Many existing monitors that are intended to assist in system tun-
ing are based on the utilization approach which focuses on the
active time of the system resources and activities and their users.
This paper presents an alternative approach that is based primar-
ily on the analysis of the contention in the system. The focus here
is on the queuing delay time of the users and their activities when
accessing the system resources.

Utilization and contention are two different ways of looking at the
system. The two approaches complement each other, yet each
may serve a different purpose or address different performance
objectives. A prototype monitor was implemented on Mvs (Mul-
tiple Virtual Storage) to produce the information necessary to
continue investigations in contention analysis.

System contention analysis—
An alternate approach to system tuning

by A. Yuval

Measuring the contention in a computer system, as part of a mon-
itoring process carried out for the sake of system tuning, is not
new. References 1 through 5 are only a few of such past uses.
This is true not only for resources where utilization statistics do
not apply, such as logical resources,’ but also for physical re-
sources, such as the CPU and IO devices, where contention along
with utilization is given.” Yet, these monitors are basically utiliza-
tion-oriented,’ focusing primarily on the active time of the system
resources and their users. Some even determine the bottleneck
resources based on the utilization statistics only."*"°

Contention analysis certainly deserves its own primary place in
both the measurement and the evaluation phases of the Computer
Measurement and Evaluation (CME) process. A contention-ori-
ented analysis focuses on the queuing delay time of the users and
their activities when accessing the system resources. The focal
point is the scanning of users who are held (delayed) in their exe-
cution and the determination of the reason for the delay.

Copyright 1980 by International Business Machines Corporation. Copying is per-
mitted without payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright notice are
included on the first page. The title and abstract may be used without further
permission in computer-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor.

IBM SYST J @ VOL 19 @ NO 2 ¢ 1980

The definition of a user depends on the definition of the system
monitored. The system can be the entire computing facility, a
particular operating system, the supervisor of that operating sys-
tem, or even a specific multitasked address space. A resource is
defined as any service entity on which a user can be queued. This
definition may add new logical resources that do not show up in
utilization analysis (e.g., the page-in system service or the MVS,
i.e., Multiple Virtual Storage, domains''). At the same time it
may exclude many little-utilized or ‘‘private’’ resources on which
contention does not occur.

The queuing (wait) time Q and the service (active) time S, when
added together, account for the entire transaction delay time D.

d=gqg+s for a specific service request
D = Q + § for an entire transaction (task, job, etc.)

The first objective of contention analysis in looking at Q is, there-
fore, to complement the utilization type of analysis that measures
S. Since detailed utilization information is readily available in
many systems, through their accounting programs, a contention
analysis is indeed the ‘‘missing brick.”” Such is the case in MVS,
for instance, where the accounting system'” gives detailed utiliza-
tion information for the user, and the Resource Management Fa-
cility (RMF) gives the information on a system-wide basis.

Contention may also have a justification by itself, especially in
highly multiprogrammed time-sharing systems. In such systems,
Q is known to be very high compared with S (a high expansion
factor; see Reference 13). Furthermore, S is much more difficult
to change because it is both user-program- and device-dependent.
The system programmer’s main task in such systems is to mini-
mize users’ collisions and to maximize the chances for users’ pro-
grams to get the resources they need as quickly as possible. Re-
ducing Q can be a goal in itself in such systems.

Any implementation of the contention approach in an actual mon-
itor should take into account that it is during periods of system
saturation that we are primarily interested in contention delays.
The monitor itself should therefore be as efficient as possible us-
ing minimum system resources and ‘‘locking’’ the system for the
shortest period possible. Yet, it should give us enough informa-
tion from which meaningful CME results can be calculated. Such
an implementation seemed therefore quite important at the early
stages of our study.

Prototype monitor and data produced

It is quite desirable to let a monitor have two modes of operation:
a low-overhead default mode and an extensive investigation

IBM SYST J & VOL 19 ¢ NO 2 & 1980

construction
of monitor

mode. The default mode should provide sufficient data on which
to base a sound contention analysis. The extensive mode should
be used to aim at special (or weird) periods (or phenomena) for
which the regular default-mode reports are not enough. It was
therefore decided to first implement the default mode and see
how far it would take us. (In MvS the General Trace Facility,
GTE," can always be used for extensive analysis.)

In order to achieve the objective of low overhead, it was decided
to implement the prototype based on state-sampling tech-
niques'®' rather than the potentially more expensive intercept or
event-driven techniques. (GTF uses intercept techniques.) In tak-
ing a sample, the default mode monitor should concentrate on the
contention points in the system, try to collect information as de-
tailed as possible with regard to the points, and nof try to measure
other “‘interesting’’ terms.

The data to be sampled is found in the operating system control
blocks. The main function of the operating system is to satisfy
users’ requests for service from the resources. Any inability to
immediately fulfill such requests is reflected in the system control
blocks. By taking full advantage of these characteristics, the pro-
totype monitor can be expected to collect detailed information
with reasonably low overhead. This should be true for any *‘sys-
tem’’ that manages users’ requests for resources and that keeps
track of the status of these requests.

