A distributed data processing system is composed of a set of
nodes that are interdependent yet capable of operating autono-
mously. This paper describes a procedure for controlling the in-
terdependencies and nodal autonomies with a logical distribution
of applications and their data. The procedure is illustrated with
data that were obtained from an on-line operations planning and
control system at a steel mill.

Logical distribution of applications and data
by C. T. Baker

Among the many reasons for using distributed data processing
systems are: economy, convenience, local autonomy, availabil-
ity, simplicity, manageability, and responsiveness. There are also
factors that tend to inhibit the use of distributed systems. These
include the costs of conversion from existing centralized systems,
the tendency of small systems to become small computing cen-
ters, the difficulty of implementing data base systems on small
machines, and the difficulty of defining clear boundaries for appli-
cations. Moreover, in a distributed environment the applications
on the several small systems usually should be coordinated so
that the data processing needs of the parent organization are sat-
isfied, which may not be a trivial task. These and many other
points connected with the properties of distributed data process-
ing systems are discussed thoroughly in References 1 through 4.

In this paper we are concerned with one aspect of distributed data
processing system analysis—how to define the nodes of such a
system in terms of its applications and their data. The procedures
we describe are generic in that they are not restricted to any par-
ticular application environment. The procedures are illustrated
with data that were obtained from an on-line operations planning
and control system at a steel mill.

Copyright 1980 by International Business Machines Corporation. Copying is per-
mitted without payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright notice are
included on the first page. The title and abstract may be used without further
permission in computer-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor.

IBM SYST J » VOL 19 @« NO 2 o 1980

Logical distribution

We wish to define a distributed data processing system in terms of
its applications and data. We can gain some appreciation of this
task by reviewing the definitions of distributed data processing
systems that are given in References 1, 2, and 3.

In Reference 1 we find the definition: ‘‘Distributed data process-
ing is defined as the implementation of a related set of programs
across two or more data processing centers or nodes. The pro-
grams are related in that they share or pass data between them.
Each node is generally capable of performing data processing ap-
plications independently, and thus would normally have data
storage and program execution facilities.”

The definition stated in Reference 2 is: **A distributed system is
one in which there are several autonomous but interacting pro-
cessors and/or data stores at different geographical locations.”
In Reference 3, Item 5 of a seven-item definition is: ** ‘Coopera-
tive autonomy’—There are interactions among the components
of the system: that is, they cooperate on certain tasks while han-
dling other tasks autonomously.”’

We infer from these definitions that to obtain a clear understand-
ing of our task, we should work with a collection of related appli-
cations that have been implemented, and that we must group
these applications with their data in a way that permits each group
to perform a significant amount of useful work independently,
However, since we are working with a collection of related appli-
cations, each group will either rely to some extent upon another
group or be relied upon to some extent by another group.

Two key phrases must be considered: ‘‘permits each group to
perform a significant amount of useful work independently,’” and
‘*each group will rely to some extent upon another group.’” These
notions contain the essence of the distributed data processing
system definitions. In this paper we use a concept of intergroup
dependency to include both notions. As a group’s dependencies
are reduced, its autonomy is increased. In essence, this paper is
about dependencies—what they are and how they can be mea-
sured.

We are concerned with the distribution of applications and their
data. For this analysis it is convenient to define the logical distri-
bution, which reflects our immediate interests. (A definition of a
distributed data processing system is discussed in the Appendix.)

A logical distribution is a partitioning of a collection of related
applications and their data into a maximum number of groups that

IBM SYST J ¢ VOL 19 ®« NO 2 o 1980

have a specified low level of interdependence. A logical distribu-
tion is composed of at least two groups. Every proper subset of
the logical distribution has an interdependency with at least one
group not in the subset.

Because of its interdependencies, a logical distribution represents
a single application environment; consequently any implementa-
tion of these applications, either centralized or distributed, will be
a single data processing system. If the implementation is distrib-
uted, a central coordination of communication structures, key
data structures, and key applications will be required—for with-
out central coordination there can be no assurance that the de-
pendencies among the groups will be supported.

Dependencies

Our distribution procedures are general; they apply to any data
processing system, either manual or automated. For convenience
we have used information that was obtained from an on-line data
base system; hence our terminology is related to this type of sys-
tem. An application is a set of application programs. An appli-
cation program belongs to only one application and supports a
transaction—for each transaction there is one application pro-
gram. A transaction is synonymous with its application program.

Application programs frequently require data from two or more
data bases. Data bases, in turn, frequently supply data to two or
more application programs. It is evident that as the programs and
data of a collection of related applications are put into two or

_more groups some of the programs in a group will probably re-

quire some of their data from a data base that is in another group.
This is the basis for the dependencies that are discussed in this

paper.

Dependencies among the groups of a logical distribution are com-
posed of transaction dependencies. A transaction dependency is
that part of a dependency that is due to a single transaction type.
It is characterized by an orientation and two numbers. The orien-
tation, schematically represented by an arrow, shows where the
remote data of the transaction are located. The first number,
called the active component, gives the frequency of use of the
transaction in usages per day. It is called the active component
because it represents a part of the activity of the system. The
second number, called the passive component, is the number of
bytes of remote data that could be used by the transaction. It is
called the passive component because it represents data that must
be available to the transaction, independent of the activity of the
transaction.

