
The  performance  of MVS (Multiple  Virtual  Storage)  systems  can 
be  predicted  for  changes  in  workload  and  environment by an IBM 
marketing  aid  informally  called SCAPE (for  System  Capacity  and 
Performance  Evaluation).  Written  in FORTRAN, the  programs  use 
simple  queuing  formulas  with  empirical  modifications.  Response 
times  for  complex  workloads ( I M S ,  C I C ~ ,  TSO, and  batch)  through 
the CPU and  auxiliary  storage  are  expressed  as  functions of ap- 
plication  loads  and  other  parameters  that  define  the  system's  en- 
vironment. SCAPE can  predict  the  effect  on  performance  of d+ 
ferent CPU models,  larger  memory,  additional  channels,  addi- 
tional  direct-access  storage,  larger  block  sizes,  and  alternate 
workload  projections. 

System  capacity  and  performance  evaluation 

by D. C. Schiller 

For any  capacity planning exercise,  the  analyst must first choose 
the type of methodology to be used. Available techniques range 
from simple rules of thumb  to  complex  and  expensive bench- 
marking. Not all are strictly  performance prediction models,  but 
all serve  the  same  function in capacity planning, in that they help 
the  user  evaluate his present configuration as well as possible 
alternative configurations. 

Among the simplest methodologies in general  use is USAGE,' 
which is based on utilization of the CPU. The  performance  cri- 
terion in USAGE is not  response  time, as in the  other  techniques, 
but total CPU hours of utilization. The first, or calibration, phase 
of a USAGE analysis is to adjust CPU utilization by individual ap- 
plications so they sum to  the  measured  total CPU utilization. Fu- 
ture utilizations, then, are  linear  functions of future  workloads. If 
the only capacity  bottlenecks in a system  are  expected to be  in its 
CPu, then USAGE is all that is required  for  capacity planning. 
However, if bottlenecks  are  expected in other  parts of the system 
(such as memory, channels,  tape  drives, or direct-access storage), 
then  another  step may have  to  be  considered. 

The  next more expensive methodology is the  use of models based 
on analysis. Various IBM marketing aids' fall in this  category. 
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They use closed models, which at each workload value determine 
first the value and  then  the  system  response  time.  The theory 
behind closed models is covered well  in the literat~re. '~ A limita- 
tion of this  theory is that it does  not handle multiple priority lev- 
els. 

Another analytic technique is exemplified by an IBM marketing 
aid informally called SCAPE (for  System  Capacity And Perform- 
ance  Evaluation),  the  subject of this  paper. SCAPE is an open 
model, which uses  the  set of application workloads as input for 
each  performance  evaluation. 

Other  models, which use both analytic and simulation techniques 
for performance  evaluation, are termed hybrid  model^.^ Their  use 
is primarily in research. 

More expensive in terms of CPU time is simulation model- 
ing. Among the simulation models in recent use are FIVE' and 
SNAP/SHOT,' which simulate  not only the CPU, but  the  entire com- 
puter  network. 

The  most  expensive  technique for capacity planning is bench- 
marking, which is not really modeling, since it involves executing 
actual applications in the  alternate  environment under study. 
Workload projections for benchmarking can be provided either 
by manual input or by analytic  simulation, as with the  Tele- 
processing  Network  Simulator (TPNS)." The primary use of 
benchmarking is not for  capacity planning, but  for feasibility 
studies made under  contractual obligations. 

The SCAPE model 

SCAPE is  the outgrowth of the  author's work at IBM'S Washington 
Systems  Center in Gaithersburg, Maryland. Initially the work 
was done using pencil and  paper, with correspondingly simple 
queuing formulas, mostly the M/M/I formula in Kendall nota- 
tion." Later a desk  calculator was used,  then a programmable 
calculator was employed for  a  gross  iterative  technique more so- 
phisticated than M/M/l.  The separate  phases of SCAPE were then 
written in FORTRAN for  restricted use on computers.  Also,  the 
basic queuing formulas were revised and calibrated using GPSS 
(the  General  Purpose Simulation System),"  and  the input and 
output  formats  were revised and expanded to provide more flexi- 
bility. The remainder of this  paper  describes  the model and the 
queuing equations used by SCAPE and the  general  procedure used 
in a SCAPE analysis. 

Recent work with SCAPE has  focused primarily on IBM'S Multiple 
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memory,  determines  the  total time spent by the job in the initia- 
tor,  the number of swapped-in initiators is crucial to  the computa- 
tion of swap time and, consequently, job time. SCAPE calculates 
an initial estimate of swapped-in initiators from RMF data;  this 
number may or may not  change as the  batch workload changes. 
As the  number of swapped-in initiators changes, so does  the  total 
number of initiators.  Whether or not the SCAPE user  changes 
those  numbers with batch workloads is optional. 

