
Various aids and t oo l s are used in capacity planning. One such
aid, an analytic model, is discussed in this paper. Both the drci-
sions made in the development of an aid and the way the aid is
used are examined. Characteristics of a good planning aid are
emphasized with the analytic model serving as the example.

Modeling considerations for predicting performance of CICS/VS
systems

by P. H. Seaman

This paper discusses an analytic model' currently used in the de-
sign of and capacity planning for on-line c~csivs (Customer Infor-
mation Control System/Virtual Storage)2 systems. The discussion
focuses on the characteristics that typify a good planning aid in
general, employing aspects of the CICS model as specific ex-
amples. These characteristics are examined from two per-
spectives: first, an internal view of specific design decisions that
must be made by an aid developer, followed by an external view
of the way the aid should be used by the planner.

Description of the model

To facilitate the reader's understanding of the model, the input it
requires, and the operations it performs, a simple inquiry system
for a credit application will be described. The system is shown
schematically in Figure 1.

This system includes a central processing unit (CPU) with four
direct access storage devices (DASD) attached. Inquiry messages
enter the system via remote terminals attached to two communi-
cation lines by means of cluster control units (CCUS). The line
traffic enters the CPU through a communications adapter. The CPU
software consists of CICSNS under the Disk Operating System
(DOS), including standard IBM access method packages for line
control and DASD control. The principal application data set is the
customer credit file spread over the four DASD units.

The particular aid that models such a CICS system is implemented
as an interactive APL (A Programming Language) program. The

Copyright 1980 by International Business Machines Corporation. Copying is per-
mitted without payment of royalty provided that (I) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright notice are
included on the first page. The title and abstract may be used without further
Dermission in commter-based and other information-service svstems. Permission

Figure 1 Simple inquiry system

ccu, * - ccus

4331 DASD

cpu -IADAPTERt

)-) . . . m

3310
DASD

program estimates the performance of a specified CICS system,
calculating transaction response times and utilizations for various
system resources. Input to the program consists of (1) a descrip-
tion of the system configuration and various data sets to be refer-
enced, (2) representations of the application programs to process
arriving transactions, and (3) the arrival rates of those trans-
actions to the system from both local and remote terminal
locations.

1 The configuration shown in Figure 1 can be defined by a few
statements that contain various CPU specifications, device type
designations, file names, and key parameters, such as access
method, logical record length, and number of records, along with
the layout of the data set extents on particular storage units.

Transactions are then defined, the definitions including transac-
tion name, type, number of bytes in the initial input message, etc.
With each transaction, a sequence of “macro” operations is
specified, outlining the various CICS activities that the transaction
will invoke during its sojourn in the central site. To a great extent,
these “macros” resemble actual clcs macros (macroinstruc-
tions). Also included are special macros, representing general
system activity, such as PROCESS N , representing the time to exe-
cute N machine instructions, or SIO A (Start 1/0 A), which gener-
ates a non-CIcs I/O access to file A. These macro sequences re-
semble the application programs by which the transactions are
processed, although the logical flow is not adhered to as it would
be in a particle-flow simulator, and there is not a one-to-one rela-
tionship since a real transaction may be processed by several ap-
plication programs. A typical sequence of macros for one transac-
tion might be

BMSI Basic mapping input
G A Get a record from file A

IBM SYST J VOL 19 NO 1 1980 SEAMAN 69

PROC 10 000 Execute 10 000 instructions
TSP AUX, 50 Put 50 characters on auxiliary

temporary storage
BMSO Basic mapping output
TCW 200 Write 200-character message to

terminal
END End of sequence

Finally, t r a c rates are specified, indicating on which communi-
cation lines and local terminals the various transactions originate.
Each transaction type can originate from many different loca-
tions. In addition, the specified base rates can be augmented by a
set of traftic multipliers to assist in traffic growth studies.

After all this data has been entered, the transaction macro se-
quences are scanned by the program, and, together with the asso-
ciated transaction rates, summaries are accumulated relating to
specific system activities. Three essentially independent queuing
formulations make up the bulk of the internal calculations-a
communication line model, a DASD model, and a CPU model. The
line model takes the summarized message rates and sizes and cal-
culates line utilizations, waiting delays, and transmission times,
based on the line configuration specified. The DASD model takes
the summarized access rates and sizes relating to the specified
CICS files and system data sets and calculates device and channel
utilizations as well as data access times. The CPU model, using an
internal table of path lengths for all the various CICS activity ele-
ments, develops a total path length for each transaction type, and
from this path length and the summarized transaction rates, cal-
culates the CPU utilization and waiting times to gain control of the
processor.

