A number of performance prediction methods are available to
IBM marketing personnel. This paper describes one such method,
which predicts the effects of changes in IBM 3790 and 8100 distrib-
uted processing systems and in teleprocessing networks. Such
changes may involve system features (such as line protocols), the
introduction of new applications, or volume growth in an other-
wise static system. The technique makes use of a detailed simula-
tor, informally called FIVE, in conjunction with a system monitor
and data analysis program. Its use can make substantial per-
Jormance information available at relatively low cost.

The role of detailed simulation in capacity planning
by H. C. Nguyen, A. Ockene, R. Revell, and W. J. Skwish

From a capacity planning viewpoint, a system can be divided into
three broad areas: host processor, communication network, and
distributed intelligence, as in the 1BM 3790 and 8100 systems."
Attention in the past has generally been focused on the host sys-
tem, but the sharply declining cost of central hardware, combined
with the rapid growth of teleprocessing and distributed process-
ing, has increased the importance of communications and distrib-
uted intelligence.

Systems with dozens of distributed processors are no longer un-
common. Managing the growth in capacity of such systems re-
quires close attention to key performance considerations. The
basic requirement for capacity planning is predicting how
changes will affect system performance, thereby permitting the
best course of action to be followed. For purposes of the follow-
ing discussion, the key performance elements are assumed to be
response time (as perceived by a terminal operator) and through-
put (volume of work per unit time, such as characters printed per
second).

Methods for predicting system performance include ‘‘educated
guesswork,”’ benchmarking, and the use of computer models (ei-
ther analytic or simulative, as discussed below). The first method

Copyright 1980 by International Business Machines Corporation. Copying is per-
mitted without payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright notice are
included on the first page. The title and abstract may be used without further
permission in computer-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor.

IBM SYST J @ VOL 19 @ NO 1 e 1980 NGUYEN ET AL.

is time-honored and probably the most widely used. It works best
when the system is comfortably overdesigned, allowing a safe
margin for error. This casual approach to performance prediction
has become increasingly unsatisfactory because of the growth of
on-line systems (with their stringent performance requirements)
and diminishing tolerance for gross overdesign.

Benchmarking (the execution of actual applications on the pro-
posed system configuration) is expensive and inflexible, since it is
difficult to examine a wide range of configuration alternatives.
For a combination of flexibility (in specifying both system config-
uration and applications at any level of detail) and reasonable
cost, computer models have come into widespread use. Such
models are programs that describe both the physical structure of
the system under study and all application activity (data transmis-
sion, processing, I/0) that significantly affects performance.

Once the decision has been made to employ a modeling approach,
a number of factors influence the choice of a specific tool:

e It should be suitable for modeling individual subsystems (such
as the 3790 and 8100) as well as the total system (communica-
tion network, host computer, and cluster controllers).

The model should be detailed and accurate enough to simulate
all relevant aspects of a working system, although the cost and
level of detail must be kept in balance, and the model should
minimize distortion. Errors caused by faulty input data cannot
be avoided, but the model itself should not introduce signifi-
cant error.

There should be a reasonable validation procedure. Validity is
established by matching the model to the operation of the real
system, thereby providing credibility for the performance pre-
dicted when changes are made.

The cost of using the model should be low to encourage its
continued use. Aside from its value in predicting the effects of
system changes or new applications, such a model can be used
as a tuning aid, as in optimizing Network Control Program
parameters.

Model output should be provided at several levels of detail, as
required by the nature of the study. Detail should not be
forced on the user, but invoked as needed.

There should be an automated procedure for using existing
data. For example, a procedure for converting running appli-
cation code to model input would save time. Similarly, tracing
and monitoring facilities can provide performance data against
which the model can be validated.

A key point is that information on both the causes of performance

problems (such as poor data set placement) and the consequent
effects (such as excessive disk utilization and concomitant

NGUYEN ET AL. IBM SYST J @ VOL 19 ¢ NO 1 e 1980

queuing delays) is usually available from existing system mapping
and monitoring tools (to be discussed below). Unfortunately,
those tools cannot answer what if or how to improve questions, a
manifest need if the effects of possible remedial actions are to be
predicted.

Why and how questions can be answered only if cause and effect
data can be related, so that effects can be traced back to causes.
They can be related by using the system model as an inter-
mediary, feeding the cause data into the model and using the
(measured) effect data to validate the model’s performance esti-
mates. The model discussed in this paper satisfies that require-
ment, relating measurable performance effects to observable
causes.

The nature of modeling requirements, especially with regard to
cost and timeliness, makes it impractical to construct a unique
model for each installation. What is required is a generalized
framework for modeling teleprocessing and distributed intelli-
gence systems, with flexibility in specifying both configurations
and applications. Such a framework exists in the modeling archi-
tecture discussed below. Used by IBM marketing personnel, it is
informally called FIVE.

FIVE is a modular simulator of SNA (Systems Network Archi-
tecture) systems.® The simulator is a set of performance predic-
tion aids within a common architecture, which is general enough
to encompass other aids, such as configurators and network opti-
mizers, although such other aids have not been implemented at
this writing. The design allows subsets of the main simulator to be
used interactively at IBM locations around the world.

Background

Analytic modeling for performance prediction*® depends on solv-
ing a mathematical description of a system and its activity, an
approach that has been most successful with individual sub-
systems. As such subsystems are linked together, and as the com-
plexity of both configuration and applications increases, it be-
comes increasingly difficult to formulate (and solve) the mathe-
matical relationships without making unrealistic simplifying
assumptions. For example, no analytic model available today is
capable of modeling a detailed Network Control Program (NCP)
and predicting the effects of slowdown (whereby the NCP stops
requesting new transactions when the number of free buffers
drops to a critical value). In an Advanced Communication Func-
tion environment, where an overloaded line in one domain may
force an NCP in another domain into slowdown, an analytic ap-
proach becomes even more futile.

