
Many existing monitors that are intended to assist in system tun-
ing are based on the utilization approach which focuses on the
active time of the system resources and activities and their users.
This paper presents an alternative approach that is based primar-
ily on the analysis of the contention in the system. The focus here
is on the queuing delay time of the users and their activities when
accessing the system resources.

Utilization and contention are two different ways of looking at the
system. The two approaches complement each other, yet each
may serve a direrent purpose or address different performance
objectives. A prototype monitor was implemented on MVS (Mul-
tiple Virtual Storage) to produce the information necessary to
continue investigations in contention analysis.

System contention analysis-
An alternate approach to system tuning

by A. Yuval

Measuring the contention in a computer system, as part of a mon-
itoring process carried out for the sake of system tuning, is not
new. References 1 through 5 are only a few of such past uses.
This is true not only for resources where utilization statistics do
not apply, such as logical resources,‘ but also for physical re-
sources, such as the cPU and I/o devices, where contention along
with utilization is given7 Yet, these monitors are basically utiliza-
tion-oriented,’ focusing primarily on the active time of the system
resources and their users. Some even determine the bottleneck
resources based on the utilization statistics only.l’y’lo

Contention analysis certainly deserves its own primary place in
both the measurement and the evaluation phases of the Computer
Measurement and Evaluation (CME) process. A contention-ori-
ented analysis focuses on the queuing delay time of the users and
their activities when accessing the system resources. The focal
point is the scanning of users who are held (delayed) in their exe-
cution and the determination of the reason for the delay.

Copyright 1980 by International Business Machines Corporation. Copying is per-
mitted without payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright notice are
included on the first page. The title and abstract may be used without further
permission in computer-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor.

I 208 YUVAL IBM SYST J VOL 19 NO 2 1980

The definition of a user depends on the definition of the system
monitored. The system can be the entire computing facility, a
particular operating system, the supervisor of that operating sys-
tem, or even a specific multitasked address space. A resource is
defined as any service entity on which a user can be queued. This
definition may add new logical resources that do not show up in
utilization analysis (e.g., the page-in system service or the MVS,
i.e., Multiple Virtual Storage, domains”). At the same time it
may exclude many little-utilized or “private” resources on which
contention does not occur.

The queuing (wait) time Q and the service (active) time S , when
added together, account for the entire transaction delay time D.

d = q + s for a specific service request

D = Q + S for an entire transaction (task, job, etc.)

The first objective of contention analysis in looking at Q is, there-
fore, to complement the utilization type of analysis that measures
S. Since detailed utilization information is readily available in
many systems, through their accounting programs, a contention
analysis is indeed the “missing brick.” Such is the case in MVS,
for instance, where the accounting system” gives detailed utiliza-
tion information for the user, and the Resource Management Fa-
cility (RMF) gives the information on a system-wide basis.

Contention may also have a justification by itself, especially in
highly multiprogrammed time-sharing systems. In such systems,
Q is known to be very high compared with S (a high expansion
factor; see Reference 13). Furthermore, S is much more difficult
to change because it is both user-program- and device-dependent.
The system programmer’s main task in such systems is to mini-
mize users’ collisions and to maximize the chances for users’ pro-
grams to get the resources they need as quickly as possible. Re-
ducing Q can be a goal in itself in such systems.

Any implementation of the contention approach in an actual mon-
itor should take into account that it is during periods of system
saturation that we are primarily interested in contention delays.
The monitor itself should therefore be as efficient as possible us-
ing minimum system resources and “locking” the system for the
shortest period possible. Yet, it should give us enough informa-
tion from which meaningful CME results can be calculated. Such
an implementation seemed therefore quite important at the early
stages of our study.

Prototype monitor and data produced

It is quite desirable to let a monitor have two modes of operation:
a low-overhead default mode and an extensive investigation

IBM SYST 1 VOL 19 NO 2 1980 YUVAL

mode. The default mode should provide sufficient data on which
to base a sound contention analysis. The extensive mode should
be used to aim at special (or weird) periods (or phenomena) for
which the regular default-mode reports are not enough. It was
therefore decided to first implement the default mode and see
how far it would take us. (In MVS the General Trace Facility,
GTF,I4 can always be used for extensive analysis.)

