Cryptographic methods of data protection have taken on new im-
portance as computers have become faster and as strong cryp-
tographic algorithms, such as the Data Encryption Standard
(DES), have become available. But a standard encipherment tech-
nique is only the first step in applying cryptography in a comput-
ing center. This paper discusses the Information Protection Sys-
tem (IPS), a set of cryptographic application programs designed
to use the DES algorithm in a working computing center. In de-
signing IPS, several important augmentations of DES were formu-
lated. IPS was first implemented to help increase computing-cen-
ter security at the IBM Thomas J. Watson Research Center and is
now widely installed at other IBM locations. IPS is not an IBM
product and is not available for use outside 1BM, but many cryp-
tographic techniques in IPS were incorporated into the IBM cryp-
tographic products announced in 1977.

The IPS cryptographic programs

by A. G. Konheim, M. H. Mack, R. K. McNeill, B. Tuckerman,
and G. Waldbaum

In the third quarter of 1974, 1BM’s Research Division began an
investigation of ways to improve computing-center security at the
Thomas J. Watson Research Center in Yorktown Heights, New

York. Several steps were taken to improve physical security.
Transparent protective walls were constructed to make access
difficult for unauthorized persons. Procedures for changing com-
binations on pushbutton-code locks were tightened, and other
measures of a similar nature were adopted.

Nevertheless a serious problem remained: Behind the locked
doors and protective walls were computing systems with security
exposures not related to their physical surroundings. For ex-
ample, except for the most highly classified data, any tape could
be mounted by knowledgeable users of our computing systems,
which shared a common operations staff and tape library. In one
system, OS/MVT,' any on-line data set could be read by any job.
And in VM/370,” as later shown by Attanasio, Markstein, and Phil-
lips,3 the system could be penetrated by a determined attacker.
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Several alternatives were considered for improving the security
of on-line and off-line data at Yorktown. The OS/MVT password
facility was considered for data sets but was rejected because of
its operational inconvenience and because the demonstrated
weakness in VM/370 made it difficult to justify serious inconve-
nience in OS/MVT. If a ‘‘protected’’ OS/MVT volume could easily be
mounted by a vM/370 user, no real protection existed. A manual
record-keeping system to prevent unauthorized mounts in VM/370
was also rejected as awkward and error-prone. Further, it was
concluded that confidential data could not be considered really
safe if it could be accessed by operators, system programmers,
and other users with privileged access to the system.

To meet the needs of users who held confidential data in this envi-
ronment, a cryptographic system called the Information Pro-
tection System (1Ps) was developed. By using 1PS programs to
apply a cryptographic transformation to their data, users have
been able to protect confidential information against unauthor-
ized release. Data in its original, ordinary form—such as the text
of this paper—is termed plaintext or cleartext. After a crypto-
graphic transformation has been applied—that is, after the data
has been enciphered—the resulting data is termed ciphertext. The
reverse of encipherment—returning ciphertext to its original
plaintext form—is decipherment. While encipherment does not
protect a file against accidental or malicious destruction, the
owner can be confident that the information in an 1PS-enciphered
file will almost certainly never be read in plaintext by an oppo-
nent, nor will an attempt to modify the data in secret be success-
ful.

The IPS cryptographic system consists of two types of informa-
tion: public and private. By public information we mean the type
of system employed and the details of its operation. The design of
IPS cannot be kept secret because any user of the computing sys-
tem can copy the IPS programs and sooner or later arrive at an
understanding of the method used. (A cryptographic system im-
plemented in hardware is not so readily probed, but in our view
the result is the same: the techniques used can become public
knowledge.) A cryptographic system that depends for its secrecy
on an opponent’s ignorance of its method of operation will there-
fore not be successful. To provide the essential element of se-
crecy, users are required to supply privately known strings of
characters or bits, termed keys. A Key is used to select a transfor-
mation from a family of cryptographic transformations, one for
each possible key. With a well designed cryptographic system,
knowledge of both the system and the key is required to obtain
plaintext from ciphertext.*

The 1PS cryptographic programs use a keyed block cipher. A
user is required to provide a key in order to obtain encipherment
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or decipherment services. The keys are not stored in the comput-
ing system, an arrangement that has both advantages and disad-
vantages. The user is inconvenienced by having to supply a key
for each use of IPs, but he has the assurance that no one, not even
a privileged machine operator or system programmer, can deci-
pher his files unless his key can be intercepted while in active use.
Because keys are not stored in the system, IPS-enciphered data
resists attack even if opponents masquerade as legitimate users
and employ the IPS system itself to aid them in their work.

ips-enciphered data is now used in our computing systems in sub-
stantial quantity, and its owners still enjoy convenient access to
their files. Although 1PS does not provide an absolute answer to
the problems of computing-center security, it has been in use at
Yorktown and has been delivered to many IBM locations over the
course of more than four years.

The basic cryptographic transformation used by 1PS is that speci-
fied by the Data Encryption Standard (DES),” which was in the
process of being approved by the United States Government
when 1PS was designed. Much cryptographic work on the al-
gorithm had been done at the Research Center in Yorktown
Heights*® and at 1BM’s System Communications Division labora-
tory in Kingston, New York.”"" In a DES encipherment, a 64-bit
(eight-byte) block of plaintext data is transformed, under the in-
fluence of a 56-bit cryptographic key, to a 64-bit block of cipher-
text data. (The full key is 64 bits, but only 56 participate in the
encipherment. The others are parity bits.)

By enciphering data eight bytes at a time instead of one at a time,
DES greatly increases the number of possible cryptographic sub-
stitutions; but either all data must fit the algorithm’s eight-byte
length, or some compensating arrangement must be made. The
ipS method of encipherment augments DES to permit the enci-
pherment of data of any length by using a method of successive
data-dependent encipherment called chaining.

In our view, the real usefulness of IPS, going beyond the basic
cryptographic function provided, is the protection offered in the
user’s natural programming environment.

Design philosophy of IPS

The goal of IPS is to offer an implementation of the Data Encryp-
tion Standard that is easy to use while providing the Standard’s
full cryptographic strength, as well as several additional features.
The design principles of IPS are as follows:

No key, or variable that is equivalent to a key, resides per-
manently in the computing system. Keys are the responsibility of
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each user; they are entered into the system at the time of enci-
pherment or decipherment. Keys are thus exposed in the system
only during residence of the job or command that uses IPS, not on
a permanent basis. A cryptographic system that links two users
must provide a mechanism for establishing a common operational
key. If one of the users is a host operating system, some provision
must be made either for storing keys in the host or for the host to
construct the operational key. If keys are permanently resident in
the system, then users with privileged status may be able to ob-
tain them. While such users might possibly place traps in an oper-
ating system to recover keys during an IPS session, this exposure
is smaller, and the attack is probably more dangerous to the at-
tacker than inspection of a permanently resident file of keys.

A variety of key formats is offered to users. The DES algorithm
specifies a 64-bit key but makes use of only 56 bits, with eight bits
serving as parity check bits. IPS allows the direct entry of eight-
byte DES keys expressed in hexadecimal notation. For maximum
safety, the 56 active key bits should be chosen randomly, but
randomness is not always easy to achieve, even by experienced
users. Therefore, in addition to direct DES key input, IPS allows a
user to specify the key as a long character string to be converted
internally to a form suitable for DES. We believe that a key ex-
pressed as a character string is easier for a user to invent and
remember, and if chosen with reasonable care it can be the equiv-
alent of a random DES key. (Users should avoid familiar names,
numbers, and phrases, and they should use long keys when the
individual key characters are not selected randomly. These mat-
ters are discussed under Key selection and key crunching, be-
low.)

