

security requirements, and to provide a framework for the evalu-
ation of the security features of different data base management
systems. To meet those objectives, the paper emphasizes theoret-
ical models of data base security.

The use of models allows us to concentrate on significant aspects
of the problem without simultaneously considering complex de-
tails of implementation. The use of theoretical or ideal models,
rather than the implicit models adopted by particular systems,
provides a general yardstick for system comparison. To apply the
principles discussed here, it is necessary also to understand secu-
rity mechanisms that can be used in designing, implementing, and
controlling data base systems. The paper deals only briefly with
those mechanisms; they can be studied in References 1 and 2 .

In the following section we define security terms used in the re-
mainder of the article. Next, to provide perspective, we review
all types of threats to data base security, as well as mechanisms
and procedures that protect against them. We describe some
security policies an enterprise may wish to adopt. Finally, we
develop and compare models for controlling access to informa-
tion and its flow within the computer. These models can be used
to specify many of the security policies.

definitions The terminology of data base security varies a great deal, perhaps
because several different areas are involved, each with its own
terminology. We have tried to choose the most widely used defi-
nitions.

Information security is the protection of information against un-
authorized disclosure, alteration, or destruction. It follows that
data base security is the protection of information maintained in a
data base. The need for data base security derives in part from
considerations of privacy. The termprivacy is used broadly for all
the ethical and legal aspects of personal data systems-systems
that contain information about individuals. More specifically, pri-
vacy is the right of individuals to some control over information
about themselves.

Figure 1 Data base access control Since security has been defined in terms of protection against un-

tion. Authorization is the specification of rules about who has
what type of access to what information. An authorized action
abides by these access rules. The person who writes access rules

ACCESS CONTROL authorized actions, we must define what we mean by authoriza-
I m--t+"sER DATA BASE is an authorizer.

I
I The process of ensuring that information is accessed only in au-

thorized ways is called access control. Access control is one of
several possible objectives of security within a computing sys-
tem; it is illustrated in Figure 1, which shows information from a

230 WOOD, FERNANDEZ, AND SUMMERS IBM SYST J VOL 19 NO 2 1980

secure environment must cover many areas of an enterprise.
Some of the more important are listed in Table 1.

The security of a data base depends on a complex set of pro-
tective measures-human, software, and hardware. One weak
link in the chain of security measures can compromise the secu-
rity of the whole system. In this paper we concentrate on that part
of security directly associated with the control and monitoring of
access to information in the data base. Figure 3 shows some of
the safeguards that can be built into a data base system. Authenti-
cation (1) verifies the identity of a user when he logs on. The most
common authentication method uses passwords, which are com-
binations of characters known only to the user. Another common
method requires the user to insert a machine-readable badge.
More elaborate techniques depend on sensing fingerprints, the
size of the user’s hand, or some other physical characteristic of
the user.

Once the user is authenticated and attempts a transaction (2), his
authorization to use that transaction is checked (3). Execution of
the transaction may involve several application programs, which
are stored in a program library (4). Application programmers
build and maintain the library, while an application administrator
controls the development and use of the programs. In the multi-
level data base architecture described in the ANSUSPARC pro-
posals,4 the data base is described at different levels. High-level
descriptions, which define the conceptual schema, are designed
by an enterprise administrator, while lower-level descriptions
such as the internal schema are built by a data base administra-
tor. Authorization rules control access to the objects in the data
base and to specific portions of the program library. These rules
are written by a security administrator or authorizer, using some
appropriate language. A security monitor or security oficer
checks the day-to-day operational application of the rules. When
application programs are executed, their requests for data go to
the data base management system (DBMS) (5) . This software has
access to the data base descriptions needed to organize data ac-
cess, and it checks authorization and semantic integrity (6) . The
DBMS keeps a log of accesses to the data base (7). A security
auditor checks the log at prescribed intervals for compliance with
security policies.

Data base access requests, once validated, are translated into I/O
calls, which are passed to the operating system (8). Additional
checks are possible here for proper use of files or of operating
system functions. The hardware can provide additional pro-
tection (9), such as enforcing the correct use of information types
(for example, no execution of data). The physical volumes on
which the data base is stored can be protected by encryption and
by backup copies (10).

232 WOOD, FERNANDEZ, AND SUMMERS IBM SYST 1 VOL 19 NO 2 1980

Figure 3 Security checking for transaction processing

AUDITOR
AUTHORIZATION AND
SEMANTIC INTEGRITY

APPLICATION PROGRAMMER,
APPLlCATlONAOMlNlSTRATOR DATA BASE ADMINISTRATOR

ENCRYPTION

Table 1 Security mechanisms and procedures

Area Mechanisms andprocedures

External procedures Security clearance of personnel
Protection of user ID and passwords
Information classification and

security policy formulation
DP audit
Application program controls

Physical environment Provision of secure areas for
files, processors, terminals

Radiation shielding

Data storage Encryption of stored data

Processor-software Authentication of user

Duplicate copies of data base

Access control
Threat monitoring
Journaling of data base transactions

Processor-hardware Protection
Reliability

Communication lines Encryption of transmitted data

IBM SYST J 0 VOL 19 0 NO 2 0 1980 WOOD, FERNANDEZ, AND SUMMERS 233

Policies for data base security

For a systematic approach to data base security, it is important to
distinguish between security policies and security mechanisms.
Security policies are high-level guidelines concerning information
security. Selected from among alternatives, they are dictated by
user needs, installation environment, institution regulations, and
legal constraints. Security mechanisms are sets of functions used
to implement and enforce the various security policies. Depend-
ing on their nature, the functions involved in a given mechanism
can be implemented in hardware, software, or firmware, or by
administrative procedures.