In TSO, an  address  space  is equivalent to  a  batch initiator. Since 
an MVS user,  once logged on, never  has  to wait for  an  address 
space, a TSO command or subcommand is modeled before execu- 
tion much like a batch  application with an infinite number of ini- 
tiators, SCAPE computes  an initial number of swapped-in address 
spaces (called the  target multiprogramming level,  or TMPL), 
which then may or may not be increased with increasing load. 
Most TSO users  do  increase  the TMPL as the  load  increases,  thus 
effectively tying the load to  the  number of active TSO users, with 
each  user’s load essentially  constant. 

With TMPL and  the  average  response time in a swapped-in ad- 
dress  space, SCAPE computes  the swap-out time before being 
swapped  in.  Thus it computes  the  total time that  a command oc- 
cupies an  address  space,  whether swapped in or out. 

Swapping  that  occurs  after  the initiation of a job (occasionally of 
a  command) is treated by SCAPE as if it occurred before initiation. 
No differentiation is evident in RMF either-only the time that  any 
work unit is swapped in or out. Swap-out time,  then, is the  total 
of the initial swap-out  and all later  swap-outs  that  interrupt  execu- 
tion. 

The other types of applications, IMS and CICS, are usually consid- 
ered  nonswappable, although nothing in SCAPE prevents  the mod- 
eling of a swappable DB/DC (data  base/data  communications) soft- 
ware system.  Usually, then, no swap queues  are modeled for 
DB/DC applications.  However,  for  an IMS transaction, a job queue 
(in IMS called a message queue) is modeled the same way as in 
batch  processing, using the number of message processing re- 
gions instead of the  number of initiators. 

As shown in Figure 1, cICS has  neither message queues  nor  swap 
queues,  the usual case if the maximum number of simultaneously 
active  tasks is large (20 or more). If the number is small, say 4 or 
5 ,  a  message  queue  exists  for CICS just  as  for IMS, and the  extra 
time spent in the message  queue is included in SCAPE’S overall 
turnaround time for  the  transaction. 

Most teleprocessing  packages  other  than IMS and CICS resemble 
CICS in that they execute in a single address  space, in either a 
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single-threaded or multithreaded mode. Occasionally they per- 
form functions like those of both IMS and CICS, and  the  user  has to 
exercise his ingenuity in defining the  transactions within the 
SCAPE framework.  Sometimes  such  a  transaction is modeled as 
both an IMS and a CICS transaction,  the  total  execution time being 
the  sum of the  two. 

Once  an application enters  execution  (see Figure 2), it  is handled 
more or less  the  same,  regardless of application  type. An ex- 
ception is the CPU, where  a acs-type application can be executed 
in only one  side of a multiprocessor.'* 

The modeling of an  executing application by SCAPE is essentially 
a serial  process.  Each  work unit is passed  through  each  resource 
in turn, its waiting time for  that  resource being added  to its ser- 
vice time,  then all individual response times (service plus waiting 
times) are totaled  to  produce  the overall response  time.  Service 
time in the CPU is the  sum of the small time increments  between 
interruptions of any work unit. For I/O devices,  service time com- 
putation  depends on the  device  type. For  each  direct-access  stor- 
age  device (DASD), the  service time is the  number of accesses  to 
that  device  for  the work unit, multiplied by the  average  service 
time for  accessing  that  device. 

The  service time for  tape mounting is the  average time required  to 
mount a tape, multiplied by the average number of tape  mounts 
per job.  For tape reading and writing, the  service time is the  tape 
channel time apportioned  among  the different applications  that 
use tape.  Since  tape  units  cannot be active  unless  the  tape  chan- 
nel is working, SCAPE does  not model the  tape  units  themselves. 
It  assumes  either  a single tape  channel or  that all tape  channels 
are shared by all tape  units. 

For reporting,  direct-access  devices  are divided into  three 
groups: paging, swapping, and  data  base  devices.  Therefore 
SCAPE treats  each work unit as if it passed through six sub- 
systems: CPU, tape, tape mounting, data base DASD, paging, and 
swapping. 

SCAPE considers JES and  teleprocessing  access  methods only as 
they  affect  the  other  applications. JES is considered to exist in the 
CPU as the highest-priority task, but its service  and  response 
times are not considered.  Neither  are its accesses  to DASD (SPOOL 
packs)  considered.  A  user must consider JES a separate appli- 
cation if he wishes to  determine JES time (mostly printing), which 
then  can be accounted  for by adding it to  batch  response or  turn- 
around  time. In that case, of course,  unit-record times are not 
included. 

Teleprocessing  access  methods  are  treated similarly, as top- 
priority overhead.  The only difference is that  this  overhead is 
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considered  constant with increasing load,  whereas JES CPU utili- 
zation is considered to grow (or decline) as  does  the lowest-prior- 
ity application. 