In taking a sample, the monitor should first differentiate between
users who are voluntarily idle (e.g., a user in ‘‘think time’’) and
those who wish to use the system. (Throughout this paper the
terms nondemanding and demanding are used to describe these
two states of users.) The monitor then determines whether any
demanding user is waiting because the resource it needs is not
available. If any is found, it will produce one or more ‘‘con-
tention records’’ whose exact format is described below. If no
such users are found, it will produce a single record that says ‘‘no
contention found.”

The prototype monitor was found to be indeed very efficient with
low overhead. The CPU time consumed and the required memory
size were extremely small. Moreover, the monitor executes as a
regular nonprivileged program and is therefore fully pageable and
interruptible. The external storage required to record the data is
also quite acceptable. Appendix A describes the prototype mon-
itor in much greater detail, particularly its more interesting fea-
tures and characteristics.

We now show how contention analysis within overall system
analysis can be done using the data produced.

IBM SYST J @ VOL 19 @ NO 2 e 1980

Figure 1 Contention record format

ID resource queue holding user waiting users
status length information information

Although the basic approach is to look for users who are waiting,
the contention output-records are summarized by resource. A
separate contention record is produced for each resource on
which at least one waiting user was found. Thus, each contention
record contains the name of a contended-for resource along with
the users who are waiting for it and the user who is holding it. It is
sometimes desirable to show precisely what program and module
are accessing what part of the resource. Such a breakdown is
generally referred to as an activity. Figure 1 shows the general
format of the output records.

The 1D (identification) field denotes the resource class (or system
component) to which this resource belongs, namely, /O device,
CPU, etc. The ‘“‘resource status’’ field varies from one resource
class to another. For example, /0 device type records contain the
device address, the unit type, and the volume ID. For disk units,
the status field also contains the cylinder and track addresses
where the ‘‘holding user’” was operating. The information given
about the users (both the holding and the waiting) shows the user
name, the user type (batch, time-sharing, etc.) and limited infor-
mation on the activity involved.

The contention records generated in a single sample are preceded
by a time-stamped control record which also contains some other
statistics.

Relation to classical queuing theory

Throughout this paper, we try to conform to the standard queuing
notation as described by Allen.'” For those terms not mentioned
there, we try to use similar notation:

R is the number of samples in the measurement period.

T is the period of measurement.

I is the number of end users in the system.

J is the number of resources (servers).

i is the index of the users in the system.

J is the index of the resources in the system.

A is the service request arrival rate.

AT is the total number of requests for a resource.

q is the expected time a service request will wait to be served.

IBM SYST J @ VOL 19 ® NO 2 » 1980 YUVAL

data produced:
contention
records

211

terms
relating to
resources

s is the expected service time.
d is the expected total delay time.

Let us also define Q, S, and D as follows:

Q = \lg S = A\Ts D = \Td

The basic Little'® relationship

d = g + s for each resource)
when multiplied by AT will give us

D=Q+3S§ 3)

We refer to O, S, and D as ‘‘aggregates’ to differentiate them
from g, s, and d. Q, S, and D can be further defined by using
indexing on i and j:

Q,; s the aggregate queuing wait time for the ith user on the jth
resource.

Q, s the aggregate queuing wait time for the ith user across all
resources (i.e., that portion of the session, or job-duration
time, in which the user was waiting to get access to the sys-
tem resources).

O, is the aggregate queuing wait time caused by the jth re-
source.

In the same way we get the parallels for S and D.

We can also index ¢, s, and d to show all the possible indexing
and summary relationships. Equation 2 can be indexed as fol-
lows:

d,=aq,+s, 0)

This more detailed indexing is neither easy to obtain nor does it
appear in the literature.

In the queuing theory literature, there is normally no distinction
between users, so the common equation used is

d]. =gq, + s, &)
Multiplying Equation 5 by AT gives us

D, =Q,+ S, 6)
If we multiply Equation 5 by A only, we get the equation

A, = \g; + s,)
However, this may be cast in the more familiar form

L=L +p (8)

where L is the mean number of users in the server, L, is the mean
number of users waiting before the server, and p is the server
utilization.

IBM SYST] @« VOL 19 ® NO 2 « 1980

In exactly the same way that Equation S is used to compare dif-
ferent servers on the ‘‘micro’’ level regardless of their different
behavior, Equation 6 can be used to compare them on the
“‘macro’’ level. D, shows the total delay time, caused by the jth
server, on the entire workload.

Equation 4 can be very useful from the user’s point of view, but,
as earlier stated, it is quite difficult to obtain. However, informa-
tion in the form

D;=0Q,+S;)

can also show how much time the users spend waiting for and
using each of the resources.

The equation
D, =Q, +8§, 10)

shows the overall elapsed time, contention time, and utilization
time for the ith user over all resources.