IBM SYST J e VOL 19 @ NO 2 o 1980

transaction
dependencies

intergroup
dependencies

Transaction dependencies are put into four categories with refer-
ence to an active threshold and a passive threshold. In the follow-
ing illustrative examples, the active threshold is 500 transactions
per day (Tx/Day), and the passive threshold is four million bytes.

1. Active component = 1000 Tx/Day
Passive component = (.1 million bytes
Classification = High, Low (HL)

. Active component = 20 Tx/Day
Passive component = 10 million bytes
Classification = Low, High (LH)

. Active component = 20 Tx/Day
Passive component = 0.1 million bytes
Classification = Low, Low (LL)

. Active component = 1000 Tx/Day
Passive component = 10 million bytes
Classification = High, High (HH)

The purpose of these classifications is to measure the transaction
dependency. In the HL category the transaction requires little re-
mote data, so the transaction dependency is low. In the LH cate-
gory the transaction is not used very often, so the transaction
dependency is again low. Clearly, the LL dependencies are low.
Obviously the HH dependencies are high since they are used fre-
quently and require a large amount of remote data. This leads to
one condition for a logical distribution—it may not contain any
HH transaction dependencies.

The dependency between two groups of a logical distribution is
often due to more than one transaction type. Hence, we consoli-
date the transaction dependencies. We do this within the transac-
tion dependency categories by adding the active components and
by measuring the set theoretic union of the passive components.
For example,

Transaction Type A
Active = 600 Tx/Day
Passive = 0.15 million bytes

Transaction Type B
Active = 500 Tx/Day
Passive = 0.1 million bytes

Assume A and B could use 0.05 million bytes of remote data in

common. Their consolidated dependency is

Active = 1100 Tx/Day
Passive = 0.2 million bytes

After the transaction dependencies are consolidated within their
respective categories, the consolidated dependencies are classi-

IBM SYST J e VOL 19 ® NO 2 e 1980

fied using the same thresholds. This consolidation leads to a fur-
ther condition for a logical distribution—a consolidated depen-
dency cannot be in the HH category.

We can now describe a dependency between two groups of alogi- Figure 1 Dependency schematic
cal distribution. It consists of an orientation and the three consoli- ¢
dated dependencies, HL, LH, and LL. The schematic representa-

tion of an intergroup dependency is shown in Figure 1. GROUP L
A (1000,0.1),[20, 10.0]
{20,0.1}

The dependency definition reflects some implementation consid-
erations. The HL dependencies do not involve much remote data,

1 1 i — - (3 1 HL, ACTIVE COMPONENT 1000 TX/DAY
hence their transactions mlght be decoupled—supported .lo 3 H AT O = o
cally—through the use of copies of data. The LH dependencies, BYTES

1 . ‘LH, 0 T 20 TX/DAY

however, do not have much transaction message traffic; they [t ACT N OO T T o
could be supported by data communications facilities. BYTES

KEY:

{}: LL, ACTIVE COMPONENT 20 TX/DAY
It is evident that the values of the thresholds determine the num- PASSIVE COMPONENT = Lree "
ber of groups in a logical distribution, the extent of a group’s au-
tonomy, and the strength of its dependencies. The threshold val-
ues at present are determined judgmentally, after a thorough fa-
miliarity with the applications has been attained. A visuval aid for
use in the determination of the threshold values is described later.
In the future, more formal methods, currently in development,

may be used in these analyses.s’6

Steel mill data system

We have described some general distributed data processing con-
cepts that can apply to any application environment. For reasons
of efficiency and convenience, we have worked with data that
were obtained from on-line Information Management System
(1MS) applications. We required a system that was composed of a
substantial number of related applications. This requirement was
satisfied by the selected system: an on-line operations planning
and control system at a steel mill. Our subsequent discussion is in
terms of this steel mill system.

The steel mill system is implemented with IMS/VS, Version 1.1.4.
At present two major categories of production activity are sup-
ported by the on-line system: primary steel production and steel
plate production.

Primary steel production starts with the introduction of molten
pig iron, scrap steel, and other raw material into a basic oxygen
furnace. After a 45-minute process cycle, the furnace produces a
“‘heat’’—300 tons of molten steel—with a specified chemical
composition. After several processing steps, the heat is formed
into slabs, an intermediate product that weighs roughly 17 tons
and is up to eight inches thick, up to six feet wide, and 20 feet
long. Slabs are the end product of primary steel production.

IBM SYST J @ VOL 19 « NO 2 o 1980

Table 1

Data base names and codes

Code

Item

Millions
of bytes

Millions
of bytes

DBO1
DB06
DB07

Metallurgical, check analysis
Primary steel orders, 1
Slab inventory, primary steel

19.1
10.7

Slab inventory, 8
Primary steel orders, 2
Chemical analysis

2
0.5
34.2

DBO08
DB09
DB10
DB11
DB13
DB1i4
DBI15
DB16
DB18
DB19
DB20
DB21
DB24
DB25
DB26
DB27
DB28

Slab orders, 1
Slab orders, 2

Slab orders, 3

Plate orders, 1
Plate orders, 2
Physical test, 1
Physical test, 2
Slab inventory, 2
Slab inventory, 3
Slab inventory, 4
Slab inventory, 5
Slab inventory, 6
Slab pusher

Slab inventory, 7

Metallurgical grade practice
Primary steel terminal

Metallurgical specifications

Slab inventory, 9 66.2
Plate production sequence 1.7
Plate production reports 12.4
Slab incentive, 1 5.2
Slab incentive, 2 11.5
Plate inventory, 1 11.4
Plate inventory, 2 0.3
Shipping services 14.6
Shipping, 1 1.2
Shipping, 2 0.7
Shipping, 3 0.7
Shipping, 4 0.3
Shipping, 5 1
Shipping, 6 1
Shipping, 7 0.
Primary steel production 14.
Finished inventory 1.