Finally, the macro sequences are rescanned and the individual
pieces, including the waiting times generated by the three queuing
models, are added together to produce total average response
times for each specified transaction type. All these performance
statistics are then gathered together and reported to the user in a
concise format, including an analysis of apparent problem areas,
if any.

Such is the nature of the CICS planning aid. Some of the consid-
erations that went into the development of the tool itself are now
discussed.

Model simplicity versus useful accuracy

In a capacity planning environment, where there is a large
amount of uncertainty in predicting future requirements, a system

tor used for integration testing or system tuning. The model de-
veloper must balance the need for accuracy against the possi-
bilities of obtaining the input data required to produce that
accuracy. Ease of use and maintainability considerations call for
the simplest models consistent with planning requirements. The
key to a good planning model is first understanding its end use
and the accuracy required, and then integrating the divergent
pieces and levels of detail into a consistent whole to meet this
use. Examples of how three system features came to be repre-
sented as they now exist in the CICS model may illustrate this
point. The three features to be exemplified are data set placement,
queuing of tasks for system resources, and a batch workload.

First consider data set placement. It is well known that cylinder Example1
location of data sets on DASD affects seek time and, therefore,
data access time. In an effort to improve access time, a system is
often tuned by attempting to group together the data sets with the
highest frequency, as shown in Figure 2.

The average seek time to a particular data set i may be estimated
in the following way:

Seek i = p i i . Sii 1 5 i c: n (1)

where n is the number of data sets on the storage device; p i is the
probability of moving from data set j to data set i; and Sij is the
average time to move between those same two data sets. The
value of p i j may normally be computed as p i p j , where p i and pj
are the probabilities of accessing data sets i and j . For current
storage devices, a good estimate for Sii, when j # i , is the arm
motion time between the midpoints of the data sets i and j . This
can be determined from the seek characteristic curve for the de-
vice. For average motion time within data set i , that is, Sii when
j = i, a good estimate is the arm motion time to move one-third of
the width of data set i. This is referred to as the “one-third rule”
and is often used as a rule of thumb for the whole device when no
detailed information is available.

Based on this analysis, the average seek times to the three data
sets A, B, and C , arranged as shown in Figure 2A, are 26,30, and
32 milliseconds, respectively, with an overall average of 29 mil-
liseconds. In the rearrangement shown in Figure 2B, the average
seek times to the same data sets are 19, 31, and 20 milliseconds,
with the overall average being 22 milliseconds. If the specific fre-
quency pattern is ignored altogether and a uniform distribution is
assumed over all 400 occupied cylinders, the average seek time to
any data set would be estimated from the “one-third rule” as 28
milliseconds.

n

j= 1

Figure 2 Two arrangements of
three data sets on an IBM
3330 disk pack: (A) Ar-
rangement 1 (initial), (e)
Arrangement 2 (im-
proved)

IBM SYST 1 VOL 19 0 NO I 1980 SEAMAN 71

Example 2

Figure 3 Schematic of transaction
processing flow in ClCS

M

The question facing the modeler is whether to ask the user for
cylinder address information in order to employ this detailed
model. Also, the extra logic that is required to calculate and ma-
nipulate the multiple seek values must be assessed in terms of
maintainability and execution time. In the case of the CICS model,
this detail was not included. (Actually, a compromise was struck
whereby the uniform assumption includes only the number of ac-
tive cylinders defined by the user.) While the data layout is avail-
able for installed systems, it is usually mere guesswork for new
applications. In addition, the majority of CICS systems are either
line bound or CPU bound so that increased accuracy in the
1/0 area does not add much information from a capacity planning
viewpoint. Further, the uniform assumption is generally on the
conservative side so that in cases where IIO presents a bottleneck,
the model will report saturation effects at lower tra€fic rates than
would be experienced by the real system. It is important to re-
member that the model is used principally for planning purposes,
such as comparing the IBM 33 10 with the IBM 3330 storage device,
and not for tuning a system. One can validly compare the per-
formance of two disk units without detailed placement data if the
same uniform assumption is made in both cases. This relieves the
user from burdensome input detail, which may be difficult to de-
termine accurately, as well as making the program logic simpler
and faster.