IBM SYST J e VOL 19 « NO | » 1980 NGUYEN ET AL.

The most general technique for the construction of performance
prediction models is discrete-event simulation. Rather than rely-
ing on a mathematical description of a system, a simulator moves
the system through time and mimics the myriad events that occur
in the real world. Messages in a teleprocessing system are trans-
actions that flow through the simulated system using necessary
resources (terminal, communication line, CPU, channel). The sim-
ulator maintains a clock and keeps lists of transactions in various
stages of processing and queuing for system resources.

Since a simulator is a detailed mapping of the real system into a
computer program, rather than a mathematical abstraction, there
are no inherent constraints on the level of detail that can be mod-
eled. The limiting factors are the programming effort and the com-
puter resource (storage and CPU time) available for executing the
model. The rapidly declining cost of computer hardware has
made detailed simulation a practical aiternative in many cases,
and it is that approach which was chosen in developing FIVE.

Once the decision was made to use a simulation approach, the
next task was to select an appropriate modeling language. The
most commonly used simulation language, GPSS.” was rejected on
grounds of execution efficiency. After consideration of several
others, the language finally selected was PL/1, with some en-
hancements to provide the services required for simulation. This
combination has the list processing facilities required for simula-
tion and also produces efficient, executable code. PL/I has the fur-
ther advantage of being a general programming language, so that
it is possible to contemplate future (nonsimulation) design tools
that use a data base in common with the performance predictor.

Architecture

The FIVE architecture can be viewed as a data base whose basic
units are data structures called nodes. Each node contains the
information required to describe one of the system elements
(hardware and software) under study, and it can be used at dif-
ferent levels of detail. Intended to permit development of tools for
all aspects of system design using a common data base, the archi-
tecture imposes a discipline that can speed development, valida-
tion, and future modification and maintenance by others.

The nodes in FIVE normally are linked in a hierarchical tree struc-
ture, although ring and mesh structures are also permitted. The
hierarchy is: device (screen or printer) at the lowest level, then
control unit, communication line, and transmission control unit
(TCU), with the host processor (CPU) at the highest level. Local
control units can be attached directly to the CPU. If the device is a
disk or tape drive, the hierarchy is as follows: device, storage

NGUYEN ET AL. IBM SYST J @ VOL 19 @ NO | ® 1980

control unit, channel, and cPU. Additional levels can be in-
troduced by using such elements as a remote TCU or a Cross-
domain link.

In addition to hardware characteristics (such as storage size and
processor speed), software characteristics appear in the nodes as
appropriate. Using NCP generation parameters as an example,
PACING parameters appear at the device (screen or printer) level,
PASSLIM is in the control unit, PAUSE in the line, and SLODOWN in
the TCU. A node can operate at any of several levels of detail; for
example, the communication-line node can operate accurately ei-
ther with all polling messages modeled or in a fast mode, with
most unproductive polling suppressed to provide faster execution
(although the term fast is inappropriate if the effect of limited TCU
engine capacity is to be studied). Another example is the CPU
node, which can be anything from a simple processing delay to a
hierarchical task management facility.

In addition to the nodes, the FIVE input specification includes pro-
vision for defining logical files and their location (on disk or tape),
characteristics of tasks in the CPU, format statements for con-
trolling screen and printer /0, and various probability distribu-
tions. Once the nodes have been linked into a network, a simula-
tion facility models the dynamic behavior of the system. This fa-
cility provides such services as a clock, list handling, and event
scheduling.

The nodes described above define the physical structure (and as-
sociated software characteristics) of the system to be modeled.
The applications to be processed are defined by the Application
Workload Description (AWD), a facility for describing the data
transmission, processing, and /O requirements for each type of
transaction. Like the nodes, the AWD can operate on any of sev-
eral levels of detail. The most basic form (type 0) is a single state-
ment that gives information such as operator *‘think time,”” VO
characters transmitted, and processing time. A more complex
version (type 1) permits the user to write a program with macros
such as SEND, PROCESS, DELAY, and GOTO. In either case, all pro-
cessing is in the CPU. To define an application in the IBM 3791 or
8100 controller, AWD type 3790 or 8100 permits the use of macros
unique to the controller being modeled. There is also a general
control unit feature which permits the user to define the charac-
teristics of intelligent controllers other than the 3790 and 8100.

Distributed processing

Since distributed processing involves several intelligent con-
trollers or processors within a single system, it is theoretically
possible to apply the approach often used in capacity planning for

IBM SYST) ¢ VOL 19 ¢« NO | = 1980 NGUYEN ET AL.

85

monitoring aids

performance
factors

host systems; that is, to monitor subsystem resource usage levels
and, knowing each subsystem’s past and present resource usage,
extrapolate its performance into the future. This approach has
two major drawbacks, however. First, it can be misleading if the
extrapolation involves changes other than increased load or a rel-
atively straightforward system change such as additional disk
drives. For example, if new applications or the introduction of
shared disk storage are involved, extrapolation may be in-
accurate. Second, regular evaluation of the performance of each
subsystem can become a formidable task for all but the most triv-
ial cases.