In order to achieve the objective of low overhead, it was decided
to implement the prototype based on state-sampling tech-
n i q u e ~ ’ ~ ’ ’ ~ rather than the potentially more expensive intercept or
event-driven techniques. (GTF uses intercept techniques.) In tak-
ing a sample, the default mode monitor should concentrate on the
contention points in the system, try to collect information as de-
tailed as possible with regard to the points, and not try to measure
other “interesting” terms.

The data to be sampled is found in the operating system control
blocks. The main function of the operating system is to satisfy
users’ requests for service from the resources. Any inability to
immediately fulfill such requests is reflected in the system control
blocks. By taking full advantage of these characteristics, the pro-
totype monitor can be expected to collect detailed information
with reasonably low overhead. This should be true for any “sys-
tem” that manages users’ requests for resources and that keeps
track of the status of these requests.

In taking a sample, the monitor should first differentiate between
users who are voluntarily idle (e.g., a user in “think time”) and
those who wish to use the system. (Throughout this paper the
terms nondemanding and demanding are used to describe these
two states of users.) The monitor then determines whether any
demanding user is waiting because the resource it needs is not
available. If any is found, it will produce one or more “con-
tention records” whose exact format is described below. If no
such users are found, it will produce a single record that says “no
contention found.”

The prototype monitor was found to be indeed very efficient with
low overhead. The CPU time consumed and the required memory
size were extremely small. Moreover, the monitor executes as a
regular nonprivileged program and is therefore fully pageable and
interruptible. The external storage required to record the data is
also quite acceptable. Appendix A describes the prototype mon-
itor in much greater detail, particularly its more interesting fea-
tures and characteristics.

We now show how contention analysis within overall system
analysis can be done using the data produced.

210 YUVAL IBM SYST J VOL 19 NO 2 1980

Figure 1 Contention record format

1 ,/E::- I ~~ queue 1 holding user waiting users
length information information

Although the basic approach is to look for users who are waiting,
the contention output-records are summarized by resource. A
separate contention record is produced for each resource on
which at least one waiting user was found. Thus, each contention
record contains the name of a contended-for resource along with
the users who are waiting for it and the user who is holding it. It is
sometimes desirable to show precisely what program and module
are accessing what part of the resource. Such a breakdown is
generally referred to as an activity. Figure 1 shows the general
format of the output records.

The ID (identification) field denotes the resource class (or system
component) to which this resource belongs, namely, 110 device,
CPU, etc. The “resource status” field varies from one resource
class to another. For example, I/o device type records contain the
device address, the unit type, and the volume ID. For disk units,
the status field also contains the cylinder and track addresses
where the “holding user” was operating. The information given
about the users (both the holding and the waiting) shows the user
name, the user type (batch, time-sharing, etc.) and limited infor-
mation on the activity involved.

The contention records generated in a single sample are preceded
by a time-stamped control record which also contains some other
statistics.

Relation to classical queuing theory

Throughout this paper, we try to conform to the standard queuing
notation as described by Allen.I7 For those terms not mentioned
there, we try to use similar notation:

R is the number of samples in the measurement period.
Tis the period of measurement.
I is the number of end users in the system.
J is the number of resources (servers).
i is the index of the users in the system.
j is the index of the resources in the system.
A is the service request arrival rate.
AT is the total number of requests for a resource.
q is the expected time a service request will wait to be served.

IBM SYST J VOL 19 NO 2 1980 YUVAL

s is the expected service time.
d is the expected total delay time.

terms
relating to
resources

Let us also define (2, S, and D as follows:

Q = ATq S = ATs D = ATd (1)

The basic Little” relationship

d = q + s for each resource (2)

when multiplied by AT will give us

D = Q + S

We refer to Q , S, and D as “aggregates” to differentiate them
from q , s, and d. Q , S , and D can be further defined by using
indexing on i and j :

Qij is the aggregate queuing wait time for the ith user on the j th
resource.

Qi is the aggregate queuing wait time for the ith user across all
resources (i.e., that portion of the session, or job-duration
time, in which the user was waiting to get access to the sys-
tem resources).

Qj is the aggregate queuing wait time caused by the j th re-
source.

In the same way we get the parallels for S and D.

