
A number of performance  prediction  methods  are  available  to 
IBM marketing  personnel.  This  paper  describes  one  such  method, 
which  predicts  the  effects of changes  in IBM 3790 and 8100 distrib- 
uted  processing  systems  and  in  teleprocessing  networks.  Such 
changes  may  involve  system  features  (such  as  line  protocols),  the 
introduction of new  applications,  or  volume  growth  in  an  other- 
wise  static  system.  The  technique  makes  use of a  detailed  simula- 
tor,  informally  called FIVE, in  conjunction  with  a  system  monitor 
and  data  analysis  program.  Its  use  can  make  substantial  per- 
formance  information  available  at  relatively  low  cost. 

The role of detailed  simulation  in  capacity  planning 
by H. C. Nguyen, A. Ockene, R. Revell, and W. J. Skwish 

From  a  capacity planning viewpoint, a  system  can be divided into 
three broad areas:  host  processor,  communication  network,  and 
distributed intelligence, as in the IBM 3790 and 8100 Systems.’’’ 
Attention in the past has generally been focused  on the host  sys- 
tem, but  the sharply declining cost of central  hardware,  combined 
with the rapid growth of teleprocessing and  distributed  process- 
ing,  has  increased  the  importance of communications and distrib- 
uted intelligence. 

Systems with dozens of distributed  processors  are no longer un- 
common. Managing the growth in capacity of such  systems  re- 
quires  close  attention to key performance considerations.  The 
basic  requirement  for  capacity planning is predicting how 
changes will affect system  performance,  thereby permitting the 
best  course of action to be followed. For  purposes of the follow- 
ing discussion,  the  key performance elements are assumed  to be 
response time (as perceived by a terminal operator) and through- 
put (volume of work per unit time, such  as  characters printed per 
second). 

Methods  for predicting system performance include “educated 
guesswork,” benchmarking, and the use of computer models (ei- 
ther analytic or simulative,  as  discussed  below).  The first method 
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is time-honored and probably the most widely used. It works  best 
when the  system is comfortably overdesigned, allowing a safe 
margin for  error.  This  casual  approach  to  performance  prediction 
has  become increasingly unsatisfactory  because of the  growth of 
on-line systems (with their stringent performance  requirements) 
and diminishing tolerance  for gross overdesign. 

Benchmarking (the  execution of actual  applications on the pro- 
posed  system configuration) is expensive  and inflexible, since it is 
difficult to examine  a wide range of configuration alternatives. 
For a combination of flexibility (in specifying both  system config- 
uration  and  applications  at any level of detail) and  reasonable 
cost, computer models have come into  widespread  use.  Such 
models are programs that describe  both  the physical structure of 
the  system  under  study  and all application activity  (data  transmis- 
sion,  processing, I/O) that significantly affects performance. 

Once  the decision has  been made to employ a modeling approach, 
a number of factors influence the  choice of a specific tool: 

It should be suitable for modeling individual subsystems  (such 
as the 3790 and 8100) as well as the  total  system (communica- 
tion network,  host  computer, and cluster  controllers). 

0 The model should be detailed and accurate enough to simulate 
all relevant  aspects of a working system, although the  cost  and 
level of detail must be kept in balance,  and  the model should 
minimize distortion.  Errors  caused  by faulty input data  cannot 
be avoided,  but  the model itself should not introduce signifi- 
cant  error. 

0 There should be a reasonable validation procedure. Validity is 
established by matching the model to  the  operation of the  real 
system,  thereby providing credibility for  the  performance  pre- 
dicted when changes  are  made. 
The  cost of using the model should be low to  encourage  its 
continued  use. Aside from its value in predicting the effects of 
system  changes or new applications,  such  a model can be used 
as a tuning aid,  as in optimizing Network  Control Program 
parameters. 
Model output should be provided at  several levels of detail, as 
required by the  nature of the  study. Detail should not  be 
forced on the  user,  but invoked as needed. 
There should be an automated  procedure  for using existing 
data.  For  example,  a  procedure  for  converting running appli- 
cation  code to model input would save  time. Similarly, tracing 
and monitoring facilities can provide performance  data against 
which the model can be validated. 

A  key point is that information on both the  causes of performance 
problems (such as poor  data  set placement) and  the  consequent 
effects  (such  as  excessive disk utilization and concomitant 
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those  tools  cannot  answer what if or how  to  improve questions,  a 
manifest need if the effects of possible remedial actions  are to be 
predicted. 

Why and how questions  can be answered only if cause and effect 
data  can be related, so that effects can be traced back to  causes. 
They  can be related by using the  system model as an  inter- 
mediary, feeding the cause data  into  the model and using the 
(measured) effect data  to validate the model’s performance esti- 
mates.  The model discussed in this  paper satisfies that  require- 
ment, relating measurable performance effects to  observable 
causes. 

The  nature of modeling requirements, especially with regard to 
cost  and  timeliness,  makes it impractical to  construct  a unique 
model for  each  installation. What is required is a generalized 
framework  for modeling teleprocessing and  distributed intelli- 
gence  systems, with  flexibility  in specifying both configurations 
and  applications.  Such  a framework exists in the modeling archi- 
tecture  discussed below. Used by IBM marketing personnel, it is 
informally called FIVE. 

