The performance of Mvs (Multiple Virtual Storage) systems can
be predicted for changes in workload and environment by an IBM
marketing aid informally called SCAPE (for System Capacity and
Performance Evaluation). Written in FORTRAN, the programs use
simple queuing formulas with empirical modifications. Response
times for complex workloads (IMS, CICS, TSO, and batch) through
the CPU and auxiliary storage are expressed as functions of ap-
plication loads and other parameters that define the system’s en-
vironment. SCAPE can predict the effect on performance of dif-
ferent CPU models, larger memory, additional channels, addi-
tional direct-access storage, larger block sizes, and alternate
workload projections.

System capacity and performance evaluation

by D. C. Schiller

For any capacity planning exercise, the analyst must first choose
the type of methodology to be used. Available techniques range
from simple rules of thumb to complex and expensive bench-
marking. Not all are strictly performance prediction models, but
all serve the same function in capacity planning, in that they help
the user evaluate his present configuration as well as possible
alternative configurations.

Among the simplest methodologies in general use is USAGE,
which is based on utilization of the CPU. The performance cri-
terion in USAGE is not response time, as in the other techniques,
but total CPU hours of utilization. The first, or calibration, phase
of a USAGE analysis is to adjust CPU utilization by individual ap-
plications so they sum to the measured total cpu utilization. Fu-
ture utilizations, then, are linear functions of future workloads. If
the only capacity bottlenecks in a system are expected to be in its
CpPU, then USAGE is all that is required for capacity planning.
However, if bottlenecks are expected in other parts of the system
(such as memory, channels, tape drives, or direct-access storage),
then another step may have to be considered.

The next more expensive methodology is the use of models based
on analysis. Various IBM marketing aids” fall in this category.

Copyright 1980 by International Business Machines Corporation. Copying is per-
mitted without payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright notice are
included on the first page. The title and abstract may be used without further
permission in computer-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor.

SCHILLER IBM SYST J e VOL 19 @ NO | e 1980

They use closed models, which at each workload value determine
first the value and then the system response time. The theory
behind closed models is covered well in the literature.*® A limita-
tion of this theory is that it does not handle multiple priority lev-
els.

Another analytic technique is exemplified by an 1BM marketing
aid informally called SCAPE (for System Capacity And Perform-
ance Evaluation), the subject of this paper. SCAPE is an open
model, which uses the set of application workloads as input for
each performance evaluation.

Other models, which use both analytic and simulation techniques
for performance evaluation, are termed hybrid models.” Their use
is primarily in research.

More expensive in terms of CPU time is simulation model-
ing. Among the simulation models in recent use are FIVE® and
SNAP/SHOT,” which simulate not only the CPU, but the entire com-
puter network.

The most expensive technique for capacity planning is bench-
marking, which is not really modeling, since it involves executing
actual applications in the alternate environment under study.
Workload projections for benchmarking can be provided either
by manual input or by analytic simulation, as with the Tele-
processing Network Simulator (TPNS).'” The primary use of
benchmarking is not for capacity planning, but for feasibility
studies made under contractual obligations.

The SCAPE model

SCAPE is the outgrowth of the author’s work at IBM’s Washington
Systems Center in Gaithersburg, Maryland. Initially the work
was done using pencil and paper, with correspondingly simple
queuing formulas, mostly the M/M/] formula in Kendall nota-
tion."" Later a desk calculator was used, then a programmable
calculator was employed for a gross iterative technique more so-
phisticated than M/M/1. The separate phases of SCAPE were then
written in FORTRAN for restricted use on computers. Also, the
basic queuing formulas were revised and calibrated using GPSS
(the General Purpose Simulation System),' and the input and
output formats were revised and expanded to provide more flexi-
bility. The remainder of this paper describes the model and the
queuing equations used by SCAPE and the general procedure used
in a SCAPE analysis.

Recent work with SCAPE has focused primarily on 1BM’s Multiple
Virtual Storage (MvS)." Most of this work has been based on data

IBM SYST J ¢ VOL 19 « NO 1 & 1980 SCHILLER

batch
processing

Figure 1 SCAPE system model

TRANSACTIONS COMMANDS
T80

MSG QUEUE JOB QUEUE

TASK 1 {
TASK 2 SWAP QUEUES
TASK 3

TASK 4 AS1

TASK 5 AS?2

TASK 6 AS3

TASK 7 AS4

TASK 8 ASS

TASK 9

TASK 10

TASK 11

AMAXT

L

EXECUTION

from the Resource Measurement Facility (RMF), available only
with MVS. Several features of the SCAPE model, then, pertain only
to Mvs and its internal structure.

SCAPE handles four types of application workloads—IMS, cICS,
TSO, and batch."'® Each has different characteristics as seen by
the software system. Most of the differences are in queuing
that takes place before a specific application work unit starts,
as illustrated in Figure 1.

As batch jobs enter the system, they are held in a queue by JES
(the Job Entry Subsystem)'” until an initiator is free to accept
them. The SCAPE user defines the number of batch initiators, and
this number, together with the average time that a job spends in
the initiator, determines the average time spent in the job queue.

Once a batch job is assigned to an initiator, it is eligible for execu-

tion only when it is swapped in. Because the number of swapped-
in initiators, plus the average time that a job is swapped in real

SCHILLER IBM SYST J @ VOL 19 @ NO 1 ¢ 1980

memory, determines the total time spent by the job in the initia-
tor, the number of swapped-in initiators is crucial to the computa-
tion of swap time and, consequently, job time. SCAPE calculates
an initial estimate of swapped-in initiators from RMF data; this
number may or may not change as the batch workload changes.
As the number of swapped-in initiators changes, so does the total
number of initiators. Whether or not the SCAPE user changes
those numbers with batch workloads is optional.