Another feature exemplifying model simplicity is the finite source
queuing model used in the program. A schematic of the CPU with
its auxiliary storage is illustrated in Figure 3.

Tasks enter the system with rate A . (Although there are a finite
number of input terminals in the system, the total number is usu-
ally large (> 100) compared to the active number (<lo) with tasks
being processed in the system, so the arrival rate is assumed to
come from an infinite population.) Up to M concurrent tasks will
be accepted; any additional tasks must wait in an input queue
until one or more of the active tasks are complete. Each of the
active tasks is processed by cycling about the main loop, alter-
nately requesting CPU service and a data access from one of the
storage devices available. The frequency of access to each stor-
age device, given as PI through P1, is a function of the transaction
mix and data set assignments. Each request for service or data
may incur a wait for prior requests. The purpose of the model is
to estimate these waiting times so that their contribution to total
transaction response time can be ascertained.

This example belongs to a class of queuing models of recent inter-
est called “central server” In most central server mod-
els that have been considered, the external trafFic A is not present,
and the number of internal concurrent tasks is a fixed number M ;

solution usually has too many restrictive assumptions or else is
very complex, making it time-consuming to run and difficult to
keep current, trying to include all the little peculiarities that al-
ways arise when modeling specific systems.

Three approaches to an approximate solution were considered. In
the first and simplest,6 the cyclic nature of the processing loop
was ignored and all service nodes were treated independently.
From the external transaction rate A driving the system, the ar-
rival rate for each node can easily be derived by multiplying A
times the number of visits made to the node by the average trans-
action during its processing. Then the waiting time in front of
each node can be calculated assuming the node to be a single-
server queue fed by an infinite source.

The node utilizations are directly ascertained, while the effect of
priorities can easily be added to the model. However, Win, the
initial wait in the input queue, disappears, that delay being ab-
sorbed into the internal queues. Thus, the effect of different levels
of task concurrency, M , cannot be appraised. This simplistic
model serves as an upper limit to the real system, representing
the case when the maximum M becomes very large.

A second approach assumed the node throughput rates were
known as before, but the average value of concurrency &I was
the important factor to be determined. The value of was ap-
proximated by assuming each node to be a closed queue known
as a “machine repairman” model, shown in Figure 4.

Classically in the “machine repairman” model, a fixed number of
M machines periodically request service S from a single repair-
man. If the repairman is busy, the machines must wait a time W.
Upon completion of service, the machines operate concurrently
for a period E until they again require service. If appropriate dis-
tributions for S and E are assumed, the calculation of the average
waiting time experienced by a machine requesting service may be
expressed as a function7

W = fG, E , M) (2)
With the waiting time W thus calculated, the throughput of the
repair facility (e.g., number of machines repaired per hour) can be
expressed as

L = M / (W + S + E) (3)

This formulation may be applied to the “central server” model by
considering each of the n + 1 nodes in turn as a “task processor”
equivalent to a “repair facility,” with a processing time Si
(1 5 i 5 n + 1) and a fixed throughput Li determined by the ex-
ternal driving rate A. Each node will be recurrently visited by the
M tasks after spending time Ei elsewhere in the system. In the

IBM SYST J VOL IY NO I 1980 SEAMAN

Figure 4 “Machine
model

repairman”

73

special case of the CPU node, elsewhere time E, can be calculated
as the average disk access time. The successive iteration of Equa-
tions 2 and 3 for all nodes and the employment of the resulting
value for E, allows values for waiting times at all nodes as well as
the average number of current tasks fi to be approximated. By
placing a restriction that fi 5 M , the effect of restricting task
concurrency can be shown. Finally, using a multiserver queue
with M servers, a value for Win can be calculated.

However, this model has several deficiencies. The iterations re-
quire considerable execution time, with no commensurate gain in
accuracy. In fact, in many cases the input waiting time is an order
of magnitude too small because of the assumption that the num-
ber of concurrent tasks may be estimated by the average value.
Actually, the dynamically varying number of tasks has a much
greater effect on the system than what is estimated by using the
average number of tasks.’

