
Various  aids  and t oo l s  are  used  in  capacity  planning.  One  such 
aid,  an  analytic  model,  is  discussed  in  this  paper.  Both  the  drci- 
sions  made  in  the  development of an  aid  and  the  way  the  aid  is 
used  are  examined.  Characteristics of a  good  planning  aid  are 
emphasized  with  the  analytic  model  serving  as  the  example. 

Modeling  considerations  for  predicting  performance of CICS/VS 
systems 

by P. H.  Seaman 

This paper discusses an analytic model' currently used in the  de- 
sign of and capacity planning for on-line c~csivs (Customer Infor- 
mation Control System/Virtual  Storage)2  systems.  The  discussion 
focuses on the characteristics  that typify a good planning aid  in 
general, employing aspects of the CICS model as specific ex- 
amples.  These  characteristics  are examined from two per- 
spectives:  first,  an internal view  of specific design decisions  that 
must  be made by an aid developer, followed by an  external view 
of the way the  aid should be used by the  planner. 

Description of the model 

To facilitate the  reader's understanding of the model, the input it 
requires,  and  the  operations it performs, a simple inquiry system 
for a credit application will be described.  The  system is shown 
schematically in Figure 1. 

This system  includes  a  central  processing unit (CPU) with four 
direct access  storage  devices (DASD) attached. Inquiry messages 
enter  the  system via remote terminals attached  to  two communi- 
cation lines by means of cluster  control units (CCUS). The line 
traffic enters  the CPU through a communications  adapter.  The CPU 
software  consists of CICSNS under the Disk Operating System 
(DOS), including standard IBM access method packages for line 
control and DASD control.  The principal application data  set is the 
customer  credit file spread  over  the  four DASD units. 

The particular aid that models such a CICS system is implemented 
as  an interactive APL (A Programming Language) program.  The 
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Figure 1 Simple  inquiry system 
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program estimates the performance of a specified CICS system, 
calculating transaction response times  and  utilizations for various 
system resources. Input to the program consists of (1) a descrip- 
tion of the system configuration and various data sets to be  refer- 
enced, (2) representations of the application  programs to process 
arriving transactions, and (3) the arrival rates of those trans- 
actions to the system from both local  and remote terminal 
locations. 

1 The  configuration  shown in Figure 1 can  be  defined  by a few 
statements that contain various CPU specifications, device type 
designations, file names, and  key parameters, such as access 
method, logical record length, and  number of records, along with 
the layout of the data set extents on particular storage units. 

Transactions are then defined, the definitions  including transac- 
tion name, type, number of bytes in the initial  input message, etc. 
With each transaction, a sequence of “macro” operations is 
specified, outlining the various CICS activities that the transaction 
will invoke  during its sojourn in the central site. To a great extent, 
these “macros” resemble actual clcs macros (macroinstruc- 
tions). Also included are special macros, representing general 
system activity, such as PROCESS N ,  representing the time to exe- 
cute N machine instructions, or SIO A (Start 1/0 A), which gener- 
ates  a non-CIcs I/O access to file A. These macro sequences re- 
semble the application programs by  which the transactions are 
processed, although the logical  flow  is  not adhered to as it  would 
be in a particle-flow simulator, and there is  not a one-to-one rela- 
tionship  since a real transaction may  be processed by several ap- 
plication  programs. A typical sequence of macros for one transac- 
tion might  be 

BMSI Basic  mapping  input 
G A Get a record from  file A 
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PROC 10 000 Execute 10 000 instructions 
TSP AUX, 50 Put 50 characters  on auxiliary 

temporary  storage 
BMSO Basic mapping output 
TCW 200 Write 200-character message to 

terminal 
END End of sequence 

Finally, t r a c  rates  are specified, indicating on which communi- 
cation lines and  local terminals the various  transactions  originate. 
Each  transaction  type can originate from many different loca- 
tions. In addition, the specified base  rates can be  augmented by a 
set of traftic multipliers to assist in traffic growth  studies. 

After all this data  has been entered,  the  transaction  macro  se- 
quences are scanned by the  program, and, together with the asso- 
ciated  transaction rates, summaries are accumulated relating to 
specific system  activities.  Three  essentially  independent queuing 
formulations make up  the bulk  of the internal calculations-a 
communication line model, a DASD model,  and  a CPU model. The 
line model takes  the summarized message rates  and  sizes  and cal- 
culates line utilizations, waiting delays,  and transmission times, 
based on the line configuration specified. The DASD model takes 
the summarized access  rates  and  sizes relating to  the specified 
CICS files and  system  data  sets  and  calculates  device  and  channel 
utilizations as well as data  access times. The CPU model, using an 
internal table of path lengths for all the various CICS activity ele- 
ments,  develops a total  path length for each  transaction type, and 
from this path length and  the  summarized  transaction rates, cal- 
culates  the CPU utilization and waiting times to gain control of the 
processor. 