Figure 2 Dependency diagrams

z
3
<
Pad
=
z
=
z
wl
z
=}
g
=
3
o
wh
2
5
<

ACTIVE COMPONENT IN TX/DAY

Y PERCENT

Y PERCENT
THRESHOLD

THRESHOLD

0 i
0 XPERCENT
PASSIVE COMPONENT IN BYTES

A

THRESHOLD __®

THRESHOLD

X PERCENT
PASSIVE COMPONENT IN BYTES

(8)

Steel plates, which are a finished product of this mill, are pro-
duced from slabs by a series of rolling and shearing operations. A
steel plate is defined (arbitrarily) by its thickness, which must
equal or exceed 0.18 inch. A steel plate can be as much as 160
inches wide and up to 60 feet in length.

The steel mill data system is composed of 16 applications (listed
later at the bottom of Table 2). Each application is composed of a
set of transaction types. There are 271 on-line transaction types
and 284 batch programs in the system. The on-line transactions
are used approximately 37 000 times a day.

The 400 million bytes of on-line data in the steel mill system are -
organized into 40 physical IMS data bases, 18 of which are isolated
in that they have no IMS logical relations to other data bases. The
remaining 22 data bases are organized into nine groups. Logical
relations connect the data bases within each group, but no logical
relations connect any group to any other group. The descriptions,
codes, and sizes of the data bases are given in Table 1.

Automated analysis
The volume and complexity of the relationships that must be ana-
lyzed in the IMS applications are apparent. A detailed analysis of

the steel mill system is impractical without data processing sup-
port. To this end one of the members of our group, R. M. Gale,

IBM SYST J @ VOL 19 ® NO 2 e 1980

prepared a set of APL programs that provide a comprehensive
analysis of the data that are generated by IMS utility programs.’
Most of the information that is needed for the analysis of depen-
dencies can be obtained with these programs. The functions of
these programs are described in the section on distribution proce-
dure.

The APL programs are essential for efficient analysis. Earlier, in a
manual analysis of IMS applications in a manufacturing plant, it
was necessary to use a sampling method and roughly five times as
much human effort to obtain results that are much less detailed
than the results described here. Moreover, in the manufacturing
application the relations among the applications and the data
bases are much simpler, logically, than the comparable relations
in the steel mill.®

The threshold values that were used to classify the dependencies
were determined judgmentally, after a thorough familiarity with
the characteristics of the applications had been attained and while
several early iterations of the distribution procedure were made.

A graph of all of the dependencies of a distribution is a useful
visual aid for these analyses. An example is in Figure 2, which
shows six dependencies for two variations of a logical distribu-
tion. The variations usually involve the relocation of a few trans-
actions. The percentages shown in Figure 2 are percentages of the
total on-line bytes and the total number of on-line transactions
per day.

Comparison of Figure 2A with 2B shows that in 2B the points are
closer to the horizontal and the vertical axes. It is the closeness of
the points to the axes that characterizes the better distribution
and leads to the judgmental determination of the threshold val-
ues. In the steel mill system analysis a one percent threshold was
used. This figure put the active threshold at 370 transactions per
day and the passive threshold at four million bytes.

Distribution procedure

A pragmatic, iterative procedure was used to distribute the steel
mill system—all decisions were made with human judgment. The
analysis is based upon a complete record of the IMS system opera-
tion for three nonconsecutive days during a single week of June
1978. No further sampling methods were used.

The distribution procedure is shown in Figure 3. Many iterations
of this procedure were required before the final distribution was
obtained. We describe each step of the procedure but do not de-
scribe individual iterations.

IBM SYST J e VOL 19 « NO 2 o 1980

determination
of the threshold

values

Figure 3 Distribution procedure

START

DEFINE
APPLICATION
GROUPINGS

!

ASSIGN
DATA BASES
TO GROUPINGS

!

ASSIGN
TRANSACTIONS
TO DATA BASES

!

CALCULATE ACTIVE
COMPONENTS OF
TRANSACTION
DEPENDENCIES

!

FEASIBLE
EXTENSION

OF
COMPUTER
ASSIST

t

CALCULATE PASSIVE
COMPONENTS OF
TRANSACTION
DEPENDENCIES

t |

EVALUATE

}

0K

Table 2 Update activity table (updates per day)

Data Applications*
bases

S
o
o]
1
Q
I~y

1 J

=

DB01
DB06
DBO07
DBO08
DB09
DB10
DBI11
DBI12
DB13
DB14
DB15
DB16
DB18
DB19
DB20
DB21
DB24
DB25
DB26
DB27
DB28
DB29
DB30
DB31
DB32
DB33
DB34
DB35
DB36
DB37
DB38
DB39
DB40
DB41
DB42
DB43
DB44
DB45
DB46
DB47
DB49

