidential financial information.  This  data had been 
stored in plaintext  on disk and  was in constant  use by a variety of 
reporting and  analysis  programs.  The  owners of the  data  were 
concerned  about  its  vulnerability,  but could not  protect it except 
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at an  impractical cost in operational difficulties. (The use of 
locked-up disks  and  tapes,  instructions to  the machine operators 
to mount volumes  only  for jobs with certain  names,  and so on, 
were rejected.)  The IPS utility IEBCODE was a welcome aid, be- 
cause in one half-day of work,  the  owners  were  able to encipher 
the d a a ,  place deciphering job  steps  at  the  top of every job (IEB- 
CODE wrote  a  plaintext  temporary  data  set  for  the  analysis pro- 
grams that  followed),  and  provide  instruction  for all concerned in 
using the  utility. 

IPS is available at more than one hundred IBM locations. A Sep- 
tember 1977 user  survey and personal  communications  revealed 
that IPS is used: 

0 As a component of one of IBM’S internal  telecommunications 
networks,  for  the  automatic  encipherment of very confidential 
data  before  transmission. 

0 To  encipher  and  decipher APL workspaces  stored as CMS files. 
0 To decipher  tapes received from  other IBM locations. 
0 To encipher VM1370 CMS SCRIPT files that contain  documenta- 

tion on,  for  example,  unannounced program products or divi- 
sion operating  plans. 

0 To  encipher the  contents of an OS password data  set. 
0 To  encipher  the  customer  name  and  address field in records of 

installed IBM equipment, while leaving the  remainder of the 
record in plaintext. This procedure  saves CPU time and  per- 
mits free  use of the file for  statistical analysis while protecting 
IBM’S customer  list. 

0 To  encipher an on-line data  base  that  contains information on 
the design of electronic  circuit  chips. 

0 To generate  cryptographic  keys  by  the  repeated modification 
and  encipherment of a  random  data  string. 

0 To  generate  hash  table  values  from long character  strings,  the 
hash  value being the rightmost bytes of the block-chained en- 
cipherment of the  character  string. 

0 To  store OS/VS load modules in enciphered form for  protection 
against unauthorized  execution. (The modules are first un- 
loaded to a  sequential form by a system utility program,  then 
enciphered with IEBCODE.) 

0 To supplement the  Resource  Access  Control  Facility (RACF)23 
for  data  that  must be kept  secret  even from those with RACF 
special or operations authority. 

The major application of IPS appears  to  be  the  preparation of ci- 
phertext files for  transmission over IBM data  networks.  But as  the 
above list shows, IPS is also  used  to  protect on-line files, although 
in MVS much less  frequently now than at first. Access  control is 
less expensive  than  encipherment,  and many MVS files are now 
protected  by RACF rather  than being enciphered by IPS; but  some 
files are given both RACF and IPS protection,  according  to  the im- 
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portance of the data and  the  frequency with which it  will be  ac- 
cessed. IPS continues  to  be  used to  protect on-line files  in VM/370 
CMS. 

IPS and  the IBM cryptographic  products 

Programmed  Cryptographic  Facility 

The IPS cryptographic  programs  and  the IBM cryptographic  pro- 
gram products  were  developed  separately  for different purposes, 
and they have interesting similarities and differences. The IBM 
os/vs1 and osivS2 MVS Programmed Cryptographic  Facilityz4 is a 
software implementation of DES, together with key management 
and handling services. Assembler language programmers can call 
on the Facility for  the  encipherment  and  decipherment of data in 
main storage. The Facility is used  also by other IBM program 
products  that  require  cryptographic  services,  such as the 
ACF/VTAM Encrypt/Decrypt  Featurez5  for  enciphered  telecom- 
munications and  the  Access Method Services  (AMS)  Crypto- 
graphic Optionz6  for  enciphered VSAM and nOnVSAM data  sets. 
Unlike IPS, the Programmed Cryptographic Facility will not  run 
in vM/370 except  as  a  component of an os/vsl or OS/VS~ virtual 
machine. The Facility uses  the  storage  protection  feature of IBM 
Systed370 hardware, so its cryptographic  tables  cannot be 
damaged by the store error  discussed  above in our  discussion of 
the IPS subroutines. 