Finally, the  macro  sequences  are  rescanned and the individual 
pieces, including the waiting times generated by the  three queuing 
models,  are  added  together  to  produce  total  average  response 
times for each specified transaction  type. All these  performance 
statistics are then  gathered  together  and  reported  to  the  user in a 
concise  format, including an  analysis of apparent problem areas, 
if any. 

Such is the  nature of the CICS planning aid.  Some of the  consid- 
erations  that went into  the  development of the tool itself are now 
discussed. 

Model  simplicity  versus  useful  accuracy 

In a capacity planning environment,  where  there  is a large 
amount of uncertainty in predicting future  requirements, a system 



tor used for integration testing or system tuning. The  model de- 
veloper must  balance  the need for  accuracy against the possi- 
bilities of obtaining  the input data required to produce  that 
accuracy.  Ease of use  and maintainability considerations call for 
the simplest models consistent with planning requirements.  The 
key to a good planning model is first understanding  its end use 
and  the  accuracy  required,  and  then integrating the  divergent 
pieces  and levels of detail into  a  consistent whole to meet  this 
use. Examples of how three  system  features  came to  be  repre- 
sented  as they now exist in the CICS model may illustrate this 
point. The  three  features  to be exemplified are  data  set  placement, 
queuing of tasks for system  resources,  and a batch  workload. 

First  consider  data  set placement. It  is well known that  cylinder Example1 
location of data  sets on DASD affects seek time and,  therefore, 
data  access  time.  In  an effort to  improve  access  time,  a  system  is 
often  tuned by attempting  to group together  the data  sets with the 
highest frequency, as shown in Figure 2. 

The average seek time to  a  particular data  set i may be estimated 
in the following way: 

Seek i = p i i  . Sii  1 5 i c: n (1) 

where n is the  number of data  sets  on  the  storage  device; p i  is  the 
probability of moving from data  set j to  data set i; and Sij is the 
average time to move between those  same  two  data  sets.  The 
value of p i j  may normally be computed as p i  p j ,  where p i  and pj 
are  the probabilities of accessing  data sets i and j .  For  current 
storage  devices, a good estimate for Sii, when j # i ,  is the arm 
motion time between  the midpoints of the  data  sets i and j .  This 
can be determined from the  seek  characteristic  curve for  the  de- 
vice. For average motion time within data  set i ,  that  is, Sii when 
j = i, a good estimate is the arm motion time to move one-third of 
the width of data  set i. This is referred to  as the  “one-third  rule” 
and is often used as a rule of thumb  for  the whole device when no 
detailed information is available. 

Based on this  analysis,  the  average  seek  times  to  the  three  data 
sets  A,  B,  and C ,  arranged as shown in Figure 2A, are 26,30, and 
32 milliseconds, respectively, with an  overall  average of 29 mil- 
liseconds. In the  rearrangement  shown in Figure  2B, the average 
seek times to  the same  data  sets are 19, 31, and 20 milliseconds, 
with the  overall  average being 22 milliseconds. If the specific fre- 
quency pattern  is ignored altogether  and  a uniform distribution is 
assumed  over all 400 occupied cylinders,  the  average  seek  time to 
any  data  set would be  estimated  from  the  “one-third  rule” as 28 
milliseconds. 

n 

j= 1 

Figure 2 Two arrangements of 
three  data  sets  on an IBM 
3330 disk pack: (A) Ar- 
rangement 1 (initial), (e) 
Arrangement 2 (im- 
proved) 
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Example 2 