The time during which a resource is in contention, namely, the
time when the number of users waiting (L q) before the resource is
nonzero, is of special interest in contention analysis. Let us add
the following notation and definitions:

P,j is the probability that the jth resource is in contention; i.e.,
L, is not zero.
is the aggregate contention time on the jth resource while
the ith user was using it (i.e., ‘‘caused” by the ith user).
is the aggregate contention time caused by the ith user
across all resources.
is the aggregate contention time for the jth resource.

The equation

H =P jT

shows the relationship between H and P .

The diagrams in Figure 2 show the overall possible states for both
a user and a resource in the above terms.

Measured terms

Three terms are directly measured by the prototype sampling rou-
tine:

L,j is the average number of users waiting before the jth re-
source.

IBM SYST J & VOL 19 @ NO 2 & 1980

terms
relating
to users

contention (H)
term

terms not
directly
measured

Figure 2 User and resource possible states

RESOURCE

NONDEMANDING

Rf‘j is the number of samples in which the ith user was found to
be waiting for the jth resource.

R} is the number of samples in which the ith user was **hold-
ing”’ the jth resource, i.e., causing it to be in contention.

The probable value of Q,; is obtained from R by

Q, = (RG/RT (12)
In a similar way H,; is obtained by

H,; = (RY/RT (13)

Two terms are not directly measured by the prototype monitor: A
and S. Other information which is ‘‘missing’’ is the ability to go
down the user control blocks and identify the exact activities in-
volved.

These three elements were deliberately left out in the default
mode. They all are good candidates for the extensive mode. The
impact of not having this information on both the evaluation and
the tuning action phases is discussed below. In practice, knowl-
edge from other sources is used to supplement any missing infor-
mation.

The analyzed (evaluated) data

The matrix in Figure 3 shows all the measured contention terms
in summary as well as in detail for each user and resource in the
system. The matrix contains the main data required for con-
tention analysis. One can quickly determine which resources are
creating contention (high Qs on the rightmost column), which
users cause this contention (high H, s across the jth resource
row), and which users suffer from it (high Q; s on that row). From
the user point of view, each column shows the ‘‘contention pro-

IBM SYST J « VOL 19 ¢ NO 2 ® 1980

Figure 3 The users-resources contention matrix

USERS

B

s,
0

RESOURCES

file’’ for a specific user, namely that part of the contention in the
system which affects that user. Each user can thus determine the
resources and the other users that are the cause for the delays in
his or her workload.

Figure 3 shows the contention matrix at one point of time (sum-
marized across some time interval). Remembering that each
sample taken is time-stamped, one can have this matrix summa-
rized for any desired time interval within the sampling interval
and get a time-series analysis for each of the elements in the ma-
trix. (This type of analysis was done in the prototype.)

Appendix B gives a summary of the main reports produced by the
prototype monitor along with the practical tuning results that
users of the prototype have experienced.

An extension of the contention matrix (where Q and H terms are
shown) into an overall delay matrix (where @, S, and D are
shown) requires the knowledge of S or the ability to develop S
from H. This information can be obtained in any one of the fol-
lowing ways:

1. By using queuing theory relationships such as the following:

p'j=P,j (14)

for the M/M/1 queuing system.'* To get from P, jto H,we use
Equation 11, to get from p to S we use the rightmost part of
Equations 6, 7, and 8. Thus:

S = \/HT (15)
. By using the relation which is always true:

Pj<p=1 (16)

and henceforth also

H<S=<T a7

IBM SYST J ¢ VOL 19 ¢ NO 2 = 1980

classification of
tuning actions

significance
of occurrences

quick way
from reports
to actions

The higher the value of H, the more accurate the approxima-
tion of S. Also, in a comparable study of two resources, one
may be able to determine whose D is bigger without knowing
its exact value. This is again when H is big and also when Q for
one resource is far greater than Q for the other.

3. By invoking the extensive mode of the monitoring.

4. By using information about S already available from existing
sources such as the accounting system in Reference 12.

From evaluated terms to tuning actions

The effectiveness of the evaluation phase is determined by its
ability to immediately lead to the required tuning actions. Some
tuning actions may be impractical or expensive to carry out, but
then at least management knows that alternative actions (e.g.,
administrative, capacity planning, etc.) should be pursued. This
section will briefly show how contention analysis quickly leads to
the appropriate tuning actions.

Both user-program and system-wide tuning can be done by either
speeding up the ‘‘biggest’’ activities or by executing as many ac-
tivities as possible in parallel. Figure 4 summarizes the tuning
actions for a system-wide, multiprogramming case. (Appendix C
shows an example of MVS structured along the lines of Figure 4.)

It is quite useful to set some thresholds for the values of the terms
in the contention matrix (Figure 3). Any Q or H value that goes
above its threshold will be called significant. By carefully analyz-
ing the information in the contention matrix, one can quickly get
to the class of tuning action required.