Security decisions are made at each level of an information sys-
tem, from corporate actions to hardware implementation. These
decisions constitute the set of security policies of an enterprise.
The policies depend on the activities of the enterprise. Military,
commercial, and educational enterprises usually have quite dif-
ferent security policies. Legal considerations also play a role. For
example, privacy legislation dictates certain policies for govern-
ment agencies and credit bureaus. Policies of a computing instal-
lation are directed by the higher-level policies of the enterprise
and also depend on the available hardware and software. In gen-
eral, policies at the lower levels are affected by those at higher
levels. For example, a policy that requires decentralization at a
high level requires low-level mechanisms that support decentral-
ized operation. Conversely, the lower levels can affect higher lev-
els. For example, a given high-level policy may not be practical if
low-level mechanisms cannot support it adequately.

Considering system structure, policies can be viewed as being
implemented by low-level mechanisms. If the ability to change
policies is required, it is necessary to separate mechanisms from
policies. In other words, the policy should not be built into the
mechanism. This separation allows the same mechanism to im-
plement different policies. The advantages of this strategy have
been demonstrated in the design of operating systems.' It is inevi-
table that the operating environments of an enterprise and of a
data base system will change; therefore, changes in the chosen
security policies will be necessary. These changes should not re-
quire that the security mechanisms be redesigned or replaced;
they should be programmable using the existing mechanisms.

Some of the more important high-level security policies are re-
viewed below, with the low-level policies they may imply. Most
of the low-level policies concern the selection and use of DBMS
security features. Many of the low-level policies can be expressed
in terms of access rules. Of course the designers of a DBMS make
policy decisions when determining which security features to in-
clude in the system. In practice, the features currently provided
in DBMSs are limited, thus restricting the choice of policies.

234 WOOD, FERNANDEZ, AND SUMMERS IBM SYST J VOL 19 NO 2 1980

A fundamental security choice is between centralized and decen-
tralized control. With centralized control, a single authorizer (or
group) controls all security aspects of the system. An example of
a system with centralized control is INGRES.' In other environ-
ments, decentralized control may be required for efficiency or
convenience.

A related policy concerns the concepts of ownership and adminis-
tration of data bases in an enterprise. The owner of a data base
sometimes is considered to be the person responsible for creating
the data. For example, the payroll manager might be considered
the owner of a payroll data base updated exclusively by the pay-
roll department. With many shared data bases, however, it is dif-
ficult to identify a unique owner. A stock control data base, for
example, might be updated by the production, sales, purchasing,
and shipping departments. While there may or may not be the
concept of ownership, there is always the need for an administra-
tor of a data base. This function may be performed by the owner,
if one exists, or by a security administrator.

An important example of a high-level policy is restricting infor-
mation to those people who really need the information in per-
forming their assigned functions. This policy is mandatory for
data bases subject to privacy legislation, and it is a sound prin-
ciple on which to base any security system, as it restricts the
number of possible sources of information leaks and it minimizes
the possibility that the integrity of the data base will be com-
promised. This need-to-know policy is sometimes called the pol-
icy of least privilege because all users and programs operate with
the least privilege necessary to perform their functions.

An alternative policy is maximized sharing, the intention of
which is to make maximal use of the information in the data base.
This policy does not necessarily mean that all users are given
access to all the information, because there may still be privacy
requirements and sensitive data. However, sharing is maximized
within these security constraints. A medical research data base,
for example, might contain information on certain diseases. The
main objective would be to allow researchers maximal access to
the information, but any data that could be related to a specific
patient would be protected.

The choice between an open and a closed system can have impor-
tant security implications. In a closed system, access is allowed
only if explicitly authorized. In an open system, access is allowed
unless explicitly forbidden. A closed system is inherently more
secure, but it may have more overhead if sharing is to be maxi-
mized.

The policy of least privilege has various implications for the types
of access rules required, depending on the strictness with which

IBM SYST J VOL 19 NO 2 1980 WOOD, FERNANDEZ, AND SUMMERS

Figure 4 Name-dependent access control

EMPRELATION

content-dependent
access control

20 000 JONES

30 000 SMITH COMPUTER

SMITH 40 000 - HEAD OFFICE

PERSONNEL 21 OM) JONES COMPUTER
MANAGER

\, I

v/ROOM w CLERK

the policy is interpreted. As a minimum, it should be possible to
specify the data objects accessible to a given user. (A data object
is a group of occurrences of data items and relationships with a
name recognized by the DBMS. In a relational DBMS, for example,
a data object might be a relation or an attribute, and in a CODASYL
DBMS, it might be a set or a record type.) Another policy decision
pertains to the granularity of control; the smaller the object, the
finer the granularity. A strict interpretation of the policy of least
privilege requires use of the finest granularity allowed by the
DBMS. With relational systems, then, the object is a column or
attribute; with IMS it is a data item or field.7 This type of control is
name-dependent access control, sometimes referred to as con-
tent-independent access control because a decision on whether
to allow a data access request can be made without accessing data
values from the data base. Consider the employee relation EMP
with attributes NAME, SAL, MGR, and DEFT, represented in Figure
4. A personnel manager might need access to the complete rela-
tion, but a mailroom clerk would require access only to the NAME
and DEFT attributes.

The policy of least privilege can be extended even further by
specifying access rules that are dependent on the content of data
item occurrences (as opposed to just their names). This type of
control is known as content-dependent access control. When ap-
plied in conjunction with the previous policy, it provides finer
granularity of control. For example, managers may have access
to data on the salaries of the employees they manage, but not on
the salaries of other employees. With this type of control, data
values must be retrieved from the data base to determine whether
the access request should be allowed.