We can also index q , s, and d to show all the possible indexing
and summary relationships. Equation 2 can be indexed as fol-
lows:
dij = qij + sij (4)

This more detailed indexing is neither easy to obtain nor does it
appear in the literature.

In the queuing theory literature, there is normally no distinction
between users, so the common equation used is

dj = qj + sj (5)

Multiplying Equation 5 by AT gives us

Dj = Qj + Sj (6)

If we multiply Equation 5 by A only, we get the equation

Adj = A q j + Asj (7)

However, this may be cast in the more familiar form

L = L q + p (8)

where L is the mean number of users in the server, Ln is the mean

In exactly the same way that Equation 5 is used to compare dif-
ferent servers on the “micro” level regardless of their different
behavior, Equation 6 can be used to compare them on the
“macro” level. Dj shows the total delay time, caused by the j th
server, on the entire workload.

Equation 4 can be very useful from the user’s point of view, but,
as earlier stated, it is quite difficult to obtain. However, informa-
tion in the form

Dij = Qij + S i j

can also show how much time the users spend waiting for and
using each of the resources.

The equation

Di = Qi + Si

shows the overall elapsed time, contention time, and utilization
time for the ith user over all resources.

The time during which a resource is in contention, namely, the
time when the number of users waiting (Lq) before the resource is
nonzero, is of special interest in contention analysis. Let us add
the following notation and definitions:

P, j is the probability that the j th resource is in contention; i.e.,

Hij is the aggregate contention time on the j th resource while

Hi is the aggregate contention time caused by the ith user

H j is the aggregate contention time for the j th resource.

The equation

H j = P w j T

shows the relationship between H and P,.

The diagrams in Figure 2 show the overall possible states for both
a user and a resource in the above terms.

Lq is not zero.

the ith user was using it (i.e., “caused” by the ith user).

across all resources.

Measured terms

Three terms are directly measured by the prototype sampling rou-
tine:

L q j is the average number of users waiting before the j th re-
source.

IBM SYST 1 VOL 19 NO 2 1980 YUVAL

Figure 2 User and resource possible states

USER RESOURCE

RE is the number of samples in which the ith user was found to

R: is the number of samples in which the ith user was “hold-
be waiting for the jth resource.

ing” thejth resource, i.e., causing it to be in contention.

The probable value of Qi j is obtained from RZ by

Qi j = (R:/R)T (12)

In a similar way Hij is obtained by

H i j = (RE/R)T (13)

terms not Two terms are not directly measured by the prototype monitor: A
directly and S. Other information which is “missing” is the ability to go

measured down the user control blocks and identify the exact activities in-
volved.

These three elements were deliberately left out in the default
mode. They all are good candidates for the extensive mode. The
impact of not having this information on both the evaluation and
the tuning action phases is discussed below. In practice, knowl-
edge from other sources is used to supplement any missing infor-
mation.

The analyzed (evaluated) data

The matrix in Figure 3 shows all the measured contention terms
in summary as well as in detail for each user and resource in the
system. The matrix contains the main data required for con-
tention analysis. One can quickly determine which resources are
creating contention (high Qjs on the rightmost column), which
users cause this contention (high Hijs across the j th resource
row), and which users suffer from it (high Q,,s on that row). From

classification of
tuning actions

significance
of occurrences

quick way
from reports

to actions

216

The higher the value of H, the more accurate the approxima-
tion of S . Also, in a comparable study of two resources, one
may be able to determine whose D is bigger without knowing
its exact value. This is again when H i s big and also when Q for
one resource is far greater than Q for the other.

3. By invoking the extensive mode of the monitoring.
4. By using information about S already available from existing

sources such as the accounting system in Reference 12.

From evaluated terms to tuning actions

The effectiveness of the evaluation phase is determined by its
ability to immediately lead to the required tuning actions. Some
tuning actions may be impractical or expensive to carry out, but
then at least management knows that alternative actions (e.g.,
administrative, capacity planning, etc.) should be pursued. This
section will briefly show how contention analysis quickly leads to
the appropriate tuning actions.

Both user-program and system-wide tuning can be done by either
speeding up the “biggest” activities or by executing as many ac-
tivities as possible in parallel. Figure 4 summarizes the tuning
actions for a system-wide, multiprogramming case. (Appendix C
shows an example of MVS structured along the lines of Figure 4.)