FIVE is a modular simulator of SNA (Systems  Network Archi- 
tecture)  systems3  The simulator is a  set of performance predic- 
tion aids within a  common  architecture, which is general enough 
to encompass  other  aids,  such as configurators and  network  opti- 
mizers, although such  other aids have not been implemented at 
this writing. The design allows subsets of the main simulator to be 
used interactively at IBM locations  around  the world. 

Background 

Analytic modeling for performance ~ r e d i c t i o n ~ ’ ~  depends  on solv- 
ing a mathematical description of a  system  and  its  activity,  an 
approach  that has been most successful with individual sub- 
systems. As such subsystems  are linked together, and as  the com- 
plexity of both configuration and applications  increases, it be- 
comes increasingly difficult to  formulate (and solve)  the  mathe- 
matical relationships without making unrealistic simplifying 
assumptions.  For  example, no analytic model available today is 
capable of modeling a detailed Network  Control Program (NCP) 
and predicting the effects of slowdown (whereby  the NCP stops 
requesting new transactions when the  number of free buffers 
drops  to  a critical value). In an Advanced Communication Func- 
tion environment, where an  overloaded line in one domain may 
force  an NCP in another domain into slowdown,  an analytic ap- 
proach  becomes  even more futile. 
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The  most  general  technique  for  the  construction of performance 
prediction  models is discrete-event  simulation.  Rather  than  rely- 
ing on a  mathematical  description of a system, a simulator  moves 
the  system  through  time  and mimics the  myriad  events  that  occur 
in the  real  world.  Messages in a  teleprocessing  system  are  trans- 
actions  that flow through  the simulated system using necessary 
resources  (terminal,  communication  line, CPU, channel).  The sim- 
ulator  maintains  a  clock  and  keeps  lists of transactions in various 
stages of  processing  and  queuing  for  system  resources. 

Since a  simulator is a  detailed  mapping of the  real  system  into a 
computer  program,  rather  than a  mathematical  abstraction,  there 
are no inherent  constraints on the  level of detail  that  can  be mod- 
eled.  The limiting factors  are  the  programming effort and  the  com- 
puter  resource  (storage  and CPU time)  available  for  executing  the 
model.  The rapidly  declining cost of computer  hardware  has 
made  detailed  simulation  a  practical  alternative in many cases, 
and it is  that  approach which  was chosen in developing FIVE. 

Once  the  decision  was  made  to  use a  simulation  approach,  the 
next  task  was  to  select  an  appropriate modeling  language. The 
most  commonly  used  simulation  language, GPSS.' was  rejected  on 
grounds of execution efficiency.  After consideration of several 
others,  the  language finally selected  was PL/I ,~  with  some  en- 
hancements  to  provide  the  services  required  for  simulation.  This 
combination  has  the list processing  facilities  required  for  simula- 
tion  and  also  produces efficient, executable  code. PL/I has  the  fur- 
ther  advantage of  being  a  general  programming  language, so that 
it  is  possible to  contemplate  future  (nonsimulation) design tools 
that  use a data  base in common with the  performance  predictor. 

Architecture 

The FIVE architecture  can  be viewed as a data  base  whose  basic 
units  are  data  structures called nodes.  Each  node  contains  the 
information  required  to  describe  one of the  system  elements 
(hardware  and  software)  under  study,  and it can  be  used  at dif- 
ferent  levels of detail.  Intended  to  permit  development of tools  for 
all aspects of system design using a common  data  base,  the  archi- 
tecture  imposes a  discipline  that  can  speed  development, valida- 
tion,  and  future modification and  maintenance by others. 

The  nodes in FIVE normally  are linked in a hierarchical  tree  struc- 
ture,  although ring and mesh structures  are also permitted.  The 
hierarchy  is:  device  (screen  or  printer)  at  the  lowest  level,  then 
control  unit,  communication  line,  and  transmission  control unit 
(TCU), with the  host  processor (CPU) at the  highest  level.  Local 
control  units  can be attached  directly  to  the CPU. If the  device is a 
disk or  tape  drive,  the  hierarchy is as follows:  device,  storage 
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control  unit,  channel,  and CPU. Additional  levels  can  be in- 
troduced by using such  elements  as a remote TCU or a cross- 
domain  link. 

In  addition to  hardware  characteristics  (such  as  storage  size  and 
processor  speed),  software  characteristics  appear in the  nodes  as 
appropriate. Using NCP generation  parameters as  an  example, 
PACING parameters  appear  at  the  device  (screen  or  printer)  level, 
PASSLIM is in the  control  unit, PAUSE in the  line,  and SLODOWN in 
the TCU. A node  can  operate  at  any of several  levels of  detail;  for 
example,  the  communication-line  node  can  operate  accurately ei- 
ther  with all polling messages  modeled or in afust  mode,  with 
most  unproductive polling suppressed  to  provide  faster  execution 
(although  the  termfust is inappropriate if the effect of limited TCU 
engine  capacity is to be  studied).  Another  example is the CPU 
node, which can  be  anything  from a  simple  processing  delay to a 
hierarchical  task  management facility. 

In addition to  the  nodes,  the FIVE input  specification  includes  pro- 
vision for defining logical files and  their  location (on disk or  tape), 
characteristics of tasks in the CPU, format  statements  for  con- 
trolling screen  and  printer I/O, and  various  probability  distribu- 
tions.  Once  the  nodes  have  been linked into a network, a  simula- 
tion  facility  models the  dynamic  behavior of the  system.  This  fa- 
cility  provides  such  services as a clock, list handling,  and  event 
scheduling. 