The IPS method of block chaining is  also included in the IBM cryp- 
tographic products. Accordingly, Programmed Cryptographic 
Facility encipherments follow the IPS block chaining technique, 
with the initial chaining value supplied as a  parameter at  each call 
to  the CIPHER macro. Record chaining is not now explicitly avail- 
able,  but it can  be obtained by  generating  an  output chaining 
value from each  encipherment to  be used as  the  input chaining 
value for the next  encipherment, in the  manner  described  earlier 
in this  paper. With the  correct  setting of the initial chaining value, 
IPS and  the Programmed Cryptographic Facility encipher  and 
decipher data in an identical manner. 

We believe that requiring users  to  enter keys only at  the time of 
their use for encipherment or decipherment and not storing  them 
permanently in the system is an  asset of  IPS. But for many appli- 
cations,  cryptography would not be practical in computer  sys- 
tems if manual key entry were required.  For  instance, if a termi- 
nal can  communicate with the  host  computer in ciphertext,  the 
host must have the cryptographic  key needed to start communi- 
cations.  There would be  confusion  and delay if each  such key had 
to  be  entered manually by a system  operator.  Moreover,  to  pre- 
vent different sessions  at a given terminal from using the same 
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key, provision is made in the ACFIVTAM Encrypt/Decrypt  Fea- 
ture, in concert with the  Programmed  Cryptographic  Facility,  to 
generate  cryptographic session keys by the system  itself,  rather 
than by a user.  (The newly generated  session key is transmitted to 
the terminal shortly  after  the  user logs on, and it is enciphered 
under  the  terminal’s own key.  The terminal then  switches  keys 
for  the  rest of the session.) 

For these  and similar reasons,  the Programmed Cryptographic 
Facility offers a key  generation  and management service that was 
not  contemplated in the design of IPS. For file protection,  users of 
the Facility can  elect  to  supply  their own private DES keys (IPS- 
like long-character-string  keys are  not  accepted);  they  can 
request  that the Facility  generate  keys as needed,  and  then  treat 
those keys as private  keys; or they  can  request key generation, 
then  store  enciphered  versions of the  keys with the  associated 
data  to permit  automatic  decipherment  (that  is,  without  the  user 
having to  supply the key)  under  various  circumstances.  This lat- 
ter choice  carries  a risk that privileged users of the  system might 
make unauthorized  decipherments. 

The  greater  the  importance of keeping a particular file of data 
secure  against a wide variety of threats,  the more important it 
becomes to  use  private  keys;  but for many files the  protection of 
encipherment is justified, while the inconvenience of private  keys 
is not. IPS was designed in the belief that  keys  should  not  be 
stored in the  system in anyform and  at a time when the  protective 
features offered by MVS and  used by the Programmed Crypto- 
graphic Facility were  not  available.  Arguments  can be advanced 
in favor of either  the IPS or  the Programmed Cryptographic Facil- 
ity approach to key management, depending on different oper- 
ating environments  and  attack  scenarios.  Under IPS, only  private 
keys are allowed; the Programmed Cryptographic  Facility gives 
the  user a choice, which depends on the importance of the  data, 
the  relative  safety of private  keys,  and  the  convenience of sys- 
tem-managed keys. 

AMS Cryptographic  Option 

Another  product,  the  Access  Method  Services (AMS) Crypto- 
graphic Option,26 is roughly equivalent  to  the IPS IEBCODE utility 
as invoked through the TSO CIPHER command. Both are intended 
for the  encipherment  and  decipherment of data files as a whole. 
The  Cryptographic Option is an extension of the AMS REPRO com- 
mand. As such, it can make enciphered  copies of nonVSAM se- 
quential data  sets (as IEBCODE does)  and  process  most VSAM files, 
which are  inaccessible to IEBCODE. AMS does  not  perform enci- 
phecments directly,  but calls on  the Programmed Cryptographic 
Facility for  the  encipherment  and  decipherment of data,  and  for 
certain  key handling services. 
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AMs-enciphered  files by default use logical record  encipherment 
with block chaining. To improve  performance  and  short-record 
security, AMS can (at  user  option)  read logical records in groups 
and encipher  each  group in one  operation. This mode of process- 
ing resembles IPS record chaining because  the chaining operation 
continues  across  record  boundaries within the  groups;  but  the 
method is not  equivalent  because DES eight-byte encipherment 
blocks are  not  necessarily aligned with logical record  boundaries 
(as in IPS), and  because  the chaining operations  are  reset  at  the 
beginning of each  group  instead of continuing throughout the file. 
As a consequence,  record grouping is probably not a good idea 
when user  programs  (not AMS itself) might be used to decipher 
such files. 