Although DES requires eight-byte inputs, IPS is so designed that
data records whose length is either less than eight bytes, or not a
multiple of eight bytes, are accepted and do not increase in size
under encipherment. Users are not required to pad their data to
conform with DES, nor do the IPS programs lengthen data in this
way. Altered data lengths would unnecessarily complicate the
computing environment by requiring changes in data set attri-
butes and in application-program array sizes and string lengths.

Repetitive patterns in plaintext are not mirrored in the ciphertext.
DES is a block cipher which enciphers identical eight-byte plain-
text blocks into identical eight-byte ciphertext blocks (under the
same key—an assumption made throughout). By employing
chaining in IPS, it is possible to use DES in such a manner that
identical eight-byte plaintext blocks virtually always yield dif-
ferent ciphertext blocks, without altering the security of the exist-
ing algorithm. (Our interpretation of virtually always is discussed
below, under Block chaining.)
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Utilities and commands are provided for handling 0S/VS data sets
and vmi370 cMS files,"™"™ and data can be enciphered and deci-

phered from within user programs in FORTRAN, PL/I, and Assem-
bler. Ciphertext files produced by the utilities and by user pro-
grams are compatible, provided that users follow IPS conventions
when creating files to be deciphered by the utilities, or decipher-
ing files created by the utilities. For nonsequential access meth-

ods not supported by the utilities (for example VSAM and
14,15
> ),

BDAM encipherment from within user programs still permits
the creating of ciphertext files. When needed, the use of IPS within
user programs permits the designing of applications that read
and write data sets entirely in ciphertext, without ever having to
expose files of plaintext. It is important to provide a service that is
sufficiently flexible to keep users satisfied—that is, pleased at the
way IPS fits into their environment and content with the invest-
ment of time and effort required to introduce cryptography into
their applications. Therefore IPS supports both batch and inter-
active use, and it makes both utilities and subroutines available.
In designing IPS, it was not feasible that the utilities be made to
handle all conceivable types of data sets (at least with the devel-
opment time available to us), so the subroutines provide an im-
portant mechanism for enciphering files of all types because the
user programs themselves will handle /0. And if user programs
read and write in ciphertext, plaintext files need never exist.

IPS-enciphered files ordinarily contain a header record to identify
and describe them as IPS ciphertext. The record is inserted and
removed automatically by the utilities, and it is passed back to
those who use IPS from within their own code. The header record
includes (i) information about the type of encipherment used, (ii)
a time-date stamp, (iii) the version of IPS employed, (iv) cryp-
tographic chaining information, (v) a verification field to warn a
user at time of decipherment when an incorrect key has been sup-
plied, without providing information that enables the correct key
to be recovered, and (vi) an optional user comment field.

To the extent that plaintext files can be exchanged between 0S/VS
and VMI370 CMS systems, the corresponding IPS-enciphered files
are also exchangeable, with encipherment in one system and
decipherment in the other, as needed.

The programs were designed and coded with great care, since
incorrect output is not easily detected in ciphertext. Similarly,
because misuse of the programs can cause loss of user data, and
worried users may not submit their data to cryptographic trans-
formation, the documentation has been made as clear and help-
ful as possible.
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Augmentation of DES by chaining (and key-crunching)

Certain plaintext files exhibit great regularity, with many identical
eight-byte blocks (for example, blocks of eight blanks to fill out
lines of computer source programs to a fixed length). Normally
under DES encipherment, such identical blocks of plaintext yield
identical blocks of ciphertext (under the same key). Thus the
eight-byte blocks of blanks may be identifiable, and a rough geo-
metric outline of regions of nonblank characters among blank
characters in the plaintext may be discernible in the ciphertext.
Repetitions of some other blocks may also be visible: for ex-
ample, identical records in the plaintext, or identical parts of rec-
ords when aligned with the eight-byte DES blocks, can be recog-
nized as identical in the ciphertext. It is doubtful whether this
phenomenon is a serious weakness. To date no technique has
been found that uses it to determine the key or to obtain usable
plaintext of alphabetic or numeric files (although some of the
structure of digitized line drawings could be visible). However, if
the existence of identical blocks can be concealed, a crypto-
graphic system is strengthened at least intuitively because the
amount of information available to an opponent is reduced. Be-
cause of the possibility that under some circumstances, with
some ciphertexts, an opponent might be able to make use of repe-
titions, an augmentation of the DES algorithm was deemed advis-
able in IPS.

After all the eight-byte blocks of a record have been enciphered
using DES, there frequently remains a short block, a block of
fewer than eight bytes. A short block cannot be enciphered di-
rectly by DES, since DES requires eight-byte inputs. It could be
padded on the right with zeros or blanks and then enciphered, but
all eight bytes of the resulting ciphertext, and preferably informa-
tion as to the length of the padding, would have to be preserved
for future decipherment, and the ciphertext would be longer than
the original plaintext. We found that condition undesirable be-
cause, for example, the ciphertext might have to replace the
plaintext in some previously allocated space, or be written ac-
cording to some previously defined record length. Alternatively,
some key-dependent ‘‘simple substitution’’ encipherment could
be designed for short blocks; but if it depended only on that block
(and the key), it could be subject to cryptanalysis, especially
when the length of the block is preserved. This exposure, al-
though not so obvious as the repetition of identical blocks, is po-
tentially more serious because some nonblank short-block plain-
text could be discovered.

Chaining

To handle both types of problems, we devised a method called
chaining . Chaining is a process by which each block of ciphertext
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is made to depend not only on the corresponding plaintext and the
key, but also on preceding ciphertext. If the dependence starts
anew with each record, the process is termed block chaining; if it
continues across record boundaries, it is termed record chaining .
Augmentation of DES by chaining eliminates repetitiveness in ci-
phertext arising from repetitive plaintext; it provides for the enci-
pherment and decipherment of data of arbitrary length (not neces-
sarily multiples of eight bytes); and it allows the user to enter
keys as long character strings.

In the discussions of block and record chaining that follow, there
is a possibility of confusion in our use of the terms block, data
string, and record. When we speak of enciphering a record, we
tacitly assume that the data to be enciphered is a file on some
storage medium and is organized into records, and that the natu-
ral logical unit of encipherment is a record. The IPS subroutines
can also be used on data that is not so organized, for example in
main processor storage; and the logical unit of encipherment may
be some data string which is defined by the programmer. It might
for example be a selected portion of each record, the rest being
left unenciphered. Thus, in what follows, when we use either rec-
ord or data string, in most cases the other term could be used as
well. In addition, as used here, a block is an eight-byte unit of
data suitable for DES encipherment or decipherment. It should not
be confused with the physical data blocks of a file on a tape or
disk volume, nor with the reproduction of those blocks in input or
output buffers.

We term the basic chaining operation block chaining because it

chains together successive eight-byte blocks of DES data. A for-
mal description of block chaining is given in the Appendix. Below
is a description of the operation as implemented in IPS, first as-
suming that the length of each record (or data string) is some mul-
tiple of eight bytes.

First, once for the entire file, a time-dependent eight-byte initial
chaining value (I1CVv) is generated. Then, for each record:

e The initial chaining value is assigned to an eight-byte current
chaining value.
The current chaining value (equal to the ICV) is XORed'® with
the first plaintext block. The result is enciphered with DES,
and the consequent ciphertext is assigned to the first block of
output.
The just-produced ciphertext block is also assigned to the cur-
rent chaining value.
The current chaining value (equal to ciphertext) is XORed with
the next plaintext block. The result is enciphered with DES,
and the consequent ciphertext is assigned to the next block of
output.
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short blocks

The just-produced ciphertext block is also assigned to the cur-
rent chaining value.

The last two steps are repeated for each additional block of
plaintext.