For system-wide tuning the decision table shown in Figure 5 can
be used. A similar table can be built for the user-program tuning
actions. It is interesting to note that many actions which at first
glance seem to be applicable only for system-wide tuning are
quite applicable for user tuning too. Such are actions 2.1 and
2.2.%° Action 2.3 is indeed system-only.

For both user and system tuning, the carrying out of actions 1.1
and 1.2 may sometimes require the extensive mode that shows
the exact activities (e.g., operating systems modules) involved.
Actually, in many cases this was found to be unnecessary.

When action 2.2 is considered for functionally equivalent re-
sources that have a different s; (namely, one resource is much
faster than the other), Q, or even D, are not enough, and one must
know the individual d, too. It could be that

D, > D,

IBM SYST J @ VOL 19 @ NO 2 1980

Figure 4 System tuning actions in multiprogramming

1. Activities enhancement.
1.1 Reprogramming of code.
1.2 Resource restructure.

2. Parallel processing enhancement.
2.1 Increase the MPL (Multiprogramming Level)
2.2 Allocation algorithm improvement: Spread work between functionally
equivalent resources.
2.3 Dispatching algorithm improvement: Ensure high priority to the least de-
manding user.

Figure 5 System-wide tuning action decision table

What do we see in the matrix? What action to take.

Significant H ;in a row 1.1,2.2,2.3
Significant Q; and no

significant @, on row 1.2,2.2
No significant Qs 2.1

and yet

d <d,(and 5, <s,)

due to
)\1 > }\2

The shift of work from resource 1 to resource 2 could be a mis-
take. The extensive mode is again required to measure both A and
§ so that d, can be compared with d,. See Reference 21 for further
discussion of this point.

Summary

In theory as well as in practice, contention analysis emerges as a
new, interesting approach to both system and user tuning. The
prototype was found to be low in cost and very simple both in its
implementation and in its use. It provides affluent information
that directly relates the users and resources associated at each
contention point. The ability to provide contention information
for each individual user in the system was found to be extremely
valuable.

There are three practical reasons for the performing of contention
analysis in one’s system:

IBM SYST J e VOL 19 ¢ NO 2 o 1980

Figure 6 CME approach for performance objectives

CME approach

Utilization Contention

Maximize primary secondary
throughput s
(batch)

Performance

objectives

secondary primary
PEE—

Minimize
response time
(time sharing)

. Contention information nicely complements utilization infor-
mation which, in many installations, already exists.

. Contention analysis may be a target in itself, especially in
highly multiprogrammed time-sharing systems. Contention
analysis misses only those cases where a user manages to use
a resource without causing delays to other users. Such cases
are indeed less important in those systems.

. For certain cases, the queuing time (Q) and the time in con-
tention (H) do give a good approximation of the overall delay
time (D). Contention analysis covers, in these cases, the entire
‘“picture,”” and complementing it with utilization data may be
unnecessary.

Basically, both contention and utilization information are needed
in order to get the ‘‘whole picture.” Yet, two different ap-
proaches are conceivable: one that looks primarily at utilization
and, when required, looks at contention, and the other one that
looks first at contention and, when required, at utilization too.
Keeping in mind the performance objectives (which sometimes
are simply forgotten), we can see in Figure 6 the relationship be-
tween utilization and contention.

ACKNOWLEDGMENTS

The author warmly thanks Dr. P. Capek for his constant encour-
agement and guidance. Appreciation also goes to Messrs. M.
Kienzle, G. McQuilken, and M. Rimon, with whom I had fruitful
discussions. The author is especially indebted to Mr. M. E.
Drummond, Jr. without whose help this paper would have never
been written.

In the writing of the prototype monitor, the author received valu-
able help from the Mvs development people at IBM Poughkeepsie.
Mr. M. Kienzle wrote most of the prototype report programs, and
Mr. A. Birman helped in the understanding of the MvS control
blocks. The author wishes also to thank some of the early and

IBM SYST J e VOL 19 ¢ NO 2 e 1980

Figure 7 System components (record types) and their resources

Record System component Resources
ID (record type)

CPU CPU (one resource in MP)
ENQ All symbolic resources
Channel Alllogical channels
Control unit All11/O control units

/O device All /O devices

Lock manager CMS, ENQ/CMS locks
SRM Domain, swap-in

RSM Page-in, deferred queue
ASM IOEs delayed

OO0~ AW —

ENQ—The enqueue macro used to synchronize references to logical resources
CMS., ENQ/CMS-The two global spin locks

SRM—System Resources Manager

RSM—Real Storage Manager

ASM—Auxiliary Storage Manager

IOE—ASM 1/O elements

enthusiastic prototype users for relating back the experience they
gathered. This work was done at the IBM Thomas J. Watson Re-
search Center while the author was on a sabbatical leave from the
Weizmann Institute of Science, Rehovot, Israel.

Appendix A: The monitor construction and characteristics

The aim of this appendix is to demonstrate the universality of the
contention analysis concept by showing how a prototype monitor
for the MVS environment was built and operated.

