Various aids and tools are used in capacity planning. One such
aid, an analytic model, is discussed in this paper. Both the deci-
sions made in the development of an aid and the way the aid is
used are examined. Characteristics of a good planning aid are
emphasized with the analytic model serving as the example.

Modeling considerations for predicting performance of CICS/VS
systems

by P. H. Seaman

This paper discusses an analytic model' currently used in the de-
sign of and capacity planning for on-line CICS/VS (Customer Infor-
mation Control System/Virtual Storage)” systems. The discussion
focuses on the characteristics that typify a good planning aid in
general, employing aspects of the CICS model as specific ex-
amples. These characteristics are examined from two per-
spectives: first, an internal view of specific design decisions that
must be made by an aid developer, followed by an external view
of the way the aid should be used by the planner.

Description of the model

To facilitate the reader’s understanding of the model, the input it
requires, and the operations it performs, a simple inquiry system
for a credit application will be described. The system is shown
schematically in Figure 1.

This system includes a central processing unit (CPU) with four
direct access storage devices (DASD) attached. Inquiry messages
enter the system via remote terminals attached to two communi-
cation lines by means of cluster control units (CCUs). The line
traffic enters the CPU through a communications adapter. The CPU
software consists of CICS/VS under the Disk Operating System
(D0S), including standard IBM access method packages for line
control and DASD control. The principal application data set is the
customer credit file spread over the four DASD units.

The particular aid that models such a CICS system is implemented
as an interactive APL (A Programming Language) program. The

Copyright 1980 by International Business Machines Corporation. Copying is per-
mitted without payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright notice are
included on the first page. The title and abstract may be used without further
permission in computer-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor.

SEAMAN IBM SYST J ¢ VOL 19 ¢ NO | e 1980




Figure 1 Simple inquiry system

1200 BAUD SDLC DASD
ADAPTER

program estimates the performance of a specified CICS system,
calculating transaction response times and utilizations for various
system resources. Input to the program consists of (1) a descrip-
tion of the system configuration and various data sets to be refer-
enced, (2) representations of the application programs to process
arriving transactions, and (3) the arrival rates of those trans-
actions to the system from both local and remote terminal
locations.

The configuration shown in Figure 1 can be defined by a few
statements that contain various CPU specifications, device type
designations, file names, and key parameters, such as access
method, logical record length, and number of records, along with
the layout of the data set extents on particular storage units.

Transactions are then defined, the definitions including transac-
tion name, type, number of bytes in the initial input message, etc.
With each transaction, a sequence of ‘‘macro’ operations is
specified, outlining the various CICS activities that the transaction
will invoke during its sojourn in the central site. To a great extent,
these ‘‘macros’’ resemble actual CICS macros (macroinstruc-
tions). Also included are special macros, representing general
system activity, such as PROCESS N, representing the time to exe-
cute N machine instructions, or SIO A (Start 1/0 A), which gener-
ates a non-CICS /O access to file A. These macro sequences re-
semble the application programs by which the transactions are
processed, although the logical flow is not adhered to as it would
be in a particle-flow simulator, and there is not a one-to-one rela-
tionship since a real transaction may be processed by several ap-
plication programs. A typical sequence of macros for one transac-
tion might be

BMSI Basic mapping input
G Get a record from file A

IBM SYST J e VOL 19 @ NO 1 o 1980 SEAMAN




PROC Execute 10 000 instructions

TSP Put 50 characters on auxiliary
temporary storage

BMSO Basic mapping output

TCW Write 200-character message to
terminal

END End of sequence

Finally, traffic rates are specified, indicating on which communi-
cation lines and local terminals the various transactions originate.
Each transaction type can originate from many different loca-
tions. In addition, the specified base rates can be augmented by a
set of traffic multipliers to assist in traffic growth studies.

After all this data has been entered, the transaction macro se-
quences are scanned by the program, and, together with the asso-
ciated transaction rates, summaries are accumulated relating to
specific system activities. Three essentially independent queuing
formulations make up the bulk of the internal calculations—a
communication line model, a DASD model, and a CPU model. The
line model takes the summarized message rates and sizes and cal-
culates line utilizations, waiting delays, and transmission times,
based on the line configuration specified. The DASD model takes
the summarized access rates and sizes relating to the specified
CICS files and system data sets and calculates device and channel
utilizations as well as data access times. The CPU model, using an
internal table of path lengths for all the various CICS activity ele-
ments, develops a total path length for each transaction type, and
from this path length and the summarized transaction rates, cal-
culates the CPU utilization and waiting times to gain control of the
processor.