236 WOOD, FERNANDEZ, AND SUMMERS IBM SYST J VOL 19 0 NO 2 0 1980

Figure 5 Access-type-dependent access control

EMPRELATION -
MGR DEPT

\

JONES COMPUTER

SMITH COMPUTER

- HEADOFFICE

PERSONNEL
MANAGER

JONES COMPUTER

CLERK
MAILROOM

The security policies discussed so far allow users either no access
or unlimited access to specified data objects. More control over
the use of data is achieved by including in the access rule the type
of access to the data object the user is allowed, such as READ,
UPDATE, INSERT, DELETE, or some combination. Thus while the
personnel manager may have access to EMP for all types of opera-
tions, the mailroom clerk might only be allowed to READ the
NAME and DEFT attributes (see Figure 5). These users therefore
have the minimum set of access rights necessary to perform their
jobs. The use of this policy can be simplified by ordering the ac-
cess types so that access of a higher type implies lower-order
accesses. In IMS, for instance, REPLACE and DELETE both imply
READ.

When users need only summary or statistical data, the policy of functional
least privilege requires that they not have access to the under- accesscontrol
lying detailed data. (We assume here that mathematical functions
such as average, sum, and standard deviation are supported by
the DBMS at the user interface.) To specify thisfunctional access
control, the concept of access types can be extended to include
functions. Thus we can specify that a user may have access to
average salary data but not to individual salary values. While this
restriction does not guarantee the security of the individual val-
ues,8 it is an important support for more elaborate methods
(which can provide more protection, although still not complete
security).

Another policy is context-dependent access control, which re- context-dependent
stricts the fields that can be accessed together. For example, if a accesscontrol
relation contains employee names and salaries, it may be desir-

IBM SYST 1 VOL 19 e NO 2 1980 WOOD, FERNANDEZ, AND SUMMERS 231

history-dependent
access control

nondiscretionary
access control

238

able to prevent some users from finding out the salaries of partic-
ular employees. One approach would be to prevent access to the
relation by those users. To maximize sharing, however, the sys-
tem would allow separate access to names and salaries while pre-
venting users from accessing them together in the same request or
in a specific set of requests (for example, all the requests of a
program). The converse of this policy is the requirement that cer-
tain fields appear together. For example, information about a per-
son being arrested could be given only if the disposition of the
arrest were also included.

In general it is not sufficient to control only the context of the
immediate request if users are to be prevented from making cer-
tain semantic deductions. For example, if the employee relation
also contained a project identifier attribute, a user could list
names and projects, then salaries and projects, and probably
make some correlation between names and salaries. Preventing
this kind of semantic deduction requires history-dependent con-
trol,9 which considers the immediate request in the context of
past requests.

History-dependent control is really only a partial solution to a
more general problem. Ideally it would be desirable to express
rules in terms of controlling access to facts that are represented in
the data base either directly or indirectly. The DBMS would then
determine which specific request to allow in light of these more
general rules. However, such a determination, which would re-
quire the DBMS to make semantic inferences, is beyond the limits
of current technology.

The policies described above control access to the data base, but
not the use made of the data once it is accessed. Control over the
use of accessed data within a program is necessary, for example,
to prevent the leakage of information from an authorized program
to an unauthorized one.

We have implicitly assumed that some authorizer can provide
other users of the system with access to data. This type of control
is discretionary access control. A simpler but less flexible ap-
proach is nondiscretionary access control, by which the use of
the system is compartmentalized so that data in one category or
compartment cannot be accessed by users in another category. It
is possible, of course, to mix discretionary and nondiscretionary
access control. For instance, a department manager may allow
discretionary access rules to be specified for personnel within the
department, but with the nondiscretionary rule that the depart-
ment’s data cannot be accessed by people outside the depart-
ment. This approach has been taken in the design of some mili-
tary systems. 10

WOOD, FERNANDEZ, AND SUMMERS IBM SYST J VOL 19 NO 2 1980

A basic model of data base access control

Models of data base access control have grown out of work on the
theory of protection in operating systems. One of the most in-
fluential protection models was developed by Lampson" and ex-
tended by Graham and Denning." The basis of their model is the
access rule, which specifies the types of access asubject can have
for an object. In the context of operating systems, objects are
entities, known to the operating system, to which access must be
controlled, such as main memory pages, programs, auxiliary
memory devices, and files. Subjects are the entities that request
access to objects, usually a process-domain pair, aprocess being
a program in execution, and a domain the environment in which
the process is executing. Examples of domains in an IBM System/
370 are the supervisor and problem program states. Access types
might be O W N , EXECUTE, ALLOCATE, and READ. The set of all ac-
cess rules can conveniently be thought of as forming an access
matrix A , in which columns o,, o,, . . -, on represent objects, and
rows s,, s,, . 1 ., sm represent subjects. The entry A[si , oj] con-
tains a list of access types, t,, ?,, * * ., which specifies the access
privileges held by subject si for object oj. The objects accessible
by a subject, together with the mode of access, are sometimes
termed the capabilities of the subject.

This model assumes that all attempted accesses to an object are
intercepted and checked by a controlling process sometimes
known as a monitor. Thus when subject si initiates access t , to
object oj, the monitor checks to determine whether t , E A[si , oj].
As the flow of control during program execution proceeds from
one subject to another, the access rules need to be modified dy-
namically so that existing access rights of a subject can be copied
or granted to a new subject. Access rights in the matrix are
flagged if copying them is to be allowed. A subject that has not
been debugged can thus be prevented from indiscriminately giv-
ing away access rights that it has been granted. The importance of
this approach is that the effects of errors are confined. Errors can
no longer propagate in an uncontrolled way throughout the whole
system. Thus reliability is enhanced (as other parts of the system
can often continue executing correctly) and debugging is sim-
plified.

This model treats the security of all system objects in a uniform
way. Therefore one approach to data base security is to consider
it as just a subset of operating system security. Thus the objects
in the access matrix would be not only resources such as memory
pages, devices, and files, but also data base objects. The oper-
ating system could then be extended to handle all security within
the system. There are some fundamental differences between op-
erating system security and data base system security, however,
as listed below:

IBM SYST J VOL 19 NO 2 1980 WOOD, FERNANDEZ, AND SUMMERS

0 There are more objects to be protected in a data base.
0 The lifetime during which data is used normally is longer in a

data base.
0 Data base security is concerned with differing levels of granu-

larity, such as file, record type, field type, and field occur-
rence.