AMS offers the key generation  and key management  services of 
the  Programmed  Cryptographic Facility. Therefore,  unless  the 
user  enters a key for  the  encipherment of a file, one will be  gener- 
ated  automatically.  The  generated key can be  returned  to  the  user 
in the  clear, or it can  be  enciphered  under  another  key,  a second- 
ary file k e y ,  and  its  encipherment  returned to  the  user.  Thus,  ac- 
cess to both  the  enciphered  text of the  data key and  to  the second- 
ary file key (by its identifying key name) is required to decipher 
the  data file. At user  option,  the  enciphered  data key and  the 
name of the  secondary key can  be placed in a file header  to  permit 
automatic  decipherment  under  selected  conditions. 

The IBM 3848 Cryptographic  Unit 

The IBM 3848 Cryptographic Unit and  the OS/VS2 MVS Crypto- 
graphic  Unit  Support P r ~ g r a m ~ ' , ~ ~  provide a hardware  replace- 
ment for  the  software  encipherments  performed in the Pro- 
grammed  Cryptographic  Facility.  The 3848 attaches  to an I/O 
channel  and performs encipherments  and  decipherments of the 
data  transmitted to it. The Cryptographic  Unit  Support Program 
replaces  the Programmed Cryptographic  Facility  and  transforms 
invocations of the CIPHER macro  into  the I/O operations  required 
to  drive  the 3848. 

The  preceding  discussion of the IPS cryptographic design and  the 
Programmed  Cryptographic Facility applies equally to  the 3848 
and  its  Support  Program. 

Where  large  amounts of data  are  to  be enciphered  or  deciphered, 
the 3848 Cryptographic  Unit should be considered,  for by replac- 
ing the software  encipherment  routines in the Programmed Cryp- 
tographic Facility with hardware, significant savings of CPU time 
can  be  achieved. 
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Summary 

The IPS programs  have  succeeded in bringing cryptography to a 
large  community of users, both  programmers  and non- 
programmers,  at IBM computing  centers. IPS has  contributed sig- 
nificant augmentations to  the Data  Encryption  Standard:  tech- 
niques of cryptographic  chaining, which help to conceal  the un- 
derlying  structure of plaintext; a consistent definition of the 
encipherment of data of any length (not just multiples of eight 
bytes);  and  an  increased  number of ways in which cryptographic 
keys  can  be defined by users.  Some of these  implementation op- 
tions are  also included in the IBM cryptographic  products. 
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Appendix:  formal DES notation  and  description  of  chaining 

The  cryptographic  function  in IPS is  provided by an augmentation 
of the DES block  cipher. An n-block g is a  sequence of n 2 1 
binary 0's or 1's 

x = (xo, xl, . * -, xi  = 0 or 1 (0 I i < n) 

Let {0,1}" denote  the  set of all n-blocks (for someJixed n) 

{O,I}" = {_x = (xo, xl, . . * ,  : xi = O or I ,  O 5 i < n} 

A block  cipher rr on {O,l}" is  a  one-to-one  transformation 

rr : (0,l)" + {0,1}" 

replacing each plaintext n-block x with a ciphertext n-block - y 

plaintext x + rr{x} = y  ciphertext 

Each n-block y is the  ciphertext of a unique plaintext n-block g. 
The  inverse  transformation, yielding plaintext from  ciphertext,  is 
denoted by r-l. Note  that  the block cipher rr replaces  the block 5 
of plaintext data  by  the block y of ciphertext  data of the same 
length. 
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When a  cryptographic  transformation is employed by a pair of 
users to secure  communications (by masking the  content of mes- 
sages),  the  users must incorporate some secret information in the 
cryptographic  process so that  the  communication is intelligible 
only to  them.  The element of secrecy  is  provided  by  selecting  one 
block cipher ~ { k }  from a family of block ciphers which depend  on 
a parameter k, called a key. A keyed  block  cipher is a family of 
block ciphers 

~ { k }  : {0,1}” + {0,1}” k E K 

y = T{k,_X> 
where the key k is an element of some finite set K ,  called the key 
space.  In  any implementation of a  cryptographic  facility,  each 
pair of users, who wish to communicate with enciphered mes- 
sages,  select in some  manner an element k from K .  

