The Distributed Processing Programming Executive (DPPX} oper-
ating system has network configuration requirements placed on
it. This paper discusses those requirements and the way in which
they are met, including those that result from the various configu-
rations possible with a DPPX system. In addition, the unique way
in which terminal resources are supported in DPPX and the dy-
namic approach to resource definition in the DPPX system are de-
scribed. Finally, application definition and application usage of
the network configuration capabilities of DPPX are discussed.

Distributed processing communications software support for
operation within an SNA network

by E. S. Harrison

The Distributed Processing Programming Executive (DPPX), an
operating system for the 1BM 8100 Information System," is based
on SNA (Systems Network Architecture)’ and has been developed
as IBM’s distributed processing system.’ As such, it has to meet
various network configuration requirements. One requirement is
a stand-alone configuration in which the DPPX system supports
applications and terminals in a single 8100 Information System.
This configuration allows useful work to be carried out at a re-
mote geographic site, essentially independent of a System/370-
like host system.

DPPX must also attach to existing host system networks to permit
DPPX users to be able to communicate with existing host appli-
cation programs, and by this means, take advantage of already
developed host application programs. Periods of attachment to a
host may then be based on whether the host data base needs to be
updated to reflect the processing carried out at the remote 8100
location. This intermittent attachment may be at the end of a
working day when the host data base is updated with the results
of transactions executed at the remote site. The stand-alone capa-
bility of DPPX and the general way in which all terminals are sup-
ported by a common structure are described in the first section of
this paper. The host attachment capability of DPPX is described in
a later section.

Copyright 1980 by International Business Machines Corporation. Copying is per-
mitted without payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright notice are
included on the first page. The title and abstract may be used without further
permission in computer-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor.

HARRISON IBM SYST J @ VOL 19 @ NO 2 » 1980

Interconnection of two or more 8100 Information Systems allows
a DPPX user greater network configuration capability within a net-
work made up of 8100 systems. It will, for instance, be possible
for the user to distribute DPPX systems to different geographic lo-
cations while maintaining overall network control of the distrib-
uted systems at one specific DPPX node. DPPX applications will
then be able to communicate between any two adjacent 8100 sys-
tems, thus allowing the user a distributed processing capability
within a network consisting of DPPX nodes. This ability of DPPX to
support the interconnection of two or more 8100 Information Sys-
tems is described in this paper.

An important function in any communications system is the way
in which a system operator defines network resources to the sys-
tem. A movement towards a more dynamic approach to network
definition has been taken by the DPPX system and is discussed in a
later section.

Finally, the way in which DPPX applications can access the net-
work communications functions of a DPPX system and the way in
which DPPX has expanded the concept of dynamic definition to
DPPX application programs are described.

Stand-alone capability

To be able to have one DPPX node supporting terminals and appli-
cation programs independently of a host system requires DPPX to
have its own System Services Control Point (SSCP), which is the
configuration manager of resources in an SNA domain. Residing
with an SSCP in the same node is a physical unit called a physical
unit type 5 (PU_T5). The stand-alone configuration is illustrated
in Figure 1. In this configuration, DPPX application programs can
communicate with terminals attached to the DPPX system and
with other DPPX applications running in the same stand-alone
DPPX system.

DPPX supports many different kinds of terminals attached to the
system by many different physical attachments. Table 1 lists
some of the terminals supported.

The support for SNA-type terminals is well-defined, and there are
SNA-defined protocols for activating and deactivating terminals
and for initiating and terminating connections to application pro-
grams; these are well-documented in SNA. However, many dif-
ferent protocols exist for non-SNA terminals. These different pro-
tocols add complexity in the support of non-SNA terminals.

One method of supporting non-SNA terminals is to have a non-
SNA equivalent of the SSCP such that the terminals are supported

IBM SYST J @ VOL 19 » NO 2 e 1980

Figure 1 8100-DPPX system oper-

ating in
mode

8100-DPPX NODE

stand-aione

|APPL|CATIONI IAPPLICATIONl

H] TERMINAL
H] TeRMINAL

H JerminaL

terminal
support

Figure 2 Typical DPPX 1I/O layer
structure

DPPX
APPLICATION
PROGRAM

EXTERNAL SUPPORT SERVICES (ESS)

PRESENTATION SERVICES (PS)

COMMUNICATION SERVICES (CS)

1/Q ATTACHMENT SERVICES (10AS)

VO tayer
structure

Table 1 Some terminals supported by DPPX

Terminal type Example

SNA IBM 3276 display
IBM 8775 display
IBM 3767 keyboard printer
IBM 3287 printer

BSC (Binary Synchronous IBM 2780/3780-like terminals
Communication)

Locally attached IBM 3277 display

SDLC attached non-SNA 1BM 364X plant communication
family
IBM 3289 line printer

Start/Stop IBM 2741 communication terminal
Teletype 33/35(TTY)

as two sets: SNA and non-SNA. This approach is feasible but has
the following disadvantages:

e Tends to duplicate function.