Chaining can be viewed as a wave of data modification and enci-
pherment that moves from left to right along the string of data
being processed. Because each eight-byte block of plaintext is
modified before it is enciphered, and each modification is dif-
ferent, the resulting ciphertext blocks in a record are (almost cer-
tainly) different whether the plaintext blocks are identical or
not.'” A data string composed of ten identical eight-byte blocks is
enciphered into ten different eight-byte blocks of ciphertext.

Decipherment with chaining is the inverse of encipherment with
chaining, as follows: Each block of ciphertext is deciphered with
DES, and the result is XORed with a current chaining value to yield
a plaintext block. For the first ciphertext block in a record, the
current chaining value is the same as the initial chaining value
used during encipherment. For each subsequent ciphertext block,
the current chaining value is the immediately preceding cipher-
text block.

Because ciphertext (rather than plaintext) is used for the current
chaining value during encipherment, this method of chaining has
an important ‘‘self-healing’’ property. Chaining as described
above might appear to threaten the destruction of all data in a
string to the right of some point of disturbance, as from an 10
error. But nothing of the kind happens. Although each ciphertext
block depends implicitly on all the preceding blocks in the record,
as well as on the current plaintext block, it depends explicitly on
only the immediately preceding ciphertext block and the current
plaintext block (and the key), as follows:

ith ciphertext block =
DES{key, (i — 1)st ciphertext block XOR ith plaintext block}

From this equation we see that

ith plaintext block =
(i — Dst ciphertext block XOR DES '{key, ith ciphertext block}

Thus a plaintext block can be recovered from just the current and
immediately preceding ciphertext blocks (and the key). Under
this type of chaining, therefore, any damage is not propagated
beyond the two blocks at the point of difficulty.

Since short blocks cannot be enciphered by DES without increas-
ing their length, another method of equal strength is required for
enciphering them. The method we chose is to XOR the short block
with avariable, secret quantity. Such a quantity is made available
by slightly modifying the chaining process.
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To encipher a trailing short block of [ < 8 bytes—that is, a short
block that follows one or more full blocks in the record—the pre-
ceding full block of ciphertext is re-enciphered, and the first /
bytes of the result are then XORed with the plaintext short block.
That preceding full block of ciphertext depends on all the preced-
ing blocks of the record, and thus is sufficiently variable. But it is
visible to an opponent; re-encipherment of it provides the neces-
sary secrecy. By this means, trailing short-block ciphertext has
the full strength of a standard DES encipherment.

However, to encipher (under block chaining) a record of | < 8
bytes—that is, a short record—it is XORed with the first / bytes of
the encipherment of the initial chaining value, since there is no
“‘preceding ciphertext block.”” This encipherment is not strong,'
but it does superficially conceal the short records. There is no
impairment of the strength of longer records. Under record chain-
ing (see below), which we recommend, and which is the default
action, this problem disappears. It has been suggested that the
programs should prohibit this block-chaining-but-not-record-
chaining encipherment of short records. However, virtually the
only short records in our experience have been formatting com-
mand symbols in literal text (for example, .sp for ‘‘line-space’ in
SCRIPT files), and those symbols carry little information that would
be useful to an opponent. Therefore we felt that such a prohibi-
tion might be unnecessarily burdensome to some users, as well as
possibly awkward logistically. For files that contain significant
short records—for example, if all records are short—the user
should of course avoid overriding the default.

Block chaining still has two potential limitations. First, identical
records in a file have identical encipherments because the use of
the same key, data, and initial chaining value yields the same ci-
phertext. In fact, two records with a given number of identical
initial blocks yield ciphertexts that agree in the same number of
initial blocks. Second, if enough short records exist in the file, it
may be possible, as noted above, to decipher them (but not any
full blocks) without the key. Both limitations disappear if the ini-
tial chaining value is allowed to vary from record to record
throughout the file. Thus if each record is enciphered with its own
unique initial chaining value, all the ciphertext blocks are dif-
ferent, even if all the plaintext blocks of all the records are the
same. And the cryptographic weakness mentioned above for
short records is removed.

This variable initial chaining value could be chosen by a function
that does not depend on the contents of the data records (as by
adding a constant to the preceding initial chaining value), but if
any data records were lost, the synchronization between the rec-
ords and the initial chaining values would also be lost. We chose a
method, outlined below, that gives good variability, and that de-
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pends only on the ciphertext of one prior record, or rarely of a
few prior records. Assuming a fixed key, encipherment of a rec-
ord under the record chaining option requires two arguments: the
plaintext record and the eight-byte initial chaining value. The en-
cipherment yields two results: the output ciphertext record and
an output chaining value associated with the record. Following is
a description of record chaining as extended from the underlying
block chaining:

® A starting initial chaining value is generated the same way as
in block chaining.
The first record is enciphered exactly as in block chaining.
An output chaining value (0CV) is formed by taking the right-
most eight bytes of the concatenation (Il) of the initial chaining
value (ICV) and the just-constructed ciphertext record:

OCV = RIGHTS[ICVlIciphertext]

The output chaining value is used as the input chaining value
(the 1CV) for enciphering the next record.

Chaining continues in this manner for the remaining records in
the file.

Thus with record chaining, the chaining process continues across
record boundaries, effectively hiding duplicate plaintext, strongly
enciphering even short records, and doing these with a self-heal-
ing property similar to that for block chaining.”” To correctly
decipher a record (given the key), only that record and the pre-
ceding eight bytes of ciphertext (or all of them and the starting
initial chaining value if there are fewer than eight bytes) are re-
quired. In the usual case, in which the preceding record is not
short, the preceding eight bytes are the last eight bytes of the
preceding ciphertext record; in the most extreme case, eight pre-
ceding records of one byte each may be needed.

Normally, record chaining is used for sequentially organized files
because as each record is processed in turn, it defines the initial
chaining value for the next. Block chaining is best used for non-
sequential files, in which there is no fixed order of accessing rec-
ords. IPS strongly encourages the use of record chaining by mak-
ing it the default option, but users can easily select block chaining
instead. Even for files that are to be updated by random access,
the beneficial variability of record chaining can be obtained, with-
out loss of information due to random-access updating, by begin-
ning each record with an eight-byte throwaway block which need
not be correctly deciphered.

Key selection and key crunching

In the past there has been a tendency among users of crypto-
graphic systems to use a word or a name as a key. Today this
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procedure is unsafe. There are fewer than a million words in an
unabridged dictionary, and fewer than a million names in a large
telephone directory. That number of potential keys could be
tested in a few minutes on a System/370 Model 168. Even the use
of eight randomly chosen EBCDIC characters is unsafe, because
only about a third of the 256 EBCDIC characters can be printed at a
terminal, which reduces the available keys by a factor of about
1.5 x 107, Instead, if a DES Kkey is introduced directly, it should
consist of 16 hexadecimal digits, chosen randomly or essentially
so (except for parity.)

IPs provides for an additional way of defining a key. It permits the
user to enter a user key of more than eight bytes, say 16 bytes or
more (usually, but not necessarily, printable characters and
blanks). With this freedom, the user might, for example, enter
several words (say five or more) chosen randomly and indepen-
dently from an unabridged dictionary. Or the user might enter
some phrase. It is essential that these choices be made in such a
way that the key cannot practically be found by an opponent,
either by guesswork or by enumerating some plausible set of
keys.

To produce a suitable DES key from such a longer user key, some
good hashing function is needed. It should be sufficiently com-
plicated to produce essentially unbiased and statistically inde-
pendent bits in the DES key. It would not be desirable, for ex-
ample, merely to XOR various bytes together to form the DES key.
The EBCDIC representations of decimal digits and capital letters
all commence with binary 11, hence the XOR of any number of
these commences with 11 or 00, so that the leading two bits of
such an XOR are perfectly correlated, thereby limiting the set of
possible keys. More generally, any linear combination of biased
or correlated bits will have a non-uniform distribution, which
might be useful to an opponent by allowing him to search only
over the more likely keys.