Desiderata of a good keyed block cipher are: 

0 The input alphabet {0,1}“ should be “large”; 
0 The key  space K should be  “large”; 
0 The  function ~ { k }  : g + y, which relates  the  key,  plaintext, 

and  ciphertext, should be“‘comp1icated.” 

A “large” input alphabet effectively negates the possibility of an 
opponent’s  constructing  a  catalog of frequencies of plaintext- 
ciphertext  pairs to which statistical  analysis might be applied. A 
‘‘large’’ key  space effectively defeats  exhaustive key trial. A 
“complicated”  key-plaintext-ciphertext  relation  makes it difficult 
to  detect  any  dependencies in the triple (key,plaintext,ciphertext) 
which would enable  one to  recover the  key  from  corresponding 
plaintext  and  ciphertext, or  recover plaintext from ciphertext. 

DES is a keyed block cipher that transforms a 64-bit (eight-byte) 
plaintext block (x,,, x , ,  . . -, x63) into  a 64-bit ciphertext block (yo,  
y,, . e ,  y63) under the  control of a 56-bit key (ko ,  k , ,  . . a ,  k 5 J .  The 
key space K = {0,1}56 contains 256 different keys.  There are 264 
possible plaintext 64-bit blocks (0, 1}64. 

We use the  notation  DES{^,^} to  denote  encipherment of the 
plaintext block _X by DES using the key k, and  the notation DES-’ 
{k,y} to  denote  decipherment of the  ciphertext block y by DES 
using the key k. It is believed that  the DES algorithm is a “good” 
keyed block cipher in the  sense  described  above. No cryptanaly- 
sis of DES, obtaining plaintext from ciphertext without the  key, 1s 
known to the  authors. 

The DES algorithm is defined only for  plaintext  data blocks g with 
a length of eight bytes.  The definition can be extended  to  plaintext 
records of arbitrary length (in bytes) in several  ways.  First,  con- 
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sider  the  case in which (5)” is a plaintext record whose length (in 
bytes) is a multiple of eight.  Then 

(x) = (x1, x,, . * - 9  5,) 

(xi = (xi,o, xi,l, . . e ,  xi,J : a block of eight bytes, 1 I i 5 m) 

The obvious way to encipher  a plaintext record of 8m bytes is by 
applying DES to  each eight-byte block, as follows: 

( y )  = ( T I .  1 2 ,  . * 7  y,) 
yj = DES{~,X,)  1 5 j 5 m 

This natural use of DES is attractive  because  portions of a  record 
(or file) can be deciphered without decipherment of the entire  rec- 
ord  (or file). It suffers from  the  fact  that identical plaintext blocks 
are  enciphered into identical ciphertext blocks (assuming the 
same  key).  Thus, files with significant repetitive  patterns,  such as 
Assembler language source files or digital representations of line 
drawings, yield ciphertext in which such patterns  are somewhat 
replicated.  This  repetition  does  not imply a  weakness in the al- 
gorithm, and it cannot be used to  decipher  an enciphered file; 
nevertheless, it is disconcerting  and easily remedied. 

chaining In IPS, we have introduced  the notion of chaining. Chaining masks 
repetitions in plaintext blocks.  The chained  encipherment of x by 
DES is defined as follows: Given an eight-byte initial chaining 
value LV, key k, and plaintext (x) = (xl, x,, . -, gm), we de- 
fine the chained  encipherment D E S C H { ~ , ( ~ ) }  of ( 5 )  by 

yo = Icv 
yj’=   DES{^,^^ €3 yj-,} 1 s j  5 m 

where €3 = XOR. Thus  the first plaintext block -x1 is xoRed with 
the initial chaining value ICV and enciphered by DES to yield y l ,  
and the j t h  plaintext block -xj is XoRed with the ( j  - 1)st eight- 
byte block of ciphertext yj- l  and enciphered by DES to yield yj. If 
we wish to show the  dependence of D E S C H { ~ , ( ~ ) }  on  the iiitial 
chaining value, we write D E S C H { ~ , ( ~ )  I ~ v } .  