Maximum value can be obtained from a performance model when
it is used in conjunction with system mapping and monitoring
aids. For the IBM 3790 and the 8100 operating under DPCX,>® the
following aids are potentially valuable:

e SYSDC—an effect aid, a software monitor that supplies data on
the use of subsystem resources. Specifically, it reports con-
trol-unit utilization, disk utilization, and seek activity for a
specified period. For our purposes, SYSDC provides an inde-
pendent source of performance data.

SYSLDSA—a cause aid, an analysis program that provides a
complete map of data sets as allocated to the disk space of the
3790 or 8100. For our purpose, the information it supplies can
have a major effect on performance and is inexpensive com-
pared with manual data collection.

FIVE3790 and FIVEDPCX—specialized subsets of the FIVE
model. Each permits the use of macros similar to those used in
actual 3790 and 8100 code. The controller is linked to other
nodes in the system as described earlier with regard to FIVE.
These two subsets of FIVE are available only outside the
United States.

The aids described above provide a ready source of cause and
effect data, and FIVE can relate the two, but the information is still
insufficient for construction of a model because the only cause
information relates to data sets. The factors that affect perform-
ance of the 3790 and 8100 are those that determine resource avail-
ability and govern their use, namely:

Configuration (hardware and software).
Data-set activity (placement and usage).
Application programs.

Traffic volumes.

Information on subsystem configuration and traffic volumes
should be readily available and need not be discussed further.
Data-set placement information is supplied by SYSLDSA, as dis-
cussed above. Data-set usage, which is related to application pro-
gram activity, is discussed below. Finally, information on exist-

NGUYEN ET AL. IBM SYST J » VOL 19 ¢ NO 1 e 1980

Figure 1 Mapping of FIVE macros for source-program instructions

3790/8100(DPCX) FIVE Macro
Instruction Equivalent

DISPLAY, TYPE=NOWAIT FLDS=3,CHAR=20,0PT=NOWAIT
DISPLAY, INPUT FREE DPLY
MOVEBUF FROM=DISPLAY,TO=BUF(1) MOVEBUF FROM=DPLY,T0=1
RESCON OPTION=WAIT RESCON DPLY
DRL BUF (1) DRLADD DSID=X,SYN=1.2,BUF=1
GETPANEL DISPLAY GETPANEL SIZE=3
WRTDEV DISPLAY,END WRT FLD=10,CHAR=400

ing application programs is readily available in the form of source
code. That information is the most important, since application
programs are the source of all resource usage. Whether the re-
source usage involves disk accesses, processor activity, or buffer
usage, its control is determined by the flow of the application pro-
grams being executed.

The 3790 and the 8100 with DPCX are interpretive machines, and
the execution flow of programs has a fundamental influence on
performance. There is no great overhead of system code that
needs to be executed. Thus, if the path lengths of all the appli-
cation programs in a particular machine were doubled, one would
expect the controller utilization to roughly double (assuming low
utilization). In a traditional host system, on the other hand, the
overhead of the system control program, access methods, and
DB/DC packages has a considerable effect, to the extent that utili-
zation attributable to application program execution itself may be
relatively minor. Since this is not true for the 3790 or 8100, the
effort required to map every source program into model input can
be excessive.

Consider now that the FIVE model accepts as input a description
of the application source programs in the form of a one-for-one
mapping—one FIVE macro for each source program instruction,
as shown in Figure 1. At first it may appear that the amount of
work has increased. However, a potentially massive task can be
reduced substantially by using a translation program which con-
verts each real source instruction to its equivalent FIVE macro.
Such a translator, known informally as SIX, has been written at
the 1BM United Kingdom Field Systems Centre at Croydon, Eng-
land.

Two things soon become apparent. First, data gathering, a major
task in any modeling effort, has been considerably reduced, so
that it is practical to use the model in capacity planning. Second,
the idea of automatically translating cause data into model input
is not peculiar to the 3790 or 8100; it can also be applied to other
system components. For example, all the cause data required to
accurately reproduce an installed communications network in

IBM SYST J @ VOL 19 e NO 1 e 1980 NGUYEN ET AL.

physical
configuration

application
program
selection

application
program
translation

FIVE is provided by a line trace, an NCP generation listing, and the
Network Performance Analyzer (NPA), a network management
aid, which is discussed under Network capacity planning , below.

The distributed processing model

Although it is feasible to gather a large portion of the required
data quickly and with little effort, it would be misleading to say
that the entire procedure can be automated. The following para-
graphs describe the steps involved in representing a real system
in the FIVE model and validating the model’s predictions. Input to
FIVE consists of three main components: a definition of the phys-
ical configuration, a definition of the applications and the transac-
tion flow, and a file definition.

Mapping of the physical configuration into FIVE is not described
here. It is a straightforward process, requiring only fundamental
information on the system’s physical characteristics, as described
in the discussion of node structure under Architecture, above.

For simplicity, the example presented below considers a system
with one main program. It is based on a real situation, although
most systems have many programs, often a hundred or more. It
would require considerable effort to incorporate all programs into
a system model; fortunately, only a few programs are exercised
most of the time. Most programs relate to infrequent events, such
as error conditions and weekly report generation, and can there-
fore be ignored on the assumption that their effect on system per-
formance is negligible (although the option remains open to incor-
porate them if they are deemed important).

The selected program is now translated using SIX. The result is
a file that contains the required FIVE input statements cross-refer-
enced with the original program statements, together with the lo-
cations of the program page boundaries. At this stage the SIX out-
put needs manual modification before it can be used as FIVE in-
put.