N —_—
U B NNN
NOoRONN

COoOOoOCCOoOOCOCOO O

- _ 2
PO OOCOOoOOCOOOOO

p—
B\

N
38
O D

W
CODOOCOCOOOONCOOOO OO0 OOWNOOOOOoOOOODOD

[\od
S

O
(=)
~N

W
\O
CONCOXOCOLOOPIPOOODOOOOCOOOO

COCOCOOOCOCOOODOOOCOOOOOODOOOOOOODOO

W
S
[Nl ool =Nl - =Nl e - e Rl N el N e e i = W B e N e B e B B o B B = S)
O
N

iy

A\
~
CONONOOCOCOOOLOCOOOOoOOCLOLoOoOLOoOOoOoOCCO

OOOOOOOOOOO\IOOOO:IOOOOOOOOOOOOOOOOOOOOOOOO
(=) N

O

i
(=3
<
—
AR OO OCUVMOODO—OOR OO

[N

._
N
O

SN OO OO NOODODOOOOOD

COPONOOCOLOONOCQLQOOCOO—~OOD

S
CROOCO O OO OO DO OO0

COCOOCOOODOOOTCODOOOODODOODOODD
SN
n

0
0
0
0
0
0
0
0
0
0

[=N N e
(=2 %=
COOoOWHXOOO
& B
==
w W

*Key to applications:

A is primary steel production reporting; B is primary steel production planning, 1; C is chemical analysis; D is work in process reporting; E is shipping data
services; G is order receipt; H is order position; / is in-process inventory maintenance; J is finished inventory maintenance; K is plate production reporting;
L is shipping; M is slab inventory maintenance; N is slab requirements planning; O is slab scheduling; P is primary steel production planning, 2; ¢ is labor
incentive accounting, primary steel; R is primary steel production planning, 3.

define For the first step of the procedure it is necessary to form groups
application of applications. This requirement involved several consid-
groupings erations. The first and most obvious consideration is that the data
system supports two major categories of production activities—

primary steel and steel plates. This consideration gives one major

partitioning. A second major partitioning is based upon type of

work activity —planning and operations. The distinction between

planning and operations is based on the time horizon of the activ-

ity. Slab scheduling, for example, prepares the sequence of slab

IBM SYST J @ VOL 19 @ NO 2 * 1980

X
Q
=

©
xR
RO

00 0
0 0
[= 0=

COoOLOoOOoOoOoCOoOooocOoC

COoOCOOOOoCOoOCOONOS O

~
x©
(=]
W

OO0 OCOOCOLOoOCOCOLOLLODOR
(=4

EN

ey

O
ot
Y)
WWOOODOOOCOODOLOLODOOLODOLOODOOCOLOTTOoOOCOOTO

oo

%
CUOOCOCOOCOOCOOCOLOOLLLODOoOOoOOCOOOODOODOOR

CODOOCOCOOCODCOOOOOOCO~ OO0 ODoOOoOOOTS

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

CODPOLPDOLOoOCLLIIoCoOOoOD

ocoocoocCococooo
cCooLCoOOoOCOoC O

consumption several days in advance. It is a planning activity.
Plate production, however, is reported within an eight-hour inter-
val. It is an operations activity. The classification of the appli-
cations by work activity required extensive discussion with per-
sons familiar with steel production and finally a review with mem-
bers of the data processing staff that developed the system.

Several other applications were put into additional groups that
were determined with the aid of a table of the update activity of

IBM SYST J @ VOL 19 @ NO 2 o 1980

assign
data
bases

Figure 4 Application groupings

A
PLANNING
PRIMARY STEEL | STEEL PLATES | ORDER SERVICES
[] siasrequiRemenTs | |
PRIMARY STEEL | PROCESSING
PRODUCTION SLAB SCHEDULING |
PLANNING | SLAB INVENTORY |
| MAINTENANCE
| ORDER RECEIPT
| ORDER POSITION
| SHIPPING DATA
| | SERVICES
LABOR IN-PROCESS INVENTORY | |
PRIMARY INCEN(')FIVE | MAINTENANCE
STEEL CHEMICAL FINISHED INVENTORY | |
PRODUCTION ANALYSIS ACCOUNTING | MAINTENANCE I
REPORTING PRIMARY
PRODUCTION
STEEL l REPORTING
| SHIPPING I
| | PeATEMETALLURGICAL | |
SERVICES
| WORK-IN-PROCESS |
: REPORTING |

OPERATIONS

the applications as shown in Table 2. The table was generated by
the APL programs. Consider first the chemical analysis appli-
cation. The table shows that it updates only DB01 and DB31. More-
over these data bases are not updated by any of the other appli-
cations. Clearly, the chemical analysis application can be put into
a group by itself.

A similar situation exists with respect to the primary steel labor
incentive accounting application and DB35 and DB36. Further ex-
amination of the table shows that this is also very nearly true for
the primary steel production reporting application with respect to
DB47. At this point we apply our knowledge of the applications
and recognize that these three applications comprise the entire
primary steel operations part of the distribution. Hence, for con-
sistency we also put the primary steel production reporting appli-
cation in a separate group. Finally, the order receipt, order posi-
tion, and shipping data services applications were identified as a
separate group through the use of an experimental clustering al-
gorithm. The final structure of the groupings is shown in Figure 4.