¢ Presents a dual interface for the system operator: two inter-
faces exist—one for SNA terminals and one for non-SNA termi-
nals.
Complexities arise when SNA and non-SNA terminals are at-
tached to the same link; for example, determining which man-
ager controls the link.

e Presents a dual interface to the application program.

Obviously, from network usability considerations it is desirable
to have all terminals supported with the same external network
interface. The procedures needed to define all terminals to the
DPPX system and the network procedures needed to activate and
deactivate these terminals should be the same.

This result has been achieved within DPPX by extending the 1/0
layer design of DPPX. All terminals are treated in DPPX as if they
are SNA terminals. In order to more fully understand how this has
been achieved, it will be necessary to briefly explain the 1/0 layer
concept of DPPX. A fuller description of the internal 1O structure
of DPPX is contained in Reference 4.

Layers of software function exist in DPPX, referred to as /O lay-
ers, which correspond very closely to the functional layers de-
fined in SNA. A connection to an SNA terminal from a DPPX appli-
cation program will typically have an internal VO layer structure
as shown in Figure 2.

HARRISON IBM SYST J e VOL 19 @ NO 2 e 1980

The layers are responsible for the following functions:

e ESS (External Support Services) essentially is the application
program interface where data and control blocks entered by
the application as part of a request are changed into control
block formats required by the internals of DPPX.

PS (Presentation Services) is an IO service layer which may or
may not be present in the IO structure for a connection. It
provides function to format the user data ready for presenta-
tion to the session partner and includes the Presentation Serv-
ices and Data Flow Control functions of SNA.

¢s (Communication Services) is the layer that provides the
SNA transmission control and path control support. It is re-
sponsible for the end-to-end routing of data between session
partners.

I0AS (1’0 Attachment Services) is the layer that contains the
10 support for interfacing with the /0 hardware and, in SNA
terms, contains the Data Link Control (DLC) functions. Note
that there are many different types of I0AS support, depending
on the type of terminal supported. For SNA terminals, the I0OAS
layer is called the DLC I0AS.

The 10 interface between CS and 10AS for terminal resources con-
sists of an SNA transmission header whose format depends on the
physical unit type of the SNA terminal. For other I0AS layers (non-
DLC IOAS layers), the interface is different and based usually on
the data interface to the particular terminal.

An additional /0 layer (called the Transform Layer) inserted be-
tween CS and I0AS for non-SNA terminals can match the outbound
and inbound interfaces between the CS and IOAS layers and do
whatever transformation of the data is necessary to maintain the
interfaces. By this means, the CSlayer and all other SNA functions
above the CS layer will view the non-SNA terminal as an SNA ter-
minal. Any function designed to work for the SNA terminals will
then be equally valid for the non-SNA terminals supported by the
/0 Transform Layer.

SNA request units flow in the process of activating and deactivat-
ing SNA terminals and in connecting and disconnecting with appli-
cation programs. In order for a non-SNA terminal to maintain the
appearance to the CS layer of an SNA terminal, these request units
are intercepted and responded to by the 10 Transform Layer.

One way of describing the function of the 170 Transform Layer is
to recognize that SNA terminals contain intelligence that allows
them to respond to SNA protocols in an SNA-defined manner.
Non-SNA terminals, however, do not contain this intelligence,
and the Transform Layer can be viewed as a way of providing it
on behalf of the terminal. The DPPX I/O layer structure for a non-

IBM SYST J e VOL 19 « NO 2 » 1980

Figure 3 DPPX transform services

O layer

APPLICATION
PROGRAM

EXTERNAL SUPPORT SERVICES (ESS)

PRESENTATION SERVICES (PS)

COMMUNICATION SERVICES (CS)

TRANSFORM SERVICES (XS)

1/0 ATTACHMENT SERVICES (J0AS)

Figure 4 Transform Layer struc-

ture
UPPER 1/0
LAYER
(CS)
DATA

SNA-DEFINED
ACTIVATION
REQUESTS AND
SESSION
REQUESTS

DATA
INTERFACE.
FUNCTION 2

SURROGATE
LOGICAL UNIT
FUNCTION L

LOWER /0 LAYER (I0AS)

SNA terminal in Figure 3 shows the positioning of the Transform
Layer in the 10 layer structure.