Figure 3 Schematic of transaction 
processing flow in ClCS 

M 

The question facing the modeler is whether to ask the  user  for 
cylinder address information in order  to employ this  detailed 
model. Also,  the  extra logic that is required to calculate  and ma- 
nipulate the multiple seek values must be assessed in terms of 
maintainability and  execution time. In  the  case of the CICS model, 
this  detail was not  included.  (Actually, a compromise was  struck 
whereby the uniform assumption includes only the  number of ac- 
tive cylinders defined by the  user.) While the  data  layout is avail- 
able  for installed systems,  it  is usually mere  guesswork  for new 
applications. In  addition,  the majority of CICS systems are  either 
line bound or CPU bound so that  increased  accuracy in the 
1/0 area  does  not  add much information from a  capacity planning 
viewpoint. Further,  the uniform assumption is generally on the 
conservative  side so that in cases  where IIO presents a bottleneck, 
the model will report  saturation effects at lower tra€fic rates than 
would be  experienced by the real system.  It is important  to  re- 
member that the model is used principally for planning purposes, 
such as comparing the IBM 33 10 with the IBM 3330 storage  device, 
and not for tuning a  system. One can validly compare the per- 
formance of two disk units without detailed placement data if the 
same uniform assumption  is made in both  cases.  This  relieves  the 
user from burdensome input detail, which may be difficult to de- 
termine accurately, as well as making the program logic simpler 
and  faster. 

Another  feature exemplifying model simplicity is  the finite source 
queuing model used in the program. A  schematic of the CPU with 
its auxiliary storage  is illustrated in Figure 3. 

Tasks  enter  the  system with rate A .  (Although there  are a finite 
number of input  terminals in the system,  the total  number  is usu- 
ally large (> 100) compared to the  active  number (<lo) with tasks 
being processed in the  system, so the arrival  rate is assumed  to 
come from an infinite population.)  Up to M concurrent  tasks will 
be  accepted;  any additional tasks  must wait in an input  queue 
until one or more of the  active  tasks are complete. Each of the 
active  tasks is processed by cycling about  the main loop,  alter- 
nately requesting CPU service  and a data  access from one of the 
storage  devices  available.  The  frequency of access to  each stor- 
age  device, given as PI  through P1, is a function of the  transaction 
mix and data  set assignments. Each  request  for  service or data 
may incur a wait for prior requests.  The  purpose of the model is 
to estimate  these waiting times so that  their  contribution to total 
transaction  response time can be ascertained. 

This example belongs to  a class of queuing models of recent  inter- 
est called “central  server”  In most central  server mod- 
els  that  have  been  considered,  the  external trafFic A is not  present, 
and  the  number of internal  concurrent  tasks is a fixed number M ;  



solution usually has  too many restrictive  assumptions or else  is 
very complex, making it time-consuming to run  and difficult to 
keep  current, trying to include all the little peculiarities that al- 
ways arise when modeling specific systems. 

Three  approaches to  an approximate solution were  considered.  In 
the first and  simplest,6  the cyclic nature of the  processing  loop 
was ignored and all service nodes were  treated  independently. 
From the  external  transaction  rate A driving the  system,  the  ar- 
rival rate  for  each  node can easily be derived by multiplying A 
times the  number of visits made to  the node by the  average  trans- 
action during its processing.  Then the waiting time in front of 
each  node  can be calculated assuming the node to be a single- 
server  queue fed by an infinite source. 

The  node utilizations are directly ascertained, while the effect of 
priorities can easily be added to  the model. However, Win, the 
initial wait  in the  input  queue,  disappears,  that delay being ab- 
sorbed  into the internal  queues. Thus,  the effect of different levels 
of task  concurrency, M ,  cannot  be  appraised.  This  simplistic 
model serves  as  an  upper limit to  the real system,  representing 
the  case when the maximum M becomes very large. 

A second approach  assumed  the  node throughput rates were 
known as before,  but  the average value of concurrency &I was 
the important  factor  to be determined.  The value of was ap- 
proximated by assuming each node to be a closed queue known 
as a  “machine  repairman” model, shown in Figure 4. 

Classically in the  “machine  repairman” model, a fixed number of 
M machines periodically request  service S from a single repair- 
man. If the  repairman is busy,  the machines must wait a time W. 
Upon completion of service,  the machines operate  concurrently 
for  a period E until they again require  service. If appropriate dis- 
tributions  for S and E are  assumed,  the calculation of the average 
waiting time experienced by a machine requesting  service may be 
expressed as a function7 

W = fG, E ,  M )  (2) 
With the waiting time W thus  calculated,  the  throughput of the 
repair facility (e.g., number of machines  repaired  per  hour)  can be 
expressed as 

L = M / ( W + S + E )  (3) 

This formulation may be applied to  the  “central  server” model by 
considering each of the n + 1 nodes in turn as a “task  processor” 
equivalent to a  “repair  facility,” with a processing time Si 
( 1  5 i 5 n + 1) and  a fixed throughput Li determined by the ex- 
ternal driving rate A. Each node will be  recurrently visited by the 
M tasks  after spending time Ei elsewhere in the  system.  In  the 
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special case of the CPU node,  elsewhere  time E, can  be  calculated 
as the  average disk access time. The  successive  iteration of Equa- 
tions 2 and 3 for  all nodes and  the  employment of the resulting 
value for E, allows  values  for waiting times  at all nodes as well as 
the average  number of current  tasks fi to be approximated. By 
placing a restriction  that fi 5 M ,  the effect of restricting  task 
concurrency  can  be  shown.  Finally, using a multiserver  queue 
with M servers,  a  value  for Win can  be  calculated. 