The next step of the distribution procedure, which is the first of
the APL processing steps, is to assign the data bases to the appli-
cation groups according to their update activity. A data base is
assigned to the application group that performs the most updates
upon it. The assignment of the data bases is shown in Figure 5.
The assignment of the data bases to application groups was con-
strained so that no IMS logical relations link any groups. Thus,
logical relations are wholly contained within their own group.

IBM SYST J @ VOL 19 ¢ NO 2 » 1980

Figure 5 Transaction and data volumes and data base groupings

PLANNING

PRIMARY STEEL STEEL PLATES ORDER SERVICES

5700 TX/DAY 11800 TX/DAY

24M BYTES 82 5M BYTES

DB8: 06,07,09 D8: 08, 10, 13,20,
11,30 21,24,25,26,

27,28,29,33

2700 TX/DAY

61.6M BYTES
DB: 15, 16,39

45 TX/DAY 730 TX/DAY 158 TX/DAY 15 800 TX/DAY

14.6M BYTES 53.3M BYTES 16.7M BYTES 147.3M BYTES
DB: 01,31 DB: 35,36 DB: 14,18,19,32,
34,37, 38,40,
41,42, 43,44,
45.46.49

OPERATIONS

This step of the procedure produces the basic structure of the
logical distribution. It is for this reason that the data base assign-
ments are based upon update activity, which tends to minimize
the number of dependencies that involve updates. This becomes
significant when implementations are considered, since one of the
implementation options involves the use of copies of data to pro-
vide local (within the group) support for dependencies. Obviously
it is desirable to minimize the need for data copies that must be
updated, since this can involve some difficult control problems.

At this point we have a grouping of applications and data bases.
In the next step of the APL processing of the procedure the initial
groups of applications are ignored, and the transaction types are
assigned to data bases according to their total activity—read-only
and update. This assignment yields a grouping of transactions
that strongly resembles the initial application groups but differs in
that a few transactions are in different groups. The number of
daily transaction occurrences and the amounts of data contained
are shown for each group of the final logical distribution in Figure
S.

The last of the APL processing steps calculates the active com-
ponents of the transaction dependencies. The results within each
dependency are listed by transaction type code and show the fre-
quency of occurrence daily, remote data segments accessed, and
the type of access—read-only or update. A sample list is shown in
Table 3. A summary table for all active components of the de-
pendencies is shown in Table 4.

The distribution that is attained at this stage of the procedure is
based upon the activity of the transactions only. It is determined

IBM SYST J @ VOL 19 ¢ NO 2 o 1980

assign
transactions

calculate
active
components

Table 3 List of active components of transaction dependencies

Tx Code Tx/Day Segments accessed

SP1C80 61 DB081 R DB082 R DB083 RU

SP1C82 5 DB081 R DB082 R DB083 RU DB084 RU
SP1C84 14 DB081 R DB082 R DB083 RU DB084 RU
SP1C90 14 DBI10! R

SP1T26 5 DB081 R DB082 R DB083 RU DB084 RU

SP2P65 268 DB081 RU DB082 RU DB083 RU DB084 RU DB101 RU
SP2P74 17 DB101 R

SP2P80 810 DB081 R DB082 R DB083 RU

SP2P82 47 DBO08! R DB082 R DB083 RU DB084 RU

SP2P86 207 DB081 RU DB082 RU DB083 RU DB084 RU DB101 RU

SP3T22 838 DB081 R DB082 R DB083 RU DB084 RU
SP3T29 48 DBO081 R DB082 R DB083 RU DB084 RU

2334 = Active component of dependency

Dependency: From Primary Steel Planning Group to Steel Plate Planning Group.
Data usage key: R = read-only; RU = read or update.
Key to DB code: DB08®D Segment 1.

Table 4 Active components of dependencies

F
R
o
M

]
<

Primary Steel Planning
Steel Plate Planning
Order Services
Chemical Analysis
= Plate Operations
Primary Steel Labor Incentive Accounting
Primary Steel Production Reporting

[| |

N AW -

initially by update activity and then modified by the total activity,
read-only plus updates.

calculate The next step in the procedure is to calculate the passive com-
passive ponents of the transaction dependencies. The data required in-
components clude a description of the data bases—number of child segment
occurrences per parent, field descriptions by segment type, field
sizes, and hierarchical structure. Also required is a list of field

usage by transaction type.

The passive components are calculated manually, although APL
programs could also be written for this step. The starting point is

IBM SYST J VOL 19 ® NO 2 o 1980

the list of active components, as in Table 3. These transactions
are put into two groups—those whose occurrences exceed the
active threshold and those whose occurrences do not. The pas-
sive components are first calculated for the group with occur-
rences that exceed the active threshold. If a passive-dependency
exceeds the passive threshold, another iteration is required. If all
passive dependencies in the group fall below the passive thresh-
old, the group is consolidated. If the passive component of the
consolidated dependency exceeds the passive threshold, another
iteration is required. Otherwise we continue with the remaining
transaction dependencies.

The passive components of the remaining transaction depen-
dencies are now calculated. These are either LL or LH depen-
dencies, since their active components are all less than the active
threshold. Those in the LL category are consolidated. If the re-
sulting consolidated dependency is HH, another iteration is re-
quired. Otherwise we continue with the remaining LH transaction
dependencies, which are consolidated. If the resulting consoli-
dated dependency is HH, another iteration is required. Otherwise
the logical distribution is finished.