Finally, the macro sequences are rescanned and the individual
pieces, including the waiting times generated by the three queuing
models, are added together to produce total average response
times for each specified transaction type. All these performance
statistics are then gathered together and reported to the user in a
concise format, including an analysis of apparent problem areas,
if any.

Such is the nature of the CICS planning aid. Some of the consid-

erations that went into the development of the tool itself are now
discussed.

Model simplicity versus useful accuracy

In a capacity planning environment, where there is a large
amount of uncertainty in predicting future requirements, a system
model of the foregoing type entails many trade-offs. The model

SEAMAN IBM SYST J @ VOL 19 « NO | » 1980




should be reasonably accurate, but it need not track the real sys-
tem with the degree of fidelity required, say, of a detailed simula-
tor used for integration testing or system tuning. The model de-
veloper must balance the need for accuracy against the possi-
bilities of obtaining the input data required to produce that
accuracy. Ease of use and maintainability considerations call for
the simplest models consistent with planning requirements. The
key to a good planning model is first understanding its end use
and the accuracy required, and then integrating the divergent
pieces and levels of detail into a consistent whole to meet this
use. Examples of how three system features came to be repre-
sented as they now exist in the CICS model may illustrate this
point. The three features to be exemplified are data set placement,
queuing of tasks for system resources, and a batch workload.

First consider data set placement. It is well known that cylinder
location of data sets on DASD affects seek time and, therefore,
data access time. In an effort to improve access time, a system is
often tuned by attempting to group together the data sets with the
highest frequency, as shown in Figure 2.

The average seek time to a particular data set / may be estimated
in the following way:

Seeki= > p,; " S, l<isn (N
i=1

where 7 is the number of data sets on the storage device; p,; is the
probability of moving from data set j to data set i; and S, is the
average time to move between those same two data sets. The
value of p,; may normally be computed as p, - p;, where p, and p,
are the probabilities of accessing data sets i and j. For current
storage devices, a good estimate for S,,, when j # i, is the arm
motion time between the midpoints of the data sets i and j. This
can be determined from the seek characteristic curve for the de-
vice. For average motion time within data set i, that is, S, when
J =i, agood estimate is the arm motion time to move one-third of
the width of data set i. This is referred to as the ‘‘one-third rule”
and is often used as a rule of thumb for the whole device when no
detailed information is available.

Based on this analysis, the average seek times to the three data
sets A, B, and C, arranged as shown in Figure 2A, are 26, 30, and
32 milliseconds, respectively, with an overall average of 29 mil-
liseconds. In the rearrangement shown in Figure 2B, the average
seek times to the same data sets are 19, 31, and 20 milliseconds,
with the overall average being 22 milliseconds. If the specific fre-
quency pattern is ignored altogether and a uniform distribution is
assumed over all 400 occupied cylinders, the average seek time to
any data set would be estimated from the ‘‘one-third rule’’ as 28
milliseconds.

IBM SYST J ¢ VOL 19 @ NO 1 e 1980 SEAMAN

Example 1

Figure 2 Two arrangements of
three data sets on an 1BM
3330 disk pack: (A) Ar-
rangement 1 (initial), (B)
Arrangement 2 (im-
proved)

TRAFFIC
PERCENT
PER
CYLINDER

CYLINDER
ADDRESS

N

C

350 400




Example 2

Figure 3 Schematic of transaction
processing flow in CICS

The question facing the modeler is whether to ask the user for
cylinder address information in order to employ this detailed
model. Also, the extra logic that is required to calculate and ma-
nipulate the multiple seek values must be assessed in terms of
maintainability and execution time. In the case of the CICS model,
this detail was not included. (Actually, a compromise was struck
whereby the uniform assumption includes only the number of ac-
tive cylinders defined by the user.) While the data layout is avail-
able for installed systems, it is usually mere guesswork for new
applications. In addition, the majority of CICS systems are either
line bound or CPU bound so that increased accuracy in the
I/0 area does not add much information from a capacity planning
viewpoint. Further, the uniform assumption is generally on the
conservative side so that in cases where /O presents a bottleneck,
the model will report saturation effects at lower traffic rates than
would be experienced by the real system. It is important to re-
member that the model is used principally for planning purposes,
such as comparing the 1BM 3310 with the 1BM 3330 storage device,
and not for tuning a system. One can validly compare the per-
formance of two disk units without detailed placement data if the
same uniform assumption is made in both cases. This relieves the
user from burdensome input detail, which may be difficult to de-
termine accurately, as well as making the program logic simpler
and faster.