The Transform Layer has two basic functions:

® One to supply the SNA intelligence on behalf of the non-SNA
terminal by responding appropriately to SNA requests not sup-
ported by the non-SNA terminal. The component that performs
this processing is often referred to as a Surrogate Logical Unit
and provides the logical unit services function on behalf of the
non-SNA terminal.
Another to ensure that the CS interface and the non-DLC I0AS
interface are maintained during the request flow to and from
the terminal. This function may be referred to as a Data Inter-
face component.

These functions of the Transform Layer are depicted in Figure 4.

With the introduction of the Transform Layer concept into the
DPPX network communication function, all terminals, whether
SNA or non-SNA, are supported in exactly the same manner. Thus,
the system operator need only understand one means of defining
terminal resources to the system and one means by which these
terminals can be activated and deactivated. DPPX applications
also see no difference in interface when communicating with SNA
and non-SNA terminals, and hence their application logic need not
be concerned with the different protocols that actually exist to the
different terminals. Transform Layers can also be user supplied
so that a terminal not supported by DPPX can be supported within
the DPPX system.

In DPPX development activity, new function, which may be added
in the future, can essentially be used for both SNA and non-SNA
terminals, since the structural support for both types of terminals
is the same. This common support will manifest itself in lower
design and development costs for functions added to DPPX and the
8100 Information System.

System/370-like host attachment capability

DPPX can attach to a host system, and DPPX application programs
can communicate with already existing host application sub-
systems such as CICS (Customer Information Control System) and
IMS (Information Management System). DPPX attaches to a Sys-
tem/370-like system as a cluster controller: in SNA terms, this
means attaching as a physical unit type 2 (PU_T2).” The 8100 node
attaches to an adjacent IBM 370X/NCP (Network Control Program)
communications controller that is either locally or remotely at-
tached to the host system. The communications controller shown
in Figure S is locally attached to the host system.

HARRISON IBM SYST] @ VOL 19 @ NO 2 o 1980

Figure 5 8100-DPPX attached to host system (8100-DPPX as a cluster controller to host
System/370 while also containing independent network management functions
within same 8100-DPPX node to support attached terminals)

SYSTEM/370
HOST

SYSTEM/370 CHANNEL 370X/NCP
COMMUNICATIONS
CONTROLLER

SDLC LINK

DPPX PU_T2
CLUSTER CONTROLLER

DPPX
INDEPENDENT T TERMINAL
NETWORK
APPLI-
CATION T TERMINAL

With the 8100 and DPPX acting as a cluster controller in a host
system network, host applications can communicate with DPPX
terminals by a pass-through application program that provides the
function of passing the data from the host application through to
the terminal and from the terminal back to the application pro-
gram. This capability is discussed more fully later in this paper.
Figure 5 shows the 8100-DPPX system containing one physical unit
type 2. It is possible for the 8100 node to support more than one
host attachment capability, however. For example, two or more
cluster physical units can be contained within one 8100 node;
these can be attached to the same or to different host systems and
are attached by separate links to adjacent communications con-
trollers. This capability is generally referred to as the multihost
attachment capability within DPPX. Figure 6 is a typical example
and shows two physical units in one 8100-DPPX node attached via
different links to two communications controllers belonging to
different host systems. This capability allows the user consid-
erable flexibility in being able to communicate directly, from the
same 8100 node, with application subsystems running in different
host systems.

Interconnected capability

One DPPX system can interconnect to another DPPX system. The
physical interconnection is by means of a link (SDLC, IBM’s net-

IBM SYST J VOL 19 « NO 2 * 1980 HARRISON

Figure 6 Multihost attach configuration

SYSTEM/370 SYSTEM/370
HOST HOST

SYSTEM/370 SYSTEM/370
CHANNEL CHANNEL

370X/NCP 370%/NCP
COMMUNICATIONS COMMUNICATIONS
CONTROLLER CONTROLLER

SDLC LINK SDLCLINK

8100-DPPX

DPPX
INDEPENDENT T | TERMINAL
NETWORK
APPLI-
CATION T | TERMINAL

work protocol, synchronous data link control) and may be point-
to-point or multipoint.