The third approach to approximating the “central server” model
consisted of a slight modification to the second approach.
Whereas the number of concurrent tasks was considered un-
known in the preceding method and the average value determined
iteratively, the value M in this third approach was assumed to be
the maximum number of active tasks allowed, AMXT in ClCS ter-
minology. The M tasks were assumed to be somewhere in the
system, though perhaps not currently active in the main pro-
cessor or associated disk storage. From the viewpoint of each
individual node, M was the maximum queue size that could ever
be experienced. Further, the calculated throughput for all nodes
in the main loop no longer was balanced against the specified
throughput. It was this latter balancing operation that required
the outer iteration in the second approach.

As before, every node was considered independently as a “ma-
chine repairman,” operating according to Equations 2 and 3.
However, now M , as well as Si and Li, were given so that values
for W could be determined for all nodes in one pass, without fur-
ther iteration. The initial input wait Win was again calculated for
a multiserver queue with A4 servers. Since the overall task-
processing time was guaranteed a higher estimate, the input wait
was greater as required.

This last approach was adopted for the model because (a) it ade-
quately represented the effect of restricting task concurrency, (b)
it was simple to implement and maintain, and (c) it was easily
extended to include other special effects, such as task priorities
and partition lockout due to paging.

Example3 A final example illustrating the choice of model detail consistent
with the end use of capacity planning is the representation of a
batch workload within the CICS model.