In TSO, an address space is equivalent to a batch initiator. Since
an MVS user, once logged on, never has to wait for an address
space, a TSO command or subcommand is modeled before execu-
tion much like a batch application with an infinite number of ini-
tiators, SCAPE computes an initial number of swapped-in address
spaces (called the target multiprogramming level, or TMPL),
which then may or may not be increased with increasing load.
Most TSO users do increase the TMPL as the load increases, thus
effectively tying the load to the number of active TSO users, with
each user’s load essentially constant.

With TMPL and the average response time in a swapped-in ad-
dress space, SCAPE computes the swap-out time before being
swapped in. Thus it computes the total time that a command oc-
cupies an address space, whether swapped in or out.

Swapping that occurs after the initiation of a job (occasionally of
a command) is treated by SCAPE as if it occurred before initiation.
No differentiation is evident in RMF either—only the time that any
work unit is swapped in or out. Swap-out time, then, is the total
of the initial swap-out and all later swap-outs that interrupt execu-
tion.

The other types of applications, IMS and CICS, are usually consid-
ered nonswappable, although nothing in SCAPE prevents the mod-
eling of a swappable DB/DC (data base/data communications) soft-
ware system. Usually, then, no swap queues are modeled for
DB/DC applications. However, for an IMS transaction, a job queue
(in 1MS called a message queue) is modeled the same way as in
batch processing, using the number of message processing re-
gions instead of the number of initiators.

As shown in Figure 1, CICS has neither message queues nor swap
queues, the usual case if the maximum number of simultaneously
active tasks is large (20 or more). If the number is small, say 4 or
5, a message queue exists for CICS just as for IMS, and the extra
time spent in the message queue is included in SCAPE’s overall
turnaround time for the transaction.

Most teleprocessing packages other than IMS and CICS resemble
CICS in that they execute in a single address space, in either a

IBM SYST J @ VOL 19 @ NO [e 1980 SCHILLER

IMS and CICS

execution

Figure 2 SCAPE execution model

1

T

—

single-threaded or multithreaded mode. Occasionally they per-
form functions like those of both IMS and CICS, and the user has to
exercise his ingenuity in defining the transactions within the
SCAPE framework. Sometimes such a transaction is modeled as
both an IMS and a CICS transaction, the total execution time being
the sum of the two.

Once an application enters execution (see Figure 2), it is handled
more or less the same, regardless of application type. An ex-
ception is the CPU, where a CICS-type application can be executed
in only one side of a multiprocessor.'

The modeling of an executing application by SCAPE is essentially
a serial process. Each work unit is passed through each resource
in turn, its waiting time for that resource being added to its ser-
vice time, then all individual response times (service plus waiting
times) are totaled to produce the overall response time. Service
time in the CPU is the sum of the small time increments between
interruptions of any work unit. For 1/0 devices, service time com-
putation depends on the device type. For each direct-access stor-
age device (DASD), the service time is the number of accesses to
that device for the work unit, multiplied by the average service
time for accessing that device.

The service time for tape mounting is the average time required to
mount a tape, multiplied by the average number of tape mounts
per job. For tape reading and writing, the service time is the tape
channel time apportioned among the different applications that
use tape. Since tape units cannot be active unless the tape chan-
nel is working, SCAPE does not model the tape units themselves.
It assumes either a single tape channel or that all tape channels
are shared by all tape units.

For reporting, direct-access devices are divided into three
groups: paging, swapping, and data base devices. Therefore
SCAPE treats each work unit as if it passed through six sub-
systems: CPU, tape, tape mounting, data base DASD, paging, and
swapping.

SCAPE considers JES and teleprocessing access methods only as
they affect the other applications. JES is considered to exist in the
CPU as the highest-priority task, but its service and response
times are not considered. Neither are its accesses to DASD (SPOOL
packs) considered. A user must consider JES a separate appli-
cation if he wishes to determine JES time (mostly printing), which
then can be accounted for by adding it to batch response or turn-
around time. In that case, of course, unit-record times are not
included.

Teleprocessing access methods are treated similarly, as top-
priority overhead. The only difference is that this overhead is

SCHILLER IBM SYST J ¢qVOL 19 g NO | 1980

considered constant with increasing load, whereas JES CPU utili-
zation is considered to grow (or decline) as does the lowest-prior-
ity application.

Priorities are considered by SCAPE only as dispatching priorities
within the CPU. They are treated as being in a definite order, so
applications that reverse priorities dynamically are considered by
SCAPE to have the same priority. The user may choose to model
this phenomenon outside of SCAPE itself. With APL," for ex-
ample, priority often is changed dynamically so that it is some-
times above the priority of batch and sometimes below. A way to
model this situation is to execute two SCAPE models, one with the
APL priority above batch and one below. Then results from the
two runs can be combined, weighted by the portion of time spent
in each of the two priority states.

Mathematical foundations

The SCAPE procedure is based primarily on two types of queuing
equations: internal and external. Internal queuing involves con-
tention for a hardware resource, such as the CPU or a direct-
access device. External queuing involves contention for a region
or address space, which is a software resource.