The  nodes  described  above define the  physical  structure  (and  as- 
sociated  software  characteristics) of the  system  to  be  modeled. 
The  applications  to  be  processed  are defined  by the  Application 
Workload  Description (AWD),  a  facility for  describing  the  data 
transmission,  processing,  and ID requirements  for  each  type of 
transaction.  Like  the  nodes,  the AWD can  operate on any of sev- 
eral  levels of  detail.  The  most basic  form (type 0) is  a  single state- 
ment that  gives  information  such as  operator  “think  time,” I/O 
characters  transmitted,  and  processing  time. A  more  complex 
version  (type 1) permits  the  user to write  a  program  with  macros 
such  as SEND,  PROCESS,  DELAY, and GOTO. In either  case, all  pro- 
cessing is  in the CPU. To define an application in the IBM 3791 or 
8100 controller, AWD type 3790 or 8100 permits  the use of macros 
unique to  the  controller being  modeled.  There is also a general 
control unit feature  which  permits  the  user  to define  the charac- 
teristics of intelligent controllers  other  than  the 3790 and 8100. 

Distributed processing 

Since  distributed  processing  involves  several  intelligent con- 
trollers or  processors within  a  single system, it is theoretically 



extrapolate  its  performance  into  the  future.  This  approach  has 
two major drawbacks,  however.  First, it can be misleading if the 
extrapolation involves changes  other  than  increased  load or a rel- 
atively straightforward system change such  as additional disk 
drives. For example, if new applications or the  introduction of 
shared disk storage  are involved, extrapolation may  be in- 
accurate.  Second,  regular evaluation of the performance of each 
subsystem can become a formidable task  for all but the most triv- 
ial cases. 

monitoring aids Maximum value can be obtained from a performance model when 
it is used in conjunction with system mapping and monitoring 
aids. For  the IBM 3790 and  the 8100 operating  under DPCX,’” the 
following aids are potentially valuable: 

SYSDC-an effect aid,  a software monitor  that supplies data  on 
the use of subsystem  resources. Specifically, it reports  con- 
trol-unit utilization, disk utilization, and  seek  activity  for a 
specified period.  For  our  purposes, SYSDC provides an  inde- 
pendent  source of performance data. 

0 SYSLDSA-a cause aid,  an analysis program that  provides  a 
complete map of data  sets as allocated to  the disk space of the 
3790 or 8100. For  our  purpose,  the information it supplies can 
have  a major effect on performance and is inexpensive com- 
pared with manual data collection. 
FIVE3790 and FIVEDPCX-specialized subsets of the FIVE 
model. Each  permits  the use of macros similar to  those used in 
actual 3790 and 8100 code.  The  controller is linked to  other 
nodes in the  system  as  described  earlier with regard  to FIVE. 
These  two  subsets of FIVE are available only outside  the 
United States. 

performance The  aids  described  above provide a  ready  source  of  cause  and 
factors effect data, and FIVE can relate  the  two,  but  the information is still 

insufficient for  construction of a model because  the only cause 
information relates  to  data  sets.  The  factors  that affect perform- 
ance  of  the 3790 and 8100 are  those  that  determine  resource avail- 
ability and  govern  their  use, namely: 

0 Configuration (hardware  and  software). 
Data-set activity (placement and usage). 
Application programs. 
Traffic volumes. 

Information on subsystem configuration and traffic volumes 
should be readily available and need not be discussed further. 
Data-set placement information is supplied by SYSLDSA, as dis- 
cussed  above.  Data-set  usage, which is related  to application pro- 
gram activity, is discussed below. Finally, information on exist- 
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Figure 1 Mapping of FIVE macros for source-program instructions 

3790/8100(DPCX) 
I 
I 

Instruction I 
I 

RDDEV  DISPLAv,TYPE=NOWAIT I 
FREE  DISPLAY,INPUT I 
MOVEBUF  FROM=DISPLAY,TO=BUF(l) I 
RESCON 0PTION:WAIT I 
DRL BUF(1) 
GETPANEL DISPLAY 

I 
I 

WRTDEV  DISPLAYtEND I 

"""""""""""""""" 

FIVE  Macro 
Equivalent 

RD F L 0 S = 3 , C H A R = 2 O 9 O P T = N O W A I T  
FREE  DPLY 
MOVEBUF  FROM=DPLY,TO=l 

DRLADD DSID=X,SYN=l.Z,BUF=l 
RESCON DPLY 

GETPANEL SIZE=3 
WRT FLD=lO,CHAR=400 

ing application programs is readily available in the form of source 
code.  That information is the most important,  since  application 
programs  are  the  source of all resource usage. Whether  the  re- 
source usage involves disk accesses,  processor  activity,  or buffer 
usage, its control is determined by the flow  of the application pro- 
grams being executed. 

The 3790 and  the 8100 with DPCX are  interpretive  machines,  and 
the  execution flow  of programs has  a  fundamental influence on 
performance.  There is no great overhead of system  code  that 
needs  to be executed.  Thus, if the  path  lengths of  all the appli- 
cation programs in a  particular machine were  doubled,  one would 
expect  the  controller utilization to roughly double (assuming low 
utilization). In a  traditional host system, on the  other  hand,  the 
overhead of the  system  control  program,  access  methods,  and 
DBIDC packages has a  considerable  effect, to the  extent  that utili- 
zation attributable  to application program execution itself may be 
relatively minor. Since  this is not  true  for  the 3790 or 8100, the 
effort required to map every  source program into model input can 
be  excessive. 