We solve this problem by the use of chaining. IPS enciphers the
long user key under a selected key, with chaining, and it uses the
rightmost 56 bits of the resulting ciphertext as the DES key. We
call this procedure key crunching. We believe that correlations in
the user key are adequately smoothed out by crunching. The DES
key can be returned to the user so that either it or the long key
can be used for future decipherments.

Components of IPS

The 08/vS version of IPS has two components: a utility program
called IEBCODE for enciphering (or deciphering) sequential data
sets, and a set of cryptographic subroutines intended for calling
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from Assembler, FORTRAN, and PL/ Optimizing Compiler pro-
grams. In addition, an interactive CIPHER command is provided
for TSO (the Time Sharing Option) running under Mvs (Multiple
Virtual Storage).***' The VM/370 CMS version of IPS has two com-
ponents: an interactive CIPHER command used to process CMS
files and the same set of subroutines used in 0S/VS.

The IEBCODE utility program

IEBCODE is a cryptographic utility for sequential data sets. That
is, it produces an enciphered copy of a sequential plaintext file, or
a deciphered copy of a sequential ciphertext file. Individual mem-
bers of a partitioned data set can also be processed, provided that
it is not necessary to preserve the user data fields, if any, in the
partitioned-data-set directory entry. If other types of data sets are
to be protected, then either the data must be unloaded (by one of
the normal utilities) and the resulting sequential data set enci-
phered by IEBCODE, or, better, the data sets can be processed by
user programs that read and write the data sets themselves and
call 1pS subroutines for cryptographic services.

IEBCODE can process any data set accessible by the Queued Se-
quential Access Method (QsAM)."™ All valid fixed-length, variable-
length, variable-spanned, and undefined-length data sets can be
processed. IEBCODE does not allow a change of record format,
but it permits the reblocking of data as requested by the user in
the Job Control Language DD statement DCB parameter.

IEBCODE enciphers logical records individually, rather than in any
larger or different unit, for compatibility with user application
programs that make use of IPS subroutines. Because both the sub-
routines and IEBCODE were to be used as part of the same pack-
age, we felt it important that the exchange of data between them
be relatively easy. Further, for applications that must be as se-
cure as possible, we intended that the IPS subroutines be used in
preference to IEBCODE, or used after IEBCODE had converted all
the old plaintext secret files to ciphertext. We believed that many
of the most important applications of IPS would use subroutines
almost exclusively because under the subroutines, plaintext ex-
ternal files need never exist: instead, the data is left in ciphertext
until the moment that each data item is to be used in main storage
by a running program. It is important that the two parts of IPS be
compatible in order to support this type of application, in which
IEBCODE is used for the initial bulk conversion of data files from
plaintext to ciphertext, or used occasionally to create ciphertext
files from newly arrived data, while the subroutines would be
used for updating. IEBCODE, therefore, had to be designed to pro-
duce ciphertext that could easily be read and processed by user
programs.
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Data to be deciphered by a subroutine call is handled most easily
if ciphertext records are processed one at a time, in the same
manner as the processing of ordinary records by an application
that does not use cryptography. This natural processing of data
set records by an application program is possible only if the unit
of encipherment, the data enciphered in one logical operation, is
exactly one logical record. It cannot, for example, be a group of
records, because such a technique would force the application
program to read and process records in groups. For most appli-
cations, substantial program changes would be required to adopt
such a scheme. Therefore, under IEBCODE, each record in the
data set is enciphered separately, so that ciphertext produced by
IEBCODE can easily be read and processed by user programs.

For fixed-length records, the unit of encipherment is the logical
record. For variable-length records, the unit of encipherment is
the data portion of the logical record; the record descriptor word
remains in plaintext, to be accessible to data management rou-
tines. For undefined-length records, the unit of encipherment is
the physical data block, because user programs must also treat
each such block as an individual record. For spanned variable-
length records, the unit of encipherment is the data portion of the
entire spanned record, no matter how many segments or physical
blocks it may occupy. By making the unit of encipherment for
spanned records the entire record rather than a record segment,
IEBCODE ensures that the ciphertext produced is independent of
block size and record segmentation.

For users of IEBCODE who employ it only for the bulk encipher-
ment and decipherment of data, logical record encipherment is of
no particular importance. But that technique makes it possible for
users to exchange data between IEBCODE and their own cryp-
tographic application programs with minimal difficulty. This de-
sign also permits the exchange of files between 08/vVS systems and
the IPS CIPHER command running under VM/370 CMS.

Logical record encipherment can be set aside if the benefits of
incompatibility exceed the costs. For instance, it is possible to
imagine a scheme in which incoming plaintext records are pro-
cessed by a data compaction routine to save space and the CPU
time needed to encipher them, then are placed in successive por-
tions of a standardized fixed buffer, enciphered, and transmitted
to an output data set. Such a compressed and enciphered file the-
oretically could be processed by a user program, but that is not
likely to happen for practical reasons. For most purposes, and in
the absence of special reasons as in the above example, the logi-
cal record encipherment technique is preferred.

Enciphered files are identified as such by IEBCODE. A header rec-
ord, the encode ID record, is written at the front of each file of
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ciphertext. This ID (identification) record contains the date and
time of the run, the version of IPS used, a security classification
text chosen by the user, initializing information concerning the
cryptographic chaining (block or record) used in the file, an op-
tional user comment field, and a cryptographic key test field. The
key test field is based on the user key but does not contain it.
During subsequent decipherment, IEBCODE can determine almost
certainly, from the key test field, whether or not the key supplied
at that time is the same as the key used in the original encipher-
ment, thus providing early warning if the user has inadvertently
supplied the wrong key. (The key test field consists of the XOR of
the left and right halves of the encipherment of the ID record time-
and-date field under the user key. Because of the XORing, the
time-and-date and key test fields do not exhibit matching plain-
text and ciphertext.)

When IEBCODE is used to encipher a file, it begins by initializing
for encipherment under the user key and writing the encode ID
record into the output file. Then each logical record in the input
file is read and enciphered separately, and its ciphertext is trans-
mitted to the output file.

When IEBCODE is used to decipher a file, it begins by searching
for an encode ID record at the beginning of the file to determine
the chaining mode and test the key. If a recognizable encode 1D
record is not found, all the data in the file is treated as ciphertext,
and the ID record processing is bypassed. The ciphertext logical
records are then read from the file one at a time and deciphered,
and the plaintext equivalents are transmitted to the output file.

A cryptographic ‘‘round trip’’ using IEBCODE, from a plaintext
file to a ciphertext file and, in a separate run, from ciphertext to
plaintext again, naturally yields the original plaintext logical rec-
ords. However, the data set blocking can be changed if requested
by the user. And, as mentioned above, the method of encipher-
ment is compatible with record-by-record cryptographic process-
ing by user application programs.

A control statement is required for the user to specify the func-
tion to be performed and to supply required and optional param-
eters. At the user’s option, the text of the control statement can
be printed, or the printing can be bypassed for security reasons.
The control statement options are:

o Function: Either ENCODE or DECODE must be specified.

& Cryptographic key: A key must be specified, but a wide vari-
ety of key formats is permitted, such as direct DES keys (ex-
pressed in hexadecimal) or long-character-string keys (ex-
pressed in either character or hexadecimal form). When hex-
adecimal notation is used, commas and blanks can be inserted
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to improve readability without affecting the active key charac-
ters. If a DES key is supplied, it is used ‘‘as is”’ in the encipher-
ment process. Longer keys are converted to DES keys by the
chained encipherment method described above.