DESCH as defined above is a one-to-one transformation;  that is, a 
block of 8m bytes of ciphertext  can arise from only one 8m-byte 
block of plaintext.  Indeed, if (y) - is an 8m-byte block of cipher- 
text-that is, if (y )  = ( y , ,  yz, * * ., y,)-the rules  for  decipher- 
ment DESCH-’{~,(Y)) = -DESCH”{~,Y(Q) are 

yo = ICV : initial chaining  value 

xj =  DES"{^,^^} CB yj-, 1 5.j I m 

Both encipherment  and  decipherment  proceed from “left to 
right.”  Note  that  we can decipher  the fragment (yj, xj+l, . - a ,  xm) 
from  the key k and  the  previous  ciphertext eight-byte block yj-l. 
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Chaining,  as defined here,  possesses  an  important self-healing 
property.  Suppose  that (x) = (xl ,  x,, * e ,  5,) (the  record of 8m 
blocks of plaintext) has  been  enciphered, with chaining, into ci- 
phertext ( y) = ( y , , y,, . * ,  y,), and  that an  error has  been  made 
(in storage, say) in the j th  ciphertext block yj, replacing it with 
y;. Thus when decipherment is attempted,  the  ciphertext is (y') - 
- - I I  

- (y, ,  y2' . . *, X;), with 

Y . = [  r Y i  i f i # j  
- '  y j @ e # y j  i f i  = j  

Decipherment of y '  with initial chaining value ICV = yo results in 
(x) = (xi, * * -, gk), where 

The  first (j - 1) plaintext blocks are  correctly obtained: 

x: =  DES-'{^,$) y! - 2- 1 =  DES-'{^,^^> yi-l = xi 
l l i < j  

The j th and (j + 1)st  deciphered  plaintext blocks contain er- 

xi =  DES-'{^,^^'> @ y;-l =  DES-?^,^^ CB e> @ yj-l 
rors: 

f  DES-'^ yj> @ y j-l = xj 
= DES-'{!W~+,> CB yi =  DES-'{^,^^+,> CB yj CB g. 

f DES-l{k,y_j+ll @ pj = -xj+l 

Note:  The j th plaintext block is entirely incorrect  because  an 
incorrect block was  subjected to DES decipherment;  the 
(j + 1)st plaintext block is in error only in the bit positions 
corresponding to  the  errors in yj. - 

The self-healing property yields the + 2)nd through mth 
plaintext blocks correctly: 

=  DES-'{^, y i r }  @ yi-l =  DES"{^,^,> @ yiPl = xi 
j + l < i < m  

Thus an  error in the j t h  eight-byte block of ciphertext  results 
(upon  decipherment) in errors in thejth and (j + 1)st eight-byte 
blocks of plaintext. The  error  does not propagate  further. 

It remains to extend  this notion of chaining to plaintext blocks 
whose length either is greater  then eight bytes  but  not a multiple 
of eight bytes,  or is less  than eight bytes.  Let (g) be a block of 
8m + s bytes with 0 < s < 8, m 2 1 .  Then 

(x) = (x1, * * 9 x,, X m + J  

where gm+l is a short block of s bytes. 
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The  chained  encipherment (y) - = D E S C H { ~ , ( ~ ) }  is defined to  be 

(y) = ( Y1. . . . ’ ? I n 7 3  Y m + J  

where 

E = yo : initial chaining  value 

y .  -J = D E S { ~ , X ~  G3 yj-l} 1 s j  5 m 

ym+l = xm+l a3 LEFTs[DES{k,ym}l 

where LEFTs[.] means  the  leftmost s bytes of [e ] .  That is, the first 
m full blocks are enciphered with chaining as  just described,  and 
the ( m  + 1)st (short) block of ciphertext  is the XOR of the short 
block of plaintext, of length s, with the left s bytes of the enci- 
pherment of y m  by DES. It is easy  to verify that DES so extended 
is one-to-one;  that  is, the ciphertext uniquely determines the 
plaintext.  Decipherment  proceeds  from  left to right and  includes 
an encipherment step  to redetermine LEFTs[DES{k,y,}]. 