It is quite useful to set some thresholds for the values of the terms
in the contention matrix (Figure 3). Any Q or H value that goes
above its threshold will be called signiJicant. By carefully analyz-
ing the information in the contention matrix, one can quickly get
to the class of tuning action required.

For system-wide tuning the decision table shown in Figure 5 can
be used. A similar table can be built for the user-program tuning
actions. It is interesting to note that many actions which at first
glance seem to be applicable only for system-wide tuning are
quite applicable for user tuning too. Such are actions 2.1 and
2.2.” Action 2.3 is indeed system-only.

For both user and system tuning, the carrying out of actions 1 . 1
and 1.2 may sometimes require the extensive mode that shows
the exact activities (e.g., operating systems modules) involved.
Actually, in many cases this was found to be unnecessary.

When action 2.2 is considered for functionally equivalent re-
sources that have a different sj (namely, one resource is much
faster than the other), Qj or even Dj are not enough, and one must
know the individual dj too. It could be that

YUVAL IBM SYST J VOL 19 NO 2 1980

Figure 4 System tuning actions in multiprogramming

1. Activities enhancement.
1.1 Reprogramming of code.
1.2 Resource restructure.

2. Parallel processing enhancement.
2.1 Increase the MPL (Multiprogramming Level)
2.2 Allocation algorithm improvement: Spread work between functionally

2.3 Dispatching algorithm improvement: Ensure high priority to the least de-
equivalent resources.

manding user.

Figure 5 System-wide tuning action decision table

What do we see in the matrix? What action to take.

Significant Hij in a row 1.1,2.2, 2 .3
Significant Qj and no

No significant Qjs P 2.1
significant Qij on row P 1 .2 ,2 .2

and yet

d , < d, (and s, < s,)

due to

A, >> A,

The shift of work from resource 1 to resource 2 could be a mis-
take. The extensive mode is again required to measure both A and
S so that d , can be compared with d,. See Reference 21 for further
discussion of this point.

Summary

In theory as well as in practice, contention analysis emerges as a
new, interesting approach to both system and user tuning. The
prototype was found to be low in cost and very simple both in its
implementation and in its use. It provides a u e n t information
that directly relates the users and resources associated at each
contention point. The ability to provide contention information
for each individual user in the system was found to be extremely
valuable.

There are three practical reasons for the performing of contention
analysis in one's system:

Figure 6 CME approach for performance objectives

Performance
objectives

Maximize
throughput
(batch)

Minimize
response time
(time sharing)

CME approach

Utilization Contention

primary secondary

secondary primary

1 . Contention information nicely complements utilization infor-
mation which, in many installations, already exists.

2. Contention analysis may be a target in itself, especially in
highly multiprogrammed time-sharing systems. Contention
analysis misses only those cases where a user manages to use
a resource without causing delays to other users. Such cases
are indeed less important in those systems.

3. For certain cases, the queuing time (Q) and the time in con-
tention (H) do give a good approximation of the overall delay
time (D). Contention analysis covers, in these cases, the entire
“picture,” and complementing it with utilization data may be
unnecessary.

Basically, both contention and utilization information are needed
in order to get the “whole picture.” Yet, two different ap-
proaches are conceivable: one that looks primarily at utilization
and, when required, looks at contention, and the other one that
looks first at contention and, when required, at utilization too.
Keeping in mind the performance objectives (which sometimes
are simply forgotten), we can see in Figure 6 the relationship be-
tween utilization and contention.

ACKNOWLEDGMENTS
The author warmly thanks Dr. P. Capek for his constant encour-
agement and guidance. Appreciation also goes to Messrs. M.
Kienzle, G. McQuilken, and M. Rimon, with whom I had fruitful
discussions. The author is especially indebted to Mr. M. E.
Drummond, Jr. without whose help this paper would have never
been written.

In the writing of the prototype monitor, the author received valu-
able help from the MVS development people at IBM Poughkeepsie.
Mr. M. Kienzle wrote most of the prototype report programs, and
Mr. A. Birman helped in the understanding of the MVS control
blocks. The author wishes also to thank some of the early and

218 YUVAL IBM SYST 1 VOL 19 NO 2 1980

uously performing logical checks on both the system control
blocks and the data produced. Very rarely a program-check inter-
rupt can also occur. The monitor handles that by means of the
STAE macro. For both types of fault, logical and program-check,
the monitor simply drops the sample and continues without delay
to perform another one.