Priorities are considered by SCAPE only as dispatching priorities 
within the CPU. They are  treated  as being in a definite order, so 
applications  that  reverse priorities dynamically are considered by 
SCAPE to have  the  same  priority.  The  user may choose  to model 
this  phenomenon  outside of SCAPE itself. With APL," for  ex- 
ample, priority often is changed dynamically so that it is some- 
times above  the priority of batch and sometimes below. A way to 
model this  situation is to  execute two SCAPE models,  one with the 
APL priority  above  batch  and  one below. Then  results from the 
two  runs  can be combined, weighted by the  portion of time spent 
in each of the  two priority states. 

Mathematical  foundations 

The SCAPE procedure is based primarily on two  types of queuing 
equations: internal and  external.  Internal  queuing involves con- 
tention  for a hardware  resource,  such  as  the CPU or  a  direct- 
access  device.  External queuing involves contention  for a region 
or  address  space, which is  a  software  resource. 

To place internal and  external queuing in context,  the simplest of 
all queuing equations  is, in Kendall notation,"  the M/M/1: 

tr = t s / ( l  - U )  (1) 

where tr is the  response time through a single server, t s  is the 
service time through  the  server,  and U is the utilization of the 
server,  or  the portion of time that  the  server is busy.  This  equa- 
tion,  however, is suitable  for only a single server in the  system,  a 
single application with random  arrivals  and  exponential  service. 

A more general  equation, which handles service  distributions  oth- 
er than exponential, is (again in Kendall notation) MIGIl, where 
G stands  for  a  service  distribution  that  can range from constant 
to hyperexponential.  The  equation, known as  the Khinchine- 
Pollicheck equation,"  is: 

where c2 is the coefficient of variation, or  the variance of service 
time divided by the  square of the  average  service time. If c2 is 
unity,  the  distribution is exponential,  and  Equation (2) degener- 
ates  to Equation (1). 

The restriction to exponential  service  distribution is the only limi- 
tation of Equation (1) corrected by Equation (2), and more data is 



required for  the implementation of Equation ( 2 ) .  Armstrong" 
assumes fixed values of c2 for  each  component of the  computer 
system (1 for CPU, 0.5 for DASD, 0 for tape).  Two  other  phenome- 
na not handled by Equation ( 2 )  are  nonexponential  arrival distri- 
butions  and  dependent flow from one  system  component  to 
another. Allen" treats both by using: 

where cu2 is the coefficient of variation of the  arrival  time,  and cs2 
is the coefficient of variation of the  service  time. In Equation (3), 
cs2 has been replaced by the average of itself and cu2. The justifi- 
cation  for  Equation (3) is mostly empirical. 

Equations ( I ) ,  ( 2 ) ,  and (3) are  open  queuing  formulas  because 
they use the workload as  an  independent  input variable. It is used 
indirectly through: 
u =  L x t s  (4) 

where L is the  workload, in work units per time period. 

internal SCAPE also  employs  open queuing formulas.  The  general form of 
queuing the  basic, or internal, SCAPE equation  can be derived,  but  its  spe- 

cific form was obtained empirically by using comparisons with 
GPSS runs.  The basic equation used by SCAPE for  response  times 
through  the CPU is: 

where 

In  the equations above,  the following values apply: 

j = number of  the application ( 1  - 14 for  the SCAPE pro- 
grams) 

t r c ( j )  = response time of thejth application through the CPU 
rsc(j) = service time of thejth application through  the CPU 

U ( j )  = utilization of the CPU, by thejth application plus all ap- 

s = number of servers (1 for  a  uniprocessor, 2 for  a multi- 
plications of higher priority 

processor) 
K ( j )  = maximum multiprogramming level for  the application 
r ( j )  = t r c ( j ) / W )  (9) 

rr(j) = response  time of the jth application through all subsys- 
tems. 



Equivalent formulas are used for all other components of the  sys- 
tem, such  as DASD, tape, and tape mounting. Then  the  system 
response time is the  total  response time through all subsystems. 

As can be seen from Equation (9), the basic SCAPE equation is 
recursive. Initial values  are  assumed  for  response times through 
all subsystems, values of r ( j )  are  determined,  and new values of 
trc(j) and  other  response times are  calculated.  Then new values 
of r ( j )  are  determined,  and  the cycle is repeated until either  suc- 
cessive  response  times  are approximately the same or some maxi- 
mum has been reached. 

Equation ( 5 )  is complex enough that it  is not practical to use re- 
peatedly  except by computer.  However, it still represents  an 
open model because  the load is an input (implied in the utiliza- 
tion).  Equations (l), ( 2 ) ,  (3),  and (5) all represent  open queuing 
models, using different degrees of sophistication. 

Equation ( 5 )  represents  the  basic queuing scheme used by SCAPE 
for  the CPU. It  assumes that all priority relationships are  pre- 
emptive resume-that is, a lower-priority job can be  interrupted 
at any time by a higher-priority transaction,  after which the 
lower-priority job resumes its work.  The high-priority work could 
itself be pre-empted by a yet higher-priority transaction. 