There were two principal architectural and design alternatives for
interconnecting 8100 nodes:

1. As a cluster controller which attaches in much the same way
as the 8100 attaches to a host system (PU_T2)
2. As a communications controller (PU__T4)

The second alternative was taken since in the long term this will
give a better base on which to build a distributed DPPX network.
The communications controller is called a PU_T4 node in SNA
terms and is identical to a PU_TS except that it does not exist in
the same physical node as its SSCP. However, the protocols from
the SSCP are exactly the same as those for the PU_TS. Hence, it is
possible to use the same physical unit design to implement a com-
munications controller (PU_T4) as that used in the PU_TS5 (since
the PU_T4 is simply a distributed form of the PU_T5). The same
control code is used in DPPX for both the PU_T4 and PU_Ts phys-
ical units.

Terminals physically distributed from the SSCP node are sup-
ported by the PU_T4 DPPX node so that applications in one DPPX
node can communicate with applications or terminals located in
an adjacent node. Note that these distributed terminals can be
both SNA and non-SNA terminals (supported by a Transform

HARRISON IBM SYST J & VOL 19 @ NO 2 & 1980

Figure 7 Simple interconnected 8100-DPPX systems

8100-DPPX 8100-DPPX
TERMINAL TERMINAL

APPLICATION umi APPLICATION T

SDLC LINK TERMINAL

ERMINAL T

T

Figure 8 Interconnected multidropped 8100-DPPX systems

:
8100-DPPX 8100-DPPX

8100-DPPX APPLICATION APPLICATION

APPLICATION

APPLICATION APPLICATION

8100-DPPX 8100-DPPX
i

Layer). Applications in the PU__T4 DPPX node can also communi-
cate directly with terminals attached to the same PU_T4 node. In
this case, both the terminal and the application program are com-
pletely distributed from the sSCp. This support, distributed from
the SSCP, allows great flexibility in configuring a DPPX network.
The interconnected DPPX PU_T4 and PU_TS nodes are shown in
Figure 7, where the configuration allows any application shown to
communicate with any terminal shown and any application to
communicate with any other application.

Figure 8 shows the capability of having many interconnected 8100
systems off the same link in a multidrop configuration. This con-
figuration provides for high link utilization and low link costs. The
PU_TS5 node provides primary link-station support, and the PU_T4
nodes are defined as secondary link stations. Applications in the
PU_T5 node can communicate with applications or terminals in
any of the PU_T4 nodes. Similarly, applications in any of the
PU_T4 nodes can communicate with applications or terminals in
the PU_TS node.

IBM SYST J e VOL 19 ¢ NO 2 ¢ 1980 HARRISON

Figure 9 DPPX star network

DPPX 2

APPLICATION

APPLI- APPLI-
ATI CATH APPLI-
CATION ON CATION

APPLI-
CATION

][]

APPLI-
CATION

One DPPX system can interconnect with a number of adjacent
DPPX systems to form a star-like DPPX network where the central
system supports adjacent DPPX systems and acts as the configura-
tion manager. This star-like DPPX network is depicted in Figure 9,
where DPPX 1 is the configuration manager. Applications existing
in DPPX 1 can connect directly with applications or terminals in
any of the other DPPX systems since DPPX 2, DPPX 3, DPPX 4, and
DPPX 5 are all interconnected to DPPX 1.

With the utilization of this interconnection capability, it is pos-
sible to build up an independent network of DPPX systems and still
maintain a host connection capability by having one or more DPPX
systems include a cluster controller attachment capability to the
host system. The user can then distribute 8100 systems to dif-
ferent geographic locations and maintain control of the network at
one specific DPPX location. For instance, DPPX 1 in Figure 9 can
have a host attachment capability, and once all the information
has been retrieved from the adjacent DPPX nodes and its central
DPPX data base has been updated, data can then be transmitted to
the host system for a final update of the host data base.

HARRISON IBM SYST J ¢ VOL 19 ¢ NO 2 » 1980

System definition capability

In existing IBM systems the system definition capability by which
resources are defined to the system has usually been in the form
of a system generation procedure. With this procedure a list of
macros are executed to produce a system generation deck which
is then read by the system. This deck defines the network config-
uration to the system and is typically accessed by the configura-
tion manager (SSCP) when the network configuration is being acti-
vated.