The actual calculations of the passive components first are made
with a single data base record. This calculation yields the maxi-
mum number of bytes that a transaction type could require and is
expressed as a percentage of the data base record size. This per-
centage is applied to the size of the entire data base to give the
size of the passive component of the transaction dependency for
that data base. The procedure is repeated for each data base that
is accessed by that transaction type. The sum of the individual
data base components gives the total passive component of the
transaction dependency.

The final logical distribution was produced after more than ten
iterations of the procedure. The changes in successive iterations
included the redefinition of application groups, movement of indi-
vidual transaction types from one group to another, and the
movement of individual data bases from one group to another.

The logical distribution is shown in Figure 6. The distribution has
14 consolidated dependencies, eight HL, four LL, and two HL.
Figure 7 is a plot of these dependencies. Note that one group,
primary steel labor incentive accounting, has no on-line depen-
dencies. It is included in the logical distribution because of its
batch processing dependencies, which are not part of this analy-
sis.

A logical distribution can be used in several ways. It can provide
a basis for a physically distributed system, either in the original
application environment or in similar environments. Some of the

IBM SYST J @ VOL 19 @ NO 2 e 1980

use of the
logical
distribution

Figure 6 Final logical distribution

PLANNING

PRIMARY STEEL PLATES ORDER SERVICES
| [

(2334,331) f

PRIMARY STEEL STEEL PLATE (3079,0.29)
PLANNING (2938,1.79) | PLANNING

{185,0.28} | l

(932,3.03)

(496,0.5)

ORDER
{353,349} SERVICES

[; (470,0.72)

PRIMARY
STEEL CHEMICAL
PRODUCTION ANALYSIS
REPORTING

STEEL STEEL PLATE {260, 1.88}

LABOR OPERATIONS |

INCENTIVE
ACCOUNTING

(2194,12) [29,10.2]

L (805,1.92) |

T
{279,1.92} 1

|
!
!
PRIMARY | |
|
[
|
I

KEY: (): HL DEPENDENCIES | |
[]: LH DEPENDENCIES
{}: LL DEPENDENCIES OPERATIONS

groups of the logical distribution would probably be combined
for a physically distributed implementation. Such combinations,
which we call derived distributions, can be made in many ways.
Some considerations that affect the choice of combination are
load balance, total amount of data copied, availability, and ad-
ministrative convenience, where local user groups have their own
processors. Other uses of the logical distribution include the or-
ganization of application development activities and application
maintenance.

We illustrate the evolution of a derived distribution from our logi-
cal distribution with a hypothetical example. Suppose the steel
mill management wanted their system divided into two systems:
one for primary steel and the other for plates and order services.
The obvious division on this basis is shown in Figure 8A. Note,
however, that this derived distribution requires the support of six
dependencies across the interface between the two systems.
However, four of these dependencies are related to one small
grouping in the primary steel system—the chemical analysis
grouping. If this grouping were moved out of the primary steel
system and into the plate/order services system, it would then be
necessary only to support two, rather than six, dependencies
across the interface. The new derived distribution is shown in
Figure 8B. It could provide a reasonable basis for a distributed
implementation.

Dependency support

Once a derived distribution has been defined, decisions must be
made about the means for supporting its dependencies. There are

IBM SYST J e VOL 19 @ NO 2 e 1980

Figure 7 Dependency diagram for logical distribution of on-line steel mill system

=4 MILLION BYTES

ACTIVE COMPONENTS IN THOUSANDS OF TRANSACTIONS PER DAY
PASSIVE THRESHOLD

ACTIVE THRESHOLD = 370 TX/DAY

10
PASSIVE COMPONENTS IN MILLIONS OF BYTES

two choices: data communications or data duplication, each of
which has advantages and disadvantages. An important advan-
tage of data communications support is data currency and integ-
rity; since the data are not duplicated there is just one valid set of
records in the system. However, there are possible disadvantages
to data communications support. These include questions of
availability and excessive response time, due either to communi-
cations delay or to file overload—too many people using the same
file.

The pros and cons of the use of data duplication as a means for
supporting dependencies are the converse of the data communi-

IBM SYST J @ VOL 19 ® NO 2 ¢ 1980

Figure 8 Derived distribution

PRIMARY STEEL PLATES/ORDER SERVICES

[

'
730

TX/DAY

53.3M
BYTES

T

PRIMARY STEEL PLATES/ORDER SERVICES

1
]

r_____l

P

(B)

D PRIMARY STEEL SYSTEM PLATES/ORDER SERVICES SYSTEM

Figure 9 Dependencies—read-only or update

PLANNING

1
((31,2303),3.31) ((3079,0),0.29)

|
((2318,620),1.79) |

{(0, 185}, | |
0.28} {
((496,0),0.5)

ORDER SERVICES

:] ((0,932),3.03)
!
L((M0,0), 0.72) {(0,353),3.49} {(19,0),109]
i
' ‘—}—,
|

| {(195,165),1,88}

I ((2139,55),1.2)
(0, 29),10.2)

OPERATIONS ((805,0),1.92)

{@79,00,1.92}
KEY: ((READ-ONLY TX'S/DAY, UPDATE TX'S/DAY), BYTES)

IBM SYST J ¢ VOL 19 ® NO 2 e 1980

cations considerations cited above. Duplication of data raises
questions about data currency and integrity, particularly when
copies are updated. However, the use of copies enhances the au-
tonomy of a logical grouping and therefore improves system
availability, local management control, and response time.