To place internal and external queuing in context, the simplest of
all queuing equations is, in Kendall notation,'’ the M/M/1:

tr=1ts/(1 — U) N

where ¢r is the response time through a single server, t¢s is the
service time through the server, and U is the utilization of the
server, or the portion of time that the server is busy. This equa-
tion, however, is suitable for only a single server in the system, a
single application with random arrivals and exponential service.

A more general equation, which handles service distributions oth-
er than exponential, is (again in Kendall notation) M/G/1, where
G stands for a service distribution that can range from constant
to hyperexponential. The equation, known as the Khinchine-
Pollicheck equation,® is:

ts U 2
tr = l-—({d-c 2

= U{ 2 ¢)} @)
where ¢” is the coefficient of variation, or the variance of service
time divided by the square of the average service time. If ¢* is

unity, the distribution is exponential, and Equation (2) degener-
ates to Equation (1).

The restriction to exponential service distribution is the only limi-
tation of Equation (1) corrected by Equation (2), and more data is

IBM SYST J ¢ VOL 19 « NO 1 & 1980 SCHILLER

required for the implementation of Equation (2). Armstrong®’
assumes fixed values of ¢” for each component of the computer
system (1 for CPU, 0.5 for DASD, 0 for tape). Two other phenome-
na not handled by Equation (2) are nonexponential arrival distri-
butions and dependent flow from one system component to
another. Allen® treats both by using:

1-U 2 2
where ca” is the coefficient of variation of the arrival time, and ¢s”
is the coefficient of variation of the service time. In Equation (3),
cs” has been replaced by the average of itself and ca®. The justifi-
cation for Equation (3) is mostly empirical.

o 1S [1*2(1—M)J 3)

Equations (1), (2), and (3) are open queuing formulas because
they use the workload as an independent input variable. It is used
indirectly through:

U=LXts 4

where L is the workload, in work units per time period.

internal SCAPE also employs open queuing formulas. The general form of
queuing the basic, or internal, SCAPE equation can be derived, but its spe-
cific form was obtained empirically by using comparisons with
GPSS runs. The basic equation used by SCAPE for response times
through the CPU is:
A(j) X B())

tre() = =G)

tsc(j
_tsel) (6)
1 = U)
1 - U(j)(K(j)-s)xr(j)+s (7)
1forj=1
1 — U(] _])sxr(j) forj > 1. (8)

In the equations above, the following values apply:

J = number of the application (1 — 14 for the SCAPE pro-
grams)
tre(j) = response time of the jth application through the CPU
tsc(j) = service time of the jth application through the cPU
U(j) = utilization of the CPU, by the jth application plus all ap-
plications of higher priority
s = number of servers (1 for a uniprocessor, 2 for a multi-
processor)
K(j) = maximum multiprogramming level for the application
) = tre(f)/tr()) ®
tr(j) = response time of the jth application through all subsys-
tems.

52 SCHILLER IBM SYST J @ VOL 19 ¢ NO 1 ¢ 1980

Equivalent formulas are used for all other components of the sys-
tem, such as DASD, tape, and tape mounting. Then the system
response time is the total response time through all subsystems.

As can be seen from Equation (9), the basic SCAPE equation is
recursive. Initial values are assumed for response times through
all subsystems, values of r(j) are determined, and new values of
tre(j) and other response times are calculated. Then new values
of r(j) are determined, and the cycle is repeated until either suc-
cessive response times are approximately the same or some maxi-
mum has been reached.

Equation (5) is complex enough that it is not practical to use re-
peatedly except by computer. However, it still represents an
open model because the load is an input (implied in the utiliza-
tion). Equations (1), (2), (3), and (5) all represent open queuing
models, using different degrees of sophistication.

Equation (5) represents the basic queuing scheme used by SCAPE
for the CPU. It assumes that all priority relationships are pre-
emptive resume —that is, a lower-priority job can be interrupted
at any time by a higher-priority transaction, after which the
lower-priority job resumes its work. The high-priority work could
itself be pre-empted by a yet higher-priority transaction.

However, in the work of a CPU, a significant amount of code is
disabled; that is, upon interruption, the CPU merely stores the
interrupt and continues with the disabled code. When the dis-
abled code is completed, the next transaction to be acted upon is
the one of highest priority, even though it might have occurred

last. This priority scheme is called head-of-line. Approximately
50 percent of MVS supervisor code, consisting largely of 1/0 sub-
routines, is disabled.

The effect of disabled code on response time is determined first
by dividing the total CPU time into segments separated by IO or
other interruptions. Then the extra time that any higher-priority
task has to wait is only a portion of the interval in which it hap-
pens to arrive. Assume a situation with n applications. If appli-
cation j interrupts application /, let N(i) be the number of inter-
ruptions of a work unit of i, and ¢s(/) be the total CPU service time
of a work unit of i. Then dzs(i), the average CPU time between
interruptions of application /, is:

drs(i) = ts(i)/N(i) (10)

One would normally think that the delay for application i/ would
be half of this interval. However, since the interruptions occur
randomly, the length distribution of the interval is exponential, so
that drs(i) is the expected delay caused by an interruption of ap-
plication j.

IBM SYST J @ VOL 19 @ NO 1 e 1980 SCHILLER

head-of-line
maodification

Figure 3 Time relationships Now, if N(j) is the number of interruptions of a work unit of
" application j, and duc(i) is the probability that ; is in core, then the

i

DELAYED ,o° total delay of j because of i is:
JoBs

085 IN F(i, j) = N(j) X duc(i) x dts@i)
—tta—— = duc(i) X ts(i) x N(J)/N(@) (1D

Note that duc(i) is just the CPU utilization of i, the product of its
105 CPU service time and its workload. To determine the total delay of
ousug*’q J caused by applications of lower priority, it is necessary to sum
all values of F(i, j) for all i applications.