However, in the work of a CPU, a significant amount of code is 
disabled;  that  is, upon interruption, the CPU merely stores  the 
interrupt  and  continues with the  disabled  code. When the dis- 
abled code is completed,  the  next  transaction  to  be  acted  upon is 
the  one of highest priority,  even though it might have  occurred 
last.  This priority scheme is called head-of-line. Approximately 
50 percent of MVS supervisor code, consisting largely of I/o sub- 
routines, is disabled. 

The effect of disabled  code on response time is determined  first 
by dividing the  total CPU time into  segments  separated by I/O or 
other  interruptions. Then the  extra  time  that any higher-priority 
task  has to wait is only a portion of the  interval in which it hap- 
pens  to  arrive.  Assume a situation with n applications. If appli- 
cation j interrupts application i, let N(i) be the  number  of  inter- 
ruptions of a work unit of i ,  and t.s(i) be  the total CPU service time 
of a work unit of i .  Then dts(i),  the average CPU time between 
interruptions of application i, is: 

dts(i) = ts ( i ) /N(i)  (10) 

One would normally think that the  delay  for application i would 
be half of this interval.  However,  since  the  interruptions  occur 
randomly,  the length distribution of the interval is exponential, so 
that  dts(i) is the  expected delay caused by an  interruption of ap- 
plication j .  
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Figure 3 Time  relationships 
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Now, if N ( j )  is  the number of interruptions of a work  unit of 
applicationj,  and  duc(i)  is  the probability that iis in core, then the 
total delay of; because of i is: 

F ( i , j )  = N ( j )  X duc(i) X dts(i) 

= duc(i) X ts( i )  X N ( j ) / N ( i )  (1 1) 

Note  that  duc(i)  is just  the CPU utilization of i, the  product of its 
CPU service time and its workload. To determine  the  total  delay of 
j caused by applications of lower  priority, it is  necessary to sum 
all values of F(i,  j )  for all i applications. 

On the  other  hand,  the lower-priority application is  speeded  up 
because it does  not  have  to wait for these  interruptions. More- 
over,  the  decrement in time for i is the same as the  increment in 
time forj, adjusted  for  their  relative  workloads.  Therefore G ( j ,  i), 
the  corresponding  decrement in time,  is: 

G(j ,  i) = F ( i , j )  X L(i ) /L( j )  (12) 

Again, the  values of G(j ,  i) are  summed,  this  time  for  all appli- 
cations of higher priority. Then for  any  applicationj,  the modified 
response time tr'(j),  to allow for  disabled  code, is: 

tr ' ( j )  = W )  + f x ( F( i , j )  - C G ( j ,  4) (13) 

where f is a factor between 0 and 1,  depending on the  operating 
system  used in the CPU. In SCAPE, these priority equations  are 
employed only for  the CPU. 

Once  an  application's  system  response time has  been  found, 
I SCAPE uses  other  formulas  to  obtain waiting times in the swap-out 

queue  and  the job or message queue,  and waiting times  for  de- 
layed jobs. Figure 3 shows  the  relationships among the  various 
compound times  used by SCAPE: response time ( t r ) ,  occupancy 
time (roc), turnaround time (tta),  and throughput  time  (trp). 

To find the  total  system  response time for any application, SCAPE 
merely totals  the  response times for  all  subsystems as calculated 
in  Equations ( 5 )  through (8). However,  an application is likely to 
spend  additional  time waiting to  start execution. For  example, all 
TSO commands  must be executed by swapped-in address  spaces, 
the number of which is  set by MVS. If a TSO command, upon en- 
tering the  system, finds that  its  address  space is swapped out, it 
must wait  in a swap  queue until one of the swapped-in TSO ad- 
dress  spaces is itself swapped out  or completed.  Similarly, IMS 
transactions may have  to wait in a message  queue for message 
processing  regions,  and  batch jobs may have to wait  in a job 

j- 1 

i=jfl i = l  



The queuing involved in these  cases  is multiserver queuing,  the 
servers being initiators, message processing  regions,  and  address 
spaces  instead of hardware  subsystems as with internal queuing. 
The  multiserver  queue as used by SCAPE assumes a finite number 
of servers  to handle jobs or transactions  that  come  from  an in- 
finite population.  In  a  computer  system  the population is not in- 
finite, of course, but is limited for on-line transactions by the 
number of terminals  and  for  batch  transactions by the  number of 
persons who might submit jobs.  However,  those  numbers  are 
presumed to  be large enough that  any  discrepancy in assuming  an 
infinite source  population is insignificant. 