0 Operating systems are concerned with the protection of real
resources. In data base systems the objects can be complex
logical structures, a number of which can map to the same
physical data objects.

0 There are different security requirements for the different ar-
chitectural levels-internal, conceptual, and external.

0 Data base security is concerned with the semantics of data,
not just its physical characteristics.

An operating system extended to handle these ditTerences would
be highly complex. It therefore seems a good design principle to
treat data base security as a responsibility of the DBMS rather than
the operating system. DBMS security mechanisms use the basic
security services provided by the operating system, and operating
systems may indeed provide services primarily intended for DBMS
use. As a further justification, most D B M S in practice are de-
signed to run on existing operating systems. It is then appropriate
to develop special models for data base security. One such
model, based on work done by Fernandez, Summers, and Cole-
man,13 is described below.

access-matrix-based For controlling data base access we have similar concepts of ac-
models cess rules and access matrix, but objects are now sets of data item

occurrences. The names of these sets must be recognized by the
DBMS. We use the variable 0 (capital letters indicate set variables)
to represent these data objects. For a given data base, 0 may take
on any of a finite set of values {01, . . * , Oi, . . e , On}. For ex-
ample, in a relational DBMS the possible values of 0 would be the
names of all the relations and attributes defined to the system.
Subjects are now end users-the people who request data base
access. In a given installation there is a set of potential users
{sl, . . -, si, . . a , sm}. The variable s is defined over this set. Access
types are operations such as the familiar READ, WRITE, UPDATE,
APPEND, and DELETE. For a given DBMS, a set Of legal access
types { t l , . . ., t i , . e , fk} is defined. The variable t may take on
any of these values.

It is important to note that the data base access matrix is more
static than the operating system protection matrix. It is modified
explicitly only by an authorizer who wishes to specify a new ac-
cess rule or revoke an old one. Figure 6 shows part of an access
matrix that represents the rules governing access to the EM-
PLOYEE relation. The attributes of the EMPLOYEE relation are
EMP-NAME, PERS-NO, ADDRESS, TEL-NO, and SALARY. From

240 WOOD, FERNANDEZ, AND SUMMERS IBM SYST J VOL 19 e NO 2 1980

Figure 6 Access matrix

SUBJECT

PERSONNEL-
MANAGER

ADMIN-CLERK

EMP-NAME

ALL

READ

ALL

READ

PERS-NO ADDRESS

ALL

READ

T E L L N O

ALL

REA0

SALARY

ALL

-

the figure we see that the personnel manager has unrestricted ac-
cess (indicated by the ALL entry) to all attributes, while the ad-
ministration clerk has READ access to all attributes except SAL-
ARY. A null entry implies that no access is allowed to that object.

It is worth emphasizing that a model serves to aid the understand-
ing of the logical functioning of a system and does not imply any
particular implementation. Thus access rules do not have to be
stored in matrix form. In fact that would be an inefficient way of
storing them because, in general, the access matrix is sparse-
that is, any given subject has access to only a small subset of all
possible objects in the data base.

An access control model should be general enough to represent
the security policies described in the previous section. The access
matrix is capable of modeling name-dependent access control
down to any level of granularity supported by the DBMS. To repre-
sent access rules that are content-dependent, the model must be
extended so that the access rule contains a predicate, p . The
predicate can be considered to allow an arbitrary set, 0', of data
item occurrences to be defined as the effective object for the ac-
cess rule. That is:

0' = 0 : p

The predicate may also place additional constraints on the access
rule (such as allowing access only at a certain time of day) by
referring to system variables. The predicate in this case can be
considered to be composed of a data predicate, pd, and a system
predicate, p,, connected by a boolean operator. The data predi-
cate pd should then be substituted for p in the above expression
for 0'.

An access rule can now be represented by the tuple (s, 0, t , p) ,
which specifies that subject s has access t to those occurrences of
0 for which predicate p is true. The data that must be retrieved to
evaluate the predicate is known as protection data. Figure 7
shows a simple example of an access rule that gives the payroll

IBM SYST 1 0 VOL 19 NO 2 1980 WOOD, FERNANDEZ, AND SUMMERS

Figure 8 Model of access validation

EXISTENCEOF
CHECK FOR

MATCHING RULES

SOME RULE

p q REQUEST RETRIEVE
PROTECTION

CHECK
PREDICATES

PROCESS
REQUEST REQUEST

clerk READ access to the EMPLOYEE relation for those employees
who earn less than $20 000. By using suitable predicates, certain
types of context-dependent access control can also be specified.
For example, a predicate could enumerate fields that should ap-
pear together in a query.

Access control is not achieved just by specifying access rules.
There must also be a validation process which ensures that all
accesses to the data base are authorized by access rules. A pos-
sible model of the validation process is indicated in Figure 8. All
data base access requests are intercepted and passed to the vali-
dation process in the form (s, 0, r , p ’) , indicating that user s has
requested access t to the set of data item occurrences defined by
0 : p ’ . It is assumed here that the identity s of the requesting user
has been authenticated. If a rule with the same (s, 0, t) exists,
protection data for evaluating the access rule predicate is re-
trieved; otherwise the request is denied. If the predicate in the
access request refers to data items not included in the requested
object, it is necessary to make sure that the subject also has READ
access to these data items. For example, a query may request a
list of the names of employees who earn over $100 000. The re-

242 WOOD, FERNANDEZ, AND SUMMERS IBM SYST 1 VOL 19 NO 2 1980

quester must not only have access to employee names, he must
also have READ access to salary information. If any of the rele-
vant access rules do not exist, the request is denied. If they do
exist, the predicates in the rules must be evaluated. If any are
false, the request is denied; otherwise the request is allowed to
proceed.