Almost all the operands required by the FIVE macros can be de-
duced by SIX, but a few must be supplied by the user. The infor-
mation required is generally simple and easy to obtain, either di-
rectly from the source code or from SYSLDSA. Examples are
whether the program accesses the transaction data set, the names
of any external programs (subroutines) that are called, and the
average number of synonym accesses to a particular indexed data
set (supplied by SYSLDSA).

A more time-consuming step is coding the flows through the pro-
gram. Although SIX can map the source code into equivalent FIVE

NGUYEN ET AL. IBM SYST] ¢ VOL 19 @ NO 1 e 1980

Figure 2 Unconditional branching—no manual intervention required

Source Code SIX-generated code

GOTOU*
GOTO LABEL=LABO21,BLOCK=1

LABD21

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
!

* This macro allows for execution overhead only

Figure 3 Conditional branching—probabilities to be user-supplied

Source Code S$IX-generated code

GOTOC*
GOTOC GE, XXX GOTO LABEL=MIX009,BLOCK=1
LABO20

LABOZ21

MIX009 MIX LAB0O20/%, LAB0O21/%

* This macro allows for execution overhead only

macros, it cannot determine the probability of taking a particular
path at program branch points. That probability must be deter-
mined manually.

At every branch point in a program, the SIX translator produces
two FIVE GOTO macros. The first accounts for the overhead asso-
ciated with executing the branch instruction. The second causes
the branch operation to occur; it has an operand, LABEL, which
gives the branching address. As shown in Figures 2 and 3, if the
branch is unconditional, SIX generates the operand value and no
manual intervention is required; and if the branch is conditional,
SIX generates a MIX statement which indicates the probability of
the branch. This probability must be supplied by the user.

Determination of the MIX probabilities is best done in order of

importance; that is, by successive selection of the most basic
branch points, starting with those that branch to different func-

IBM SYST J &« VOL 19 e NO I ¢ 1980 NGUYEN ET AL.

transaction
flow
definition

89

file
definition

model
validation

Figure 4 File definition for relative data sets
KEY:

aa data-set ID
data-set size in blocks

vy volume number
track number and block number of first sector
number of records in the extent

SYSLDSA

Relative Data Set information produced

RELATIVE DATA SET a2

nnnn TOTAL BLOCKS

vv ttt ss nnnn rrrr

|
FIVE |
Relative Set information required |

|
FILEaa TYPE=3791, |
NREC=(rrrr,vv), |
LRECL=256%{(nnnn/rrrr) |

|

The position of the ttt ss values supplied by SYSLDSA
is defined in FIVE according to the sequence in which
files are defined. Both SYSLDSA and FIVE produce disk
maps, which allow cross-checking to validate the file
allocations.

tions within the program. These branch points will roughly equate
to those shown in a block diagram. Next, it must be determined

whether each function is to be exercised. Just as a good many
programs are executed infrequently, many functions within a pro-
gram are used rarely. Once these functions have been identified,
it becomes a simple matter to code the related MIX statements so
that they are not exercised (by setting the probability to zero).
After the first-level MIX statements have been completed, the pro-
cess is repeated for branch points within each function to be in-
cluded in the simulation.

It is important that the MIX statements be coded accurately. The
MIX probabilities are best determined by a person who is familiar
with the application programs, usually the programmer himself.

At this stage the major part of the model building is complete. The
next and final stage is to describe the data sets to be used. This
operation is straightforward, since all the information required by
FIVE is supplied by SYSLDSA, as shown in Figure 4.

Once the model has been completed, it can be validated by com-
paring it with available measurement data supplied by SYSDC. The

NGUYEN ET AL. IBM SYST J ¢ VOL 19 ¢ NO 1 #1980

use of SYSDC requires only that it be initiated from a terminal
attached to the 3790 or 8100 being measured. Once SYSDC is initi-
ated, measurement data can be printed any number of times dur-
ing the measurement period, which can be up to an hour.

Since there are several intelligent controllers in a typical system,
it is impractical to attempt to measure them all. If a single system
is used in all operating environments, normally it will be the one
chosen for measurement.

The specific situations to be measured must now be selected. It is
desirable to measure the system once for each application and
also with each common application mix —for example, with eight
terminals doing data entry and six doing inquiry. The environ-
ment in which measurements are to be taken must also be chosen:
Are the measurements to be taken in a controlled environment
with the terminals operating continually with fixed operator
delays, or is the natural environment of the production system to
be measured with no artificial constraints on its operation? Both
approaches have merit and both should be used. In the former,
operator delays can be controlled, so model validation cannot be
affected by inaccurate choice of operator delays. A natural pro-
duction environment, on the other hand, has the advantage of
providing an overall validation of the model. In general, as many
measurement runs as can be afforded should be undertaken, bear-
ing in mind that the objective is to validate the model, not to use
the measurement results alone for planning.

If the measurement results do not compare closely with those
predicted by FIVE, it is reasonable to conclude that there are er-
rors in the model input data. Since most of the input is a direct
translation of observed fact, there are relatively few potential
sources of error. Among them are inaccurate operator delay val-
ues, incorrect program flows, and incorrect data set placement.

Operator delays have a fundamental effect on predicted results. If
the system has not been measured in a controlled environment
using fixed operator delays, such measurement should be consid-
ered so that operator delays can either be ruled out or highlighted
as a source of error. If the delay estimates must be improved, we
know of no better way to measure them than with a stopwatch.

To check the accuracy of program flows, FIVE incorporates two
powerful facilities, SUMRY and TRACEX. SUMRY provides (among
other things) a count of every instruction in each program exe-
cuted during a FIVE run. It allows areas of overactivity and under-
activity to be detected. Once suspect areas of the program are
located, TRACEX can trace the program flow, showing which in-
structions are being executed, in what order, and how much time
is spent on each.