Another  assumption made by SCAPE is that  the  total  response 
time of an application is the  average of an  exponential  distribu- 
tion. With these  assumptions in mind,  there is an  exact ex- 
pression for,  say,  the occupancy  time of a TSO command (re- 
sponse time plus swap-out  time), roc, as a function of its  response 
time, t r ,  the  average number of swapped-in address  spaces, K ,  
and  the  average  utilization, U ,  of each of those  address  spaces.23 
An intermediate  factor is Po, the probability that all address 
spaces  are  empty: 

1 

1 + KU + - (KU)' + . . . + - (KU)" (-1 Po = 1  1 1 
2! K !  1 - u  

With that  factor  known,  the  occupancy time is: 
t r  X u2 

( K  - 1)!(1 - u)2 toc = tr + x Po 

Equations (14) and (15) are valid only for integral values of K 
because  the  expression  for Po contains  exactly K + 1 terms in the 
denominator.  However, it  is probable that,  as determined by 
MvS, the  target multiprogramming level for  the  number of 
swapped-in address  spaces  over a base period of an  hour  is not an 
integral number.  Therefore  an  expression must be found  that  ap- 
proximates  Equations (14) and (15) at integral values of K ,  yet is 
valid for all positive  values. 

SCAPE uses  the following equation, which satisfies those require- 
ments: 

1 
toe = tr X 

(1 - U") 
For K equal  to 1 or 2, roc from Equation (16) is exactly  the  same 
as from (14) and (15). For higher values of K ,  toc as obtained from 
(16) is slightly less than the  exact  expression.  However,  the  dis- 
crepancy is small, as shown in Figure 4, where values of K are  as 
high as 20 (and the waiting times are small), and  the  discrepancy 
is still less  than 12 percent of the  true value. The  fact  that  Equa- 



Figure 4 Multiserver approximation 
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For batch applications, the relationship  between toc and tr must 
be  changed  slightly because of the  finite number of batch initia- 
tors. SCAPE inserts an extra factor into Equation (16) to account 
for this requirement. For batch processing, then: 

(1  - U’) 
( 1  - U“) 

toc = tr X 

where U is  domain utilization, K is  the  maximum  number of jobs 
swapped in, and Y is the maximum  number of jobs swapped in or 
out. Here, domain utilization, U ,  can  be expressed: 

For DB/DC applications, which  usually are not swappable, occu- 
pancy  time  differs  from response time  only because of data 



Turnaround time for  batch  processing  bears the same relationship 
to  occupancy time as does  occupancy time to  response time for 
TSO: 

1 
tta = toc X 

(1 - U') 
where U is region utilization, Y is the  number of initiators  for 
batch  processing, the number of message processing regions for 
IMS, the maximum number of active  tasks for CICS, or infinity for 
TSO, so that tta = toc. Here, region utilization, U ,  can  be 
expressed: 
u = L x toc/Y (20) 
Examination of Equations (17) and (19) shows  the justification for 
the  extra term in Equation (17).  If the  two  equations  are multi- 
plied together,  the  term  appears in both  numerator  and denomina- 
tor.  It  can be cancelled,  and  turnaround  time, as a function of 
response  time, is dependent  not on the total number of initiators, 
but on the number of swapped-in  initiators. The only effect of the 
total number of initiators is to  separate  the  job and  swap  queues. 

All occupancy times and  turnaround times can  be obtained from 
the  external  equations (16) through (20). The only other  time 
obtained by SCAPE is the  throughput  time, ttp, of batch jobs  that 
are delayed  to allow other workloads to  grow.  The  equation used 
is a strictly linear relationship between the  average  response time 
and  the  interval of the  peak load (assumed  to  be  one hour): 

I 

~ ttP = tta + 
external load 
internal load 

1 where external load is  the batch load, in jobs  per time period, 
placed on  the  system by its  users,  and internal load is the  batch 

~ load  actually  processed by the  system without saturating it. 

In  summary, SCAPE employs queuing equations to obtain  both  the 
basic response  times through all hardware and the longer input 
queuing times spent waiting for software  servers.  The  internal 
queues are based on a combination of pre-emptive  resume and 
head-of-line priorities in the CPU and an absence of priorities  else- 
where. The  external  queues  are  handled differently, depending  on 
whether  each  application is DB/DC, TSO, or batch. 