Another feature exemplifying model simplicity is the finite source
queuing model used in the program. A schematic of the CPU with
its auxiliary storage is illustrated in Figure 3.

Tasks enter the system with rate A. (Although there are a finite
number of input terminals in the system, the total number is usu-
ally large (>>100) compared to the active number (< 10) with tasks
being processed in the system, so the arrival rate is assumed to
come from an infinite population.) Up to M concurrent tasks will
be accepted; any additional tasks must wait in an input queue
until one or more of the active tasks are complete. Each of the
active tasks is processed by cycling about the main loop, alter-
nately requesting CPU service and a data access from one of the
storage devices available. The frequency of access to each stor-
age device, given as P, through P, is a function of the transaction
mix and data set assignments. Each request for service or data
may incur a wait for prior requests. The purpose of the model is
to estimate these waiting times so that their contribution to total
transaction response time can be ascertained.

This example belongs to a class of queuing models of recent inter-
est called *‘central server’’ models.*” In most central server mod-
els that have been considered, the external traffic A is not present,
and the number of internal concurrent tasks is a fixed number M;
that is, they are essentially representing batch systems. The exact

SEAMAN IBM SYST J « VOL 19 ¢« NO 1 ¢ 1980




solution usually has too many restrictive assumptions or else is
very complex, making it time-consuming to run and difficult to
keep current, trying to include all the little peculiarities that al-
ways arise when modeling specific systems.

Three approaches to an approximate solution were considered. In
the first and simplest,’ the cyclic nature of the processing loop
was ignored and all service nodes were treated independently.
From the external transaction rate A driving the system, the ar-
rival rate for each node can easily be derived by multiplying A
times the number of visits made to the node by the average trans-
action during its processing. Then the waiting time in front of
each node can be calculated assuming the node to be a single-
server queue fed by an infinite source.

The node utilizations are directly ascertained, while the effect of
priorities can easily be added to the model. However, W, , the
initial wait in the input queue, disappears, that delay being ab-
sorbed into the internal queues. Thus, the effect of different levels
of task concurrency, M, cannot be appraised. This simplistic
model serves as an upper limit to the real system, representing
the case when the maximum M becomes very large.

A second approach assumed the node throughput rates were
known as before, but the average value of concurrency M was
the important factor to be determined. The value of M was ap-
proximated by assuming each node to be a closed queue known
as a ‘‘machine repairman’’ model, shown in Figure 4.

Classically in the ‘‘machine repairman’’ model, a fixed number of
M machines periodically request service S from a single repair-
man. If the repairman is busy, the machines must wait a time W.
Upon completion of service, the machines operate concurrently
for a period E until they again require service. If appropriate dis-
tributions for S and E are assumed, the calculation of the average
waiting time experienced by a machine requesting service may be
expressed as a function’

W=f(S,E, M) )

With the waiting time W thus calculated, the throughput of the
repair facility (e.g., number of machines repaired per hour) can be
expressed as

L=M/W+ S +E) 3)

This formulation may be applied to the ‘‘central server’’ model by
considering each of the n + 1 nodes in turn as a ‘‘task processor’
equivalent to a ‘‘repair facility,”” with a processing time S,
(1 =i=n+1) and a fixed throughput L, determined by the ex-
ternal driving rate . Each node will be recurrently visited by the
M tasks after spending time E, elsewhere in the system. In the

IBM SYST J e VOL 19 @ NO 1 e 1980 SEAMAN

Figure 4 “Machine
model

w

repairman”




Example 3

special case of the CPU node, elsewhere time E, can be calculated
as the average disk access time. The successive iteration of Equa-
tions 2 and 3 for all nodes and the employment of the resulting
value for E_ allows values for waiting times at all nodes as well as
the average number of current tasks M to be approximated. By
placing a restriction that M < M, the effect of restricting task
concurrency can be shown. Finally, using a multiserver queue
with M servers, a value for W, can be calculated.