IBM SYST J e VOL 19 @ NO | 1980 NGUYEN ET AL.

possible
sources
of error

revalidation

examples

other benefits

Finally, data set placement can be checked by comparing the disk
map of the real system, as supplied by SYSLDSA, with the disk
map produced by FIVE.

Since the production system almost certainly will change over
time, it is wise to resynchronize the model with the real system
from time to time. Such revalidation need not be as exhaustive as
the initial validation, since only the changes need be considered.
Revalidation should be considered when the system configuration
changes, when new applications are added, and when there is a
substantial growth in volume.

A wide variety of situations can be investigated easily and quickly
through the use of FIVE. A few examples follow:

Hardware and software—

e Of what value is the 3790 fixed-head feature, and which pro-
grams are best located under fixed heads?
Is there value in keeping some programs in main storage? If
so, which programs?
What performance improvement can be expected by up-
grading a 3790 system to an 8100 with DPCX? Where should
8130 controllers be installed and where are 8140 controllers
needed?
Will performance be enhanced by using direct sector referenc-
ing?
How will performance be affected by driving some terminals
over a remote data link?

Growth—

o When might expected volume growth produce unacceptable
performance?

e What is the effect of adding a new application?

Performance analysis—

e Where are the bottlenecks in a system and why do they exist?
What action is required to rectify the problem?

o What is the expected behavior of the system under various
loads?

Almost all the above questions can be answered simply by chang-
ing a few FIVE parameters and rerunning the model. In this man-
ner the use of FIVE, as opposed to the real system, allows experi-
mentation. Alternative courses of action can be investigated with-
out disturbing the production system.

The approach described above is not restricted to capacity plan-
ning. The output produced by FIVE can also be used in system
tuning. SUMRY and TRACEX, for example, are useful in examining
the efficiency of program code, whether the program is used in
production or in an application under development, and the data

NGUYEN ET AL. i1BM SYST) @ VOL 19 @ NO | & 1980

set statistics produced by FIVE can help determine whether highly
active data sets should be reloaded closer to the midpoints of the
disks.

Network capacity planning

As with distributed processing, it is possible to build a FIVE model
for capacity planning with a teleprocessing network. All required
information exists in one form or another. First, it is necessary to
determine whether sufficient cause and effect information is avail-
able to construct and validate the model, keeping in mind the
need to maintain accuracy without undue effort. The sources of
information, described below, are NCP generation, the Network
Performance Analyzer, and line tracing.

A listing of the Network Control Program (NCP) generation is a
valuable source of cause data for networks controlled by the 1BM
3705 transmission control unit (TCU).'” Many NCP generation
macros significantly affect network performance, and much of the
input required to construct a FIVE network model corresponds to
NCP generation values.

The Network Performance Analyzer (NPA),'' a management aid
for monitoring network activity, can play a vital role in the mod-
eling approach to network capacity planning. It supplies both
cause and effect data, thereby assisting in both building and vali-
dating the model. Relevant data supplied by NPA includes the
polling rate (the number of polls per unit of time), 3705 utilization,
and queue lengths in the 3705 (including the cluster link outbound

queue, which contains data frames awaiting transmission from
each 3705, and the channel inbound queue, which contains data
awaiting transmission to the host). All of this data provides effect
information of direct use in model validation, since it can be com-
pared with similar output from FIVE.

The cause data produced by NPA includes buffer pool size (the
number of buffers available in the 3705), and message rates by
line, control unit, and logical unit.

Normally used for investigating line problems, a line trace also
contains information of value as model input. It provides details
on the sequence of transmissions between end users in a network
and, of particular value, it shows the messages generated by each
host software user. For example, some systems may or may not
issue an independent unlock keyboard message. While such in-
formation is available from other sources, it is often open to mis-
interpretation; the virtue of a line trace is the unambiguous nature
of the information for the specific system and applications being
modeled.

IBM SYST J @ VOL 19 ¢ NO 1 e {980 NGUYEN ET AL.

NCP generation

Network
Performance
Analyzer

line tracing

Much more information is available on communication between
end users, such as the sequence of transmissions in a conversa-
tion, message lengths, and transmission frequency. Unfortu-
nately, the format of the line trace output makes extraction of
such information difficult. There is a need for a data reduction
program to analyze line trace output. At present, familiarity with
the applications must be relied on for the required input to FIVE.

The network model

The following example illustrates the data requirements of the
FIVE network model and the level of detail incorporated into it. A
single communication line is discussed for simplicity, but a net-
work of arbitrary complexity (including multiple domains) can be
defined in a similar manner.

Consider an SNA system that comprises two IBM 3274 (Model 1C)
controllers, each with six 3278 (Model 2) display screens and a
3289 (Model 1) printer, attached to a single SDLC line. Three
screens are dedicated to an inquiry application and three to data
entry. The line is attached to a 3705 (Model 2) transmission con-
trol unit, which is attached to a host CPU. The FIVE code required
to specify this configuration is given in Figure 5.

This is an adequate specification of the system configuration;
default values are used for various unspecified parameters in each
node. The left column in Figure 5 consists of user-defined labels,
which generally are not necessary but are convenient for output
identification. The DEVICE statements representing the screens
specify the label of the Application Workload Description (AWD)
that defines the data transmission, processing, and /O require-
ments of each transaction type; also specified is the arrival rate
(in transactions per hour) for each screen.