System overview 

A SCAPE analysis proceeds in four  phases:  data  gathering  (Phase 
0), calibration (Phase I), prediction (Phase 11), and modification 
(Phase 111). The flow of the  analysis  through  these  phases  is  de- 
scribed in the following sections, in which reference  is  made to 
six programs, SCAPE-0 through SCAPE-5, that handle different por- 



Figure 5 SCAPE Phase 0 flow 
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Phase0 As illustrated in Figure 5, the  analyst first examines a set of mea- 
surement  data  for  the  purpose of choosing as a  base  that period 
which best exemplifies the  system  at  its peak workload. During 
that  period, all applications should be working and all should be 
measured. The peak period is typically an hour during the  day 
and  somewhat longer if at night. SCAPE data, most of which is 
available from RMF either directly or indirectly,  consists of 

0 CPU utilization during the  base  period. 
0 Activity of all tape  and DASD channels  (number of accesses  to 

0 Utilization of all  tape  and DASD channels (portion of time  that 

0 Activity of  all direct-access  devices. 
0 Utilization of all direct-access  devices. 
0 Paging and swapping rates,  both in and  out of the CPU. 
0 CPU service  time  for  each  application. For MVS, each appli- 

cation is a  performance  group,  several  performance  groups, or 
a period within a performance group.  Statistics  from single 

each  channel). 

each  channel is in use). 
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periods are used if the user decides to evaluate trivial and non- 
trivial TSO performance separately, instead of treating TSO as  a 
single application. In  this instance, a copy of the Installation 
Performance  Specifications is required. 

0 Workload of each application (jobs per second for batch, 
commands per second for TSO, and transactions per second 
for IMS and C I ~ S ) .  To obtain the application workload for IMS 
and CICS, monitors other than RMF are required-for example, 
the DC Monitor for IMS'~ and the Performance Analyzer for 
CICS.'~ These monitors  should span approximately the same 
time interval as does RMF. 

0 Average elapsed time of each application. Again, for IMS and 
CICS applications, the DC Monitor or Performance Analyzer is 
required. If such a tool is not available for the system under 
study, then no Phase I calibration is possible, and the user 
must  rely  on a reasonableness test of total response time. 

Also during Phase 0, the user gathers the  following  information 
for the analysis: 

0 The hardware configuration  during the base period. 
0 A list of the applications. 
0 For each non-TSO application, the maximum  multi- 

programming level. For batch, the equivalent information is 
the number of initiators; for IMS it  is the number of message 
processing regions; and for CICS it is the  maximum number of 
active tasks. For TSO the  number  is  assumed to be infinite, 
which  is equivalent to the application's never having to wait 
for a free address space; in practice MVS assigns an address 
space when each user logs on, before any commands are is- 
sued, and the user keeps that address space throughout his 
session. 

0 The rate and type of growth of each application. Growth may 
be linear, exponential, or a general type for which the work- 
load  is entered month by month. 

0 The  critical turnaround time of each application. Critical times 
may be altered as the SCAPE analysis proceeds through later 
phases. 

0 Initial estimates of c p u  capture ratio for each application. The 
capture ratio is the CPU service time for the application cap- 
tured, or measured, by RMF, divided by the total CPU time for 
the application, including system time. These ratios can  be 
obtained  from previous SCAPE analyses or from USAGE analy- 
ses of the system. Default values are used for the different 
application types. 

0 The  portion of each DASD devoted to each application, unless 
the devices are dedicated. For devices that are shared among 
several applications, the  only sure way to apportion  individual 
DASD activity  is to use the Generalized Trace Facility,26 which 
can  be expensive and  has to be  planned ahead. Another tech- 
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nique is to use the program called SCAPE-0, which employs 
System Management Facilities (SMF) dataz7 to apportion 
EXCPS (Execute Channel Programs) by device  among  per- 
formance  groups.  This program does  not  provide  information 
about  system  accesses,  but it is a  partial aid  in determining 
DASD portions.  Later  on, in Phase I,  these values may very 
likely be  altered. 

0 The portion of tape  activity  for  each  application. SCAPE-0 may 
be used for this  purpose  also. 

0 Tape mounting statistics:  the  number and average utilization 
of people mounting tapes or disks, plus the  average  time  spent 
mounting tapes  and  disks  for  each  application. 

0 A preliminary list of alternate  hardware  and  software  environ- 
ments.  This list could include all changes  to  the  base  system 
which the  user wants  to  analyze with SCAPE. The list may 
change as successive  runs are made in Phase 111, if the  results 
indicate  other  possible  improvements in system  capacity. 

One other  activity may be required during  Phase 0 if more  than 
one CPU is involved. If DASD controls are  shared, it is necessary 
to select monitor reports simultaneously (as much as possible) 
from all systems  that  share  the DASD configuration. These  reports 
are used by SCAPE-4 to  compute path utilization between all 
strings of DASDS and all CPUS. These  path utilizations replace ac- 
tual  channel  utilizations as input data  for SCAPE-1. 

Phase I Once information is collected for  an MVS base  system, it can be 
entered  into SCAPE-I, which uses it to set  up  parameters  for 
SCAPE-2, a prediction program (see  Figure 6) .  SCAPE-1 uses input 
data in queuing equations  that  predict the total  response  time 
through the  entire  system  for  each  application.  The  analyst com- 
pares  that  total with an input response  time, which for  each appli- 
cation is derived  directly (without queuing) from other  data. If 
any calculated response times differ appreciably from the  equiva- 
lent  input  response times (say, over 10 percent),  then the user 
must  change  some of the  data  entered  into SCAPE-I and  run  the 
program again. Some  inputs which have been changed in this 
fashion  have  been: 

Capture  ratios. 
0 Relative priority  levels. 
0 Amount of disabled code. 
0 Fixed portions of different applications. 
0 Seconds of mount time per  application. 
0 Portions of individual DASDS used by different  applications. 
0 Maximum multiprogramming levels. 