We have assumed for simplicity that the request is either com-
pletely satisfied or denied, as would always be the case if the
request was for a specific field. When the request is for a record,
then, if some of the fields in that record are authorized and some
are not, the enforcement process could allow the authorized
fields to be passed to the user, rather than denying the whole
request. This is a policy decision that must be made by the de-
signer of the security procedures. Likewise, a request for a set of
records may be modified so that only the subset that satisfies the
predicates is returned to the user. The technique of partially satis-
fying a user request is known as query modijication.6

An alternative to query modification is to give users access to
objects that are defined specifically to provide the users with data
base access tailored to their needs. Such derived objects, called
views or external schemas, have been used, for example, in Sys-
tem R.14 The controlling of access to views can also provide con-
text-dependent, content-dependent, and functional access con-
trol. l5

The time when the various steps occur in the validation process
depends on the implementation; it may range from compilation
time to execution time. Although it is most secure to perform all
the validation steps when the access request is executed, for
greater efficiency some systems, such as System R , perform the
steps as early as possible.

We can use the access rule concept as defined in the basic model
to formally express some of the policies described in the previous
section. For example, the rules that authorize the mail clerk to
read the NAME and DEFT attributes of the EMP relation of Figure 5
are :
(’MAIL-CLERK’,EMP.NAME,READ,-)
(’MAIL-CLERK’,EMP.DEFT,READ,-)

where the predicate is null (that is, it is always true). The rule that
authorizes the personnel manager to read the salaries of the em-
ployees he or she manages is:
(’PERS-MGR’,EMP.SAL,READ,WHERE EMP.MGR=’PERS-MGR’).

By defining the access rule as (s, 0, t , p) we have left unexpressed
some important requirements of authorization and request valida-
tion. We extend the model by introducing three new components

IBM SYST 1 VOL 19 NO 2 1980 WOOD, FERNANDEZ, AND SUMMERS

of the access rule, rules for validating authorizations and
requests, and additional interpretations of subject, object, and
predicate. The extensions are based on the model of Hartson and
Hsiao’ and on the design for a secure data base system developed
at the IBM Los Angeles Scientific Center.“

One requirement is for control over the set of access rules of a
system. The model as specified so far does not allow for some
important policies about who may write access rules. One such
policy permits only the authorizer who wrote the rule to change
it. For this purpose, the access rule specifies the authorizer, a , so
that the rule becomes (a , s, 0, t , p) . The model must also cover
important policies for delegation of rights. By a right we mean a
certain kind of access to an object; a right is the (0, t , p) of the
access rule. A subject s, who holds the right may be allowed to
delegate the right to another subject sz; such delegation is equiva-
lent to inserting a new access rule (sl, sz, 0,, t,, pl). Since a por-
tion of the rule is copied, we use the term copy j a g , f , for an
additional component of the access rule. The extended rule, then,
becomes (a , s, 0, t , f, p) , where fspecifies whether s is allowed
to delegate the access right. To express policy choices (such as
how to control delegation) in the model, we speak of validation
rules. Some validation rules govern changes to access rules; oth-
ers govern the way requests are validated.

We extend the access rule further by specifying actions to be
taken when the rule is used during request validation. These ac-
tions can be taken either before or after the access decision is
made, and invocation after the decision can be contingent on
what decision was made. One use of this contingency is for ac-
tions to be taken when the request is denied, such as notifying a
security monitor or logging the illegal request. (Usually such en-
forcement actions reflect a system-wide policy that applies to all
subjects and objects, or a policy that applies to an object regard-
less of subject. For complete flexibility, however, we include ac-
tion specifications in the access rule.) We introduce a list of pairs,
(c,, up,), 1 . ., (cn, up,), which specify auxiliary procedures to be
invoked and their conditions of invocation. The extended access
rule now becomes (a , s, 0, t,f, p , [(c,, up,), * . e , (cn, up,)]). Table
2 summarizes the elements of the model.

interpretations Programs or applications can appear in access rules as subjects. It
of theaccess rule is useful for a program to appear as a subject when it is desirable

that the program’s rights amplify the user’s rights, allowing, for
example, for sorting of a file that the user cannot read. In the
Hartson and Hsiao model,’ each rule can have extensions which
specify the rights of programs. In some other cases restrictions
are needed, as when users’ rights are limited by the rights of the
applications they are using.I3 Programs and applications can also
appear as objects. The relevant access types are then EXECUTE

244 WOOD, FERNANDEZ, AND SUMMERS IBM SYST J VOL 19 NO 2 1980

Tshln 3 Flrrnrntc nf th r carllritv rnndal

Basic access rule
(s, 0, t , P)

Authorizer, a
Subject, s

Object, 0
Access type, t

COPY flag,f
Predicate, p
Auxiliary proc

Auxiliary proc

.edure up

:edure c

Controls access to protected
objects

Person who writes access rules
User, application, transaction,

Data, program, application, etc.
READ, UPDATE, APPEND,

Control for delegation of rights
Condition for access
Rule-specific extension of

validation process
Condition for auxiliary

procedure invocation

terminal, etc.

AUTHORIZE, etc.

Request (s, 0, t , p) Specification of access event

Validation process Checking requests against rules

Validation rules Control of validation process
and of access rules

and USE. Thus the following rule can be used to specify that user s
is allowed to use the application ENROLLMENT:

(S, USE, ENROLLMENT).

Validation rules govern the interpretation of access rules. For ex-
ample, one use of the predicate is to specify the data occurrences
to be accessed-that is, to provide content-dependent access.
Another use is to specify the system states under which access is
allowed. In the first use only, the predicate can be made true by
query modification. For example, a payroll clerk’s request to read
all salaries of employees in a given department can be modified to
request only salaries under $20 000. This policy of modification
can be expressed by a validation rule. There is not always a single
obvious way to make an access decision. As another example, if
the subject in a rule is allowed to be a user group, a policy is
needed for handling overlapping groups. If two groups had dif-
ferent access predicates for (0, t) , for example, the predicate for a
user who belonged to both groups could be found by a validation
rule that specified the OR of the two predicates.