The prototype is a normal, nonprivileged program which uses the
timer to pause between consecutive samples. The only recom-
mendation is to make it nonswappable and to give it a high dis-
patching priority. It can operate in three modes: as a batch job, as
a started task, and through TSO (Time Sharing Option, the time-
sharing subsystem).

The monitor looks at the system from the MVS supervisor (task
management) point of view.”” The users are therefore both ad-
dress spaces and their tasks. The resources are derived from the
main system components that comprise the MVS supervisor. Fig-
ure 7 summarizes these system components and their resources.
(For a detailed explanation of the terms, see References 11 and
22.)

The monitor executes completely as a nonprivileged user pro-
gram. It does not require supervisor state, protection key 0, or
fixed pages, nor does it ever hold any locks or execute in a dis-
abled state. The system control blocks may change while a

IBM SYST J @ VOL 19 « NO 2 » 1980

sample is being taken. The monitor solves this problem by contin-
uously performing logical checks on both the system control
blocks and the data produced. Very rarely a program-check inter-
rupt can also occur. The monitor handles that by means of the
STAE macro. For both types of fault, logical and program-check,
the monitor simply drops the sample and continues without delay
to perform another one.

The observed statistics of one faulty sample per 400 to 1000 good
samples (see below) suggests that other monitors should stay
away from ‘‘locking’’ techniques. It also demonstrates the feasi-
bility of outboard monitors, which cannot easily synchronize
themselves with the system. Fligliuzzi*® shows a different inter-
esting technique for the implementation of a nonlocking monitor.

Other interesting features and statistics of the prototype are as
follows (Most of the statistical results are from runs made on the
MVS machine at the IBM Thomas J. Watson Research Center, nor-
mally in the afternoon when the system is most loaded. Some
statistics were cross-checked in some other 1BM installations.):

. The monitor is written in the Assembler language.

. Program size is 12K including buffers.

. The sampling cycle time ranges from 0.1 to 9.9 seconds.

. One sample typically takes between 1.5 and 4.5 milliseconds
of CPU time. Using a sampling cycle of one second and includ-
ing the time to write to the external file, we anticipate an over-
head of 0.5 percent on the CPU.

. With an output block of one third of an IBM 3330 storage de-
vice track, a sampling cycle of one second and an average of
six records per sample, eight cylinders of a 3330 per hour are
required for output.

. The highest fault rate found, i.e., aborted samples because of
either logical or program-check errors, was one every 400
valid samples. One error in 1000 valid samples was the aver-
age in peak-time runs.

Appendix B: Prototype reports and related experience

The monitor post-processor produces four reports:

. The General Contention Report.
. The Time-Series Histogram.

. The User’s Wait Profile Report.
. The Disk Seek Analysis Report.

The General Contention Report is arranged in a hierarchical man-
ner and is further divided into the subreports that are described
below.

IBM SYST J @ VOL 19 @« NO 2 ¢ 1980

Figure 8 Report 1.1, Overall System Contention

14:45 07/NOV/78—16:00 07/NOV/78 SAMPLES 4500

Percent
Waiting Demanding Working wait/demand

Address spaces 5.8 26.7 20.9 22.0
Tasks

System Average no. Av. tasks
component per sample waiting Waiting

8Y) 3 1G] 5

CPU 0.78 3.39 2.63
ENQ 0.78 1.21 0.95
Channel 0.16 1.27 0.21
C-Unit 0.02 1.05 0.02
I/O devices 0.82 1.62 1.33
CMS 0.02 2.51 0.04
SRM 0.36 1.17 0.41
RSM 0.54 1.66 0.89
ASM 0.01 1.84 0.02

Report 1.1, Overall System Contention, in Figure 8, shows the
contention on the main system components and a summary of the
waiting, demanding, and working users. The top line (which ap-
pears in all the reports) shows the time and date when the sam-
pling started and ended and the number of samples taken.

The next part of the report shows that for the period of observa-
tion there were on the average 26.7 users (address spaces) who
wanted to use the system (demanding); 5.8 of them were delayed
because of some contention. Thus 22 percent of the demand is not
fulfilled because of contention. The 5.8 address spaces waiting
correspond to 6.5 tasks waiting (which is the sum of Column 6).
The demanding minus the waiting spaces are referred to as the
working address spaces and are equal here to 20.9.

The main part of the report consists of the following:

Column 1 is the resource (as defined in Figure 7).

Column 2 is the number of contention records pertaining to
this system component.

Column 3 is the result of dividing Column 2 by the total sam-
ples. It shows the frequency of appearance of contention on
that component.

Column 4 is the average number of users waiting at the time of
contention.

Column 5 is the average number of users waiting at the entire
period of measurement. It corresponds to the multiplication of
3 by 4.