Security classification: A parameter can be specified to place a
classification text (in the clear) in the ID record.
Cryptographic chaining: Either the block chaining or record
chaining option can be chosen. If the option is not specified
with ENCODE, record chaining is assumed.

ID record comment: A comment of up to 40 bytes of text can
be included in the 1D record, if supplied on the control state-
ment. This comment is not enciphered but remains as a single
line of plaintext user documentation (of ownership, for ex-
ample, or for file identification) in what otherwise (except for
the security classification) is a file of unrecognizable cipher-
text.

When an error occurs, IEBCODE attempts to continue execution,
if it is reasonable to do so, but with an appropriate error message.
For many conditions, execution must terminate; but the text of
the message produced, and an expanded explanation in IPS user
documentation, are intended to get the user past the difficulty in
as short a time as possible.

IEBCODE can produce 49 separate informational, warning, or er-
ror messages. One reason for so many messages and conditions is
that enciphered data sets are fundamentally different from other
data sets in that they look like ‘‘garbage.”” When a conventional
program produces incorrect output, it may be recognizable as

such. With cryptographic programs, great care is needed to avoid
producing files that look like garbage and really are garbage! (It is
not unlikely that an installation will eventually use IEBCODE with-
out testing each file of ciphertext to be certain it can be deci-
phered, in which case it is important that any errors be properly
detected and reported.)

IEBCODE processes a variety of sequential data sets and individ-
ual partitioned-data-set members. Because of this flexibility,
users generally do not need to alter their data to use the IPS cryp-
tographic system. IEBCODE’s control statement is easily coded
and provides a method for the simple entry of a cryptographic key
in different formats, including character strings with meaning to
individual users. The large number of error messages that can be
produced under different circumstances, and their explanatory
texts, help users solve difficulties quickly and easily.

IEBCODE is used to encipher files to be sent between computing
centers and also to protect on-line data. For application programs
that do not call 1PS subroutines for encipherment and decipher-
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ment (see below), IEBCODE performs these services, typically
with ciphertext in permanent data sets and plaintext in temporary
ones.

IPS subroutines

Users are encouraged to call IPS subroutines from their own FOR-
TRAN, PL/I Optimizing and Checkout Compiler, or Assembler pro-
grams. When calling IPS from an application program, the user
passes data in main storage and receives data from IPS the same
way. I/O is the user’s responsibility and is handled in the usual
way according to the programming language chosen. Since the
subroutines depend on the chosen programming language for al-
most all operating system services (the major exception is the
0OS/VS TIME macro), we have found that they work equally well in
any OS/VS system and in VM/370 CMS, and that ciphertext produced
in any of these systems can be deciphered in any other.

One advantage of encipherment by a subroutine call, mentioned
above under The IEBCODE utility program, is that no plaintext
need ever exist on external files. Instead, the user program reads
enciphered data from a file and deciphers it only at the time of
use, and likewise enciphers data before writing it to a file. There-
fore no plaintext data need ever exist outside of main storage (ex-
cept for transient residence in paging data sets).

IPS subroutines can also be used for enciphering and deciphering
nonsequential files, which cannot be processed by IEBCODE. Of
particular interest are nonsequential files from which only se-

lected records are read at any one time. The use of IPS subrou-
tines avoids the cost of deciphering an entire file in order to ac-
cess only a few records. In such applications, block chaining gen-
erally is more appropriate than record chaining.

Encipherment by a subroutine call also allows users to select the
data that is to be enciphered in a file. If only certain fields of each
record are to be concealed, for example customer name and ad-
dress, those fields can be enciphered by a subroutine call, and the
remainder of the record left in plaintext. This procedure can save
a significant amount of CPU time if large files are being processed.
If necessary, the various confidential parts of records can be enci-
phered under different keys, making it possible to grant selective
access to the enciphered material according to the distribution of
keys. In these cases also, block chaining is more appropriate than
record chaining.

In general, the subroutines for different languages work in similar
ways. Each set has four entry points: two for encipherment and
two for decipherment. One of each pair is an initializer, to which
the cryptographic key and the processing options are given. Ini-
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tialization normally is performed once for each run. The other
routine in each pair performs the actual encipherments or deci-
pherments, one call for each record. We decided to separate the
initialization function from the encipherment or decipherment
function to save the time that otherwise would be required to ini-
tialize IPS working storage before processing each piece of data.

When the encode initializer is called, it is given the key, the secu-
rity classification, and the cryptographic chaining option. The en-
code initializer prepares a table to speed the encipherments under
the specified key, prepares for chaining, and passes back the en-
code ID record, which the user may optionally write into the out-
put file to identify the data. The encode ID record is identical to
that produced by IEBCODE. When the decode initializer is called,
it is given the key and the optional encode ID record if saved at
the time of encipherment, or the chaining information if needed
because the ID record is missing. The decode initializer prepares
the table for decipherment under the specified key and prepares
for chaining according to the ID record or the user argument.

When the encoder is called, it is passed the plaintext and the area
where it is to place the corresponding ciphertext. This area can be
the plaintext area itself, since the routine can process data ‘‘in
place.”” When the decoder is called, it is passed ciphertext and
the area where it is to place the corresponding plaintext, which
similarly can be the ciphertext area itself for ‘‘in place’’ decipher-
ment.

The required attributes of the data to be enciphered are natural to
the programming language the user has chosen, to the extent that
we could arrange this. That is, in Assembler language, a user is
expected to pass the addresses of the input and output data areas
and their length. In FORTRAN, a user is expected to pass FORTRAN
variables (usually arrays) for the data areas, and an integer vari-
able containing their length (in bytes). In PL/, a user is asked to
pass either fixed or varying character strings, or a mixture. If PL/
data of other types is to be processed, the user is instructed
to either pass BASED fixed-length character strings (whose point-
ers address the data to be processed), or define and initialize
structures that imitate PL/1I’s character string descriptors, and
call 1PS through alternate entry points declared with OPTIONS
(ASSEMBLER).

In the IPS subroutines, difficulties are divided into two classes,
warnings and errors. And, like many other programs, the IPS sub-
routines take corrective action and continue, perhaps after a
warning message, when a minor difficulty arises. But because
there is a danger of transmitting wrong data in the belief that it is
valid ciphertext, IPS terminates a user program in the presence of
a serious error. Because termination is implemented with FOR-
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TRAN and PL/ language features, not the system ABEND macro,
users can easily override the termination if they choose. Termi-
nation occurs if all of the following three conditions hold:

¢ A difficulty defined as an IPS error has occurred—for example,
the user has supplied a cryptographic key shorter than the DES
minimum, or has requested that a negative number of data
bytes be enciphered. (IPS warnings, resulting for example
from a request to encipher a zero-byte record, do not cause
termination.)
The user has called 1PS from a language for which the pro-
tection is defined; that is, PL/I in all cases, or FORTRAN if the
installation’s system programmers have prepared FORTRAN’S
extended error handling facility for use by IPS.
The user has not prepared for the possibility of such errors;
that is, he has not called the FORTRAN ERRSET routine, or not
supplied a suitable PL/I ON-unit.

In other words, if a user is willing to handle errors, and signals
that fact by establishing the correct FORTRAN or PL/I error envi-
ronment, IPS will not terminate the program in the presence of an
error. But if the user permits an error to occur and has not pre-
pared for it, IPS will terminate the program to prevent destruction
of the user’s data.

We gave a great deal of thought to this problem before deciding to
provide for the termination of user programs, but implemented it
because we felt that users should be protected from serious er-
rors. It would be possible for a user who supplies erroneous argu-
ments to write either nonsense data or actual plaintext under the
impression that it is valid ciphertext. If our indicative return
codes were ignored in such situations, the result could be a seri-
ous loss, which we decided to guard against to the extent pos-
sible. To be sure, the protection is not perfect. It is not present in
an Assembler language environment, and it is lost if the user
takes the bypass actions offered in our user documentation. But
these risks have to be taken if careful users are to be allowed to
continue in execution.