However, this model has several deficiencies. The iterations re-
quire considerable execution time, with no commensurate gain in
accuracy. In fact, in many cases the input waiting time is an order
of magnitude too small because of the assumption that the num-
ber of concurrent tasks may be estimated by the average value.
Actually, the dynamically varying number of tasks has a much
greater effect on the system than what is estimated by using the
average number of tasks.®

The third approach to approximating the ‘‘central server’” model
consisted of a slight modification to the second approach.
Whereas the number of concurrent tasks was considered un-
known in the preceding method and the average value determined
iteratively, the value M in this third approach was assumed to be
the maximum number of active tasks allowed, AMXT in CICS ter-
minology. The M tasks were assumed to be somewhere in the
system, though perhaps not currently active in the main pro-
cessor or associated disk storage. From the viewpoint of each
individual node, M was the maximum queue size that could ever
be experienced. Further, the calculated throughput for all nodes
in the main loop no longer was balanced against the specified
throughput. It was this latter balancing operation that required
the outer iteration in the second approach.

As before, every node was considered independently as a *‘*ma-
chine repairman,’”’ operating according to Equations 2 and 3.
However, now M, as well as S, and L,, were given so that values
for W could be determined for all nodes in one pass, without fur-
ther iteration. The initial input wait W, was again calculated for
a multiserver queue with M servers. Since the overall task-
processing time was guaranteed a higher estimate, the input wait
was greater as required.

This last approach was adopted for the model because (a) it ade-
quately represented the effect of restricting task concurrency, (b)
it was simple to implement and maintain, and (c) it was easily
extended to include other special effects, such as task priorities
and partition lockout due to paging.

A final example illustrating the choice of model detail consistent
with the end use of capacity planning is the representation of a
batch workload within the CICS model.

SEAMAN IBM SYST J ® VOL 19 « NO 1 1980




It was realized that the low-priority batch jobs had little effect on
the performance of the higher-priority CICS transactions, except
through activity by the batch workload on shared channels and
storage units. However, the effect of the CICS workload on batch
throughput was substantial. Little information concerning the
batch work was needed to adequately represent its effect on
CICS, but to model the reverse interaction accurately required the
definition of batch jobs in great detail. Fortunately, this accuracy
was not necessary. What was needed was to develop a represen-
tation requiring the absolute minimum of input that would give a
reasonable sense of direction concerning the amount of batch
work that might be handled by a processor over and above a
given CICS workload.

Given this premise, the batch workload was viewed in the most
summary form possible and characterized as follows:

— | CPU Time
TCB

f 1o Time
Elapsed Time

TEB

The cprU utilization UBO for this batch workload without on-line
interference is

UBO = TCB/TEB @
The unoverlapped 1/0 time is given by (1 —~ UBO) X TEB.

Adding a high-priority CICS partition with CPU time TCT then
yields the following representation for the mixed workload:

t CpU Time
TCB

/0 Time
Elapsed Time

The new elapsed time, TEM, for a typical batch job is longer than
the former value, TEB, because of delays caused by the on-line
load. The CPU utilization due to the batch portion is

UB = TCB/TEM 5)
The cpU utilization due to CICS is
UT = TCT/TEM (6)

The unoverlapped batch 10 time for the mixed workload is as-
sumed to decrease by the factor (1 — UT). That is, as the on-line
load increases, the unoverlapped 1/0 time shrinks to zero. With
this assumption, the total elapsed time for a mixed run is

TEM = TCB + TCT + (1 — UBO) : TEB * (1 — UT) @)

IBM SYST J « VOL 19 @ NO | e 1980 SEAMAN




Figure 5 Batch utilization UB ver-
sus on-line utilization UT
for several values of
batch-only utilization
uBo

Combining the results of Equations 4, 5, 6, and 7 produces CPU
utilization for a batch workload in a mixed environment:

UBO X (I — UT)

UB = ®)

1 — Ut x (I — UBO)

UB is smaller than the batch-only utilization UBO because the
batch workload is extended by the on-line work, slowing down
the rate at which processing and data resources are accessed.
Equation 8 is plotted in Figure 5 for several values of UBO. Batch
throughput, or the number of jobs per hour that are processed by
the system when CICS is present, is directly related to the batch-
only system by the ratio UB/UBO.