IBM SYST J ¢ VOL 19 « NO 2 » 1980

Figure 9 Report 1.2 for the CPU resource

Task Percent of Cum. Av. tasks Wait ST Wait TSO Wait batch
holding Type Count resource (percent) waiting (percent) (percent) (percent)

©® @ @ ® ® @ (10) an (12)

JES3 S 814 18 5.01 23 42 35
TCAM S 489 29 4.23 9 51 40
STEP6 B 426 39 1.72 0 2 98
SUPPORT T 283 45 3.39 6 46 48

Figure 10 Time-Series Histogram

No. CPU ENQ Channel

TTBBB 22
STTBBB

TTBB B 72
TB BB

B TBB 2

BB B
BB B

- N e N R R S

The nonblank characters in the histogram are defined as follows:
For CPU and ENQ: S—started task, T--TSO, B—batch job.
For Channel and /O device: the channel ID.

For RSM: L—local page fault, C—common area page fault.
For SRM: The domain ID.

Report 1.2, User Holding within Resources, is produced for each
contended-for resource. It shows the distribution of the holding
(contention-causing) users within those resources. The example
in Figure 9 shows Report 1.2 for the CPU resource.

New column headings are introduced. Column 6 is the holding
task. Column 7 denotes the type of holding task: started task (S),
TS0 (T), and batch job (B). Column 8 shows the percentage of the
count of this holding user from the total counts of this resource.
Column 9 is the accumulation of Column 8. Columns 10, 11, and
12 show the distribution (in percentage) of the waiting users
among the three workload groups: started tasks (ST), TSO, and
batch. For each line (user) these three columns should sum up to
100 percent.

The Time-Series Histogram, Report 2, in Figure 10 is divided into
two parts. The left side is a histogram which shows the contention
by system component on a time-series basis. Each line corre-
sponds to a sample. In each column, which corresponds to one
system component, any nonblank character denotes one user
waiting.

IBM SYST J VOL 19 « NO 2 o 1980

Figure 11 Report for the master scheduler

Resource
name

(13)

Device 240
Page-in

Channel 2

ENQ SYSIKJBC

Total

Percent
of total

®

67
b
7
5

100

Cum. Holding ST
(percent) (percent)
10

12

0

Holding TSO
(percent)

an
52

Holding batch
(percent)
12)

36

0

Figure 12 Disk Seek Analysis Report

Cylinder Total
references

address

User

12
239
23
25

JES3
*MASTER
JOBS
JOB2

VTAM

CAPEK21
ASHERASM

JOB3
JES3
*MASTER
JOB3
JOBI1
JES3
JOB2

The right side shows, for each sample, the number of waiting
(Wait), demanding (Dem.), and working (Work) users. It also
shows the percentage of the waiting from the demanding (%2 W/D).

Report 3, a user’s contention (wait) profile, is built for each user
(address space) in the system. In it one can see the resources for
which this user was waiting. Figure 11 gives an example of the
report produced for the master scheduler address space. This re-
port is the “‘reverse’” of Report 1.2. Columns 10, 11, and 12 show
the distribution of the holding user among the three workload
groups.

Figure 12 shows that part of Report 4, the Disk Seek Analysis,
where the ‘‘contention-causing’’ cylinder addresses, in ascending
cylinder number, are shown along with the users who were
“‘holding’’ them. There is another part of this report, not shown
here, that provides contention information from the user’s point
of view. For each holding user, all disk addresses, where he or
she was operating, are shown.

IBM SYST J ¢ VOL 19 ¢ NO 2 e 1980

experience Some of the interesting observations made by the users of the
highlights prototype follow:

1. The average numbers of demanding, waiting, and working
users (Report 1.1) have simple straightforward meaning. A 50
percent figure in the waiting/demanding statistics simply
means that half of the workload demand is not executed. A
comparison between the overall statistics in Report 1.1 and
the ‘‘second-by-second’’ fluctuation in Report 2 is very in-
structive. Some installations found, for instance, that the dis-
tribution of contention among the system components was the
same for periods of high and low contention.

Yet, the meaning of contention may vary from one system to
another and from one resource to another. Contention on do-
mains, for instance, does not have the same meaning as con-
tention on the CPU. Within domains, contention in the heavy
batch domain has a different meaning than contention in the
domain that serves the short TSO transactions. It takes time to
become familiar with the measured system and to know how
to evaluate the contention shown on its different components.

. In some installations some comparisons were made between
utilization and contention for /0 devices and channels. In all
cases, nine out of the ten most busy resources also appeared
on the ten-most-contended-for list.

3. The cross analysis of Report 1.2 and the User’s Wait Profile
Report (which together show the users/resource matrix in Fig-

ure 3) was found to be the biggest success of the prototype.
Especially in /0 analysis, the user names were found to be
quite sufficient to identify the cause of contention. Occasion-
ally, one may need to look at the disk-seek address report.
More detailed activity information was felt to be unnecessary.

For other resources, mainly the CPU, Report 1.2 only stressed
the need to look even deeper into the system and to locate the
exact activity that causes the contention.