Occasionally no amount of adjustment will calibrate the  base  sys- 
tem. In that  case  there must be some  systemic  reason why the 
queuing questions used by SCAPE do not predict the measured 
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Figure 0 Performance  prediction  for  checkout  example 

A P P L I C A T I O N  

WORKLOAD 

C P U   S E R V I C E   T I M E  

C U M .   C P U   U T I L .  

C P U   R E S P O N S E   T I M E  

T A P E   S E R V I C E   T I M E  

T A P E   C H A N N E L   U T I L .  

T A P E   R E S P O N S E   T I M E  

M O U N T   S E R V I C E   T I M E  

M O U N T E R   U T I L I Z A T I O N  

M O U N T   R E S P O N S E   T I M E  

D A S D   P A T H   U T I L .  

D A T A   B A S E   S E R V .   T I M E  

D A T A   B A S E   R E S P O N S E  

P A G I N G   S E R V .   T I M E  

P A G I N G   R E S P O N S E  

S W A P P I N G   S E R V .   T I M E  

S W A P P I N G   R E S P O N S E  

T O T A L   R E S P O N S E   T I M E  

C U R R E N T   M P L  

D O M A I N   U T I L I Z A T I O N  

O C C U P A N C Y   T I M E  

C O N C U R R E N C Y  

R E G I O N   U T I L I Z A T I O N  

T U R N A R O U N D   T I M E  

POWER 

I M S  

1 . 1 0 7 4 9  

0 . 2 1 3 0 0  

0 . 3 2 6 2 9  

0 . 3 7 9 2 7  

0 . 0 1 0 0 0  

0 . 0 6 2 9 9  

0 . 0 1 0 0 4  

0 . 0  

0 . 2 0 0 0 0  

0 . 0  

0 . 2 3 9 0 0  

0 . 3 1 3 9 3  

0 . 3 2 1 1 7  

0 . 1 2 4 9 6  

0 . 1 2 9 0 9  

0 . 0  

0 . 0  

0 . 8 3 9 5 8  

0 . 9 2 9 8 2  

0 . 3 0 9 9 4  

0 . 8 5 2 1 7  

0 . 9 4 3 7 7  

0 . 3 1 4 5 9  

0 . 8 7 9 5 5  

1 . 1 3 6 9 4  

TSO 

0 . 6 6 7 0 4  

0 . 5 8 2 0 0  

0 . 7 0 5 1 7  

2 . 6 3 1 6 8  

0 . 0  

0.0 

0.0 

0.0 

1 . 2 9 4 9 9  

1 . 3 6 7 5 5  

0 . 2 8 6 4 8  

0 . 2 9 2 5 7  

0 . 4 1 4 0 5  

0 . 4 4 1 5 4  

4 . 7 3 3 3 4  

3 . 1 5 7 3 3  

0 . 7 6 4 8 6  

7 . 0 7 1 9 6  

4 . 7 1 7 2 8  

0 . 0  

7 . 0 7 1 9 6  

0 . 1 4 1 4 0  

B A T  

0 . 0 1 8 9 3  

9 . 1 2 3 0 0  

0 . 8 7 3 7 2  

1 6 1 . 1 7 0 4 3  

2 . 7 5 1 0 0  

2 . 7 7 5 4 1  

6 0 . 0 0 0 0 0  

7 3 , 2 7 3 5 3  

3 2 . 7 2 6 2 9  

3 3 . 3 7 0 2 7  

4 . 4 8 8 0 7  

4 . 5 2 9 5 7  

0 . 1 2 4 6 7  

0 . 1 2 4 7 4  

2 7 5 . 2 4 3 6 5  

5 . 2 1 0 3 6  

0 . 8 6 8 3 9  

2 7 5 . 2 4 3 6 5  

5 . 2 1 0 3 6  

0 . 8 6 8 3 9  

4 8 1 . 9 0 6 2 5  

0 . 0 0 2 0 8  

mands per  second,  and  jobs  per  second  for  the IMS, TSO, and 
batch applications  respectively. All times in the  report are given 
in seconds to avoid confusion; therefore batch workloads  seem 
small relative to  interactive  workloads. 

The next three lines in Figure 8, for  the CPU, display service 
times, cumulative utilizations, and  response times for  each appli- 
cation.  Each CPU utilization reported includes utilization for  the 
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same  or higher priority, plus the utilization for paging, JES, and 
other high-priority background activity. 