Warning and error messages have as much variety and detail as
those for the IEBCODE utility, but they are modified to report in
terms of the programming language chosen. Assembler language
users may choose from two versions of the IPS subroutines: one
that presents only a return code, or one that presents both the
return code and formatted error messages. FORTRAN and PL/
users will find messages in the standard output print file unless
suppressed by standard language features (ERRSET in FORTRAN,
ON-units in PL/I).

A limitation of the subroutines is their vulnerability to any user
error in which the IPS tables are overlaid by user data. For ex-
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ample, except in PL/I with SUBSCRIPTRANGE enabled, it is pos-
sible to store data outside the boundaries of arrays. If such an
operation should alter the IPS tables, the encipherment process
would give incorrect results while appearing to be correct.

Any programmer can encipher information interactively by in-
cluding calls to IPS subroutines in his own interactive programs.
In this sense, IPS has always been available to TSO and vM/370
application programmers. But for secretarial use, and for pro-
grammers who want a convenient way to encipher entire files, 1PS
includes a CIPHER command for vM/370 cMS files' and another for
TSO sequential data sets.”

The vM/370 CMS CIPHER command is a copy utility combined with
encipherment. With the encode option, CIPHER creates an enci-
phered copy of a CMS disk file. With the decode option, it creates
a plaintext copy of a previously enciphered file. This command
provides the easiest way to use IPS in the CMS environment. CI-
PHER is invoked either from a terminal or from a CMS EXEC file
(one that contains a sequence of CMS commands to be executed).
It is commonly used to encipher confidential documents that oth-
erwise could not be stored on line, and to encipher confidential
material to be sent from one location to another over the IBM
vM/370 network.” The command itself initiates all terminal inter-
action and /0, and it calls the IPS cryptographic subroutines for
encipherments and decipherments. The ciphertext produced by
CIPHER is IPS standard ciphertext. That is, each file of ciphertext
contains an identifying record (the encode ID record) at the begin-
ning, and each record in the CMS file is enciphered separately for
convenient use by application programs. This format is the same
as that used by the IEBCODE utility in 0S/VS systems, and we have
found that the 0S/vS and CMS systems can exchange ciphertext
without difficulty.

The TSO CIPHER command can be used in MVS® to encipher se-
quential data sets and individual partitioned-data-set members
during a TSO session. CIPHER itself initiates all terminal inter-
action, then invokes IEBCODE for data set /O and cryptographic
services. Thus it ensures compatibility of ciphertexts between
batch and interactive uses.

Appliications of IPS

IPS first went into active use in November 1975 at the IBM Thomas
J. Watson Research Center to encipher on-line data sets that con-
tained confidential financial information. This data had been
stored in plaintext on disk and was in constant use by a variety of
reporting and analysis programs. The owners of the data were
concerned about its vulnerability, but could not protect it except
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at an impractical cost in operational difficulties. (The use of
locked-up disks and tapes, instructions to the machine operators
to mount volumes only for jobs with certain names, and so on,
were rejected.) The IPS utility IEBCODE was a welcome aid, be-
cause in one half-day of work, the owners were able to encipher
the data, place deciphering job steps at the top of every job (IEB-
CODE wrote a plaintext temporary data set for the analysis pro-
grams that followed), and provide instruction for all concerned in
using the utility.

IPS is available at more than one hundred IBM locations. A Sep-
tember 1977 user survey and personal communications revealed
that IPS is used:

As a component of one of IBM’s internal telecommunications
networks, for the automatic encipherment of very confidential
data before transmission.

To encipher and decipher APL workspaces stored as CMS files.

To decipher tapes received from other IBM locations.

To encipher VM/370 CMS SCRIPT files that contain documenta-
tion on, for example, unannounced program products or divi-
sion operating plans.

To encipher the contents of an OS password data set.

To encipher the customer name and address field in records of
installed IBM equipment, while leaving the remainder of the
record in plaintext. This procedure saves CPU time and per-
mits free use of the file for statistical analysis while protecting
IBM’s customer list.

To encipher an on-line data base that contains information on
the design of electronic circuit chips.

To generate cryptographic keys by the repeated modification
and encipherment of a random data string.

To generate hash table values from long character strings, the
hash value being the rightmost bytes of the block-chained en-
cipherment of the character string.

To store 0S/VS load modules in enciphered form for protection
against unauthorized execution. (The modules are first un-
loaded to a sequential form by a system utility program, then
enciphered with IEBCODE.)

To supplement the Resource Access Control Facility (RACF)®
for data that must be kept secret even from those with RACF
special or operations authority.

The major application of IPS appears to be the preparation of ci-
phertext files for transmission over IBM data networks. But as the
above list shows, IPS is also used to protect on-line files, although
in MVS much less frequently now than at first. Access control is
less expensive than encipherment, and many MVS files are now
protected by RACF rather than being enciphered by IPS; but some
files are given both RACF and IPS protection, according to the im-
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portance of the data and the frequency with which it will be ac-
cessed. IPS continues to be used to protect on-line files in VM/370
CMS.

IPS and the IBM cryptographic products

Programmed Cryptographic Facility

The IPS cryptographic programs and the IBM cryptographic pro-
gram products were developed separately for different purposes,
and they have interesting similarities and differences. The IBM
0s/vs1 and 08/VS2 MVs Programmed Cryptographic Facility™ is a
software implementation of DES, together with key management
and handling services. Assembler language programmers can call
on the Facility for the encipherment and decipherment of data in
main storage. The Facility is used also by other I1BM program
products that require cryptographic services, such as the
ACF/VTAM Encrypt/Decrypt Feature® for enciphered telecom-
munications and the Access Method Services (AMS) Crypto-
graphic Option26 for enciphered VSAM and nonVSAM data sets.
Unlike 1PS, the Programmed Cryptographic Facility will not run
in VM/370 except as a component of an 0S$/VS1 or 0S/VS2 virtual
machine. The Facility uses the storage protection feature of IBM
System/370 hardware, so its cryptographic tables cannot be
damaged by the store error discussed above in our discussion of
the TIPS subroutines.

The 1PS method of block chaining is also included in the IBM cryp-
tographic products. Accordingly, Programmed Cryptographic
Facility encipherments follow the 1PS block chaining technique,
with the initial chaining value supplied as a parameter at each call
to the CIPHER macro. Record chaining is not now explicitly avail-
able, but it can be obtained by generating an output chaining
value from each encipherment to be used as the input chaining
value for the next encipherment, in the manner described earlier
in this paper. With the correct setting of the initial chaining value,
1PS and the Programmed Cryptographic Facility encipher and
decipher data in an identical manner.

We believe that requiring users to enter keys only at the time of
their use for encipherment or decipherment and not storing them
permanently in the system is an asset of 1ps. But for many appli-
cations, cryptography would not be practical in computer sys-
tems if manual key entry were required. For instance, if a termi-
nal can communicate with the host computer in ciphertext, the
host must have the cryptographic key needed to start communi-
cations. There would be confusion and delay if each such key had
to be entered manually by a system operator. Moreover, to pre-
vent different sessions at a given terminal from using the same
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key, provision is made in the ACF/VTAM Encrypt/Decrypt Fea-
ture, in concert with the Programmed Cryptographic Facility, to
generate cryptographic session keys by the system itself, rather
than by a user. (The newly generated session key is transmitted to
the terminal shortly after the user logs on, and it is enciphered
under the terminal’s own key. The terminal then switches keys
for the rest of the session.)