However,  this model has  several deficiencies. The  iterations re- 
quire  considerable  execution  time, with no  commensurate gain in 
accuracy. In fact, in many cases  the  input waiting time is an  order 
of magnitude too small because of the  assumption  that the num- 
ber of concurrent  tasks may be  estimated by the  average  value. 
Actually,  the dynamically varying number of tasks  has a much 
greater effect on the system  than  what  is  estimated by using the 
average  number of tasks.’ 

The third approach to approximating the “central  server” model 
consisted of a slight modification to  the second approach. 
Whereas  the  number of concurrent  tasks was considered un- 
known in the  preceding method and  the  average value determined 
iteratively, the value M in this  third  approach was assumed  to  be 
the maximum number of active  tasks  allowed, AMXT in ClCS ter- 
minology. The M tasks  were  assumed to be  somewhere in the 
system, though perhaps  not  currently  active in  the main pro- 
cessor  or  associated disk storage. From  the viewpoint of each 
individual node, M was the maximum queue size that  could  ever 
be  experienced. Further, the  calculated  throughput  for  all  nodes 
in the main loop  no longer was balanced against the specified 
throughput. It was  this  latter balancing operation  that  required 
the  outer  iteration in the second approach. 

As before,  every  node was considered independently as a “ma- 
chine  repairman,”  operating  according  to  Equations 2 and 3. 
However, now M ,  as well as Si and Li, were given so that  values 
for W could be  determined  for all nodes in one  pass,  without fur- 
ther  iteration. The initial input wait Win was again calculated  for 
a multiserver queue with A4 servers.  Since  the  overall  task- 
processing time was guaranteed a higher estimate,  the  input wait 
was greater as required. 

This  last  approach was adopted  for  the model because (a) it ade- 
quately  represented  the effect of restricting  task  concurrency, (b) 
it was simple to implement and  maintain,  and (c) it was easily 
extended  to  include  other special effects, such as task  priorities 
and partition lockout  due to paging. 

Example3 A final example illustrating the choice of model detail  consistent 
with the  end use of capacity planning is the  representation of a 
batch workload within the CICS model. 
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It was realized that  the low-priority batch jobs had little effect on 
the  performance of the higher-priority CICS transactions,  except 
through activity by the  batch workload on shared  channels  and 
storage  units.  However,  the effect of the CICS workload on batch 
throughput was substantial.  Little information concerning  the 
batch work was needed to  adequately  represent its effect on 
CICS, but to model the  reverse  interaction  accurately required the 
definition of batch jobs in great  detail.  Fortunately,  this  accuracy 
was not necessary. What was needed was to  develop  a  represen- 
tation requiring the  absolute minimum of input that would give a 
reasonable  sense of direction concerning the amount of batch 
work that might be handled by a processor  over and above  a 
given CICS workload. 

Given this  premise,  the  batch workload was viewed in the most 
summary form possible and  characterized as follows: - CPU Time 

TCB - Iio Time 
I I 

TEB 
Elapsed Time 

The CPU utilization UBO for  this batch workload without on-line 
interference is 

UBO = TCBiTEB (4) 

The  unoverlapped IiO time is given by ( 1  - UBO) X TEB. 

Adding a high-priority CICS partition with CPU time TCT then 
yields the following representation  for  the mixed workload: 

I , i CPU Time 
TCB TCT 

t I I ~ O  Time 
I I 

TEM 
Elapsed Time 

The new elapsed  time, TEM, for a typical batch job is longer than 
the former  value, TEB, because of delays  caused by the on-line 
load. The CPU utilization due to  the batch portion is 

UB = TCB/TEM ( 5 )  

The CPU utilization due  to CICS is 

UT = TCT/TEM (6) 

The  unoverlapped  batch 110 time for  the mixed workload is as- 
sumed to  decrease by the  factor ( 1  - UT). That  is,  as  the on-line 
load increases,  the  unoverlapped 110 time shrinks  to  zero. With 
this assumption,  the  total  elapsed time for a mixed run is 