Even with such minimal input requirements, one apparent diffi-
culty with the batch model is in obtaining a value for UBO from a
mixed system already installed for which a study regarding new
applications is desired. It would probably be impossible to stop
the CICS system temporarily while batch measurements were
taken. However, the current measurements for CPU utilization
due to cIcs (UT) and the batch workload (UB) can be entered in
Equation 8 and the value for batch-only utilization (UBO) derived.
Then, with the use of this value, a new level of UB can be esti-
mated from the model as UT changes due to new CICS applications
being specified.

Another potential weakness with this model is that it works best
when data and system files for the on-line and batch applications
are kept on separate storage units. However, this stricture is usu-
ally met in real cases since it is highly desirable for reasons of
security and control as well as performance.

Several measurements from actual systems have since shown the
model to be reasonable in predicting batch slowdown. When the
small amount of input required is considered, this has made the
batch model very useful for planning purposes.

Now, having viewed this performance predictor from the stand-
point of a developer, we shift our focus to view the program as an
aid in the planning process.

Use of the model

With such a model of CICS available, one must consider how best
to use it as a planning tool. The usual starting point is the repre-
sentation of an installed system. Most customers requiring CiCS
planning have an installed system that is either to be upgraded or
to have a new application installed or both. By modeling the cur-
rent system, the performance estimates can be verified from
available measurements. This gives both a marketing representa-

SEAMAN IBM SYST J @ VOL 19 @« NO | ® 1980




tive and his customer confidence in what the model is telling
them. It further forms a solid base on which to build any proposed
extensions.

A very important point to be made here, which applies to the user
in the same way it did to the model developer, is Think Simple! A
wealth of detail is only a welter of facts if one does not understand
how the details relate. For example, the real system may have 89
transaction types, but one should not try to model them all. It is
not necessarily true that by representing all 89, the model would
be more realistic. Many compromises would have to be made in
representing each case, whereas the overall model itself is a
patchwork of compromise. Therefore, it would be very difficult to
comprehend the final result. It is important to remember that in
many large systems less than 20 percent of the causes usually
account for more than 80 percent of the effects. Determine the
dozen or so really significant transactions, based either on occur-
rence or processing activity, and model them. Then add one or
two miscellaneous transactions to account for the missing activ-
ity. By building up the model definition in this manner, the user
can gain insight into what causes the usage of various resources
and where the major impacts on performance arise. This insight is
far more important in the planning process than the degree of
similitude of the model to reality.

Using the base model, the investigator is now prepared to probe
its performance limits, the model analog to stress testing. The
simplest way to do this is to increase the specified transaction
traffic rates until some resource in the model saturates, usually
causing the response time for one or more transactions to ‘‘blow
up.”’ A special set of rate multipliers representing growth factors
is provided for this purpose. Then a careful analysis of the cause
of saturation may indicate a simple change in the system to elimi-
nate this potential bottleneck, or it will inform the analyst what
system upgrading will be required in the future when the particu-
lar growth factor is reached. It will also point out other potential
resource bottlenecks that may arise once the primary constriction
1s relieved. In this way, available system capacity can be ex-
plored in terms of growth in several dimensions.

The present model of CICS will highlight the resource-constrained
situations, listed in Table 1, for which several causes are given
and possible courses of remedial action recommended. (Note that
all resource utilization tests are set well below 100 percent. It has
been found by experience that most on-line systems do not oper-
ate effectively beyond the specified warning levels.)

Now that the investigator has learned where the capacity limits of

his current system lie, he can confidently upgrade hardware spec-
ifications and add new applications to the model in the form of

IBM SYST J e VOL 19 @ NO 1 e 1980 SEAMAN




Table 1 Resource-constrained situations

Situation

Cause

Processor utilization exceeds 70%

Other CPU bottlenecks

Channel utilization exceeds 50%

DASD utilization exceeds 70%

DASD capacity exceeded

Communication line utilization
exceeds 70%

Other communication bottlenecks

Remedy

May be due to excessive path
length in a particular transac-
tion

All path lengths being com-
parable, the total rate is too
high

Maximum active task parameter
may be set too low

Paging may be causing excessive
partition lockout

Transient data accesses may be
producing excessive partition
lockout

On-line usage heavy
Batch usage heavy
Small number of units are over-

loaded
Most units are overloaded

May be caused by overloaded
channel

Small number of units are over-
loaded

Several units are overloaded

Lines are half-duplex

Lines are full-duplex

Response time excessive but utili-
zation is nominal

Available time between terminal
interactions is too small

Redesign logic to reduce transac-
tion rate or path length

Upgrade to faster CPU to support
the rate

Possibly increase AMXT, al-
though this, in turn, increases
the paging rate

Investigate reducing paging rate
or using faster paging device

Specify multiple buffers or use
journaling

Use RPS option if available or in-
stall a second channel

Put batch usage on separate chan-
nel

Move active files or split extents
onto less active units

Obtain more storage units or con-
sider faster ones

See channel remedy above

Redistribute file allocations, en-
suring traffic balance is not up-
set

Consider more units; if larger
packs, examine the con-
sequence of fewer access paths