Finally, we must define the encipherment of a short record; that 
is,  an  s-byte block where s is less  than 8. We define the IPS block 
chaining encipherment of the  short  record x 

x = (xo, xl,  . . ., x ~ - ~ )  1 5 s < 8 

by 
y = X @ LEFT,[DES{k,=V}] 

That  is, we encipher  the initial chaining value KV, and XOR the 
leftmost s bytes with the  plaintext x .  

Block chaining, as defined here,  has  two limitations: First, with 
respect  to  the  short  records of a file, it is  weak,  constituting an 
interrupted Vernam  system. From  enough  such  enciphered 
short  blocks, an  analyst  could  recover  the Vernam key and  thus 
decipher  the  short  blocks. Even a more elaborate  cryptographic 
function, which depended  however only on  the given plaintext 
short  block,  the  key,  and  the  starting initial chaining value, would 
at best be a simple substitution  on  the  set of possible short  blocks 
(and  under  our  assumptions would be length-preserving)  and thus 
might be  subject  to  cryptanalysis. With the availability of record 
chaining,  described  below,  such an elaborate  encipherment of 
short  blocks was not  thought  warranted. 

In  addition, if a file contains  two or more records  that begin with 
identical fragments, including the  first t blocks,  then  independent 
DES encipherments of those  records begin with identical cipher- 
text fragments,  through the first t blocks.  This  too  presents an 
exposure, although a  much  lesser  one. In IPS we remedy  these 
possible  defects by extending DES still further  by  introducing  the 
notion of record chaining. 

18 
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Suppose  that  a file F consists of a  sequence of r records 

F : (x"'), (x"'), * . * , (x"') 
Let  be  the initial chaining value. The IPS encipherment of F 
under record chaining 

(y" ' ) ,  (y? 9 * * ., ($9 
is defined according to  the principle that the input  chaining value 

for  the  record Y'~' is  the  most  recent  eight  bytes of ciphertext 
(where  the Ciphertext is  considered  to  be  prefixed  by the starting 
initial  chaining value). More precisely, if we introduce  the nota- 
tions 

ith record input chaining  value : ~cv'~' 1 < i < r  

ith record  output  chaining  value : 03'~' l < i < r  

then  the  encipherment of F is defined by: 

ICV") - = ICV (initial  chaining  value) 

- 
Icv'i' = ocv'i-l) 

(Y'~) )  = DESCH{~ , (~ (~ ) ) ( ICV'~ ' )  I 5 i I Y 

EV'i' = RIGHT8[ICV'i'll( Y ' ~ ) ) ]  - 1 5 i 5 r 

where RIGHT8 means the right-most eight bytes.  Thus  the first 
record (x"') is enciphered by DES into (y'l)) using the initial 
chaining value ~ v ,  and  the ith record @') is enciphered by DES 
into ( Y ' ~ ) )  using the initial chaining value 

- l < i < r  

Icv'i' = ocv(i-I) 
- ( 1  < i s  r) - 
It is simple to verify that we can  recover  the ith plaintext record 
( T ' ~ ) )  from the ith ciphertext record (Y'~) ) ,  the key,  and  the 
( i  - 1)st output chaining value c&-"(th; immediatelypreceding 
eight bytes of ciphertext). 

Record chaining does  for  records, including short  records,  what 
chaining accomplishes  for  repeated eight-byte blocks and trailing 
short blocks. Thus,  even if a file contains identical records, or 
short  records,  the  ciphertext  records  are all distinct, equally 
strongly enciphered,  and self-healing. 
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dures, IBM Systems Library,  order number GC22-7073, available through 
IBM branch offices. 

28. OSIVS2 MVS Cryptographic  Unit  Support  General  Information  Manual, 
IBM Systems Library, order number GC28-1015, available through  IBM 
branch offices. 

29. For consistency we adhere to the following notational conventions: x denotes 
a block of eight bytes unless otherwise stated; (x) denotes a record consisting 
of an arbitrary number of bytes; and (x")),  (x")), . . ., (kr)) denotes ajZe 
composed of the records {(x"') : 1 5 i 5 r}.  (It would  be possible in a similar 
fashion to extend the definitions to blocks and records of arbitrary lengths in 
bits, but we have no need for this in practice.) 
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Center,  Yorktown  Heights, N Y  10598. 
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