It is evident that the selection of data communications or data
duplication to support the dependencies of a derived distribution
can be a complex problem that involves many trade-off decisions.
The logical distribution and its various alternative derived distri-
butions can aid system designers by clarifying their options.

When dependencies are supported by the duplication of data,
there are questions of data concurrency and integrity to be con-
sidered, particularly when updates are applied to the copies. To
pursue this question with the steel mill, consider the logical distri-
bution as in Figure 9, where the active components of the depen-
dencies are separated into read-only usages and update usages.
Examination of these data shows that in 11 of the 14 depen-
dencies the update part of the active component of the depen-
dency is either zero or below the one percent threshold. For these 11
dependencies we can post an interim update to the copy and send
the update transaction to the master data base, where the true
update is applied. Periodically the copy is refreshed from the
master, after which the preceding interim updates are discarded.
Obviously these copies also support the read-only transactions.
With this arrangement, the update control of the data is main-
tained by the node that contains the master data base.

The significant update dependencies that remain are between pri-
mary steel planning and plate planning, and between plate plan-
ning and plate operations. For both interfaces we find the same
result—it is never necessary for a given item of data to be updated
simultaneously by two or more logical groupings. We illustrate
this with the two planning systems.

Consider Figure 10. Here the plate-planning system is generating
net slab requirements and posting them to the net slab require-
ments master file, which is an IMS physical data base that is orga-
nized by steel grade. The primary steel planning group uses a
copy of the net slab requirements file and develops new steel or-
ders—orders for the production of heats of steel. The system has
a natural logical sequence that results in the update authority fora
given data item being passed back and forth between the two
planning systems, thus precluding the need for any simultaneous
updating by the two systems. The logical flow is described with
reference to Figure 11.

Update copy control is maintained by a system of flags in the root
segments. The plate-planning system can read any data but may

IBM SYST J « VOL 19 @ NO 2 o 1980

concurrency
control of
copy updates

Figure 10 Planning data and functions

STEEL PLANNING PLATE PLANNING

STEEL
ORDERS

GENERATE
STEEL

SLAB
ORDERS INVENTORY

NETSLAB NET SLAB GENERATE

REQUIREMENTS REQUIREMENTS REQUIRERENTS

MASTER

QRDER
REQUIREMENTS
(SLABS)

update only those data base records that have their flags set to
one. Net slab requirements are developed within one steel grade
at a time. When the slab requirements are completed for a grade
of steel, the data base record, with its flag set to one, is sent to the
primary steel system where it is put into the copy file. The same
record is stored in the master file with its flag set to zero.

The same logical control applies to the primary steel-planning
system. Only those data base records in the copy that have their
flags set to one can be updated. After the new steel orders have
been prepared, by grade, the updated net slab requirements data
base record is returned to the plate-planning system, with its flag
set to one. It is also put into the copy data base with its flag set to
zero. Thus the most current version of the data base record, up-
dated by the primary steel-planning system, has returned to the
plate-planning system, ready for another processing cycle.

From the foregoing discussion we see that the update authority
for any one data base record passes systematically back and forth
between the two planning systems. There is no need for simulta-
neous updates. In this way the copy updating is controlled natu-
rally by the application requirements. A similar logic applies to
the copy update activities across the interface between the plate
planning and plate operations groupings.

IBM SYST J ®» VOL 19 @ NO 2 ® 1980

Figure 11 Update control flags

STEEL PLANNING PLATE PLANNING

101 FLAG=0 101 fLAG=1
STEEL GRADE X Y NOT OK TO UPDATE STEEL GRADE X E OK TQ UPDATE
102 FLAG=1 102 FLAG=0
STEEL GRADE Y u_ OKTOQ UPDATE STEEL GRADE Y 0 NOT OK TO UPDATE

——

copy MASTER

NET SLAB REQUIREMENTS DATA NET SLAB REQUIREMENTS DATA
TIME 1S t) TIME IS t]

I
l
|
|
l
|
|
|
i
5
|

We have used a basic but relatively simple measure of the de- extended
pendency between two groupings of a logical distribution. It dependency
seems likely that in the future more complex measures will be measures
required. Resource utilization data, such as the number of data

accesses per day, might be related to the active part of the de-

pendency. Probabilities of data item usage could be attached to

the passive part. Deferral of transactions is another means for
characterizing dependencies, since some transactions must be

processed immediately, while others can wait. The pattern of the

traffic intensity of the transactions through the day suggests yet

another way of characterizing dependencies. There are many

other possible characterizations—copy dissemination delay,

copy update traffic intensity, multipoint update simultaneity, etc.

It is clear that the task of describing dependencies can be com-

plex; it has been treated here in a relatively simple way.

Summary

A major goal of distributed system design is to bring data process-
ing functions and data closer to the users than is possible with a
centralized design. The expected advantages of this arrangement,
such as local autonomy, responsiveness, etc., have been ex-
pressed at length in the literature on distributed data processing.

However, we have noted that a node of a distributed system does
not function in a totally isolated, stand-alone mode. Other nodes
depend upon it or it depends upon other nodes. If these inter-
dependencies are too strong, the sought-after advantages of the
distributed data processing system are lost. It is essential, there-
fore, that such a system be designed so that the nodal inter-

IBM SYST J ¢ VOL 19 @ NO 2 e 1980

dependencies are at an acceptably low level. We have illustrated
one approach to this task.