The observed statistics of one faulty sample per 400 to 1000 good
samples (see below) suggests that other monitors should stay
away from “locking” techniques. It also demonstrates the feasi-
bility of outboard monitors, which cannot easily synchronize
themselves with the system. FligliuzziZ3 shows a different inter-
esting technique for the implementation of a nonlocking monitor.

Other interesting features and statistics of the prototype are as
follows (Most of the statistical results are from runs made on the
MVS machine at the IBM Thomas J. Watson Research Center, nor-
mally in the afternoon when the system is most loaded. Some
statistics were cross-checked in some other IBM installations.):

1. The monitor is written in the Assembler language.
2. Program size is 12K including buffers.
3 . The sampling cycle time ranges from 0.1 to 9.9 seconds.
4. One sample typically takes between 1.5 and 4.5 milliseconds

of CPU time. Using a sampling cycle of one second and includ-
ing the time to write to the external file, we anticipate an over-
head of 0.5 percent on the CPU.

5. With an output block of one third of an IBM 3330 storage de-
vice track, a sampling cycle of one second and an average of
six records per sample, eight cylinders of a 3330 per hour are
required for output.

6 . The highest fault rate found, i.e., aborted samples because of
either logical or program-check errors, was one every 400
valid samples. One error in 1000 valid samples was the aver-
age in peak-time runs.

Appendix B: Prototype reports and related experience

The monitor post-processor produces four reports:

1. The General Contention Report.
2. The Time-Series Histogram.
3. The User’s Wait Profile Report.
4. The Disk Seek Analysis Report.

The General Contention Report is arranged in a hierarchical man-
ner and is further divided into the subreports that are described
below.

220 YUVAL IBM SYST J 0 VOL 19 0 NO 2 0 1980

Figure 8 Report 1 .l, Overall System Contention

14:45 071NOV/78- 16:OO 07/NOV/78 SAMPLES 4500

Percent
Waiting Demanding Working waitldemand

Address spaces 5.8 26.7 20.9 22.0
Tasks 6.5

System
component

(1)

CPU
ENQ
Channel
C-Unit
I/O devices
CMS
SRM
RSM
ASM

Count
(2)

3510
353 1
744

89
3693

75
1620
2432

41

Average no.
per sample

(3)
0.78
0.78
0.16
0.02
0.82
0.02
0.36
0.54
0.01

A v . tasks
waiting

(4)
3.39
1.21
1.27
1.05
1.62
2.51
1.17
1.66
1.84

Waiting
(5)

2.63
0.95
0.21
0.02
1.33
0.04
0.41
0.89
0.02

i Report 1.1, Overall System Contention, in Figure 8, shows the
contention on the main system components and a summary of the
waiting, demanding, and working users. The top line (which ap-
pears in all the reports) shows the time and date when the sam-
pling started and ended and the number of samples taken.

The next part of the report shows that for the period of observa-
tion there were on the average 26.7 users (address spaces) who
wanted to use the system (demanding); 5.8 of them were delayed
because of some contention. Thus 22 percent of the demand is not
fulfilled because of contention. The 5.8 address spaces waiting
correspond to 6.5 tasks waiting (which is the sum of Column 6).
The demanding minus the waiting spaces are referred to as the
working address spaces and are equal here to 20.9.

The main part of the report consists of the following:

0 Column 1 is the resource (as defined in Figure 7).
0 Column 2 is the number of contention records pertaining to

this system component.
0 Column 3 is the result of dividing Column 2 by the total sam-

ples. It shows the frequency of appearance of contention on
that component.