INITIATORS

~-—toC—P

SWAPPED
Swap e oRess On the other hand, the lower-priority application is speeded up

QUEVE SPACES because it does not have to wait for these interruptions. More-
over, the decrement in time for i is the same as the increment in
time for j, adjusted for their relative workloads. Therefore G(j, i),

: the corresponding decrement in time, is:
G(j, i) = F(, j) x L)/L()) (12)
cPU
Again, the values of G(J, i) are summed, this time for all appli-

cations of higher priority. Then for any application j, the modified
response time tr'(j), to allow for disabled code, is:

n Jj-1

() = 1) + £ (S Flj) ~ Y6, i)) (13)
i=jt+1 i=1

where f'is a factor between 0 and 1, depending on the operating

system used in the CPU. In SCAPE, these priority equations are

employed only for the CPU.

external Once an application’s system response time has been found,

queuing SCAPE uses other formulas to obtain waiting times in the swap-out
queue and the job or message queue, and waiting times for de-
layed jobs. Figure 3 shows the relationships among the various
compound times used by SCAPE: response time (fr), occupancy
time (foc), turnaround time (ta), and throughput time (zzp).

To find the total system response time for any application, SCAPE
merely totals the response times for all subsystems as calculated
in Equations (5) through (8). However, an application is likely to
spend additional time waiting to start execution. For example, all
TSO commands must be executed by swapped-in address spaces,
the number of which is set by Mvs. If a TSO command, upon en-
tering the system, finds that its address space is swapped out, it
must wait in a swap queue until one of the swapped-in TSO ad-
dress spaces is itself swapped out or completed. Similarly, IMS
transactions may have to wait in a message queue for message
processing regions, and batch jobs may have to wait in a job
queue for initiators or in a swap queue for swapped-in address
spaces.

SCHILLER IBM SYST J e VOL 19 ¢ NO 1 ® 1980

The queuing involved in these cases is multiserver queuing, the
servers being initiators, message processing regions, and address
spaces instead of hardware subsystems as with internal queuing.
The multiserver queue as used by SCAPE assumes a finite number
of servers to handle jobs or transactions that come from an in-
finite population. In a computer system the population is not in-
finite, of course, but is limited for on-line transactions by the
number of terminals and for batch transactions by the number of
persons who might submit jobs. However, those numbers are
presumed to be large enough that any discrepancy in assuming an
infinite source population is insignificant.

Another assumption made by SCAPE is that the total response
time of an application is the average of an exponential distribu-
tion. With these assumptions in mind, there is an exact ex-
pression for, say, the occupancy time of a TSO command (re-
sponse time plus swap-out time), foc, as a function of its response
time, #r, the average number of swapped-in address spaces, K,
and the average utilization, U, of each of those address spaces.”
An intermediate factor is Po, the probability that all address
spaces are empty:

Po = ! : (14)

1 9 1 K 1
1+ KU+ — KU+ - +—(KU)
2! K! 1-U

With that factor known, the occupancy time is:
tr x U*

+ 3 X
(K- D1 -0
Equations (14) and (15) are valid only for integral values of K
because the expression for Po contains exactly K + 1 terms in the
denominator. However, it is probable that, as determined by
Mvs, the target multiprogramming level for the number of
swapped-in address spaces over a base period of an hour is not an
integral number. Therefore an expression must be found that ap-
proximates Equations (14) and (15) at integral values of K, yet is

valid for all positive values.

toc = tr Po (15)

SCAPE uses the following equation, which satisfies those require-
ments:

toc = tr X (16)

1
(1-U"
For K equal to 1 or 2, toc from Equation (16) is exactly the same
as from (14) and (15). For higher values of K, toc as obtained from
(16) is slightly less than the exact expression. However, the dis-
crepancy is small, as shown in Figure 4, where values of K are as
high as 20 (and the waiting times are small), and the discrepancy
is still less than 12 percent of the true value. The fact that Equa-
tion (16) is valid for all positive values of K certainly justifies the
slight discrepancy.

IBM SYST J o VOL 19 @ NO 1 e 1980 SCHILLER

11
']
<
@
E-

Multiserver approximation

—
)

E-E
£

PERCENT DISCREPANCY = X 100

WHERE £ = EXACT ELONGATION
£'= APPROXIMATE ELONGATION

E = toc/tr
U = AVERAGE SERVER UTILIZATION
K = NUMBER OF MULTIPLE SERVERS

PERCENT DISCREPANCY

1

=
1~ UK

For batch applications, the relationship between toc and 7r must
be changed slightly because of the finite number of batch initia-
tors. SCAPE inserts an extra factor into Equation (16) to account
for this requirement. For batch processing, then:

_ Y

« (UK)
a-u)
where U is domain utilization, K is the maximum number of jobs

swapped in, and Y is the maximum number of jobs swapped in or
out. Here, domain utilization, U, can be expressed:

U=L xtr/K (18)

toc = tr a7

For DB/DC applications, which usually are not swappable, occu-
pancy time differs from response time only because of data
reserve requirements, not because of time spent in a swap queue.