If control units with a different device configuration are attached
to the line, another CU (control unit) statement should appear im-
mediately after the last device in the example. A second line
could be specified after all the control units and devices have
been defined for the first line, followed by its CU and DEVICE
statements. While not used in the example, the NUM parameter is
also valid for defining the line; NUM>1 implies exact replication of
the control unit and device configuration for each line.

Multiple transmission control units also can be defined. More
than one CPU is permitted in an Advanced Communication Func-
tion configuration, and special parameters are available to specify
attachment of a TCU to multiple CPUs, along with algorithms for
transaction routing to applications in different host processors.

NGUYEN ET AL. IBM SYST J @ VOL 19 ¢ NO 1 o 1980

Figure 5 Code required for configuration specification

cPy

TCU

LINE

cu TYPE=32741C,NUM=2

DEVICE TYPE=32782,NUM=3,AWD=INQ,ARRV=30
DEVICE TYPE=32782,NUM=3,AWD=DE,ARRV=20
DEVICE TYPE=32891

Figure 6 Additional parameters allowed for configuration specification

MODEL=4341
TYPE=37052,STORAGE=32,BFR5=60,UNITSZ=100,MAXBFRU=10,
INBFRS=10,CHANTYPE=1,DELAY=2,BFRPAD=28,SL0DOUN=12
LNCTL=SDLC,SPEED=300,MODEM=(25,3),50T=(CUB1,CU02),
DUPLEX,CSB1=2,PAUSE=0
cu TYPE=32741C,NUM=2,MILES=100,M0DEM=(25,3),PASSLIM=8,
MAXIN=7,HAXCUT=7,MAXDATA=265
DEVICE TYPE=32782,NUM=3,ARD=INQ,ARRV=30,INRATE=3,
PACING=(1,1),VPACING=(3,1),APL,CRYPTO
DEVICE TYPE=32782,NUM=3,AWD=DE,ARRV=20,...
DEVICE TYPE=32891,L51ZE=80,P512ZE=66,BELT=94,PBUFFER=2048,
SCS,MAXRU=1700,PACING=(1,1),CRYPTO

Channels, disk and tape control units, and DASD and tape devices
can be specified as additional nodes after specification of the CPU
to which they are attached (before definition of the TCU and net-
work). In this systematic manner, a host-network configuration of
arbitrary complexity can be specified.

To illustrate more fully the input requirements (and the level of

detail incorporated into FIVE), the nodes of the previous example
are repeated in Figure 6, with some of the additional allowable
parameters. The nodes are discussed briefly in the following para-
graphs.

A full discussion of the CPU node in FIVE is beyond the scope of
this paper. Suffice it to say that, while FIVE contains no built-in
models of access methods, system control programs, or DB/DC
systems, there is provision for construction of detailed host mod-
els through the use of a hierarchical TASK structure coupled with
detailed physical and logical file models. Such host representation
must be coded by the user as part of the Application Workload
Description (AWD).

The 3705 and its Network Control Program (NCP) are modeled in
substantial detail by FIVE. Except for hardware parameters
(model number, channel adapter type, line scanner type), all the
information required to define the 3705 can be abstracted directly
from the NCP generation listing. The Network Performance Ana-
lyzer supplies data on the available buffer storage.

IBM SYST J ¢ VOL 19 ¢ NO 1 & 1980 NGUYEN ET AL.

CPU node

TCU (3705) node

line node Except for the service order table and PAUSE (both available from
the NCP generation), the line parameters in Figure 6 are hardware
oriented and should be readily available. SPEED is in characters
per second, DUPLEX indicates data full-duplex operation, CSB1 is
the TCU communication scanner base for this line, and MODEM
gives the turnaround and transit times through the modem at the
TCU end of the line (available from the manufacturer).

controlunit The control unit parameters in Figure 6 are either hardware char-
node acteristics (MODEM is for the control unit end of the line) or avail-
able from the NCP generation. MILES is used to calculate the line

propagation delay.

device In addition to the parameters already discussed, INRATE is the
(screen) operator keying rate in characters per second (normally esti-
node mated from the nature of the application), PACING and VPACING
are obtained from the NCP generation, and APL and CRYPTO are

hardware features indicating APL and data encryption capability.

device With the exception of MAXRU and PACING, the parameters in-
(printer) dicated in Figure 6 are all hardware oriented. MAXRU requires
node knowledge of the application, since it is a parameter of the BIND
command used to establish a session with the printer. PACING is

obtained from the NCP generation listing.

Application Figure 7 illustrates the AWD for a simple application on the system

Workload defined above. It is invoked by the screen node labeled SINQ in

Description Figure 6. The transaction is started by sending a 30-character

message from the screen to the host CPU (CHAR=30 in Figure 7).

After 5000 instructions have been processed in the CPU, two out-

‘ put messages are sent: 1000 characters to the printer (DEST=PRT

Figure 7 Application Workload De- defines the destination as the printer label) and 200 characters
scription (AWD) for a . .

simple application bac{k to the screen (the'absence of DE§T }mphes the screen at

which the transaction originated). NEW indicates that the printer

e AMD o message is a newly created transaction, so that the original trans-

SEND =30

PROCESS ~5000 action remains in the CPU. Omission of this parameter would im-
SEND =1000,DEST=PRT,NEW

sexo ~200 ply removal of the transaction from the CPU, which must not be
AEND .
done until the screen output has been sent.

The example given in Figure 7 is the simplest possible AWD for a
‘‘one-in, one-out’’ scenario (plus one message to the printer).
Beyond this very basic scenario, FIVE enables a user to code with
as much complexity as desired. To list several examples:

e A transaction can send chained (multiple) messages. It is also
possible to code a scenario in which interaction is repeated
between screen and host processor.