TEM TCB -t TCT + ( 1  - UBO)  TEB * (1 - UT) (7) 
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Combining the results of Equations 4, 5, 6 ,  and 7 produces CPU 
utilization for  a batch workload in a mixed environment: 

UB = 
UBO X ( 1  - UT) 

I - UT X (1  - UBO) 

Figure 5 Batch  utilization UB ver- UB is smaller than the batch-only utilization UBO because  the 
on-line  utilization UT batch workload is extended by the on-line work, slowing down 

batch-only utilization the  rate at which processing and data  resources  are  accessed. 
Equation 8 is plotted in Figure 5 for  several  values of uBO. Batch 
throughput,  or  the number of jobs per  hour  that are processed by 

only system by the  ratio UB/UBO. 

Even with such minimal input  requirements,  one  apparent die-  
culty with the batch model is in obtaining a value for uBO from a 

for several  values of 

UBO 

I5L. UBO=lO the  system when CICS is present, is directly related  to  the  batch- 

0 6  

0 4  

0 2  O 2  mixed system already installed for which a  study regarding new 
0 0  applications is desired.  It would probably be impossible to  stop 

" O  O 2  O 4  O 6  O 8  the CICS system temporarily while batch  measurements were 
taken.  However,  the  current  measurements  for CPU utilization 
due  to CICS (UT) and the batch workload (uB) can be entered in 
Equation 8 and the value for batch-only utilization (UBO) derived. 
Then, with the use of this  value, a new level of UB can be esti- 
mated from the model as UT changes due  to new CICS applications 
being specified. 

UT 

Another potential weakness with this model is that it works best 
when data and system files for  the on-line and batch applications 
are kept on separate  storage  units.  However,  this  stricture is usu- 
ally met in real cases  since it is  highly desirable  for  reasons of 
security  and  control as well as performance. 

Several  measurements from actual  systems  have  since shown the 
model to be reasonable in predicting batch slowdown. When the 
small amount of input required is considered, this has made the 
batch model very useful for planning purposes. 

Now, having viewed this performance  predictor from the stand- 
point of a  developer, we shift our focus to view the program as an 
aid in the planning process. 

Use of the model 

With such a model of CICS available,  one must consider how best 
to use it as a planning tool.  The usual starting point is the  repre- 
sentation of an installed system. Most customers requiring CICS 
planning have an installed system that is either  to be upgraded or 
to  have  a new application installed or both. By modeling the  cur- 
rent system, the performance  estimates  can be  verified from 
available measurements.  This gives both a marketing representa- 
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A very  important point to be made here, which applies  to  the  user 
in the  same way  it did to  the model developer, is Think Simple ! A 
wealth of detail is  only a  welter of facts if one  does  not  understand 
how the  details  relate. For example,  the real system may have 89 
transaction  types, but one should not try to model them all. It  is 
not necessarily  true  that by representing all 89, the model would 
be more realistic. Many compromises would have  to be made in 
representing each case, whereas  the overall model itself  is a 
patchwork of compromise.  Therefore, it would be very difficult to 
comprehend the final result.  It is important to remember  that in 
many large systems  less  than 20 percent of the  causes usually 
account  for more than 80 percent of the  effects.  Determine  the 
dozen or so really significant transactions,  based  either on occur- 
rence or processing activity, and model them.  Then add one  or 
two miscellaneous transactions  to  account  for  the missing activ- 
ity. By building up the model definition in this manner,  the  user 
can gain insight into what causes  the usage of various  resources 
and where the major impacts on performance arise. This insight is 
far more important in the planning process than the  degree of 
similitude of the model to reality. 

Using the  base model, the investigator is now prepared  to  probe 
its performance limits, the model analog to  stress testing.  The 
simplest way to do this is to  increase  the specified transaction 
traffic rates until some resource in the model saturates, usually 
causing the  response time for  one or more transactions to “blow 
up.” A special set of rate multipliers representing growth factors 
is provided for this purpose. Then a careful analysis of the  cause 
of saturation may indicate a simple change in the  system  to elimi- 
nate  this potential bottleneck,  or it will inform the  analyst what 
system upgrading will be required in the  future when the particu- 
lar  growth  factor is reached. It will also point out  other potential 
resource  bottlenecks  that may arise  once  the primary constriction 
is relieved. In this  way, available system capacity can be ex- 
plored in terms of growth in several  dimensions. 