SCHILLER IBM SYST J & VOL 19 « NO 1 » 1980

Turnaround time for batch processing bears the same relationship
to occupancy time as does occupancy time to response time for
TSO:

1

tta = toc X T (19)
where U is region utilization, Y is the number of initiators for
batch processing, the number of message processing regions for
IMS, the maximum number of active tasks for CICS, or infinity for
TSO, so that fra = roc. Here, region utilization, U, can be
expressed:

U=L X toc/Y 20)
Examination of Equations (17) and (19) shows the justification for
the extra term in Equation (17). If the two equations are multi-
plied together, the term appears in both numerator and denomina-
tor. It can be cancelled, and turnaround time, as a function of
response time, is dependent not on the total number of initiators,
but on the number of swapped-in initiators. The only effect of the
total number of initiators is to separate the job and swap queues.

All occupancy times and turnaround times can be obtained from
the external equations (16) through (20). The only other time
obtained by SCAPE is the throughput time, #zp, of batch jobs that
are delayed to allow other workloads to grow. The equation used
is a strictly linear relationship between the average response time
and the interval of the peak load (assumed to be one hour):

external load
ttp = tta + (—————

- 1) % 1800 1)

internal load
where external load is the batch load, in jobs per time period,
placed on the system by its users, and internal load is the batch
load actually processed by the system without saturating it.

In summary, SCAPE employs queuing equations to obtain both the
basic response times through all hardware and the longer input
queuing times spent waiting for software servers. The internal
queues are based on a combination of pre-emptive resume and
head-of-line priorities in the CPU and an absence of priorities else-
where. The external queues are handled differently, depending on
whether each application is DB/DC, TSO, or batch.

System overview

A SCAPE analysis proceeds in four phases: data gathering (Phase
0), calibration (Phase I), prediction (Phase II), and modification
(Phase 1III). The flow of the analysis through these phases is de-
scribed in the following sections, in which reference is made to
six programs, SCAPE-0 through SCAPE-s, that handle different por-
tions of the computer calculations.

IBM SYST } @ VOL 19 ¢ NO 1 » 1980 SCHILLER

Figure 5 SCAPE Phase 0 flow

SIMULTANEQUS
MONITOR
REPORTS

MULT
SCAPE-4 SYSTEMS
?

NO

SYSTEM iy}I\VSSE
CONFIGURATION 2

YES

SYSTEM
1D KNOWN SCAPE-5
?

YES

SYSTEM

PATH
w
ID

DISTRIBUTIONS

i

SCAPE-1
INPUT A

TO PHASE |

DATA GATHERING

As illustrated in Figure 5, the analyst first examines a set of mea-
surement data for the purpose of choosing as a base that period
which best exemplifies the system at its peak workload. During
that period, all applications should be working and all should be
measured. The peak period is typically an hour during the day
and somewhat longer if at night. SCAPE data, most of which is
available from RMF either directly or indirectly, consists of:

e CPU utilization during the base period.

e Activity of all tape and DASD channels (number of accesses to
each channel).
Utilization of all tape and DASD channels (portion of time that
each channel is in use).
Activity of all direct-access devices.
Utilization of all direct-access devices.
Paging and swapping rates, both in and out of the CcpuU.
CPU service time for each application. For MVS, each appli-
cation is a performance group, several performance groups, or
a period within a performance group. Statistics from single

SCHILLER IBM SYST J @ VOL 19 « NO 1 & 1980

periods are used if the user decides to evaluate trivial and non-
trivial TSO performance separately, instead of treating TSO as a
single application. In this instance, a copy of the Installation
Performance Specifications is required.

Workload of each application (jobs per second for batch,
commands per second for TSO, and transactions per second
for IMS and CICS). To obtain the application workload for IMS
and CICS, monitors other than RMF are required—for example,
the DC Monitor for IMS™ and the Performance Analyzer for
cics.?” These monitors should span approximately the same
time interval as does RMF.

Average elapsed time of each application. Again, for IMS and
cIcS applications, the DC Monitor or Performance Analyzer is
required. If such a tool is not available for the system under
study, then no Phase 1 calibration is possible, and the user
must rely on a reasonableness test of total response time.

Also during Phase 0, the user gathers the following information
for the analysis:

The hardware configuration during the base period.

A list of the applications.

For each non-TSO application, the maximum multi-
programming level. For batch, the equivalent information is
the number of initiators; for IMS it is the number of message
processing regions; and for CICS it is the maximum number of
active tasks. For TSO the number is assumed to be infinite,
which is equivalent to the application’s never having to wait
for a free address space; in practice MVS assigns an address
space when each user logs on, before any commands are is-
sued, and the user keeps that address space throughout his
session.

The rate and type of growth of each application. Growth may
be linear, exponential, or a general type for which the work-
load is entered month by month.

The critical turnaround time of each application. Critical times
may be altered as the SCAPE analysis proceeds through later
phases.

Initial estimates of CPU capture ratio for each application. The
capture ratio is the CPU service time for the application cap-
tured, or measured, by RMF, divided by the total CPU time for
the application, including system time. These ratios can be
obtained from previous SCAPE analyses or from USAGE analy-
ses of the system. Default values are used for the different
application types.

The portion of each DASD devoted to each application, unless
the devices are dedicated. For devices that are shared among
several applications, the only sure way to apportion individual
DASD activity is to use the Generalized Trace Facility,”® which
can be expensive and has to be planned ahead. Another tech-

IBM SYST J ® VOL 19 « NO 1 » 1980 SCHILLER

nique is to use the program called SCAPE-0, which employs
System Management Facilities (SMF) data® to apportion
excps (Execute Channel Programs) by device among per-
formance groups. This program does not provide information
about system accesses, but it is a partial aid in determining
DASD portions. Later on, in Phase I, these values may very
likely be altered.