One of the problems inherent in this approach is that it becomes
very difficult, if not impossible, to change the network configura-
tion of the system without requiring a new system definition for
every node in the network. Changing the network configuration
results in the existing configuration being shut down such that no
useful work can be carried out by the system during that time. In
DPPX, the network configuration definition has been made dy-
namic such that all network resources are defined by DPPX com-
mands. The definition required for the SSCP and physical units in a
DPPX system is discussed below.

It should be clear at this point that it is possible in certain user
configurations to have many different physical units present in
one DPPX system. For example, in Figure 6, there exist three
physical units, and more can exist depending on whether the
same DPPX system needs to interconnect to other DPPX systems. It
is apparent that a variable number of physical units can exist in
one DPPX system, and it is also desirable to be able to dynamically
activate and deactivate these physical units. For example, a DPPX
system may not require a host attachment capability (PU_T2) un-
til late in the working day and may only require the capability to
be operational for the time it takes to update the host data base.
Implementing physical units as DPPX control applications® seems
to meet all these requirements and has the followng advantages:

. The physical units, as application programs, can be started
and stopped dynamically like any other DPPX application pro-
grams. This capability meets the requirement of dynamically
activating and deactivating different physical units as re-
quired. The basic DPPX commands, START and STOP,” are used
to accomplish this function.

. New keywords on the DPPX START command allow system def-
inition information relating to the physical units to be entered
dynamically at start time; no other system definition informa-
tion is necessary.

. Since the physical units are applications from a system point
of view, they can maintain connections with the SSCP as appli-
cation-to-application connections.

IBM SYST J & VOL 19 &« NO 2 o 1980 HARRISON

implementation
and definition
of SSCP and
physical units

terminal
definition

4. Numerous development advantages exist in being able to de-
velop the physical units as separate and distinct development
packages. The application programs are written to well-de-
fined and well-documented interfaces.

5. There are no design restrictions on the number of physical
units existing in one DPPX system; the restriction will normally
be one of storage availability within the DPPX system.

The sscp is also implemented as an application program. The
SSCP (by SNA definition) maintains connections with each network
resource in its domain (except SNA links). These connections will
simply be DPPX application connections. As an example, the SSCP
connection to a DPPX physical unit (which is itself an application
program) will be an application-to-application connection within
DPPX. The system definition parameters required by the SSCP it-
self are entered dynamically on the START command, and hence
no special system definition is required for the sscp. It can be
seen that the definition, activation, and deactivation of the SSCP
and PUs control functions within DPPX and are therefore com-
pletely dynamic.

As described earlier, all terminal resources, including an inter-
connected DPPX system, are defined to the managing DPPX system
in the same basic way. It is appropriate at this time to describe the
way in which these terminal resources are defined in DPPX.

DPPX includes a command system by which users of the system
can enter either system or user-defined commands. One of the
system commands available is DEFINE.NET,” by which the user

can define a particular network resource to the configuration
manager (SSCP). When a user is defining a network consisting of a
number of resources, a DEFINE command for each network re-
source is entered to the command system. For a large network,
these individual commands will normally be entered as a list of
commands which is then stored on a data set. This list can then be
entered for execution to the command system by entering another
DPPX command.

Once the initial DPPX system has been defined, it may be neces-
sary to change the network configuration either by adding new
terminals or perhaps by adding an interconnected DPPX system.
In this case, the DPPX configuration can be changed dynamically
by simply entering the appropriate DEFINE commands to the com-
mand system. While the network configuration definition is being
updated, the previously defined network is not affected and can
continue operation. It is not necessary for there to be any down
time for the system, so that as the user grows and adds more
capability within the DPPX network, the definition process does
not cause a major upheaval of the user’s operations; useful work
can still be carried out at the system location.

HARRISON IBM SYST J ® VOL 19 ¢ NO 2 o 1980

Figure 10 Typical DPPX configuration

APPLICATION

SYSTEM/370
HOST

SYSTEM/370 CHANNEL 370X/NCP

COMMUNICATIONS
CONTROLLER

SDLC LINK

8100 NODE A 8100NODE B

DPPX PU_T2
CLUSTER CONTROLLER

DPPX
INDEPENDENT
NETWORK

APPLICATION

ZO—-—P0O—-rD0DUO>

Once the configuration has been defined, the new resources can
be activated and are then available for use within the network.