The models described provide for an arbitrary assignment of ac-
cess rights to subjects. Multilevel models differ in several re-

I IBM SYST J * VOL 19 * NO 2 * 1980 WOOD, FERNANDEZ, AND SUMMERS 245

Figure 9 Ordering of security lev-
els

\ L2 \ L3

246

Table 3 Elements of the multilevel model

Element Interpretation

Subject, s Process
Object, o Data, files, etc.
Classifications Clearance level of subject,

Categories Access privileges
Security level (Classification, category set)
Access type No observe, no alter; observe only;

Access matrix Discretionary security
Request Changes current access or other

classification level of object

observe and alter; alter only

aspects of system state
(s, 0, t) Current access
Decision Yes, no, error, or?
Rules Determine decision, next state

spects. First, they deal with nondiscretionary access control. One
reason for the importance of nondiscretionary models is that for-
mal statements about their security can be made.17 Multilevel
models differ as well in treating not only access to information,
but also the flow of information within a system. Like discretion-
ary models, multilevel models were developed for operating sys-
tems and later applied to data base systems.

In this section we describe a simplified version of the model de-
veloped by Bell and La Padula.18’19 This model introduces the
concepts of level and category. Each subject is assigned a clear-
ance level, and each object a classification level. For the military
environment, these levels might be top secret, secret, con-
jidential, and unclassijied. A subject generally represents a pro-
cess being executed on behalf of a user and having the same clear-
ance level as the user. The objects can be areas of storage, pro-
gram variables, files, I/O devices, users, or anything else that can
hold information. Each subject and object also has a set of care-
gories, such as nuclear or NATO. A security level is a composite:

(classification level, set of categories).

One security level is said to dominate another if, and only if, its
classification or clearance level is greater than or equal to the
other and its category set contains the other. Clearance and
classification levels are ordered (for example, secret > con-
jidenrial > unclassijied), but security levels are only partially or-
dered, so some subjects and objects are not comparable. For ex-
ample in Figure 9, security level L1 dominates security level L2
since its classification level is higher and its set of categories in-
cludes the set of categories of L2. Security levels L1 and L3, on
the other hand, are not comparable. The elements of the model
are summarized in Table 3.

WOOD, FERNANDEZ, AND SUMMERS IBM SYST 1 VOL 19 NO 2 1980

An access of an object can either observe the object (extract in-
formation from it) or alter the object (insert information into it).
The set of access types is determined, then, by all the possible
combinations of these effects. The access types are:

0 Neither observe nor alter.
0 Observe only (READ).
0 Alter only (APPEND).
0 Observe and alter (WRITE).

The model considers the states of a secure system, which are
described by:

0 The current access set, which is a set of triples (subject, ob-
ject, access type), or (s, o, t)."

0 An access matrix.
0 The security level of each object.
0 The maximum and current security levels of each subject.

Note that the system state for these models does not include the
values in the data base.

Any change to the system's state is caused by a request. Requests
can be for access to objects, for changes to security levels or to
the access matrix, or to create or destroy objects. The system's
response to a request is called a decision. Given a request and a
current state, the decision and the new state are determined by a
rule. (Rules here correspond to the validation rules of the discre-
tionary models, not to the access rules.) These rules of system
operation prescribe how each type of request is to be handled.
Proving that a system is secure involves proving that each rule is
security-preserving. Then, if the system state is secure, any
request will result in a new secure state.

A secure state is defined by two properties: the simple security
property, and the *-property (which has also been called the con-
finement property). The simple security property is: for every
current access (s, o , t) with an observe access type, the level of
the subject dominates the level of the object. This condition can
be expressed as no reading upward in level.

The simple security condition does not prevent a combination of
accesses, each secure in itself, from providing a potential for
compromise. As can be seen from Figure 10, a malicious subject
could extract information from a top secret object and put it into a
confidential object. The *-property is introduced to prevent such
flow of higher-level information into lower-level objects. The
*-property is defined as follows: a current access (s , o , t) implies
that

IBM SYST J VOL 19 NO 2 1980 WOOD, FERNANDEZ, AND SUMMERS

Figure 10 Information flow show-
ing need for the '-prop
erty

LEVEL
HIGH-

OBJECT

N:t:&gED (FLOWOF INFORMATION

LOW

OBJECT
LEVEL

changing
system state

secure
system states

241

Figure 11 A lattice model (adapt-
ed, with permission,
from Denning21)

{ m, f, c I

an information flow
model

248

If t = READ, level (0) is dominated by current level (s).
If t = APPEND, level (0) dominates current level (s).
If t = WRITE, level (0) equals current level (s).

The simple security and *-properties represent nondiscretionary
security, in which access is governed by the level of the subject
and object. The discretionary security property is satisfied if
every current access is authorized by the current access matrix.

Denning2' has treated information flow aspects of the multilevel
models in a more general way. The concepts of classification and
category are subsumed under a single concept of security classes,
and a variable class-combining operator is introduced in place of
a fixed one. An information flow model that describes a specific
system is defined by five components: a set of objects, a set of
processes, a set of security classes, a class-combining operator,
and aflow relation. The class-combining operator, @, specifies
the class of the result of any operation. For example, if we con-
catenate two objects, a and b, whose classes are A and B, the
class of the result is A @ B. A flow relation between two classes,
for example A -+ B, means that information in class A is permit-
ted to flow into class B. A flow model is secure if a flow relation
cannot be violated.