Next are  three similar lines for  the  tape  subsystem  (service  times, 
utilization, and  response  times), with the exception  that one  tape 

system  reports  are followed by three similar lines for  the mount 
subsystems (usually tape,  but disk mounts could also be in- 
cluded). 

~ channel utilization represents all applications.  The  tape  sub- 

Next in Figure 8 is a line for DASD path utilizations. (For  the 
example shown,  all DASDs use  the  same path, so only one path 
utilization is shown.)  These values are not applicable to specific 
applications;  they  correspond to different DASD paths.  Each  path 
utilization is employed in determining the service  time of each 
direct-access device  that  uses  the  path. 

The following two lines show  the  total data base  service  and re- 
sponse times for all applications. In SCAPE, all DASD functions are 
assumed  to  be data  base, paging, or swapping, and  input  is  as- 
sumed to  be given in those  categories. SCAPE reports  the times 
spent in each of the  three  subsystems  separately.  After the  two 
lines for  data  base,  there  are  two similar lines for paging and  two 
for swapping. In SCAPE-2, switches are available to display paging 
and swapping times  for individual devices,  as well as  device utili- 
zations.  To  keep the quantity of output  down,  the  entire  set is not 
usually printed out. 

The  next line in Figure 8,  labeled TOTAL RESPONSE  TIME, shows 
the  total  response  times (tr) summed over  the six subsystems: 
CPU, tape,  mount,  data  base, paging, and swapping. The next  two 
lines are  obtained from the  total  response times: the  current mul- 
tiprogramming level, which is the product of the  response  time 
and  the  workload,  and domain utilization,  the portion of the mul- 
tiprogramming level divided by the  number of address  spaces al- 
lowed to  be swapped in by the  System  Resources  Manager of 
MVS. Domain utilization is obtained from Equation (18). The 
equation  that  relates  response time ( t r ) ,  workload ( L ) ,  and  the 
number of concurrent  users in the  system ( n )  is known as Little’s 
Law: 

n = L x t r  (22) 

Following the  three lines related to  response times are  three simi- 
lar lines related to occupancy times. Occupancy time is  related to 
response time by Equation (16), concurrency is the number of 
work units swapped in or  out (and thus  related to occupancy  time 
by Little’s  Law),  and region utilization is concurrency divided by 
the number of initiators,  or  the  equivalent  for IMS and CICS. Re- 
gion utilization is  obtained from Equation (18). 

28 
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At the  bottom of Figure 8 are  turnaround  times,  related to occu- 
pancy times by Equation (17), and  the  powers, or values of qual- 
ity of service. For all applications,  either the turnaround  time  or 
the power is the final  figure of merit for judging whether the appli- 
cation  has  been  adequately  serviced by the  system. 

Phase 111 is the  “what-if” portion of a SCAPE analysis  (see Fig- PhaseIII 
ure 7). Whenever a change is to  be evaluated in the  system  under 
consideration,  one or more of the  input  parameters to SCAPE-2 is 
changed,  and SCAPE-2 is executed to provide a new prediction of 
how all the  applications will behave in the  future. Many changes 
have been evaluated successfully. The possibilities of modeling 
hardware  and  software are limited only by the imagination of the 
analyst. 

SCAPE-3 is designed to handle  some of these  system  changes,  spe- 
cifically those relating to  the CPU. If the analyst  wants  to  evaluate 
a change in the  power (MIP rate) of the CPU, in the  number of 
processors in the CPU, or in memory size, then SCAPE-3 can  be  run 
with the SCAPE-2 input to be modified by the SCAPE-3 program plus 
control input that defines the  change to  be made. The  result is a 
revised set of data  for SCAPE-2 and a report  that  describes  new 
values of the changed  parameters.  Successive modifications can 
be entered in the  same execution of SCAPE-3, in which case sev- 
eral sets of SCAPE-2 data  are  produced,  one  after  another,  each 
containing cumulative changes defined by the  successive  con- 
trols.  It remains then to execute SCAPE-2 in order  to predict the 
effects of the new configurations. 

Any other  changes must be  evaluated by manual calculation of 
new input parameter  data  for SCAPE-2, followed by the  execution 
of SCAPE-2. Some of the changes are: 

0 Additional DASD channels. 
0 DASD model change (3330 to 3350). 
0 Additional DASDs. 
0 Additional tape  channels. 
0 Additional tape  mounters. 
0 Tape model changes. 
0 Conversion to a Mass Storage  System. 
0 Change in operating  system. 
0 Change in software  release. 
0 Change in multiprogramming level. 
0 Change in tape block sizes. 
0 Change in DASD block sizes. 
0 Moving workloads from one CPU to  another. 
0 New application package. 

Some of these  changes  are simpler than  others.  For  example, ad- 
ditional tape  channels can be modeled merely by decreasing the 
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