0 Column 4 is the average number of users waiting at the time of
contention.

0 Column 5 is the average number of users waiting at the entire

Figure 9 Report 1.2 for the CPU resource
~~~ ~ _ _ _  

Task 
holding Type Count 

(6) (7) (2) 

JES3 S 814 
TCAM S 489 
STEP6 B 426 
SUPPORT T 283 

Percent of 
resource 

(8) 

18 
11 
10 
6 

Cum. Av .  tasks 
(percent) waiting 

(9) (4) 

18 5.01 
29 4.23 
39 1.72 
45 3.39 

~~ 

Wait ST 
(percent) 

( 10) 

23 
9 
0 
6 

~ 

Wait  TSO  Wait  batch 
~~ 

(percent) (percent) 
(1 1) (12) 

42 35 
51 40 
2 98 

46 48 

Figure 10 Time-Series Histogram 

N O .  CPU ENQ Channel 110 RSM SRM 

1 TTBBB 22  222 LL  
2 STTBBB 2 LLC 
3 TTBB B 72 722 LC 4 
4 TB BB 722 67222 45 
5 B  TBB 2 722 445 
6 TTBB 2 4455 
7 BB B 72 LL  45 
8 BB B 2 L 45 

The nonblank characters In the histogram are defined as follows: 
For CPU and ENQ: S-started task, T-TSO, B-hatch job. 
For  Channel  and UO device: the channel ID. 
For RSM: L-local page fault, C-common area page fault. 
For SRM: The domain ID. 

Wait Dem.  Work %WID 

12  25 13 48 
10 24 14  42 
13  27 14  48 
14  27 13  52 
11 26 15 42 
9 25 16 36 
9 26 17  33 
7 25 18 28 

Report 1.2, User Holding within Resources, is produced for  each 
contended-for  resource.  It  shows  the  distribution of the holding 
(contention-causing)  users within those  resources.  The  example 
in Figure 9 shows  Report 1.2 for  the CPU resource. 

New column headings  are  introduced. Column 6 is  the holding 
task. Column 7 denotes  the  type of holding task:  started  task (S), 
TSO (T), and  batch  job (B). Column 8 shows the percentage of the 
count of this holding user from the  total  counts of this resource. 
Column 9 is the  accumulation of Column 8.  Columns 10, 11, and 
12 show  the  distribution (in percentage) of the waiting users 
among  the  three workload groups:  started  tasks (ST), TSO, and 
batch. For  each  line  (user)  these  three  columns should sum  up  to 
100 percent. 

The Time-Series Histogram,  Report 2 ,  in Figure 10 is divided into 
two  parts.  The  left  side is a histogram which shows  the  contention 
by system  component on a  time-series basis. Each line corre- 
sponds  to a  sample. In each  column, which corresponds  to  one 
system  component,  any nonblank character  denotes  one  user 
waiting. 







one  can  determine whether only other  batch  programs are 
being delayed by that  job,  or TSO and/or  started  tasks,  too. 

5. From  the left side of Report 2, a high contention  on  domains 
was sometimes  observed at a  time when there was almost  no 
contention on  the real resources. This may be  due to a too- 
restrictive definition of the maximum multiprogramming level. 

From  the right side of this report,  one  can identify the  periods 
when any increment in the demanding column immediately re- 
sults in an  increment in the waiting ones.  The  value in the 
“working” column, in these  periods,  shows  the maximum 
multiprogramming level the  system  can handle (at  such peri- 
ods). 

6. Report 3 can be used  for partial system tuning. There are many 
cases where a “user” in MVS is a big subsystem,  such as VSPC 
(Virtual Storage  Personal Computing), IMS (Information Man- 
agement System), or CICS (Customer Information Control  Sys- 
tem), which has  its own end users. A “private” tuning of such 
systems  can be  done by the  people in charge, without waiting 
for overall system tuning. For such  systems,  the  analysis of 
the internal contention among their own end users may be  the 
target of a  “private” contention analyzer.  Such  an  approach 
could be implemented inside those  systems to supplement  the 
information from  a system-wide contention  analyzer. 

I 

7. A comparison study between Report 4 and full seek  analysis 
reports24  found that, for the public active  disks,  the  two re- 