The portion of tape activity for each application. SCAPE-0 may
be used for this purpose also.

Tape mounting statistics: the number and average utilization
of people mounting tapes or disks, plus the average time spent
mounting tapes and disks for each application.

A preliminary list of alternate hardware and software environ-
ments. This list could include all changes to the base system
which the user wants to analyze with SCAPE. The list may
change as successive runs are made in Phase II1, if the results
indicate other possible improvements in system capacity.

One other activity may be required during Phase 0 if more than
one CPU is involved. If DASD controls are shared, it is necessary
to select monitor reports simultaneously (as much as possible)
from all systems that share the DASD configuration. These reports
are used by SCAPE-4 to compute path utilization between all
strings of DASDs and all CPUs. These path utilizations replace ac-
tual channel utilizations as input data for SCAPE-1.

Once information is collected for an MVS base system, it can be
entered into SCAPE-1, which uses it to set up parameters for
SCAPE-2, a prediction program (see Figure 6). SCAPE-1 uses input
data in queuing equations that predict the total response time
through the entire system for each application. The analyst com-
pares that total with an input response time, which for each appli-
cation is derived directly (without queuing) from other data. If
any calculated response times differ appreciably from the equiva-
lent input response times (say, over 10 percent), then the user
must change some of the data entered into SCAPE-1 and run the
program again. Some inputs which have been changed in this
fashion have been:

Capture ratios.

Relative priority levels.

Amount of disabled code.

Fixed portions of different applications.

Seconds of mount time per application.

Portions of individual DASDs used by different applications.
Maximum multiprogramming levels.

Occasionally no amount of adjustment will calibrate the base sys-

tem. In that case there must be some systemic reason why the
queuing questions used by SCAPE do not predict the measured

SCHILLER IBM SYST J @ VOL 19 @« NO | & 1980

Figure 6 SCAPE Phase | flow

FROM
PHASE 0

RMF

SMF
REPORT {—— REPORTS

MONITOR
REPORTS

MANUAL —

COMPUTATIONS

tMS MONITOR
AND/OR
P A 11 REPORT

s
TRACE

J

CONTROL . T— CONTROL
INFORMATION INFORMATION

SCAPE-1
EVALUATION

ADJUST
CONTROL
PARAMETERS

1
70 I i
prasen (B

CALIBRATICON

response times adequately. For example, if the DASD accesses are
served in an extremely irregular fashion (with a large hyper-
exponential distribution), response times through the DASDs will
be long enough to prevent calibration of the base system. In this
case, it is probably best to adjust other measured data. In this
example, increasing the DASD utilizations is suggested.

Usually, however, the base system can be calibrated by repeated
applications of one or more of the above input adjustments. On
the average, between five and ten such runs are required, taking
about a day for each system.

If the base system is other than MVS with RMF reports, the user
must perform the SCAPE-1 function manually. Occasionally it is
possible to convert such data as does exist into *‘pseudo-RMF"’
data that can be read by SCAPE-1. The only alternative is to per-
form the SCAPE-1 function with an equivalent program or with a
desk calculator.

IBM SYST J @ VOL 19 « NO 1 » 1980 SCHILLER

Phase II

Figure 7 SCAPE Phases Il and Il flow

FROM
PHASE |

SCAPE-2
INPUT

SCAPE-2

PERFORMANCE
PREDICTIONS

CHANGES
TO MAKE
?
MAKE

NO CHANGES
MANUALLY

CPU
SUMMARIZE TYPE
RESULTS CHANGE
?

SUMMARY
@ PLOTS

PREDICTION AND MODIFICATION

Once Phase I is complete, Phase II can follow immediately with
the execution of SCAPE-2 (see Figure 7). Initial results of SCAPE-2
should be compared with the final results of SCAPE-1. For all appli-
cations, the total response times from SCAPE-1 and the first output
page of the SCAPE-2 listing should agree within one percent.

The rest of the SCAPE-2 report is a prediction of how the base
system will perform in the future. Often this prediction is enough
for Phase II, and the analyst proceeds with Phase ITI. Sometimes
additional runs are made with the base system, however, and
other parameters are modified. For example, the growth rates of
the different applications may be altered one at a time. The result-
ing set of SCAPE-2 runs constitutes a sensitivity analysis for work-
load changes to the base system. Also, the analyst may reset
some of the input switches so that, for example, the base system
can continue to operate beyond saturation. These input switches
could have been set this way as input to SCAPE-1.

SCAPE-2 produces a report for each month of the prediction. Fig-
ure 8 is an example for one month, showing statistics for a com-
plex IMS-TSO-batch workload during the base period. The line la-
beled WORKLOAD describes the transactions per second, com-

SCHILLER IBM SYST J ¢ VOL 19 ¢ NO 1 e 1980

Figure 8 Performance prediction for checkout example

APPLICATION IMS TS0 BAT
WORKLOAD 1.107649 0.66704 0.01893
CPU SERVICE TIME .21300 0.58200 9.12300
CUM. CPU UTIL. .32629 0.70517 0.87372
CPU RESPONSE TIME .37927 2.63168 161.17063
TAPE SERVICE TIME .01000 0.0 2.75100
TAPE CHANNEL UTIL. .06299

TAPE RESPONSE TIME 01004 . 2.77541
MOUNT SERVICE TIME .0 . 60.00000
MOUNTER UTILIZATION

MOUNT RESPONSE TIME . 73.27353
DASD PATH UTIL.