74 SEAMAN IBM SYST J VOL 19 e NO 1 1980


~~~ ~ 

It was realized that  the low-priority batch jobs had little effect on 
the  performance of the higher-priority CICS transactions,  except 
through activity by the  batch workload on shared  channels  and 
storage  units.  However,  the effect of the CICS workload on batch 
throughput was substantial.  Little information concerning  the 
batch work was needed to  adequately  represent its effect on 
CICS, but to model the  reverse  interaction  accurately required the 
definition of batch jobs in great  detail.  Fortunately,  this  accuracy 
was not necessary. What was needed was to  develop  a  represen- 
tation requiring the  absolute minimum of input that would give a 
reasonable  sense of direction concerning the amount of batch 
work that might be handled by a processor  over and above  a 
given CICS workload. 

Given this  premise,  the  batch workload was viewed in the most 
summary form possible and  characterized as follows: - CPU Time 

TCB - Iio Time 
I I 

TEB 
Elapsed Time 

The CPU utilization UBO for  this batch workload without on-line 
interference is 

UBO = TCBiTEB (4) 

The  unoverlapped IiO time is given by ( 1  - UBO) X TEB. 

Adding a high-priority CICS partition with CPU time TCT then 
yields the following representation  for  the mixed workload: 

I , i CPU Time 
TCB TCT 

t I I ~ O  Time 
I I 

TEM 
Elapsed Time 

The new elapsed  time, TEM, for a typical batch job is longer than 
the former  value, TEB, because of delays  caused by the on-line 
load. The CPU utilization due to  the batch portion is 

UB = TCB/TEM ( 5 )  

The CPU utilization due  to CICS is 

UT = TCT/TEM (6) 

The  unoverlapped  batch 110 time for  the mixed workload is as- 
sumed to  decrease by the  factor ( 1  - UT). That  is,  as  the on-line 
load increases,  the  unoverlapped 110 time shrinks  to  zero. With 
this assumption,  the  total  elapsed time for a mixed run is 

TEM TCB -t TCT + ( 1  - UBO)  TEB * (1 - UT) (7) 

IBM SYST J 0 VOL 19 NO I 1980 SEAMAN 75 



Combining the results of Equations 4, 5, 6 ,  and 7 produces CPU 
utilization for  a batch workload in a mixed environment: 

UB = 
UBO X ( 1  - UT) 

I - UT X (1  - UBO) 

Figure 5 Batch  utilization UB ver- UB is smaller than the batch-only utilization UBO because  the 
on-line  utilization UT batch workload is extended by the on-line work, slowing down 

batch-only utilization the  rate at which processing and data  resources  are  accessed. 
Equation 8 is plotted in Figure 5 for  several  values of uBO. Batch 
throughput,  or  the number of jobs per  hour  that are processed by 

only system by the  ratio UB/UBO. 

Even with such minimal input  requirements,  one  apparent die-  
culty with the batch model is in obtaining a value for uBO from a 

for several  values of 

UBO 

I5L. UBO=lO the  system when CICS is present, is directly related  to  the  batch- 

0 6  

0 4  

0 2  O 2  mixed system already installed for which a  study regarding new 
0 0  applications is desired.  It would probably be impossible to  stop 

" O  O 2  O 4  O 6  O 8  the CICS system temporarily while batch  measurements were 
taken.  However,  the  current  measurements  for CPU utilization 
due  to CICS (UT) and the batch workload (uB) can be entered in 
Equation 8 and the value for batch-only utilization (UBO) derived. 
Then, with the use of this  value, a new level of UB can be esti- 
mated from the model as UT changes due  to new CICS applications 
being specified. 

UT 

Another potential weakness with this model is that it works best 
when data and system files for  the on-line and batch applications 
are kept on separate  storage  units.  However,  this  stricture is usu- 
ally met in real cases  since it is  highly desirable  for  reasons of 
security  and  control as well as performance. 

Several  measurements from actual  systems  have  since shown the 
model to be reasonable in predicting batch slowdown. When the 
small amount of input required is considered, this has made the 
batch model very useful for planning purposes. 

Now, having viewed this performance  predictor from the stand- 
point of a  developer, we shift our focus to view the program as an 
aid in the planning process. 

Use of the model 

With such a model of CICS available,  one must consider how best 
to use it as a planning tool.  The usual starting point is the  repre- 
sentation of an installed system. Most customers requiring CICS 
planning have an installed system that is either  to be upgraded or 
to  have  a new application installed or both. By modeling the  cur- 
rent system, the performance  estimates  can be  verified from 
available measurements.  This gives both a marketing representa- 

76 SEAMAN IBM SYST J VOL 19 N O  I 1980 



A very  important point to be made here, which applies  to  the  user 
in the  same way  it did to  the model developer, is Think Simple ! A 
wealth of detail is  only a  welter of facts if one  does  not  understand 
how the  details  relate. For example,  the real system may have 89 
transaction  types, but one should not try to model them all. It  is 
not necessarily  true  that by representing all 89, the model would 
be more realistic. Many compromises would have  to be made in 
representing each case, whereas  the overall model itself  is a 
patchwork of compromise.  Therefore, it would be very difficult to 
comprehend the final result.  It is important to remember  that in 
many large systems  less  than 20 percent of the  causes usually 
account  for more than 80 percent of the  effects.  Determine  the 
dozen or so really significant transactions,  based  either on occur- 
rence or processing activity, and model them.  Then add one  or 
two miscellaneous transactions  to  account  for  the missing activ- 
ity. By building up the model definition in this manner,  the  user 
can gain insight into what causes  the usage of various  resources 
and where the major impacts on performance arise. This insight is 
far more important in the planning process than the  degree of 
similitude of the model to reality. 

Using the  base model, the investigator is now prepared  to  probe 
its performance limits, the model analog to  stress testing.  The 
simplest way to do this is to  increase  the specified transaction 