Application network usage capability

Up to this point, the three basic ways in which the DPPX system
can be configured have been discussed, and certain system defini-
tion aspects of the DPPX system have been described. This section
will concentrate on DPPX application usage of the network config-
urations and will discuss the DPPX definition process for appli-
cation programs.

It may often be necessary to have more than one of the network
configuration capabilities present in the same DPPX system at
once, depending on the user’s configuration requirements. A
more complex DPPX configuration is depicted in Figure 10. Shown
is one DPPX node (Node B) consisting of a host attachment capa-
bility in addition to a stand-alone function. In this configuration
the DPPX application in 8100 Node B can communicate with the
following resources: (1) host application programs, (2) DPPX appli-
cation programs in both 8100 nodes, and (3) attached terminals in
both 8100 nodes. The DPPX application in 8100 Node A can com-

IBM SYST J e VOL 19 ¢ NO 2 o 1980 HARRISON

application
sign-on
capability

municate with the following resources: (1) DPPX application pro-
grams in both 8100 nodes and (2) attached terminals in both 8100
nodes.

A typical function needed with this configuration is to transmit
input from a terminal to a host application program and transmit
data from the host application program to the terminal. This pro-
cedure can be accomplished by having a pass-through application
program that supports connections to host applications and DPPX
terminals. In this way the user at the DPPX-supported terminal can
appear, externally at least, to be directly connected to the host
system—the interface seen at the terminal is as if the terminal
were directly connected to the host. In Figure 10 the terminal can
be attached to either 8100 Node A or 8100 Node B. 1BM 3270 Data
Stream Compatibility is an iBM-licensed program that provides
such a capability.

It is appropriate at this point to discuss some network communi-
cation aspects of how this is made possible within DPPX.

As can be seen in Figure 10, the host application program resides
within the host domain, and the DPPX terminal resides within the
DPPX domain. The terminal and host application program thus be-
long to two different domains, and the intermediate DPPX appli-
cation program, often referred to as a pass-through application, is
maintaining connections in two different domains. To accomplish
these connections without requiring cross domain support, the
DPPX application program has to be represented in each of the
domains as a network resource (in this case a logical unit (LU)).
It must be possible for the DPPX application program to be as-
signed a logical unit in both the DPPX domain and the host domain
in this particular example. Since in the general case many dif-
ferent domains may be represented in one DPPX system, it is im-
portant to be able to allocate to a DPPX application program a
logical unit in any particular domain or domains so that it can
communicate with other resources (terminals or other application
programs) existing in the same domain. This has been achieved as
explained below.

For a DPPX application to become a member of a DPPX domain,
the application issues a macro (SIGNON) that causes the following
internal DPPX processing to be carried out:

& Dynamically creates a logical unit within the domain specified
on the macro.

& Dynamically informs the DPPX SSCP (via the SSCP-PU con-
nection) of the creation of a new network resource within its
domain, at which time the SSCP adds the resource definition to
its list of network resources.

The SscPp then causes the new resource to be made active and
thus usable within the domain.

HARRISON IBM SYST J % VOL 19 ® NO 2 & 1980

All information relating to the new resource and required by the
SSCP is either entered directly on the SIGNON macro, or provided
internally by DPPX communications processing. The system pro-
grammer does not have to enter any definition commands to the
DPPX system on behalf of the application program. The informa-
tion required by the SSCPis transmitted by the physical unit repre-
senting the particular domain at that node. Note that the domain
must be represented at a particular node; otherwise an appli-
cation cannot become a member of the domain and cannot com-
municate with other resources in that domain.

For example, in Figure 10, two domains exist in 8100 Node B:
one is a host domain and the other is a DPPX domain represented
by the PU_T5. Any application in this DPPX node has the capabil-
ity of becoming part of only these two specific domains. It cannot
communicate with any resources that are part of another domain
not represented at the 8100 Node B.

If the application program is moved to another 8100 node in
which the same domains are represented, the same processing
will occur and no change will be required of the application pro-
gram. DPPX applications, from a network configuration viewpoint,
are hence dynamic and portable and can effectively be shifted
around within the network.