DATA BASE SERV. TIME . 1.296499 32.72629
DATA BASE RESPONSE 1.36755 33.37027
PAGING SERV. TIME . 0.28648 4.48807
PAGING RESPONSE . 0.29257 4,52957
SWAPPING SERV. TIME .0 0.41405 0.12467
SWAPPING RESPONSE .0 0.44154 0.12474
TOTAL RESPONSE TIME .83958 4.73334 275.24365
CURRENT MPL .92982 3.15733 5.21036
DOMAIN UTILIZATION .30994 0.76486 0.86839
OCCUPANCY TIME .85217 7.07196 275.264365
CONCURRENCY . 94377 4.71728 5.2103%6
REGION UTILIZATION .31459 0.0 0.86839
TURNAROUND TIME .87955 7.07196 481.90625

POWER .1369¢4¢ 0.14140 0.00208

mands per second, and jobs per second for the IMS, TSO, and
batch applications respectively. All times in the report are given
in seconds to avoid confusion; therefore batch workloads seem
small relative to interactive workloads.

The next three lines in Figure 8, for the cPu, display service
times, cumulative utilizations, and response times for each appli-
cation. Each CPU utilization reported includes utilization for the

IBM SYST J @ VOL 19 « NO 1 e [980 SCHILLER

specific application, plus utilization for all applications of the
same or higher priority, plus the utilization for paging, JES, and
other high-priority background activity.

Next are three similar lines for the tape subsystem (service times,
utilization, and response times), with the exception that one tape
channel utilization represents all applications. The tape sub-
system reports are followed by three similar lines for the mount
subsystems (usually tape, but disk mounts could also be in-
cluded).

Next in Figure 8 is a line for DASD path utilizations. (For the
example shown, all DASDs use the same path, so only one path
utilization is shown.) These values are not applicable to specific
applications; they correspond to different DASD paths. Each path
utilization is employed in determining the service time of each
direct-access device that uses the path.

The following two lines show the total data base service and re-
sponse times for all applications. In SCAPE, all DASD functions are
assumed to be data base, paging, or swapping, and input is as-
sumed to be given in those categories. SCAPE reports the times
spent in each of the three subsystems separately. After the two
lines for data base, there are two similar lines for paging and two
for swapping. In SCAPE-2, switches are available to display paging
and swapping times for individual devices, as well as device utili-
zations. To keep the quantity of output down, the entire set is not
usually printed out.

The next line in Figure 8, labeled TOTAL RESPONSE TIME, shows

the total response times (fr) summed over the six subsystems:
CPU, tape, mount, data base, paging, and swapping. The next two
lines are obtained from the total response times: the current mul-
tiprogramming level, which is the product of the response time
and the workload, and domain utilization, the portion of the mul-
tiprogramming level divided by the number of address spaces al-
lowed to be swapped in by the System Resources Manager of
MVS. Domain utilization is obtained from Equation (18). The
equation that relates response time (tr), workload (L), and the
numbzgr of concurrent users in the system (n) is known as Little’s
Law:

n=1LXtr (22)

Following the three lines related to response times are three simi-
lar lines related to occupancy times. Occupancy time is related to
response time by Equation (16), concurrency is the number of
work units swapped in or out (and thus related to occupancy time
by Little’s Law), and region utilization is concurrency divided by
the number of initiators, or the equivalent for IMS and CICS. Re-
gion utilization is obtained from Equation (18).

SCHILLER IBM SYST J e VOL 19 @ NO 1 ¢ 1980

At the bottom of Figure 8 are turnaround times, related to occu-
pancy times by Equation (17), and the powers, or values of qual-
ity of service. For all applications, either the turnaround time or
the power is the final figure of merit for judging whether the appli-
cation has been adequately serviced by the system.

Phase III is the ‘*what-if>’ portion of a SCAPE analysis (see Fig- Phase Il
ure 7). Whenever a change is to be evaluated in the system under
consideration, one or more of the input parameters to SCAPE-2 is

changed, and SCAPE-2 is executed to provide a new prediction of

how all the applications will behave in the future. Many changes

have been evaluated successfully. The possibilities of modeling

hardware and software are limited only by the imagination of the

analyst.

SCAPE-3 is designed to handle some of these system changes, spe-
cifically those relating to the CPU. If the analyst wants to evaluate
a change in the power (MIP rate) of the CPU, in the number of
processors in the CPU, or in memory size, then SCAPE-3 can be run
with the SCAPE-2 input to be modified by the SCAPE-3 program plus
control input that defines the change to be made. The result is a
revised set of data for SCAPE-2 and a report that describes new
values of the changed parameters. Successive modifications can
be entered in the same execution of SCAPE-3, in which case sev-
eral sets of SCAPE-2 data are produced, one after another, each
containing cumulative changes defined by the successive con-
trols. It remains then to execute SCAPE-2 in order to predict the
effects of the new configurations.

Any other changes must be evaluated by manual calculation of
new input parameter data for SCAPE-2, followed by the execution
of SCAPE-2. Some of the changes are:

Additional DASD channels.

DASD model change (3330 to 3350).
Additional DASDs.

Additional tape channels.

Additional tape mounters.

Tape model changes.

Conversion to a Mass Storage System.
Change in operating system.

Change in software release.

Change in multiprogramming level.
Change in tape block sizes.

Change in DASD block sizes.

Moving workloads from one CPU to another.
New application package.