If certain reasonable assumptions are made, three components of
the model (classes, $, and +) form a mathematical structure
called alattice. (These three components represent the authoriza-
tion structure of a specific system.) A lattice consists of a
partially ordered set, plus least-upper-bound and greatest-
lower-bound operators. The lattice shown in Figure 1 1 represents
a system that contains personal data of three types: medical (m),
financial (0, and criminal (c). The classes shown are all the pos-
sible subsets of {m, f, c}; they represent combinations of the data
types. Information flows (as shown by the arrows) only into
classes at least as inclusive. Thus for this lattice, the class-com-
bining operator @, which is the least-upper-bound operator,
yields the union of the two classes. A flow violation would occur,
for example, on an attempt to move information produced from
combining medical and financial data into the class designated
medical only.

To guarantee that programs are secure, that they do not violate
the information flow requirements expressed by a lattice model,
both explicit and implicit flows must be considered. For example,
the statement if a = 0 then b = c produces an explicit flow from c
to b when a = 0, but it always causes an implicit flow from a to b,
since it is possible to determine whether a = 0 by examining b
after execution of the statement. A program is secure if all ex-
plicit and implicit flows are secure.

WOOD, FERNANDEZ, AND SUMMERS IBM SYST J 0 VOL 19 NO 2 1980

A number of mechanisms have been proposed to enforce secure
information flow .*I They involve compile-time certification of
programs or run-time enforcement (which may be supported by
hardware), or combinations of the two.

Comparison of models

Models can be classified broadly into two categories, those that
are extensions of the access matrix approach and those that con-
trol information flow. An advantage of access matrix models is
their flexibility in allowing a wide range of security policies to be
specified easily. For example, type-dependent and content-de-
pendent access rules can be represented simply. The main dis-
advantage is that the flow of information is not controlled.

As an illustration, suppose the security policy of an enterprise is
to provide user A with READ access to object 0 2 and WRITE ac-
cess to object 01, and user B with only READ access to object 01
(see Figure 12). While this policy can be represented by an access
matrix (Figure 13), there is nothing to prevent A from copying 0 2
into 0 1 and thus allowing B to access the information in 02.

This illegal flow of information is prevented in the second cate-
gory of models. However, because of the structuring of the multi-
level model it is not possible to represent arbitrary security poli-
cies. For example, the simple policy that allows A to access 0 3
and 0 2 , B to access 0 2 and 01 , and C to access 0 1 and 0 3 can-
not be handled. Denning’s model, with its more general approach
of partially ordering classes, can handle this situation. The crea-
tion of new data base objects with new security requirements,
however, may require a complete restructuring of the class lat-
tice. Moreover, type-dependent and content-dependent access
rules cannot be represented simply. If program variables can
change security class during execution, compile-time analysis
does not suffice. Control of information flow then requires execu-
tion-time checks, which may cause unacceptable overhead. In
summary, the two approaches represent different compromises
between efficiency, flexibility, and security.

Applying the models to data base systems

There have been partial implementations of the basic model for
access control but no implementation of the extended model. In
System R,14 for example, an authorization rule grants a user a
certain type of access to a data object. In READ, INSERT, DELETE,
and DROP (the ability to delete the entire object from the system)
the object is a table (a base relation or a view), and in UPDATE the
object can be a column of the table. Additionally, the grantee may

IBM SYST J VOL 19 NO 2 1980 WOOD, FERNANDEZ, AND SUMMERS

Figure 12 Example-security pol-
icy

F igure 13 Example-access
matrix

application
of the basic model

249

be authorized, in turn, to grant the access rights to other users.
To recall granted rights, it is necessary to keep track of who au-
thorized the grant. In summary, an authorization rule can be rep-
resented as (a , s, 0, t , j) . (As a view can be defined by using an
arbitrary query, there is no requirement €or a predicate in the
access rule.)

Part of IMS security can be approximately characterized by the
authorization rule (s, 0, p) , in which s is the user ID as verified by
RACF (the Resource Access Control Facility),22 0 is a transaction
code, and p is a restricted predicate that can specify only the
value of a password. The transaction code invokes an application
program for which access types to certain segments have been
specified. Therefore there is the additional rule (s, 0, t) , in which
s is the transaction code, 0 is the segment type, and t is the ac-
cess type. Other security features of IMS allow the restriction of
certain transaction codes and system commands to a specified
terminal (interpreting a terminal as a subject, and transaction
codes and commands as objects).

Query-by-Example (QBE)23 provides a uniform way of manipulat-
ing information on a screen for data description, queries, and au-
thorization. Assume, for example, a table named EMP with fields
NAME and MGR. To insert a new row into EMP, the user enters the
row (using the INSERT command I) under the displayed column
headings, as shown below:

E M P N A M E M G R
I. SMITH JONES

Giving a user named JOHN print (P) access to the table is done
similarly:

EMP NAME MGR
I.AUTH(P.)JOHN ~ N - M

The underlines indicate that N and M are example elements, rep-
resenting any name or manager. To give JOHN access only to his
employees, the authorizer would enter:

E M P N A M E M G R

I.AUTH(P.)JOHN - N JOHN

The QBE authorization language has essentially the power of the
QBE query language, since authorization and queries are ex-
pressed in the same way. Thus an access rule in QBE has the form
(s, 0, t , p) , in which 0 is the name of a table or column and p is an
arbitrary predicate.

The multilevel model has been applied to data base system design
at I. P. Sharp Associates,l' SRI Internati~nal,'~ the Systems De-
velopment C~rporation, '~ and the MITRE Corporation.26 The de-

250 WOOD, FERNANDEZ, AND SUMMERS IBM SYST J VOL 19 NO 2 1980

signs all assume relational data bases, but they differ in whether
the protected objects are domains or entire relations. The Sharp
design decomposes each data object into three components: a set
of values, a descriptor (which gives the format of the values), and
a permission matrix which lists the authorized users of the object
and their permitted types of access. Directories and lists of active
users are also protected objects. Access to all of these kinds of
objects must obey the rules of the model. MITRE has implemented
a version of INGRES‘ using a special version of the UNIX operating
~ystem,’~ which enforces a multilevel policy.