For attaching to a host network, the application can utilize the
same external interface (SIGNON macro), but in this case no dy-
namic definition occurs to the host SSCP during the internal pro-
cessing of the SIGNON function. In this case resources have to be
predefined to the host and DPPX systems to meet the existing host

system definition procedures. For host networks, all logical units
have to be defined as part of the host system generation proce-
dure, and all DPPX logical units defined to the host system are
built by DPPX when the particular physical unit (in this case PU_
T2) representing the host network is started within DPPX. These
resources must exist before any DPPX applications issue SIGNON
requests since they are not built and activated dynamically as part
of SIGNON.

The allocation and activation of a logical unit (supporting a DPPX
application program) within a DPPX unique network is completely
dynamic, and no prior network definition of the application pro-
gram is required. The SIGNON macro is in effect the network defi-
nition procedure for a DPPX application program within a DPPX
network. Any change in the definition of the application can be
achieved by alteration of the SIGNON parameters.

Summary

It has been shown that the 8100 Information System and DPPX
operating system can assume the external appearance of three

IBM SYST] @ VOL 19 @ NO 2 » 1980 HARRISON

different physical unit types (PU_T2, PU_TS, PU_T4), and these
physical units can be dynamically started and stopped within the
same DPPX system. The DPPX system has the capability of attach-
ing to a host system, operating as a stand-alone system indepen-
dent of any other system, and operating as an interconnected sys-
tem.

The capabilities of DPPX in this area are such that it allows a wide
variety of configurations to be supported and is also extendable
for any future additional configuration requirements.

The DPPX system has set a precedent towards the dynamic defini-
tion of network resources both for terminals and application pro-
grams. Terminal resources and application programs are both de-
fined dynamically in the DPPX system, and formal system genera-
tion is not required. It is easy to install an 8100-DPPX system, and
once the system is running, it is a simple matter to change the
configuration in a dynamic manner.

The basic support for different types of terminals was shown to be
the same externally and internally to the application program and
system operator, and it will be possible to support new terminals
within the same structure.

The overall solution to these problems within a general network
design framework will allow the 8100 system and DPPX to provide
a solid base for 1BM in distributed processing.

ACKNOWLEDGMENTS

The author is grateful to the team of experienced system design-
ers who worked on the communications design of DPPX. In partic-
ular, the author expresses his thanks to L. C. Thomason, H. R.
Albrecht, and A. F. Banks for their creative contributions to the
DPPX communications structure.

CITED REFERENCES

1. S. C. Kiely, ‘““An operating system for distributed processing—DPPX,”” IBM
Systems Journal 18, No. 4, 507-525 (1979).

2. Systems Network Architecture General Information, GA27-3102, IBM Corpo-
ration; available through the local IBM branch office.

. A. L. Scherr, ‘Distributed data processing,”’ IBM Systems Journal 17, No. 4,
324-343 (1978).

. H. R. Albrecht and L. C. Thomason, *‘I/O facilities of the Distributed Process-
ing Programming Executive (DPPX),”’ IBM Systems Journal 18, No. 4, 526-
546 (1979).

. SNA Format and Protocol Reference Manual, SC30-3112, IBM Corporation;
available through the local IBM branch office.

. Distributed Processing Programming Executive Base (DPPX/BASE): Guide to
System Services, SC27-0405, IBM Corporation; available through the local
IBM branch office.

. Distributed Processing Programming Executive Base (DPPX/BASE): Com-
mands: Configurations and Operations, SC27-0511, IBM Corporation; avail-
able through the local IBM branch office.

HARRISON IBM SYST] @ VOL 19 ¢ NO 2 » 1980

GENERAL REFERENCES

R. J. Cypser, Communications Architecture for Distributed Systems, Addison-
Wesley Publishing Company, Reading, MA (1978).

1. H. McFadyen, **Systems Network Architecture: An overview,”” IBM Systems
Journal 15, No. 1, 4-23 (1976).

H. R. Albrecht and K. D. Ryder, ‘““The Virtual Telecommunications Access
Method: A Systems Network Architecture perspective,” IBM Systems Journal
15, No. 1, 53-80 (1976).

C. R. Blair and J. P. Gray, *‘IBM’s Systems Network Architecture,”’ Datamation
21, No. 4, 51-56 (April 1975).

Distributed Processing Programming Executive Base (DPPX/BASE): General In-
formation, GC27-0400, IBM Corporation; available through the local IBM branch
office.

The author is located at the IBM System Communications Divi-
sion laboratory, Neighborhood Road, Kingston, NY 12401.

Reprint Order No. G321-5122.

IBM SYST J o VOL 19 # NO 2 ¢ 1980 HARRISON

207