ports gave similar results. If this is generally true,  then again 
the H term serves  as  a good term  for S at a much (much!) 
lower  cost. 

8. Users  reported on many problems that  they  were  able to solve 
“on the fly” by using the  interactive (TSO) mode of operation 
of the  prototype monitor. A real-time observation of abnormal 
figures in the  contention matrix (Figure 3) can immediately 
point to the exact location of the  “congestion,”  its  cause,  and 
its effect. If the  operator has to  take unpopular actions,  at  least 
he should move in the right direction. 

9. The  contention “language” was found to be  comprehensible 
and meaningful to managers and to  the  computer  users. A 
high number of users being delayed on  a  resource  is  a simple 
statistic  that  draws management attention. A decrease in this 
number clearly shows  that  an  improvement was made. Talking 
to  users in terms of delays that  their  jobs  either  cause or suffer 
from is talking to them in a language they seem to like and 

~ 

IBM SYST J VOL 19 NO 2 0 I980 YUVAL 225 



understand. Telling a  user  that his job causes  delays to other 
users is much more effective than to tell him that his job con- 
sumes  a lot of resources. 

Appendix  C:  Classification  of MVS tuning  actions 

The purpose of this appendix is to validate Figure 4 for  the MVS 
case. We assume  that  the  reader is familiar with MVS basic  terms. 

The following is the grouping of MVS tuning actions as taken from 
References 25 and 26. 

1 . 1  Reprogramming of code: Use optimizing compiler, write 
critical subroutines in assembler,  use  more buffers for I/O, in- 
crease  the block size of the  data  set,  use Virtual I/O and disk 
allocation in cylinders not in tracks,  care  for  boundary align- 
ment,  care  for locality of reference. 
1.2  Resource  restructure: Cluster system libraries  and VTOC 
placement,  reorder I/O devices on the  channel,  increase  the 
block size of system libraries, reorganize the placement of 
data  sets within a disk pack. 
2.2 Allocation  algorithm: Balance data  sets  between  packs 
and  packs  between  channels, make system  packs  “non- 
storage,” move members to FLPA, increase  the BLDL list, 
channel  rotate. 
2.3  Dispatching  algorithm: Change the APG definitions, use 
priority instead of FIFO for system packs. 
1.2 and 2.2 together: Spread  the catalog (CVOL), separate 
swap  data  set from page data  sets, add page data  sets. 

Action 2.1 does not appear  because in MVS the  System  Resources 
Manager” is supposed to handle this function by dynamically 
raising or lowering the MPL. Yet, Item 5 of the  experience high- 
lights in Appendix B indicates that Action 2.1 may still be re- 
quired in certain  cases. 

CITED REFERENCES 
1. Y. Bard, “Performance analysis of virtual memory time-sharing systems,” 
IBM Systems Journal 14, No. 4, 366-384 (1975). 

2. B. J. DiMarsico, “UCBMON,” Selected  Papers  from  the SHARE CME Proj- 
ec t ,  85-96 (April  1975-September 1976), SHARE Inc. Basic Systems Divi- 
sion, 111 East Wacker Drive, Chicago, IL 60601. See also: L. Riss, 
“UCBMON Revisited,” ibid., pp. 113-117. 

3. J. Kessler, “SLACMON enhancements for VS,” Selected  Papers  from  the 
SHARE  CME Project, 102-112 (April 1975-September  1976), SHARE Inc. 
Basic Systems Division, 111 East Wacker Drive, Chicago, IL 60601. 

4. J. Michlin, “The use of special performance software monitors in a batchi 
TSO environment,” Selected  Papers  from  the SHARE CME Project, 88-97 
(December 1973-March  1975), SHARE Inc. Basic Systems Division, 11 1 East 
Wacker Drive, Chicago, IL 60601. 

226 YUVAL IBM SYST J VOL 19 NO 2 1980 



5 .  L. S.  Wright and W. A. Burnette,  “An  approach to evaluate time sharing 
systems: MH-TSS,  a case  study,” Performance  Evaluation  Review  (PER), 
ACM  Sigmetrics 5, No. 1 (January 1976). 