The  present model of CICS will highlight the  resource-constrained 
situations, listed in Table 1, for which several  causes  are given 
and possible courses of remedial action recommended.  (Note  that 
all resource utilization tests  are set well below 100 percent. It has 
been found by experience  that most on-line systems do not oper- 
ate effectively beyond the specified warning levels.) 

Now that  the investigator has learned where the  capacity limits of 
his current system lie, he can confidently upgrade hardware  spec- 
ifications and add  new applications to the model in the form of 
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Table 1 Resource-constrained  situations 

Situation Cause 

Processor  utilization exceeds 70% 

Other  CPU  bottlenecks 

Channel  utilization exceeds 50% 

DASD  utilization exceeds 70% 

DASD capacity exceeded 

Communication line utilization 
exceeds 70% 

Other communication bottlenecks 

May be due  to excessive  path 
length in a particular transac- 
tion 

parable, the  total rate is too 
high 

All path  lengths being com- 

Maximum  active task  parameter 
may be set too low 

Paging may be causing excessive 
partition  lockout 

Transient  data  accesses may be 
producing excessive partition 
lockout 

On-line usage heavy 

Batch usage  heavy 

Small number of units are  over- 

Most  units are  overloaded 

May be caused by overloaded 

loaded 

channel 

Small number of units are  over- 
loaded 

Several units are  overloaded 

Lines  are half-duplex 

Lines are full-duplex 

Response time excessive  but utili- 

Available time between terminal 
zation is nominal 

interactions is too small 

Remedy 

Redesign logic to  reduce transac- 
tion rate or path length 

Upgrade to  faster  CPU to support 
the  rate 

Possibly increase  AMXT,  al- 
though this, in turn,  increases 
the paging rate 

Investigate  reducing paging rate 
or using faster paging device 

Specify multiple buffers or use 
joumaling 

Use  RPS option if available or in- 

Put batch usage on separate  chan- 
stall  a second channel 

nel 

Move active files or split extents 

Obtain  more storage  units or con- 

See  channel remedy above 

onto  less  active units 

sider  faster  ones 

Redistribute file allocations, en- 
suring traffic balance is not up- 
set 

Consider more units; if larger 
packs, examine  the  con- 
sequence of fewer  access  paths 

Consider higher-speed  lines or 

Consider higher-speed lines or ad- 
switch  to full-duplex 

ditional  lines 

Investigate  pacing parameters; re- 
view need for positive  response 

Add more terminals or improve 
system  response time 

new  file definitions, new transaction  types, and associated pro- 
cessing macros. Once again, he will want to  probe  the limits of his 
modified system. With such information at  hand,  the proposal to 
implement the new application can include a rational plan for sys- 
tem upgrades in the future. As the anticipated growth material- 
izes and additional applications are added to  the  system,  the 
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model can grow with it, being used to  track the  current  state of 
the  system and to revise plans to  expand  the  latest  system 
bounds. 

Conclusion 

The foregoing CICS model is only an example of similar appli- 
cations-oriented models that  have been d e ~ e l o p e d . ~  Various 
characteristics  have  been highlighted to show what such an aid 
should include to be useful in capacity planning. 

The design of the model itself must be  accurate enough to reflect 
performance variations that  concern  the  planner  but must not re- 
quire  input  data  that  cannot easily be provided.  Also,  the program 
implementing the model should be fast, with rapid turnaround, 
encouraging  the  user  to  try a wide range of situations. Only thus 
will he come to understand  the  dynamics of his system. 

The  output of the aid should be crisp  and  germane to planning 
needs. Any outstanding  system problems should be highlighted in 
the report, their causes identified if possible,  and remedies sug- 
gested. Too  often,  the  important  numbers  are buried in a jumble 
left from the days of model building, and the  user is faced with a 
dump of “possibly useful” numbers. In short,  the use to  be  made 
of the  results in the planning process should be of paramount  con- 
cern  to  the  designer of aid output. 

Finally, the user should be  selective regarding input  even when 
the aid permits minute detail.  The input should be simplified as far 
as possible in order  to gain an understanding of the  causes  and 
effects of the  reported  results, which then  leads  the  user  to  see 
how to  proceed.  In  capacity planning, it  is more important  to 
know where you are going than  to know precisely where you are. 

If new estimating aids  were designed to  meet  these  criteria,  and 
these  aids, along with existing  ones, were used in an exploratory 
manner to gain a  sense of direction,  the  productivity of the  capac- 
ity planner would be  greatly  enhanced. 
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