Consider now that  the FIVE model accepts  as input a  description 
of the application source programs in the  form of a  one-for-one 
mapping-one FIVE macro  for  each  source program instruction, 
as shown in Figure 1 .  At first it  may appear  that  the  amount of 
work has  increased.  However,  a potentially massive task  can be 
reduced substantially by  using a  translation program which con- 
verts  each  real  source  instruction  to  its  equivalent FIVE macro. 
Such  a  translator, known informally as SIX, has been written  at 
the IBM United Kingdom Field Systems  Centre  at  Croydon, Eng- 
land. 

Two things soon  become  apparent.  First,  data  gathering, a major 
task in any modeling effort,  has been considerably  reduced, so 
that it is practical to use the model in capacity planning. Second, 
the idea of automatically translating cause data into model input 
is not peculiar to  the 3790 or 8100; it can  also be applied to other 
system  components.  For  example, all the cause data required to 
accurately  reproduce  an installed communications  network in 
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FIVE is provided by a line trace,  an NCP generation listing, and  the 
Network Performance Analyzer (NPA), a  network management 
aid, which is discussed  under Network  capacity  planning, below. 

The  distributed  processing  model 

Although it  is feasible to  gather  a large portion of the  required 
data quickly and with little effort, it would be misleading to  say 
that  the entire  procedure  can be automated.  The following para- 
graphs  describe  the  steps involved in representing  a  real  system 
in the FIVE model and validating the model’s predictions.  Input  to 
FIVE consists of three main components: a definition of the  phys- 
ical configuration, a definition of the  applications  and  the  transac- 
tion flow, and a file definition. 

physical Mapping of the physical configuration into FIVE is not described 
configuration here.  It is a  straightforward  process, requiring only fundamental 

information on the  system’s physical characteristics,  as  described 
in the discussion of node  structure  under Architecture, above. 

application For simplicity, the  example  presented below considers  a  system 
program with one main program. It is based on a real  situation, although 
selection most  systems  have many programs,  often a hundred or more.  It 

would require considerable effort to incorporate all programs into 
a  system  model;  fortunately, only a few programs are  exercised 
most of the  time. Most programs relate to infrequent  events,  such 
as  error conditions  and weekly report  generation, and can  there- 
fore be ignored on the  assumption  that  their effect on system  per- 
formance is negligible (although the  option  remains  open  to  incor- 
porate  them if they  are deemed important). 

application The  selected program is now translated using SIX. The  result is 
program a file that  contains  the required FIVE input statements  cross-refer- 

translation enced with the original program statements,  together with the lo- 
cations of the program page boundaries. At this  stage  the SIX out- 
put  needs manual modification before it can be used as FIVE in- 
put. 

Almost all the  operands required by the FIVE macros can be de- 
duced by SIX, but  a few must be supplied by the  user.  The infor- 
mation required is generally simple and  easy  to  obtain,  either di- 
rectly from the  source  code  or from SYSLDSA. Examples are 
whether  the program accesses  the  transaction  data  set,  the  names 
of any  external  programs  (subroutines)  that  are  called,  and  the 
average number of synonym  accesses  to  a  particular indexed data 
set (supplied by SYSLDSA). 

A more time-consuming step is coding the flows through the  pro- 
gram. Although SIX can  map  the  source  code  into equivalent FIVE 
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Figure 2 Unconditional branching-no manual intervention required 

I 
S o u r c e   C o d e  I S I X - g e n e r a t e d   c o d e  

I 
I 
I G O T O  L A B E L - L A B O 2 1 , B L O C K - 1  G O T O  X X X  

G O T O U *  

I 
I 
I 
I 
I 
I 
I 
I 
I L A B 0 2 1  
I 
I 

x T h l s  m a c r o  a l l o w s   f o r   e x e c u t i o n   o v e r h e a d   o n l y  

macros, it cannot  determine  the probability of taking a  particular 
path  at program branch  points.  That probability must be deter- 
mined manually. 

At every  branch point in a program, the SIX translator  produces 
two FIVE GOTO macros.  The first accounts  for  the  overhead  asso- 
ciated with executing  the branch instruction.  The second causes 
the  branch  operation  to  occur; it has an  operand, LABEL, which 
gives the branching address. As shown in Figures 2 and 3,  if the 
branch is unconditional, SIX generates  the  operand value and no 
manual intervention is required; and if the  branch is conditional, 
SIX generates  a MIX statement which indicates  the probability of 
the  branch. This probability must be supplied by the  user. 

Determination of the MIX probabilities is best done in order of 
importance;  that  is, by successive  selection of the most basic 
branch  points,  starting with those  that  branch  to different func- 
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Figure 4 File definition for relative data sets 

KEY: 

a a  
nnnn - data-set size in  blocks 

- data-set ID 

v v  - volume  number 
ttt s s  - track  number  and  block  number o f  first  sector 
rrrr - number  of  records  in  the  extent 

I 
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I 
I 

I 
I 

............................. 