Some of these changes are simpler than others. For example, ad-
ditional tape channels can be modeled merely by decreasing the

IBM SYST J & VOL 19 @« NO 1 & 1980 SCHILLER 65

initial utilization for tape, as input to SCAPE-2. However, addi-
tional DASD channels cannot be modeled so easily. Not only must
the path utilization be reduced, but the utilizations of all DASDs
using the path must be reduced in such a way as to reflect the
reduced path utilization correctly.

The usual SCAPE analysis involves 10 to 40 cases in which S to 10
changes are analyzed in different combinations. About two days
normally are required for Phases II and III. The total time, for
Phases I, 11, and I for a single CPU, is about three days.

Concluding remarks

SCAPE has been used as an aid for capacity planning in about 50
installations in the United States. In most instances, it has been of
significant value in determining the optimal configuration for fu-
ture use, justifying the procurement of hardware, or pinpointing
possible bottlenecks. In addition, during the calibration phase of
SCAPE, many users have gained a better understanding of their
systems, how they might be improved, and how to track them in
the future.

CITED REFERENCES AND NOTE

1. J. C. Cooper, “‘A capacity planning methodology,”” IBM Systems Journal 19,
No. 1, 28-45 (1980, this issue).

2. P. H. Seaman, ‘‘Modeling considerations for predicting performance of CICS/
VS systems,”” IBM Systems Journal 19, No. 1, 68-80 (1980, this issue).

- J. P. Buzen, “‘Computational Algorithms for Closed Queuing Networks with
Exponential Servers,”” Communications of the ACM 16, No. 9, 527-531 (Sep-
tember 1973).

. J. W. Boyse and D. R. Warn, ““A Straightforward Model for Computer Per-
formance Predictions,”” Computing Surveys 7, No. 2, 73-93 (June 1975).

. R. R. Muntz, ‘*Analytic Modeling of Interactive Systems,’’ Proceedings of the
IEEFE 63, No. 6, 946-953 (June 1975).

. L. Kleinrock, Queuing Systems, Vol. 1: Theory, John Wiley & Sons, Inc.,
New York (1974), pp. 147-160.

. W. W. Chiu and W. M. Chow, **A performance model of MVS,”” IBM Sys-
tems Journal 17, No. 4, 444-462 (1978).

. H. C. Nguyen, A. Ockene, R. Revell, and W. J. Skwish, ‘*The role of detailed
simulation in capacity planning,”” IBM Systems Journal 19, No. 1, 81-101
(1980, this issue).

. H. M. Stewart, ‘“‘Performance analysis of complex communications sys-
tems,” IBM Systems Journal 18, No. 3, 356-373 (1979).

. Teleprocessing Network Simulator (TPNS) Release 3.0 General Information
Manual, IBM Systems Library, order number GH20-1907, available through
IBM branch offices.

. A. O. Allen, *‘Elements of queuing theory for system design,”’ IBM Systems
Journal 14, No. 2, 161-187 (1975).

. General Purpose Simulation System V —Introductory User’s Manual, IBM
Systems Library, order number SH20-0866, available through IBM branch
offices.

. OS/VS2 MVS Overview, IBM Systems Library, order number GC28-0984,
available through IBM branch offices.

SCHILLER IBM SYST J e VOL 19 @ NO 1 » 1980

. Information Management System/Virtual Storage (IMS/VS) General Infor-
mation Manual, IBM Systems Library, order number GH20-1260, available
through IBM branch offices.

. Customer Information Control System/Virtual Storage (CICS/VS) General
Information Manual, IBM Systems Library, order number GH20-1280, avail-
able through IBM branch offices.

. OS/VS2 TSO Terminal User’s Guide, IBM Systems Library, order number
G(C28-0645, available through IBM branch offices.

. OS/VS2 MVS System Programming Library: JES2, IBM Systems Library,
order number GC23-0002, available through IBM branch offices.

. CICS Release 1.5, scheduled to be available late in 1980, operates in multiple
address spaces and on both sides of a multiprocessor.

. K. E. Iverson, A Programming Language, John Wiley & Sons, Inc., New
York (1962).

. T. L. Saaty, Elements of Queuing Theory, McGraw-Hill Book Co., Inc., New
York (1961).

. R. M. Armstrong, ‘‘Capacity planning and performance analysis using
RMF,” Proceedings, GUIDE 45, 1011-1060 (1977).

. A. O. Allen, Probability, Statistics, and Queuing Theory, Academic Press,
Inc., New York (1978), p. 221.

. M. Sasieni, A. Yaspan, and L. Friedman, Operations Research—Methods
and Problems, John Wiley & Sons, Inc., New York (1959), p. 138.

. IMS/VS Utilities Reference Manual, IBM Systems Library, order number
SH20-9029, available through IBM branch offices.

. CICSIVS Performance Analyzer II, IBM Systems Library, order number
SB21-1697, available through IBM branch offices.

. OSIVS2 MVS System Programming Library: Service Aids, IBM Systems Li-
brary, order number GC28-0674, available through IBM branch offices.

. OSIVS2 MVS System Programming Library: System Management Facilities
(SMF), IBM Systems Library, order number GC28-0754, available through
IBM branch offices.

28. J. D. C. Little, **A proof for the queuing formula L = A\W,”” Operations Re-
search 9, 383-387 (1961).

The author is located at the IBM Washington Systems Center,
18100 Frederick Pike, Bldg. 2, Gaithersburg, MD 20760.

Reprint Order No. G321-5115.

IBM SYST] @ VOL 19 ® NO 1 » 1980 SCHILLER 67