For shared /0 devices, the users can see the instances where
the device is held by the other machine. This is marked as
¢*SHARED’’ in Column 6 of Report 1.2. But they cannot tell
who is causing that on the other machine. A parallel operation
of the prototype on both machines can be a partial solution.

4. The division of the system workload into the three ‘‘natural”’
groups of TSO, batch, and started tasks was found to be very
useful. In the CPU part of Report 1.2, for instance, one can
sometimes observe a batch job that causes a lot of contention.
By looking, however, at the workload groups that are waiting,

IBM SYST J » VOL 19 e NO 2 » 1980

one can determine whether only other batch programs are
being delayed by that job, or TSO and/or started tasks, too.

. From the left side of Report 2, a high contention on domains
was sometimes observed at a time when there was almost no
contention on the real resources. This may be due to a too-
restrictive definition of the maximum multiprogramming level.

From the right side of this report, one can identify the periods
when any increment in the demanding column immediately re-
sults in an increment in the waiting ones. The value in the
“working’’ column, in these periods, shows the maximum
multiprogramming level the system can handle (at such peri-
ods).

. Report 3 can be used for partial system tuning. There are many
cases where a ‘‘user’’ in MVS is a big subsystem, such as VSPC
(Virtual Storage Personal Computing), IMS (Information Man-
agement System), or CICS (Customer Information Control Sys-
tem), which has its own end users. A ‘‘private’’ tuning of such
systems can be done by the people in charge, without waiting
for overall system tuning. For such systems, the analysis of
the internal contention among their own end users may be the
target of a ‘‘private’’ contention analyzer. Such an approach
could be implemented inside those systems to supplement the
information from a system-wide contention analyzer.

. A comparison study between Report 4 and full seek analysis

reports® found that, for the public active disks, the two re-
ports gave similar results. If this is generally true, then again
the H term serves as a good term for S at a much (much!)
lower cost.

. Users reported on many problems that they were able to solve
“‘on the fly’’ by using the interactive (TSO) mode of operation
of the prototype monitor. A real-time observation of abnormal
figures in the contention matrix (Figure 3) can immediately
point to the exact location of the ‘‘congestion,”’ its cause, and
its effect. If the operator has to take unpopular actions, at least
he should move in the right direction.

. The contention ‘‘language’” was found to be comprehensible
and meaningful to managers and to the computer users. A
high number of users being delayed on a resource is a simple
statistic that draws management attention. A decrease in this
number clearly shows that an improvement was made. Talking
to users in terms of delays that their jobs either cause or suffer
from is talking to them in a language they seem to like and

IBM SYST J ® VOL 19 ¢ NO 2 1980

understand. Telling a user that his job causes delays to other
users is much more effective than to tell him that his job con-
sumes a lot of resources.

Appendix C: Classification of MVS tuning actions

The purpose of this appendix is to validate Figure 4 for the MVS
case. We assume that the reader is familiar with MVS basic terms.

The following is the grouping of MVS tuning actions as taken from
References 25 and 26.

® [.1 Reprogramming of code: Use optimizing compiler, write
critical subroutines in assembler, use more buffers for 1/0, in-
crease the block size of the data set, use Virtual /0 and disk
allocation in cylinders not in tracks, care for boundary align-
ment, care for locality of reference.
1.2 Resource restructure: Cluster system libraries and VTOC
placement, reorder /0 devices on the channel, increase the
block size of system libraries, reorganize the placement of
data sets within a disk pack.
2.2 Allocation algorithm: Balance data sets between packs
and packs between channels, make system packs ‘‘non-
storage,”” move members to FLPA, increase the BLDL list,
channel rotate.
2.3 Dispatching algorithm: Change the APG definitions, use
priority instead of FIFO for system packs.
1.2 and 2.2 together: Spread the catalog (CVOL), separate
swap data set from page data sets, add page data sets.

Action 2.1 does not appear because in MVS the System Resources
Manager'' is supposed to handle this function by dynamically
raising or lowering the MPL. Yet, Item S of the experience high-
lights in Appendix B indicates that Action 2.1 may still be re-
quired in certain cases.

CITED REFERENCES

1. Y. Bard, ‘‘Performance analysis of virtual memory time-sharing systems,”
IBM Systems Journal 14, No. 4, 366-384 (1975).

2. B.J. DiMarsico, “‘“UCBMON,”’ Selected Papers from the SHARE CME Proj-
ect, 85-96 (April 1975-September 1976), SHARE Inc. Basic Systems Divi-
sion, 111 East Wacker Drive, Chicago, IL 60601. See also: L. Riss,
*“UCBMON Revisited,” ibid., pp. 113-117.

. J. Kessler, ‘‘SLACMON enhancements for VS,”’ Selected Papers from the
SHARE CME Project, 102-112 (April 1975-September 1976), SHARE Inc.
Basic Systems Division, 111 East Wacker Drive, Chicago, IL 60601.