traffic rates until some resource in the model saturates, usually 
causing the  response time for  one or more transactions to “blow 
up.” A special set of rate multipliers representing growth factors 
is provided for this purpose. Then a careful analysis of the  cause 
of saturation may indicate a simple change in the  system  to elimi- 
nate  this potential bottleneck,  or it will inform the  analyst what 
system upgrading will be required in the  future when the particu- 
lar  growth  factor is reached. It will also point out  other potential 
resource  bottlenecks  that may arise  once  the primary constriction 
is relieved. In this  way, available system capacity can be ex- 
plored in terms of growth in several  dimensions. 

The  present model of CICS will highlight the  resource-constrained 
situations, listed in Table 1, for which several  causes  are given 
and possible courses of remedial action recommended.  (Note  that 
all resource utilization tests  are set well below 100 percent. It has 
been found by experience  that most on-line systems do not oper- 
ate effectively beyond the specified warning levels.) 

Now that  the investigator has learned where the  capacity limits of 
his current system lie, he can confidently upgrade hardware  spec- 
ifications and add  new applications to the model in the form of 

IBM SYST J VOL. 1Y NO I 1980 SEAMAN 77 



Table 1 Resource-constrained  situations 

Situation Cause 

Processor  utilization exceeds 70% 

Other  CPU  bottlenecks 

Channel  utilization exceeds 50% 

DASD  utilization exceeds 70% 

DASD capacity exceeded 

Communication line utilization 
exceeds 70% 

Other communication bottlenecks 

May be due  to excessive  path 
length in a particular transac- 
tion 

parable, the  total rate is too 
high 

All path  lengths being com- 

Maximum  active task  parameter 
may be set too low 

Paging may be causing excessive 
partition  lockout 

Transient  data  accesses may be 
producing excessive partition 
lockout 

On-line usage heavy 

Batch usage  heavy 

Small number of units are  over- 

Most  units are  overloaded 

May be caused by overloaded 

loaded 

channel 

Small number of units are  over- 
loaded 

Several units are  overloaded 

Lines  are half-duplex 

Lines are full-duplex 

Response time excessive  but utili- 

Available time between terminal 
zation is nominal 

interactions is too small 

Remedy 

Redesign logic to  reduce transac- 
tion rate or path length 

Upgrade to  faster  CPU to support 
the  rate 

Possibly increase  AMXT,  al- 
though this, in turn,  increases 
the paging rate 

Investigate  reducing paging rate 
or using faster paging device 

Specify multiple buffers or use 
joumaling 

Use  RPS option if available or in- 

Put batch usage on separate  chan- 
stall  a second channel 

nel 

Move active files or split extents 

Obtain  more storage  units or con- 

See  channel remedy above 

onto  less  active units 

sider  faster  ones 

Redistribute file allocations, en- 
suring traffic balance is not up- 
set 

Consider more units; if larger 
packs, examine  the  con- 
sequence of fewer  access  paths 

Consider higher-speed  lines or 

Consider higher-speed lines or ad- 
switch  to full-duplex 

ditional  lines 

Investigate  pacing parameters; re- 
view need for positive  response 

Add more terminals or improve 
system  response time 

new  file definitions, new transaction  types, and associated pro- 
cessing macros. Once again, he will want to  probe  the limits of his 
modified system. With such information at  hand,  the proposal to 
implement the new application can include a rational plan for sys- 
tem upgrades in the future. As the anticipated growth material- 
izes and additional applications are added to  the  system,  the 

78 SEAMAN IBM SYST J VOL 19 NO I 1980 



model can grow with it, being used to  track the  current  state of 
the  system and to revise plans to  expand  the  latest  system 
bounds. 

Conclusion 

The foregoing CICS model is only an example of similar appli- 
cations-oriented models that  have been d e ~ e l o p e d . ~  Various 
characteristics  have  been highlighted to show what such an aid 
should include to be useful in capacity planning. 

The design of the model itself must be  accurate enough to reflect 
performance variations that  concern  the  planner  but must not re- 
quire  input  data  that  cannot easily be provided.  Also,  the program 
implementing the model should be fast, with rapid turnaround, 
encouraging  the  user  to  try a wide range of situations. Only thus 
will he come to understand  the  dynamics of his system. 

The  output of the aid should be crisp  and  germane to planning 
needs. Any outstanding  system problems should be highlighted in 
the report, their causes identified if possible,  and remedies sug- 
gested. Too  often,  the  important  numbers  are buried in a jumble 
left from the days of model building, and the  user is faced with a 
dump of “possibly useful” numbers. In short,  the use to  be  made 
of the  results in the planning process should be of paramount  con- 
cern  to  the  designer of aid output. 

Finally, the user should be  selective regarding input  even when 
the aid permits minute detail.  The input should be simplified as far 
as possible in order  to gain an understanding of the  causes  and 
effects of the  reported  results, which then  leads  the  user  to  see 
how to  proceed.  In  capacity planning, it  is more important  to 
know where you are going than  to know precisely where you are. 

If new estimating aids  were designed to  meet  these  criteria,  and 
these  aids, along with existing  ones, were used in an exploratory 
manner to gain a  sense of direction,  the  productivity of the  capac- 
ity planner would be  greatly  enhanced. 

ACKNOWLEDGMENT 
The  author wishes to  thank  Kuno Roehr of the IBM laboratory  at 
Boeblingen, Germany for clarification of the  assumptions behind 
the  batch model. 

CITED REFERENCES AND NOTE 
1 .  The model described is ANCICSVS, an  IBM  Aid only available within IBM. 
2. Customer Information Control  SystemlVirtual  Storage,  General  Information 

Manual, GC33-0066, IBM Corporation: available through the local IBM 
branch office. 

IBM SYST J 0 VOL 19 NO I 1980 SEAMAN 79 



80 SEAMAN 