Summary

We have indicated some of the wide range of security policies an
enterprise may wish to implement, and we have described models
that could be used in designing a data base system flexible enough
to support many of those security policies. Additionally, we have
shown how models can be used for the formal specification of
data base access rules and in comparing the security features of
existing data base systems.

CITED REFERENCES AND NOTES
1. D. E. Denning and P. J. Denning, “Data Security,” ACM Computing Surveys

11, No. 3, 227-249 (September 1979).
2. E. B. Fernandez, R. C. Summers, and C. Wood, Principles of Data Base

Security, The Systems Programming Series, Addison-Wesley Publishing
Company, Inc., Reading, MA (to be published).

3. Figure 2 is adapted, with permission, from W. H. Ware, Security Controls for
Computer Systems, Report R-609-1, RAND Corporation (1979).

4. ANSIIX3ISPARC. DBMS Framework Report of the Study Group on Data
Base Management Systems, D. Tsichritzis and A. Klug (editors), AFIPS
Press, Montvale, NJ (1977).

5 . W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and F. Pol-
lack, “HYDRA: The Kernel of a Multiprocessor Operating System,” Com-
munications of the ACM 17, No. 6, 337-345 (June 1974).

6. M. Stonebraker and E. Wong, “Access Control in a Relational Data Base
Management System by Query Modification,” Proceedings, ACM 74 (ACM
Annual Conference, November 1974), pp. 180-187.

7. IMSIVS Version I Generallnformation Manual, IBM Systems Library, order
number GH20-1260, available through IBM branch offices.

8. D. E. Denning, P. J. Denning, and M. D. Schwartz, “The Tracker: A Threat
to Statistical Data Base Security,” ACM Transactions on Database Systems
4, No. 1, 76-96 (March 1979).

9. H. R. Hartson and D. K . Hsiao, “A Semantic Model for Data Base Protection
Languages,” Proceedings, Second International Conference on Very Large
Data Bases, North-Holland Publishing Company, Amsterdam (1976).

10. G. Kirby and M. Grohn, “The Reference Monitor Technique for Security in
Data Management Systems,” Data Base Engineering 1, No. 2, 8-16 (June
1 977).

11. B. W. Lampson, “Protection,” Proceedings, 5th Annual Princeton Confer-
ence on Information Sciences and Systems, 437-443 (1971), reprinted in ACM
Operating Systems Review 8, No. 1 , 18-24 (January 1974).

12. G. S. Graham and P. J. Denning, “Protection-Principles and practice,”
AFIPS Conference Proceedings 40, 417-429 (1972).

IBM SYST 1 VOL 19 NO 2 1980 WOOD, FERNANDEZ, AND SUMMERS 251

13. E. B. Fernandez, R. C. Summers, and C. D. Coleman, “An Authorization
Model for a Shared Database,” Proceedings, 1975 SIGMOD International
Conference, 23-31, Association for Computing Machinery, 1133 Avenue of
the Americas, New York (1975).

14. P. P. Griffiths and B. W . Wade, “An Authorization Mechanism for a Rela-
tional Database System,” ACM Transactions on Database Systems 1, No. 3,
242-255 (September 1976).

15. D. D. Chamberlin, J. N. Gray, and I . L. Traiger, “Views, authorization, and
locking in a relational data base system,” AFIPS Conference Proceedings 44,

16. R. C. Summers and E. B. Fernandez, Data Description for a Shared Data
Ease: Views, Integrity, and Authorization, IBM Los Angeles Scientific Cen-
ter Report (August 1975), order number G320-2671, available through IBM
branch offices.

17. M. A. Harrison, W. L. Ruzzo, and J . D. Ullman, “Protection in Operating
Systems,” Communications of the ACM 19, No. 8, 461-471 (August 1976).

18. D. E. Bell and L. J . La Padula, Secure Computer System: UniJied Exposition
and MULTICS Interpretation, Report ESD-TR-75-306, MITRE Corporation,
Bedford, MA (March 1976).

19. J. K. Millen, “Security Kernel Validation in Practice,” Communications of
the ACM 19, No. 5 , 243-250 (May 1976).

20. Bell and La Padula” use different symbols: (S , 0, a) .
21.‘ D. E. Denning, “A Lattice Model of Secure Information Flow,” Communica-

tions ofthe ACM 19, No. 5 , 236-243 (May 1976).
22. OSIVSZ MVS Resource Access Control Facility (RACF) General Information

Manual, IBM Systems Library, order number SC28-0722, available through
IBM branch offices.

23. M. M. Zloof, “Query-by-Example: a data base language,” IBM Systems
Journal 16, No. 4, 324-343 (1977).

24. P. G. Neumann et al., A Provably Secure Operating System: The System, its
Application, and Proofs, Stanford Research Institute (now SRI Inter-
national), Menlo Park, CA (1977).

25. T. H. Hinke and M. Schaefer, Secure Data Management System, Report TM-
(L)-5407/007/00, Systems Development Corporation, Los Angeles, CA (June
1975).

26. B. N. Wagner, Implementation of a Secure Data Management System for the
Secure UNIX Operating System, NTIS accession number AD-A056 902, Re-
port ESD-TR-78-154, MITRE Corporation, Bedford, MA (July 1978).

21. UNIX is a trademark of Bell Laboratories. See The Bell System Technical
Journal 57, No. 6, Part 2 (July-August 1978).

425-430 (1975).

C . Wood and R . C . Summers are located at the IBM Scient$c
Center, 9045 Lincoln Boulevard, Los Angeles, CA 90045. E . B .
Fernandez is ut the Data Processing Division Branch Ofice, 2200
Whitney Avenue, Humden, CT 06518.

Reprint Order No. G321-5124.

252 WOOD, FERNANDEZ, AND SUMMERS IBM SYST J VOL 19 NO 2 1980