For these and similar reasons, the Programmed Cryptographic
Facility offers a key generation and management service that was
not contemplated in the design of 1pS. For file protection, users of
the Facility can elect to supply their own private DES keys (IPS-
like long-character-string keys are not accepted); they can
request that the Facility generate keys as needed, and then treat
those keys as private keys; or they can request key generation,
then store enciphered versions of the keys with the associated
data to permit automatic decipherment (that is, without the user
having to supply the key) under various circumstances. This lat-
ter choice carries a risk that privileged users of the system might
make unauthorized decipherments.

The greater the importance of keeping a particular file of data
secure against a wide variety of threats, the more important it
becomes to use private keys; but for many files the protection of
encipherment is justified, while the inconvenience of private keys
is not. IPS was designed in the belief that keys should not be
stored in the system in any form and at a time when the protective
features offered by Mvs and used by the Programmed Crypto-
graphic Facility were not available. Arguments can be advanced

in favor of either the 1PS or the Programmed Cryptographic Facil-
ity approach to key management, depending on different oper-
ating environments and attack scenarios. Under IPS, only private
keys are allowed; the Programmed Cryptographic Facility gives
the user a choice, which depends on the importance of the data,
the relative safety of private keys, and the convenience of sys-
tem-managed keys.

AMS Cryptographic Option

Another product, the Access Method Services (AMS) Crypto-
graphic Option,” is roughly equivalent to the IPS IEBCODE utility
as invoked through the TSO CIPHER command. Both are intended
for the encipherment and decipherment of data files as a whole.
The Cryptographic Option is an extension of the AMS REPRO com-
mand. As such, it can make enciphered copies of nonvVSAM se-
quential data sets (as IEBCODE does) and process most VSAM files,
which are inaccessible to IEBCODE. AMS does not perform enci-
pherments directly, but calls on the Programmed Cryptographic
Facility for the encipherment and decipherment of data, and for
certain key handling services.
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AMS-enciphered files by default use logical record encipherment
with block chaining. To improve performance and short-record
security, AMS can (at user option) read logical records in groups
and encipher each group in one operation. This mode of process-
ing resembles IPS record chaining because the chaining operation
continues across record boundaries within the groups; but the
method is not equivalent because DES eight-byte encipherment
blocks are not necessarily aligned with logical record boundaries
(as in 1PS), and because the chaining operations are reset at the
beginning of each group instead of continuing throughout the file.
As a consequence, record grouping is probably not a good idea
when user programs (not AMS itself) might be used to decipher
such files.

AMS offers the key generation and key management services of
the Programmed Cryptographic Facility. Therefore, unless the
user enters a key for the encipherment of a file, one will be gener-
ated automatically. The generated key can be returned to the user
in the clear, or it can be enciphered under another key, a second-
ary file key, and its encipherment returned to the user. Thus, ac-
cess to both the enciphered text of the data key and to the second-
ary file key (by its identifying key name) is required to decipher
the data file. At user option, the enciphered data key and the
name of the secondary key can be placed in a file header to permit
automatic decipherment under selected conditions.

The IBM 3848 Cryptographic Unit

The 1BM 3848 Cryptographic Unit and the 0S/vS2 MVS Crypto-
graphic Unit Support Program®”® provide a hardware replace-
ment for the software encipherments performed in the Pro-
grammed Cryptographic Facility. The 3848 attaches to an 10
channel and performs encipherments and decipherments of the
data transmitted to it. The Cryptographic Unit Support Program
replaces the Programmed Cryptographic Facility and transforms
invocations of the CIPHER macro into the /O operations required
to drive the 3848.

The preceding discussion of the IPS cryptographic design and the
Programmed Cryptographic Facility applies equally to the 3848
and its Support Program.

Where large amounts of data are to be enciphered or deciphered,
the 3848 Cryptographic Unit should be considered, for by replac-
ing the software encipherment routines in the Programmed Cryp-
tographic Facility with hardware, significant savings of CPU time
can be achieved.
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Summary

The IPS programs have succeeded in bringing cryptography to a
large community of users, both programmers and non-
programmers, at IBM computing centers. IPS has contributed sig-
nificant augmentations to the Data Encryption Standard: tech-
niques of cryptographic chaining, which help to conceal the un-
derlying structure of plaintext; a consistent definition of the
encipherment of data of any length (not just multiples of eight
bytes); and an increased number of ways in which cryptographic
keys can be defined by users. Some of these implementation op-
tions are also included in the IBM cryptographic products.
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Appendix: formal DES notation and description of chaining

The cryptographic function in IPS is provided by an augmentation
of the DES block cipher. An n-block x is a sequence of n = 1
binary 0’s or I'’s

X = (xXp X, " X,_) x;=0or1(0=i<n)

Let {0,1}" denote the set of all n-blocks (for some fixed n)
0.} ={x=(xp,x,, -, x,_):x,=00r1,0=i<n}
A block cipher 7 on {0,1}" is a one-to-one transformation
7 {0,1)" = {0,1)"

replacing each plaintext n-block x with a ciphertext n-block y

plaintext x — w{x} =y ciphertext

Each n-block y is the ciphertext of a unique plaintext n-block x.
The inverse transformation, yielding plaintext from ciphertext, is
denoted by 7. Note that the block cipher 7 replaces the block x

of plaintext data by the block y of ciphertext data of the same
length.
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When a cryptographic transformation is employed by a pair of
users to secure communications (by masking the content of mes-
sages), the users must incorporate some secret information in the
cryptographic process so that the communication is intelligible
only to them. The element of secrecy is provided by selecting one
block cipher 7{k} from a family of block ciphers which depend on
a parameter k, called a key. A keyed block cipher is a family of
block ciphers

w{k}: {0,1}" - {0,1}" k€K
y = m{k.x}

where the key k is an element of some finite set K, called the key
space. In any implementation of a cryptographic facility, each
pair of users, who wish to communicate with enciphered mes-
sages, select in some manner an element k from XK.

Desiderata of a good keyed block cipher are:

e The input alphabet {0,1}" should be ‘‘large’’;

o The key space K should be “‘large’’;

e The function m{k} : x = y, which relates the key, plaintext,
and ciphertext, should be ‘‘complicated.”

A “‘large”’ input alphabet effectively negates the possibility of an
opponent’s constructing a catalog of frequencies of plaintext-
ciphertext pairs to which statistical analysis might be applied. A
“large’” key space effectively defeats exhaustive key trial. A
*‘complicated’” key-plaintext-ciphertext relation makes it difficult
to detect any dependencies in the triple (key,plaintext,ciphertext)
which would enable one to recover the key from corresponding
plaintext and ciphertext, or recover plaintext from ciphertext.

DES is a keyed block cipher that transforms a 64-bit (eight-byte)
plaintext block (x,, x,, - - -, X,) into a 64-bit ciphertext block (y,,
Yi»* > ¥eo) under the control of a 56-bit key (k.. &,, - - -, k). The
key space K = {0,1°° contains 2°° different keys. There are 2%
possible plaintext 64-bit blocks {0,1}*.

We use the notation DES{k,x} to denote encipherment of the
plaintext block x by DES using the key k, and the notation DES ™'
{k.y} to denote decipherment of the ciphertext block y by DES
using the key k. It is believed that the DES algorithm is a *‘good”’
keyed block cipher in the sense described above. No cryptanaly-
sis of DES, obtaining plaintext from ciphertext without the key, 1s
known to the authors.