I 
I R E LATIVE  DATA  SET  aa 

I 

I 
I 

I 
I 

I 
n nnn  TOTAL  BLOCKS I 

I 
I 

v v  t t t  s s  nnnn  rrrr I 

R elative  Data  Set  information  produced 

V 
I I 
I 
I R e lative  Data  Set  information  required 

I 
I F I LEea  FILE  TYPE=3791, 
I NREC=(rrrr,vvl, 
I 

F I V E  I 
j""""""""""""~"""""""""""""~~~ I 

I 
I 
I 

LRECL=256*(nnnn/rrrr) I 

* T h e  position  of  the  ttt s s  values  supplied b y  SYSLDSA 
is defined in FIVE  according t o  the  sequence  in  which 

m a p s ,  which  allow  cross-checking  to  validate  the  file 
files  are  defined.  Both  SYSLDSA  end  FIVE  produce  disk 

allocations. 

tions within the  program.  These branch points will roughly equate 
to  those  shown in a block diagram. Next, it must be determined 
whether  each  function is to be exercised.  Just as a good many 
programs  are  executed  infrequently, many functions within a pro- 
gram are used rarely.  Once  these  functions  have been identified, 
it becomes  a simple matter  to  code  the  related MIX statements so 
that  they  are not exercised (by setting the probability to  zero). 
After the first-level MIX statements have been  completed,  the pro- 
cess is repeated for branch points within each  function  to be in- 
cluded in the  simulation. 

It is important  that  the MIX statements  be  coded  accurately.  The 
MIX probabilities are  best determined by a person who is familiar 
with the application programs, usually the programmer himself. 

tile At this  stage  the major part of the model building is complete.  The 
definition next  and final stage is to  describe  the data  sets  to be used.  This 

operation is straightforward, since all the information required by 
FIVE is supplied by SYSLDSA, as shown in Figure 4. 

model Once  the model has been completed, it can be validated by com- 
validation paring it with available measurement  data supplied by SYSDC. The 
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ated, measurement data can be printed any  number of times dur- 
ing the  measurement  period, which can be up to an  hour. 

Since there  are  several intelligent controllers in a typical system, 
it is impractical to attempt  to measure them all. If a single system 
is used in  all operating  environments, normally it  will be the  one 
chosen  for  measurement. 

The specific situations  to be measured must now  be selected.  It is 
desirable  to  measure  the  system  once  for  each application and 
also with each common application mix-for example, with eight 
terminals doing data  entry and six doing inquiry.  The  environ- 
ment in which measurements  are to be taken must also be chosen: 
Are the  measurements  to be taken in a controlled  environment 
with the terminals operating continually with fixed operator 
delays, or is the  natural environment of the  production  system to 
be  measured with no artificial constraints on its  operation? Both 
approaches have merit and  both should be used. In the  former, 
operator  delays  can be controlled, so model validation cannot be 
affected by inaccurate  choice of operator  delays.  A  natural  pro- 
duction  environment, on the  other  hand,  has  the  advantage of 
providing an  overall validation of the model. In  general, as many 
measurement  runs as can be afforded should be undertaken,  bear- 
ing in mind that  the  objective is to validate the model, not to  use 
the  measurement  results alone for planning. 

If the  measurement  results  do not compare closely with those possible 
predicted by FIVE, it is reasonable to  conclude  that  there are  er- sources 
rors in the model input data. Since most of the input is a  direct oferror 
translation of observed fact, there  are relatively few potential 
sources of error. Among them are inaccurate  operator delay val- 
ues,  incorrect program flows, and  incorrect  data  set  placement. 

Operator  delays  have  a fundamental effect on predicted  results. If 
the  system  has not been measured in a controlled environment 
using fixed operator  delays,  such  measurement should be consid- 
ered so that  operator  delays can either be ruled out  or highlighted 
as a source of error. If the delay estimates must be improved, we 
know of no better way to measure them  than with a  stopwatch. 

To  check  the  accuracy of program flows, FIVE incorporates  two 
powerful facilities, SUMRY and TRACEX. SUMRY provides (among 
other things) a count of every  instruction in each program exe- 
cuted during a FIVE run.  It allows areas of overactivity  and  under- 
activity  to be detected.  Once  suspect  areas of the program are 
located, TRACEX can  trace the program flow, showing which in- 
structions  are being executed, in what order, and how much time 
is spent on each. 

IBM SYST J VOL 19 NO I 0 1980 NGUYEN ET AL. 91 



Finally,  data  set  placement  can  be  checked by  comparing  the  disk 
map of the  real  system,  as supplied  by SYSLDSA, with  the  disk 
map  produced by FIVE. 

revalidation Since  the  production  system  almost  certainly will change over 
time, it is wise to  resynchronize  the  model  with  the  real  system 
from  time  to  time.  Such  revalidation  need  not  be as  exhaustive  as 
the initial  validation,  since  only  the  changes  need  be  considered. 
Revalidation  should  be  considered  when  the  system  configuration 
changes,  when  new  applications  are  added,  and  when  there  is a 
substantial  growth in volume. 

examples A  wide  variety of situations  can  be  investigated  easily  and  quickly 
through  the  use of FIVE. A few examples  follow: 

Hardware  and  software- 
@ Of what value is the 3790 fixed-head feature,  and which  pro- 

grams  are  best  located  under fixed heads? 
Is there  value in keeping  some  programs in main storage? If 
so, which programs? 
What  performance  improvement  can  be  expected  by  up- 
grading  a 3790 system  to  an 8100 with DPCX? Where  should 
8130 controllers  be  installed  and  where  are 8140 controllers 
needed? 
Will performance  be  enhanced by  using direct  sector  referenc- 
ing? 
How will performance  be affected  by  driving some  terminals 
over a remote  data  link? 

Growth- 
@ When might expected volume growth  produce  unacceptable 

What is the  effect  of  adding  a new application? 