ACKNOWLEDGMENTS

The author is indebted to R. M. Gale, IBM Poughkeepsie, for his
patience and cooperation in providing computing support, via the
APL programs, for the numerous iterations that the distribution
analysis required and for development of the clustering al-
gorithm. The author is also indebted to R. Richards, IBM White
Plains, for his excellent explanations of the intricacies of the steel
business. An expression of thanks also goes to H. S. Arora, R. M.
Gale, and B. Roth, IBM Poughkeepsie, for their many construc-
tive comments about this paper. Finally we acknowledge the sup-
port of Dr. B. D. Rudin, Manager of the IBM Scientific Center in
Los Angeles, whose foresight made this work possible.

Figure 12 Application distribution Appendix: Definition of a distributed data processing system
structure

At present there is no universally accepted definition of a distrib-
uted data processing system; moreover, there may never be one.
It is conceivable, however, that a widely accepted definition will
L2 13 L evolve for civilian data processing environments. The role of ap-
plications will be prominent in such a definition and is discussed
thoroughly in References 3 and 4. Our purpose in defining the
logical distribution is to provide the application component of a
distributed data processing system definition.

LOGICAL DISTRIBUTION

s2 83 The definition that follows is intended to stimulate interest, to
SPATIAL DISTRIBUTION identify the elements of a distributed data processing system defi-
nition, and to illustrate what such a definition might look like. It is
not our intention to impose this definition upon anyone.

A logical distribution is a partitioning of a collection of related
applications and their data into the maximum number of groups
that have a specified low level of interdependence. A logical dis-
APPLICATION DISTRIBUTION tribution is composed of at least two groups. Every proper subset
of the logical distribution has an interdependency with at least
one group not in the subset.

L3 $3

A node is a well-defined volume of space. Two nodes have no
points in common.

A spatial distribution is a set of two or more nodes.

An application distribution, Figure 12, is composed of a logical
distribution, a spatial distribution, and a relation between them.
The relation is such that logical groups must be contained in at
least two nodes and each logical group is put into one and only
one node of the spatial distribution.

IBM SYST J & VOL 19 @ NO 2 & 1980

A hardware/software distribution is composed of a processor and
one or more processors or controllers and their associated soft-
ware. The processors/controllers must have the capability to pro-
vide at least one, possibly indirect, communication path between
every pair of processors/controllers in the hardware/software dis-
tribution.

A physical distribution, Figure 13, is composed of a spatial distri-
bution, a hardware/software distribution, and a relation between
them. The relation is such that every node in the spatial distribu-
tion contains at least one processor or controller of the hardware/
software distribution and each controller or processor of the
hardware/software distribution is in one and only one node of the
spatial distribution.

A distributed data processing system is composed of an appli-
cation distribution and a physical distribution, both of which are
defined with respect to the same spatial distribution. Mathemati-
cally, the structure of a distributed data processing system can be
described by a pair of functions: one from the logical distribution
into the spatial distribution and the second from the hardware/
software distribution onto the same spatial distribution.

CITED REFERENCES

1. A. L. Scherr, **Distributed data processing,”” IBM Systems Journal 17, No. 4,
324-343 (1978).

2. P. J. Down and F. F. Taylor, Why Distribute Computing? NCC Publications,
National Computing Centre Limited, Manchester, U.K., U.S. distributor—
Hayden Book Company (1976).

. P. C. Howard, Editor, ‘‘Performance implications of distributed systems— Part
1,”” EDP Performance Review (Applied Computer Research, Phoenix, AZ) 6,
No. 8, 1, 6 (August 1978).

. P. C. Howard, Editor, ‘‘Performance implications of distributed systems— Part
2, EDP Performance Review (Applied Computer Research, Phoenix, AZ) 6,
No. 9, 1, 12 (September 1978).

. C. J. Jenny, Partitioning and Allocating Computational Objects in Distributed
Data Processing, Research Report RZ 984, IBM Corporation (October 1,
1979); available through the local IBM branch office. (ITIRC No. 79A 7097)

. T. Lawson and M. P. Mariani, **Distributed data processing system design— A
look at the partitioning problem,”” COMPSAC ’78 Proceedings, IEEE, New
York, NY (1978).

. R. M. Gale, A Methodology for Determining Logical Nodes in a Distributed
Data Processing System, Technical Report TR 00.3025-1, IBM Corporation
(September 17, 1979); available through the local IBM branch office. (ITIRC
No. 79A 6109)

. H. S. Arora, C. T. Baker, and B. Roth, Distribution of a Centralized On-Line
Manufacturing Data Base System, Technical Report TR 00.3023, IBM Corpo-
ration (August 23, 1979); available through the local IBM branch office. (ITIRC
No. 79A 5996)

The author is located at the IBM Data Systems Division labora-
tory, P.O. Box 390, Poughkeepsie, NY 12602.

Reprint Order No. G321-5121.

IBM SYST J e VOL 19 e NO 2 * 1980

Figure 13 Physical
structure

distribution

Cl

HARDWARE/SOFTWARE DISTRIBUTION

52

§3

SPATIAL DISTRIBUTION

S1

|

PHYSICAL DISTRIBUTION