A GOTO instruction can be used to code loops within an AWD
or to exit to another AWD.

NGUYEN ET AL. IBM SYST J @ VOL 19 ¢« NO 1 e 1980

A MIX (probability distribution) can be defined for such ran-
dom variables as message length, processing time, and num-
ber of times through a loop. A mix of transaction types can
also be specified at a screen by coding AWD=MIXLABEL rather
than the label of a specific AWD.

The PROCESS instruction can identify a required task; the task
characteristics (such as priority and processing overhead) are
defined in a separate TASK definition statement.

Statements can be written to define the exact format in which
information is to be printed or displayed; FIVE makes adjust-
ments to allow for transmission of control characters and
modifications of printer time.

Assuming that the appropriate hardware nodes have been de-
fined, disk and tape 1O operations can be interspersed with
PROCESS macros.

An intelligent control unit can be defined, so that processing
can be done in the control unit in addition to (or instead of) the
host CPU.

The AWD options, in conjunction with the flexibility in configura-
tion definition and specification of hardware node details, provide
a powerful tool for analyzing a network and planning for capacity
expansion.

Several types of special output can be obtained before the normal
output statistics, at the user’s option. For example, the user may
request a printout of the system configuration showing all nodes
and their interconnections. If DASD devices are specified, a map
showing how logical files are allocated to physical devices may be
requested. Various forms of trace output can be produced, show-

ing in great detail the operation of certain elements of the system
(such as line, printer, and CPU). If the 3705 goes into slowdown, a
trace of slowdown events will appear in the output.

After such special output, the first standard statistics are the AWD
response times. Each AWD displays a number of observations
(AWD completions), maximum, minimum, and mean response
times, standard deviation of the response time distribution, and
the time at the 90th percentile (90 percent of all responses will not
exceed this value). A histogram of the actual distribution can be
obtained by specifying HIST in the AWD header statement.

Following the AWD statistics, complete statistics are printed for
each node, as listed in Table 1 (next page).

Concluding remarks

In summary, FIVE provides sufficient detail to permit capacity-
planning decisions to be made quickly and accurately, and with-

IBM SYST J « VOL 19 @« NO 1 » 1980 NGUYEN ET AL.

Table 1 Following the AWD statistics, complete statistics are printed for each node in the
network, as shown below

CPU—

e Overall processor utilization.

¢ Number of requests for each task.

e Utilization of each task.

e Percentage of time each task is seized.
e Queue statistics for each task.

TCU—

e Processor utilization.

o Number of times in slowdown mode.

e Percentage of time in slowdown mode.

e Free buffer pool information (average and minimum).
e Host queue statistics.

e Channel hold queue statistics (when in slowdown).

Line—

e Supervisory, inbound, and outbound utilization.
o Positive and negative poll utilization.

e Queue statistics, both in and out.

Control unit—

Average poll cycle.

Average waiting time for poil.

Overall response time for screens on this control unit.
Cluster link inbound queue (in TCU) statistics.
Cluster link outbound queue (in TCU) statistics.
Queue of messages waiting for a poll.

Device (screen)—

o Number of transactions generated.

¢ Maximum, minimum, and mean response time.
e Standard deviation of response time distribution.
o Transaction rate achieved.

Device (printer)—

o Number of messages processed.

e Average length of printer message.

o Number of lines and pages printed.

e Throughput in characters per second and lines per minute.
e Utilization.

Device (storage) and logical files—

o Utilization.

o Number of reads and writes per second.

e Maximum, minimum, and mean service time.
o Number of rotational-position-sensing misses.

out disrupting an ongoing operation. New applications can be ac-
commodated, volume growth of existing applications can be
planned for, and the effects of system changes can be assessed.
The latter include such diverse elements as conversion from BSC
to SDLC, screen and controller configuration on a line, installation
of faster line scanners in the TCU, changing the printer mode from
data stream compatibility to SNA character string, and con-
version of disk 1/0 to fixed-block architecture.

NGUYEN ET AL. IBM SYST J @ VOL 19 @ NO 1 » 1980

The FIVE architecture and implementation facilitate the develop-
ment of subsets for interactive use in IBM locations around the
world. At this writing, two such subsets are in use, one for com-
munications systems that use the 3270 family of controllers, and
one for storage systems (tape and DASD).

The need to validate a user-written model by comparing its re-
sults against available measurements was discussed earlier. A
similar validation exercise was performed by the FIVE devel-
opers, using measurements made within IBM. In all cases studied,
for both the network model and the detailed 3790 model, response
times were found to agree within 10 percent; resource utilizations
were even closer. Validation of FIVE is an ongoing activity, re-
peated as measurements become available on new products.

A note is in order on the cost in time of using FIVE in a capacity
planning study. The following times typify the experience of one
of the authors (Revell) at the 1BM United Kingdom Field Systems
Centre. All computer times given are actual CPU time on an IBM
System/370 Model 168-3, and days are actually man-days.

For a typical 3790 study, obtaining the output of the SIX program
required about two days; another eight days were needed for con-
version to the final form needed by FIVE (assuming the availabil-
ity of a person with intimate knowledge of the programs). Valida-
tion took another four days, using SYSDC output and stopwatch
measurements of the actual system. Some 20 to 30 single-thread
runs, each taking approximately 90 seconds of CPU time, were
performed as part of this process. Next were about ten complete
runs, each taking 15 to 20 minutes of CPU time; an additional four
days should be allowed for these runs. Adding data collection and
report preparation time, a total of six to eight man-weeks should
be allowed for a study.