6. IBM  Program  Product,  OSIVS2  MVS  Resource  Management  Facility  (RMF) 
Version  2,  Reference  and  User’s  Guide, SC28-0922-1, IBM  Corporation, pp. 
5-23, 5-24; available  through the local  IBM branch office. 

7. SVS Performance Tool, Installed  User  Program, Program  Number 57%- 
PGN, SH20-1838-2, IBM  Corporation; available  through  the  local IBM 
branch office. 

8. IBM  Systems  Journal 8, No. 4 (1%9). The  entire  issue  is  dedicated to system 
performance evaluation. See  in particular  the papers by A. J.  Bonner  and 
M. E. Drummond, Jr.  Note also the extremely interesting work by C. E. Skinner 
and J. R. Asher on storage  contention.  It  seems as if once again the  hardware 
was much in advance of the  software. 

9. T. Beretvas,  “Performance tuning in OSIVS2 MVS,” IBM  Systems  Journal 
17, No. 3, 290-313 (1978). 

10. VSI  Performance  Tool,  Installed  User  Program, Program  Number 57%- 
PGL, SH20-1837-1, IBM Corporation; available through  the local IBM 
branch office. 

11. OSIVSZ  System  Programming  Library:  Initialization  and  Tuning  Guide,  Part 
3: The  System  Resources  Manager, GC28-0755-0, Sections 1-2, IBM Corpo- 
ration; available  through the local  IBM  branch office. 

12. OSIVS2  MVS  SPL,  System  Management Facilities (SMF) ,  GC28-0706, IBM 
Corporation; available  through the local IBM branch office. 

13. W. J.  Doherty  and R. P.  Kelisky, “Managing VMICMS systems  for  user ef- 
fectiveness,” IBM  Systems  Journal IS, No. 1, 143-163 (1979). 

14. OSlVS2  MVS  Service  Aids  Logic,  Part I :  General  Trace  Facility, SY28-0643, 
IBM  Corporation; available  through the local IBM branch office. 

15. M. E. Drummond,  Jr., Evaluation  and  Measurement  Techniques  for  Digital 
Computer  Systems, Chapter  7, Prentice-Hall Inc., Englewood Cliffs, NJ 
(1973). 

16. W. H. TetzlaiT, “State sampling of interactive VMI370 users,” IBM  Systems 
Journal 18, No. 1, 164-180 (1979). 

17. A. 0. Allen, “Elements of queuing theory for  system  design,” IBM  Systems 
Journal 14, No. 2, 161-187 (1975). 

18. J. D.  C.  Little,  “A proof for  the queuing  formula L = hW,”  Operations  Re- 
search 9, 383-387 ( l%l) .  

19. A. 0. Allen, op. cit., p. 168. 
20. D. Towsley  et  al., “Models for parallel  processing  within  programs: Appli- 

cation  to CPU:UO and UO:UO overlap,” Communications of the  ACM 21, 
No. 10, 821-830 (October 1978). 

21. J.  Buzen, “Analysis of system  bottlenecks using a queuing  network  model,’’ 
ACM-SIGOPS  Workshop  on  System  Performance  Evaluation, 82-103, Cam- 
bridge, MA (April 1971). 

22. OSIVS2  System  Logic  Library:  Volume I ,  Introduction, SY28-0713-1, 1-13 
and 1-16, IBM Corporation; available  through the local IBM branch office. 

23. M. E. Fligliuzzi, “DEVMON-Special purpose  monitor  to measure  TSOI 
batch  contention  for  direct  access  storage,” Selected  Papers  from  the 
SHARE  CME  Project, 88-97 (December 1973-March 1975), SHARE  Inc. 
Basic Systems Division, 11 1 East Wacker  Drive, Chicago,  IL 60601. 

24. MVS  Seek  Analysis  Program, SH20-1814, IBM Corporation; available 
through the local  IBM branch office. 

25. OSIVS2  MVS  Performance  Notebook, GC28-0886, IBM Corporation; avail- 
able  through  the local  IBM  branch office. 

26. MVS  Measurement  and  Tuning, IBM  Education Course H3770, IBM Corpo- 



M. E. Drummond, Jr., Evaluation  and  Measurement  Techniques for Digital  Com- 
puter  Systems, Prentice-Hall, Inc., Englewood Cliffs, NJ (1973). 
L. Svobodova, Computer  Performance  Measurement  and  Evaluation  Methods: 
Analysis  and  Applications, American Elsevier Publishing Company, Inc.,  New 
Y ork ( 1976). 

The author is located at Mehish  Computer  Services, Ltd. ,  15 ~ 

Lincoln Street.  Tel-Aviv.  Israel. 

Reprint  Order No. G321-5123. 

228 YUVAL IBM SYST J VOL 19 NO 2 1980 