Performance  analysis- 
@ Where  are  the  bottlenecks in a system  and why do  they  exist? 

What is the  expected  behavior of the  system  under  various 

performance? 

What  action is required  to  rectify  the  problem? 

loads? 

Almost all the  above  questions  can  be  answered simply by chang- 
ing a  few FIVE parameters  and  rerunning  the model. In  this man- 
ner  the  use of FIVE, as  opposed  to  the  real  system,  allows  experi- 
mentation.  Alternative  courses of action  can  be  investigated  with- 
out  disturbing  the  production  system. 

other benefits ‘The approach  described  above is not restricted to capacity  plan- 
ning. The  output  produced by FIVE can  also be used in system 
tuning. SUMRY and TRACEX, for  example,  are useful in examining 
the efficiency of program  code,  whether  the  program is used in 
production or in an application  under  development,  and  the  data 
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set  statistics  produced by FIVE can help determine  whether highly 
active  data  sets  should  be  reloaded  closer  to  the  midpoints of the 
disks. 

Network capacity planning 

As with distributed  processing, it is  possible to build a FIVE model 
for  capacity planning  with  a  teleprocessing network. All required 
information  exists in one  form or  another.  First, it is  necessary  to 
determine  whether sufficient muse and yfect information  is  avail- 
able  to  construct  and validate the  model, keeping in mind the 
need to maintain  accuracy without  undue  effort. The  sources of 
information,  described  below,  are NCP generation,  the  Network 
Performance  Analyzer,  and line tracing. 

A  listing of the  Network  Control  Program (NCP) generation is a NCPgeneration 
valuable  source of c'uusc. data  for  networks  controlled by the IBM 
3705 transmission  control unit (TCU)." Many NCP generation 
macros significantly affect  network  performance,  and  much of the 
input  required to  construct  a FIVE network  model  corresponds  to 
NCP generation  values. 

The  Network  Performance  Analyzer (NPA)," a  management  aid Network 
for  monitoring  network  activity,  can play  a  vital  role in the mod- Performance 
eling approach  to  network  capacity planning. It  supplies  both Analyzer 
cause and e f f ~ ~ c t  data,  thereby  assisting in both  building and vali- 
dating  the  model.  Relevant  data  supplied by NPA includes  the 
polling rate  (the  number of polls  per unit of time), 3705 utilization, 
and  queue  lengths in the 3705 (including the clustpr link  outbound 
queue, which contains  data  frames  awaiting  transmission  from 
each 3705, and  the channel  inbound queue, which contains  data 
awaiting  transmission to the  host). All of  this  data  provides effect 
information  of  direct  use in model  validation,  since it can  be  com- 
pared with  similar output  from FIVE. 

: The CULISP data  produced by NPA includes  buffer  pool  size  (the 
number of buffers  available in the 3705), and message rates by 

, line,  control  unit,  and logical unit. 

Normally  used  for  investigating  line  problems,  a line trace  also linetracing 
contains  information of value as model  input.  It  provides  details 
on the  sequence of  transmissions  between  end  users in a  network 
and, of particular  value, it shows  the  messages  generated by each 
host  software  user.  For  example,  some  systems may or may not 
issue  an  independent unlock keyboard message. While such in- 
formation  is  available  from  other  sources, it is often  open  to mis- 
interpretation;  the  virtue of a line trace  is  the  unambiguous  nature 
of the  information  for  the  specific  system  and  applications  being 
modeled. 

IBM SYST J VOL 19 N O  I 1980 NGUYEN ET AL. 93 





Figure 5 Code  required  for  configuration  specification 

H O S T  C P U  
T C   T C U  
L N   L I N E  
C cu T Y P E = 3 2 7 4 1 C , N U M = 2  
S I N Q   D E V I C E  T Y P E = 3 2 7 8 2 , N U M = 3 , A W D = I N Q ~ A R R V = 3 0  

Figure 6 Additional  parameters  allowed for configuration  specification 

H O S T   C P U  
T C   T C U  T Y P E = 3 7 0 5 2 , S T D R ~ ~ G E = 3 2 ~ B F R S ~ 6 O ~ U N I T S Z ~ I O O ~ ~ A X ~ F R U ~ I O ~  

M O D E L = 4 3 4 1  

C c u  T Y P E = 3 2 7 4 1 C , I ~ U F ~ = 2 , H I L E C J ~ 1 0 0 ~ M O D E M = ( 2 5 ~ 3 ) ~ P A S S L I 1 ? ~ 8 ~  
DUPLEX,CSDI=:.PAUSE=O 

E l A X I N = 7 , H A V O U T = 7 , M A V D A T A = 2 6 5  

S D E  D E V I C E  T Y P E = 3 2 7 8 2 , N U M = 3 , h W D = D E , A R R V = 2 0 ,  . . .  
P R T   D E V I C E  T Y P E = 3 2 S 9 1 , L S I Z E = 8 0 , P S I Z E = 6 6 , ~ E L T = 9 4 , P D U F F E R = 2 0 4 8 ~  

S C S , M A X R U = 1 7 0 0 , P A C I N G = ( l , l ) , C R Y P T O  

Channels, disk and tape  control  units,  and DASD and  tape  devices 
can be specified as  additional nodes after specification of the CPU 
to which they  are  attached (before definition of the TCU and  net- 
work).  In  this  systematic  manner,  a  host-network configuration of 
arbitrary complexity can be specified. 