The DES algorithm is defined only for plaintext data blocks x with

a length of eight bytes. The definition can be extended to plaintext
records of arbitrary length (in bytes) in several ways. First, con-
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sider the case in which (x)* is a plaintext record whose length (in
bytes) is a multiple of eight. Then

<X> = (Xp Xos " % _xm)
(X; = (00 Xp 15 * * s X, 65) © a block of eight bytes, 1 =i = m)

The obvious way to encipher a plaintext record of 8m bytes is by
applying DES to each eight-byte block, as follows:

<¥> = (yl’ Yoot " s J_’m)
y; = DEs{kx} l1=j=m

This natural use of DES is attractive because portions of a record
(or file) can be deciphered without decipherment of the entire rec-
ord (or file). It suffers from the fact that identical plaintext blocks
are enciphered into identical ciphertext blocks (assuming the
same key). Thus, files with significant repetitive patterns, such as
Assembiler language source files or digital representations of line
drawings, yield ciphertext in which such patterns are somewhat
replicated. This repetition does not imply a weakness in the al-
gorithm, and it cannot be used to decipher an enciphered file;
nevertheless, it is disconcerting and easily remedied.

In IPS, we have introduced the notion of chaining. Chaining masks
repetitions in plaintext blocks. The chained encipherment of x by
DES is defined as follows: Given an eight-byte initial chaining
value ICV, key Kk, and plaintext (x) = (X,, X,, * * *, X,,), we de-
fine the chained encipherment DESCH{k(x)} of (x) by

Yo = ICV
y, = DEStkx; @ y, .} l=j=m

where @ = XOR. Thus the first plaintext block x, is XORed with
the initial chaining value ICV and enciphered by DES to yield y,,
and the jth plaintext block x; is XORed with the (j — 1)st eight-
byte block of ciphertext y, , and enciphered by DES to yield y,. If
we wish to show the dependence of DESCH{k.(x)} on the initial
chaining value, we write DESCH{k,(x)|ICV}.

DESCH as defined above is a one-to-one transformation; that is, a
block of 8m bytes of ciphertext can arise from only one 8m-byte
block of plaintext. Indeed, if (y) is an 8m-byte block of cipher-
text—that is, if (y) = (y,,¥,» - - *»¥,) —the rules for decipher-
ment DESCH '{k,{y)} = DESCH {k.y|Icv} are

Y, = ICV :initial chaining value

X;

DES {k.y} Dy, , l<j=m

Both encipherment and decipherment proceed from ‘‘left to
right.”” Note that we can decipher the fragment (y, y,. ., - * *,y,)
from the key k and the previous ciphertext eight-byte block y, ;.
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Chaining, as defined here, possesses an important self-healing
property. Suppose that (x) = (x,, X,, * * *» X,,) (the record of 8m
blocks of plaintext) has been enciphered, with chaining, into ci-
phertext(y) = (¥, ¥, * * * Y.»)» and that an error has been made
(in storage, say) in the jth ciphertext block y,, replacing it with
Z; Thus when decipherment is attempted, the ciphertext is (3_7')
= (¥p Yo * "> Yo)» with

ifi#j
ifi=j

Decipherment of y' with initial chaining value ICV = y, results in
(x) = (x,, " * *» X,,)> where

The first (j — 1) plaintext blocks are correctly obtained:

x; = DES '{k,y} @ y,_, = DES '{ky} @ Yy, = ¥,

1=i<j

The jth and (j + 1)st deciphered plaintext blocks contain er-
rors:

DES {k.y/} @ y,, = pEs {ky, De} @y,
# DES {k,y} ® y,, = X;
X, = DES {ky} © y;=DES ky, } © y,De
# DES k., ) @y, = X,

Note: The jth plaintext block is entirely incorrect because an
incorrect block was subjected to DES decipherment; the
(j + st plaintext block is in error only in the bit positions
corresponding to the errors in y;.

The self-healing property yields the (j + 2)nd through mth
plaintext blocks correctly:

x; = DES {k,y} @y, , = DES {k,y} @y, = x,

J +t1<i=m

Thus an error in the jth eight-byte block of ciphertext results
(upon decipherment) in errors in the jth and (j + I)st eight-byte
blocks of plaintext. The error does not propagate further.

It remains to extend this notion of chaining to plaintext blocks
whose length either is greater then eight bytes but not a multiple
of eight bytes, or is less than eight bytes. Let (x) be a block of
8m + s bytes with 0 < s <8, m = 1. Then

(x) = X " s X Xyt

where x_ ., is a short block of s bytes.
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The chained encipherment (y) = DESCH{k,(x)} is defined to be
<)_’> = (3_,1’ o .’)_]m’)_’m—kl)
where

ICV =y, : initial chaining value

Xm+1 - Z‘m+1

where LEFT[-] means the leftmost s bytes of [-]. That is, the first
m full blocks are enciphered with chaining as just described, and
the (m + 1)st (short) block of ciphertext is the XOR of the short
block of plaintext, of length s, with the left s bytes of the enci-
pherment of y, by DES. It is easy to verify that DES so extended
is one-to-one; that is, the ciphertext uniquely determines the
plaintext. Decipherment proceeds from left to right and includes
an encipherment step to redetermine LEFT[DES{k,y, 1.

© LEFT[DES{k,y,,}]

Finally, we must define the encipherment of a short record; that
is, an s-byte block where s is less than 8. We define the 1PS block
chaining encipherment of the short record x

x = (X, X, " x,_) 1l=s5s<8
by
y = ¥ ® LEFT,[DES{k,ICV}]

That is, we encipher the initial chaining value ICV, and XOR the
leftmost s bytes with the plaintext x.

Block chaining, as defined here, has two limitations: First, with
respect to the short records of a file, it is weak, constituting an
interrupted Vernam system.'® From enough such enciphered
short blocks, an analyst could recover the Vernam key and thus
decipher the short blocks. Even a more elaborate cryptographic
function, which depended however only on the given plaintext
short block, the key, and the starting initial chaining value, would
at best be a simple substitution on the set of possible short blocks
(and under our assumptions would be length-preserving) and thus
might be subject to cryptanalysis. With the availability of record
chaining, described below, such an elaborate encipherment of
short blocks was not thought warranted.

In addition, if a file contains two or more records that begin with
identical fragments, including the first ¢ blocks, then independent
DES encipherments of those records begin with identical cipher-
text fragments, through the first ¢ blocks. This too presents an
exposure, although a much lesser one. In 1IPS we remedy these
possible defects by extending DES still further by introducing the
notion of record chaining.
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Suppose that a file F consists of a sequence of r records
F:(x), (x®), - -, (x™)

Let ICV be the initial chaining value. The iPS encipherment of F
under record chaining

(Zu))’ (th))’ - (3_'(”>

is defined according to the principle that the input chaining value
for the record )_'(” is the most recent eight bytes of ciphertext
(where the ciphertext is considered to be prefixed by the starting
initial chaining value). More precisely, if we introduce the nota-
tions

ith record input chaining value : 1cv*”
ith record output chaining value : ocv”

then the encipherment of F is defined by:

1cv'” = 1CV (initial chaining value)

cv? = ocv?Y 1<isr

@y = pEsc{k(x")ficv"}

(y
ocv? = riGHTS[1cVVIKy )]

where RIGHTS means the right-most eight bytes. Thus the first
record (x') is enciphered by DEs into (y'") using the initial
chaining value ICV, and the ith record (x"”) is enciphered by DES
into ()_'(i)) using the initial chaining value

I_C_V_(i) = ocv? 1<i=n

It is simple to verify that we can recover the ith plaintext record
(x®) from the ith ciphertext record (y?”), the key, and the
(i — 1)st output chaining value ocv‘" (the immediately preceding
eight bytes of ciphertext).

Record chaining does for records, including short records, what
chaining accomplishes for repeated eight-byte blocks and trailing
short blocks. Thus, even if a file contains identical records, or
short records, the ciphertext records are all distinct, equally
strongly enciphered, and self-healing.
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