As a typical system, consider two 3705s, one controlling 20 lines,
and the other 30. The 3705s are connected by a cross-domain link.
Each of the 50 lines has two to five control units, with eight to 24
screens and at least one printer attached to each control unit.
Approximately 60 single-line runs would be made during a system
study, each taking about one minute of CPU time. Those runs
would be followed by 10 to 15 complete network runs, each re-
quiring 30 to 35 minutes of CPU time. Total personnel effort re-
quired for a network study of this magnitude would be somewhat
less than for the 3790—perhaps five to six man-weeks.

ACKNOWLEDGMENTS

The authors wish to acknowledge the valuable contributions of
Noel Sutton-Smith (1BM United Kingdom), the originator of SIX,
and of Michael Gordon (1BM Poughkeepsie), Uwe Moysies (IBM
Germany) and Jan Van Galen (IBM Netherlands), who were re-

IBM SYST J ¢ VOL 19 « NO 1 e 1980 NGUYEN ET AL.

validation

cost
considerations

sponsible for developing the 3790 and 8100 versions of FIVE. Peter
Crank (formerly with IBM United Kingdom) was responsible for
development of the interactive subsets currently in use on IBM’s
internal HONE system. And the necessary enhancement to PL/
was provided by Jerry Rubin, then at the IBM Scientific Center in
Cambridge, Massachusetts, and currently at IBM’s System Com-
munications Division Laboratory in Raleigh, North Carolina.

CITED REFERENCES

1. An Introduction to the IBM 3790 Communication System, IBM Systems Li-
brary, order number GA27-2807, available through IBM branch offices.

. An Introduction to the IBM 8100 information system, IBM Systems Library,
order number GA27-2875, available through IBM branch offices.

. J. P. Gray and T. B. McNeill, ‘“*SNA muitiple-system networking,”” /BM Sys-
tems Journal 18, No. 2, 263-297 (1979).

. A. L. Anthony and H. K. Watson, ‘““Techniques for developing analytic mod-
els,” IBM Systems Journal 11, No. 4, 316-328 (1972).

. M. Reiser, ‘‘Interactive modeling of computer systems,”” IBM Systems Jour-
nal 15, No. 4, 309-327 (1976).

. G. Gordon, The Application of GPSS V to Discrete System Simulation, Pren-
tice-Hall, Inc., Englewood Cliffs, NJ (1975).

. OS PL/I Checkout and Optimizing Compilers —Language Reference Manual ,
IBM Systems Library, order number GC33-0009, available through 1BM
branch offices.

. Operations Guide for the IBM 3790 Communications System, Version 7, IBM
Systems Library, order number GA27-2830, available through IBM branch
offices.

. Distributed Processing Control Executive—Operations, IBM Systems Li-
brary, order number SC27-0492, available through IBM branch offices.

. IBM 3704 and 3705 Communications Controllers Principles of Operation,
IBM Systems Library, order number GC30-3004, available through IBM
branch offices.

. Network Performance Analyzer: Program Description and Operations Man-
ual, IBM Systems Library, order number SB21-2479, available through IBM
branch offices.

GENERAIL REFERENCES

T. E. Bell, “*Objectives and problems in simulating computers,”” AFIPS Confer-
ence Proceedings 41, Part 1, 287-297 (1972).

E. K. Bowdon Sr., S. A. Mamrak, and F. R. Salz, *‘Simulation—A tool for per-
formance evaluation in network computers,”’ AFIPS Conference Proceedings 42,
121-131 (1973).

R. W. Conway, ‘‘Some Tactical Problems in Digital Simulation,” Management
Science 11, No. 1 (October 1973).

J. R. Emshoff and R. L. Sisson, Design and Use of Computer Simulation Models,
The MacMillan Company, New York (1970).

P. H. Enslow Jr., *“*What is a ‘Distributed’ Data Processing System?,”” Computer
11, No. 1, 13-21 (January 1978).

G. S. Fishman, Principles of Discrete Event Simulation, Wiley-Interscience Pub-
lishers, New York (1978).

S. R. Kimbleton, ‘*The Role of Computer System Models in Performance Evalua-
tion,”” Communications of the ACM 15, No. 7, 586-590 (July 1972).

J. Reitman, Computer Simulation Applications, Wiley-Interscience Publishers,
New York (1971).

NGUYEN ET AL. IBM SYST J @ VOL 19 ¢ NO 1 * 1980

M. F. Rothstein, Guide to the Design of Real-Time Systems, Wiley-Interscience
Publishers, New York (1970).

P. H. Seaman, ‘On teleprocessing system design—Part VI, The role of digital
simulation,”” IBM Systems Journal 5, No. 3, 175-189 (1966).

A. C. Traub Jr. and W. F. Zachmann, “*A GPSS Model of a Complex On-Line
Computer System,”’ Proceedings, Symposium on the Simulation of Computer
Systems, ACM Special Interest Group on Simulation (June 1973), pp. 17-37.

H. C. Nguyen and W. J. Skwish are located at the IBM World
Trade EIME/A Corporation, Building 5, P.O. Box 390, Pough-
keepsie, NY 12602; Arnold Ockene is at the IBM World Trade
E/ME/A Corporation, 360 Hamilton Avenue, White Plains, NY
10601; Richard Revell is located at IBM United Kingdom Litd., 17
Addiscombe Road, Croydon CR9 6HS, England.

Reprint Order No. G321-5117.

IBM SYST J ¢ VOL 19 @ NO 1 o 1980 NGUYEN ET AL.

101