To illustrate more fully the input requirements (and the  level of 
detail  incorporated  into FIVE), the  nodes of the previous example 
are  repeated in Figure 6, with some of the additional allowable 
parameters.  The  nodes  are discussed briefly in the following para- 
graphs. 

A full discussion of the CPU node in FIVE is beyond  the  scope of CPU node 
this  paper. Suffice it to say that, while FIVE contains no built-in 
models of access  methods,  system  control  programs,  or DB/DC 
systems,  there is provision for  construction of detailed host mod- 
els through the use of a hierarchical TASK structure  coupled with 
detailed physical and logical file models. Such  host  representation 
must be coded by the  user  as  part of the Application Workload 
Description (AWD). 

The 3705 and  its  Network  Control Program (NCP) are modeled in TCU (3705) node 
substantial detail by FIVE. Except  for  hardware  parameters 
(model number,  channel  adapter  type, line scanner  type), all the 
information required to define the 3705 can be abstracted  directly 
from the NCP generation listing. The  Network Performance Ana- 
lyzer supplies data  on  the available buffer storage. 

IBM SYST J VOL 19 NO I 1980 NGUYEN ET AL. 95 



line node 

control unit 
node 

device 
(screen) 

node 

device 
(printer) 

node 

Application 
Workload 

Description 

Figure 7 Application Workload De- 
scription (AWD) for a 
simple application 

I N 0  C K D  T Y P E - 1  
S E N D  C H A R . 3 0  
P P O C E S S  l N S i = 5 0 0 0  

Except  for  the  service  order table and PAUSE (both available from 
the NCP generation),  the line parameters in Figure 6 are  hardware 
oriented  and should be readily available. SPEED is  in characters 
per  second, DUPLEX indicates  data full-duplex operation, CSBl is 
the TCU communication scanner base for  this  line, and MODEM 
gives the  turnaround  and  transit times through  the modem at  the 
TCU end of the line (available from the  manufacturer). 

The  control unit parameters in Figure 6 are  either  hardware  char- 
acteristics (MODEM is for  the  control unit end of the line) or avail- 
able from the NCP generation. MILES is used to calculate  the line 
propagation delay. 

In addition to the  parameters already discussed, INRATE is the 
operator keying rate in characters  per second (normally esti- 
mated from the  nature of the  application), PACING and VPACING 
are  obtained from the NCP generation,  and APL and CRYPT0 are 
hardware  features indicating APL and data  encryption  capability. 

With the  exception of MAXRU and PACING, the  parameters in- 
dicated in Figure 6 are all hardware oriented. MAXRU requires 
knowledge of the  application, since it is a  parameter of the BIND 
command used to  establish a session with the  printer. PACING is 
obtained from the NCP generation listing. 

Figure 7 illustrates  the AWD for a simple application on  the  system 
defined above.  It is invoked by the  screen node labeled SINQ in 
Figure 6. The  transaction is started by sending a 30-character 
message from the  screen  to  the host CPU  (CHAR=30 in Figure 7). 
After 5000 instructions  have been processed in the CPU, two  out- 
put messages are  sent: 1000 characters  to  the  printer (DEST=PRT 
defines the  destination  as  the printer label) and 200 characters 
back  to  the  screen  (the  absence of DEST implies the  screen at 
which the  transaction originated). NEW indicates  that  the  printer 
message is a newly created  transaction, so that  the original trans- 
action remains in the CPU. Omission of this  parameter would im- 
ply removal of the  transaction from the CPU, which must not be 
done until the  screen  output has been sent. 

The  example given in Figure 7 is the  simplest possible AWD for  a 
one-in,  one-out''  scenario (plus one message to  the  printer). 

Beyond this very basic  scenario, FIVE enables  a  user  to  code with 
as much complexity as desired. To list several examples: 

" 

0 A  transaction  can send chained (multiple) messages. It is also 
possible to  code  a  scenario in which interaction is repeated 
between  screen  and host processor. 
A GOT0 instruction  can be used to code loops within an AwD 
or  to exit  to  another AWD. 
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A MIX (probability distribution) can be defined for  such  ran- 
dom variables as message length, processing  time,  and num- 
ber of times through a  loop.  A mix  of transaction  types  can 
also be specified at  a  screen by coding AWD=MIXLABEL rather 
than  the label of a specific AWD. 
The PROCESS instruction  can identify a required task;  the  task 
characteristics  (such as priority and processing  overhead)  are 
defined in a  separate TASK definition statement. 
Statements can be written to define the  exact  format in which 
information is to be printed or  displayed; FIVE makes adjust- 
ments to allow for transmission of control  characters  and 
modifications of printer time. 
Assuming that  the  appropriate  hardware  nodes  have  been  de- 
fined, disk and tape I/o operations  can be interspersed with 
PROCESS macros. 
An intelligent control unit can be defined, so that  processing 
can be done in the  control unit in addition to (or instead of) the 
host CPU. 

The AWD options, in conjunction with the flexibility in configura- 
tion definition and specification of hardware node details, provide 
a powerful tool for analyzing a network and planning for  capacity 
expansion. 

Several  types of special output can be obtained before the  normal 
output  statistics, at the  user’s  option.  For  example,  the  user may 
request  a printout of the  system configuration showing all nodes 
and  their  interconnections. If DASD devices  are specified, a map 
showing how logical files are allocated to physical devices may  be 
requested. Various forms of trace  output can be produced,  show- 
ing in great detail the  operation of certain  elements of the  system 
(such as line, printer,  and CPU). If the 3705 goes into s l~wdorvn ,  a 
trace of slowdown events will appear in the  output. 