Consider higher-speed lines or
switch to full-duplex

Consider higher-speed lines or ad-
ditional lines

Investigate pacing parameters; re-
view need for positive response

Add more terminals or improve
system response time

new file definitions, new transaction types, and associated pro-
cessing macros. Once again, he will want to probe the limits of his
modified system. With such information at hand, the proposal to
implement the new application can include a rational plan for sys-
tem upgrades in the future. As the anticipated growth material-
izes and additional applications are added to the system, the

SEAMAN

IBM SYST J @ VOL 19 @ NO | e 1980




model can grow with it, being used to track the current state of
the system and to revise plans to expand the latest system
bounds.

Conclusion

The foregoing cICS model is only an example of similar appli-
cations-oriented models that have been developed.’ Various
characteristics have been highlighted to show what such an aid
should include to be useful in capacity planning.

The design of the model itself must be accurate enough to reflect
performance variations that concern the planner but must not re-
quire input data that cannot easily be provided. Also, the program
implementing the model should be fast, with rapid turnaround,
encouraging the user to try a wide range of situations. Only thus
will he come to understand the dynamics of his system.

The output of the aid should be crisp and germane to planning
needs. Any outstanding system problems should be highlighted in
the report, their causes identified if possible, and remedies sug-
gested. Too often, the important numbers are buried in a jumble
left from the days of model building, and the user is faced with a
dump of ‘‘possibly useful’’ numbers. In short, the use to be made
of the results in the planning process should be of paramount con-
cern to the designer of aid output.

Finally, the user should be selective regarding input even when
the aid permits minute detail. The input should be simplified as far

as possible in order to gain an understanding of the causes and
effects of the reported results, which then leads the user to see
how to proceed. In capacity planning, it is more important to
know where you are going than to know precisely where you are.

If new estimating aids were designed to meet these criteria, and
these aids, along with existing ones, were used in an exploratory
manner to gain a sense of direction, the productivity of the capac-
ity planner would be greatly enhanced.

ACKNOWLEDGMENT

The author wishes to thank Kuno Roehr of the IBM laboratory at
Boeblingen, Germany for clarification of the assumptions behind
the batch model.

CITED REFERENCES AND NOTE

1. The model described is ANCICSVS, an IBM Aid only available within IBM.

2. Customer Information Control System/Virtual Storage, General Information
Manual, GC33-0066, IBM Corporation; available through the local IBM
branch office.

IBM SYST J ® VOL 19 ¢ NO | e 1980 SEAMAN




. W. Gordon and G. Newell, ‘‘Closed queuing systems with exponential ser-
vers,”” Operations Research 15, 254-265 (1967).

. J. Buzen, ‘*Computational algorithms for closed queuing networks with ex-
ponential servers,”” Communications of the ACM 16, 527-531 (1973).

. M. Reiser and H. Kobayashi, ‘*Queuing networks with multiple closed chains:
Theory and computational algorithms,” IBM Journal of Research and Devel-
opment 19, No. 3, 283-294 (May 1975).

. Analysis of Some Queuing Models in Real-Time Systems, Data Processing
Techniques Manual, F20-0007, IBM Corporation; available through the local
IBM branch office.

. L. Takacs, Introduction to the Theory of Queues, Oxford University Press,
Oxford, England (1962), pp. 189-204.

. W. Chang, ‘‘Bulk queue model for computer system analysis,”” IBM Journal of
Research and Development 18, No. 4, 370-372 (July 1974).

. Y. Bard, ‘‘An analytic model of the VM/370 system,”’ IBM Journal of Re-
search and Development 22, No. 5, 498-508 (September 1978).

The author is located at the IBM Data Processing Division Edu-
cation Center, Bldg. 005, South Road, Poughkeepsie, NY 12602.

Reprint Order No. G321-5116.

80 SEAMAN IBM SYST J & VOL 19 ® NO 1 o 1980