. J. Michlin, ““The use of special performance software monitors in a batch/
TSO environment,”” Selected Papers from the SHARE CME Project, 88-97
(December 1973-March 1975), SHARE Inc. Basic Systems Division, 111 East
Wacker Drive, Chicago, IL 60601.

IBM SYST J @ VOL 19 & NO 2 « 1980

24.

25.

26.

. L. S. Wright and W. A. Burnette, ‘‘An approach to evaluate time sharing
systems: MH-TSS, a case study,”” Performance Evaluation Review (PER),
ACM Sigmetrics 5, No. 1 (January 1976).

. IBM Program Product, OS/VS2 MVS Resource Management Facility (RMF)
Version 2, Reference and User’s Guide, SC28-0922-1, IBM Corporation, pp.
5-23, 5-24; available through the local IBM branch office.

. 8VS Performance Tool, Installed User Program, Program Number 5796-
PGN, SH20-1838-2, IBM Corporation; available through the local IBM
branch office.

. IBM Systems Journal 8, No. 4 (1969). The entire issue is dedicated to system
performance evaluation. See in particular the papers by A. J. Bonner and
M. E. Drummond, Jr. Note also the extremely interesting work by C. E. Skinner
and J. R. Asher on storage contention. It seems as if once again the hardware
was much in advance of the software.

. T. Beretvas, ‘‘Performance tuning in OS/VS2 MVS,”” IBM Systems Journal
17, No. 3, 290-313 (1978).

. VS§1 Performance Tool, Installed User Program, Program Number 5796-
PGL, SH20-1837-1, IBM Corporation; available through the local IBM
branch office.

. OS/VS2 System Programming Library. Initialization and Tuning Guide, Part
3: The System Resources Manager, GC28-0755-0, Sections 1-2, IBM Corpo-
ration; available through the local IBM branch office.

. OS/VS2 MVS SPL, System Management Facilities (SMF), GC28-0706, IBM
Corporation; available through the local IBM branch office.

. W. J. Doherty and R. P. Kelisky, ‘‘Managing VM/CMS systems for user ef-
fectiveness,”” IBM Systems Journal 18, No. 1, 143-163 (1979).

. OS/VS2 MVS Service Aids Logic, Part 1: General Trace Facility, SY28-0643,
IBM Corporation; available through the local IBM branch office.

. M. E. Drummond, Jr., Evaluation and Measurement Techniques for Digital
Computer Systems, Chapter 7, Prentice-Hall Inc., Englewood Cliffs, NJ
(1973).

. W. H. Tetzlaff, **State sampling of interactive VM/370 users,”” IBM Systems
Journal 18, No. 1, 164-180 (1979).

. A. O. Allen, “‘Elements of queuing theory for system design,”” IBM Systems
Journal 14, No. 2, 161-187 (1975).

. J. D. C. Little, **A proof for the queuing formula L = AW,”” Operations Re-
search 9, 383-387 (1961).

. A. O. Allen, op. cit., p. 168.

. D. Towsley et al., ‘‘Models for parallel processing within programs: Appli-
cation to CPU:I/O and I/O:1/O overlap,”” Communications of the ACM 21,
No. 10, 821-830 (October 1978).

. J. Buzen, ‘‘Analysis of system bottlenecks using a queuing network model,”’
ACM-SIGOPS Workshop on System Performance Evaluation, 82-103, Cam-
bridge, MA (April 1971).

. OS/VS2 System Logic Library: Volume 1, Introduction, SY28-0713-1, 1-13
and 1-16, IBM Corporation; available through the local IBM branch office.

. M. E. Fligliuzzi, **DEVMON—Special purpose monitor to measure TSO/

batch contention for direct access storage,”’ Selected Papers from the

SHARE CME Project, 88-97 (December 1973-March 1975), SHARE Inc.

Basic Systems Division, 111 East Wacker Drive, Chicago, IL 60601.

MVS Seek Analysis Program, SH20-1814, IBM Corporation; available

through the local IBM branch office.

0S/VS2 MVS Performance Notebook, GC28-0886, IBM Corporation; avail-

able through the local IBM branch office.

MVS Measurement and Tuning , IBM Education Course H3770, IBM Corpo-

ration; available through the local IBM branch office.

GENERAL REFERENCES

A.

0. Allen, ‘*Elements of queuing theory for system design,”” IBM Systems Jour-
nal 14, No. 2, 161-187 (1975).

IBM SYST J » VOL 19 @ NO 2 o 1980

M. E. Drummond, Jr., Evaluation and Measurement Techniques for Digital Com-
puter Systems, Prentice-Hall, Inc., Englewood Cliffs, NJ (1973).
L. Svobodova, Computer Performance Measurement and Evaluation Methods:

Analysis and Applications, American Elsevier Publishing Company, Inc., New
York (1976).

The author is located at Mehish Computer Services, Ltd., 15
Lincoln Street, Tel-Aviv, Israel.

Reprint Order No. G321-5123.

IBM SYST J ¢ VOL 19 8 NO 2 ¢ 1980