After such special output, the first standard  statistics are  the AwD 
response  times.  Each AWD displays a number of observations 
(AWD completions), maximum, minimum, and mean response 
times,  standard  deviation of the  response time distribution,  and 
the time at  the 90th percentile (90 percent of  all responses will not 
exceed  this  value).  A histogram of the  actual  distribution can be 
obtained by specifying HIST in the AWD header  statement. 

Following the AWD statistics,  complete  statistics  are  printed  for 
each  node, as listed in Table 1 (next  page). 

Concluding remarks 

In summary, FIVE provides sufficient detail to permit capacity- 
planning decisions to be made quickly and  accurately,  and with- 
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Table 1 Following  the AWD statistics,  complete  statistics are printed for each node in the 
network, as shown  below 

CPU- 
0 Overall processor utilization. 
0 Number of requests  for  each  task. 
0 Utilization of each  task. 
0 Percentage of time each  task is seized. 
0 Queue  statistics for each  task. 

TCU- 
0 Processor utilization. 
0 Number of times in slowdown  mode. 
0 Percentage of time in slowdown  mode. 
0 Free buffer pool information  (average and minimum). 
0 Host  queue  statistics. 
0 Channel hold queue  statistics (when in slowdown). 

Line- 
0 Supervisory, inbound, and  outbound utilization. 
0 Positive and negative poll utilization. 
0 Queue  statistics, both in and  out. 

Control unit- 
0 Average poll cycle. 
0 Average  waiting  time for poll. 
0 Overall response time for  screens on this control  unit. 
0 Cluster link inbound queue (in TCU)  statistics. 
0 Cluster link outbound  queue (in TCU)  statistics. 
0 Queue of messages waiting for a poll. 

Device (screen)- 
0 Number of transactions  generated. 
0 Maximum,  minimum,  and mean response  time. 
0 Standard deviation of response time  distribution. 

Transaction  rate  achieved. 

Device (printer)- 
0 Number of messages processed. 
0 Average  length of printer  message. 
0 Number of lines and pages  printed. 
0 Throughput in characters  per  second  and lines  per  minute. 
0 Utilization. 

Device (storage) and logical files- 
0 Utilization. 
0 Number of reads  and writes per  second. 
0 Maximum, minimum, and mean  service  time. 
0 Number of rotational-position-sensing  misses. 

out disrupting an ongoing operation.  New applications can  be  ac- 
commodated, volume growth of existing applications can  be 
planned for, and the effects of system changes can be  assessed. 
The latter  include  such  diverse  elements as conversion  from BSC 
to SDLC, screen  and  controller configuration on a line, installation 
of faster line scanners in the TCU, changing the  printer  mode  from 
data  stream  compatibility to SNA character  string, and  con- 
version of disk I/O to fixed-block architecture. 

98 NGUYEN ET AL. IBM SYST J VOL 19 NO 1 1980 



The FIVE architecture  and implementation facilitate the  develop- 
ment of subsets  for  interactive  use in IBM locations around  the 
world. At this writing, two such  subsets  are in use,  one  for com- 
munications systems  that use the 3270 family of controllers,  and 
one for  storage  systems (tape and DASD). 

The need to validate a user-written model by comparing its re- 
sults against available  measurements was discussed earlier.  A 
similar validation exercise was performed by the FIVE devel- 
opers, using measurements made within IBM. In all cases  studied, 
for both the  network model and the  detailed 3790 model,  response 
times were found to agree within 10 percent;  resource  utilizations 
were even  closer. Validation of FIVE is an ongoing activity, re- 
peated as measurements become available  on new products. 

A note is in order  on  the  cost in time of using FIVE in a capacity 
planning study.  The following times typify the  experience of one 
of the  authors (Revell) at  the IBM United Kingdom Field Systems 
Centre. All computer times given are actual CPU time on an IBM 
Systed370 Model 168-3, and days are actually man-days . 

For  a typical 3790 study, obtaining the output of the SIX program 
required about  two days; another eight days were needed for con- 
version to  the final form needed by FIVE (assuming the availabil- 
ity of a  person with intimate knowledge of the  programs). Valida- 
tion took another  four  days, using SYSDC output  and  stopwatch 
measurements of the actual system.  Some 20 to 30 single-thread 
runs,  each taking approximately 90 seconds of CPU time,  were 
performed as part of this  process.  Next were about  ten  complete 
runs, each taking 15 to 20 minutes of CPU time;  an  additional  four 
days should be allowed for  these  runs. Adding data  collection  and 
report  preparation  time, a total of six to eight man-weeks should 
be allowed for  a  study. 

As a typical system,  consider  two 3705s, one controlling 20 lines, 
and  the  other 30. The 3705s are  connected by a cross-domain link. 
Each of the 50 lines has  two  to five control  units, with eight to 24 
screens  and at least  one  printer  attached to each  control  unit. 
Approximately 60 single-line runs would be made during a system 
study,  each taking about  one  minute of CPU time. Those  runs 
would be followed by 10 to 15 complete network runs,  each  re- 
quiring 30 to 35 minutes of CPU time. Total personnel effort re- 
quired for  a  network  study of this magnitude would be  somewhat 
less than for  the 3790-perhaps five to six man-weeks. 
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