
Highlighted in this  technical  essay are discussions of the nature 
of distributed systems,  design  processes  associated with the dis- 
tribution of processing, and the conditions  under which benefits 
accrue.  The  essay  concentrates  on  some of the major benefits 
expected from distributed systems so as  to  provide  a  context in 
which to  judge particular  designs and their  benejits.  Among  the 
judgment-informing  considerations are the  following: centralized 
management, historical relationships with on-line systems, relia- 
bility and fail-soft, security  and  privacy, system growth and ca- 
pacity  limitations, and jitting  the  system to  the organizational 
structure. 

Distributed  processing: An assessment 
by H. Lorin 

The general notion of a distributed system is that various ele- 
ments of a  data processing system can  be partitioned into well- 
defined units that may  be located at various logical sites and 
linked by agreed-upon protocols. Examples of distributed pro- 
cessing  have as many points of dissimilarity as similarity  and re- 
flect a diversity of system solutions to system problems. Distrib- 
uted systems take different  views of the distributable system 
components, of the essential shape of the system, and of the geo- 
graphical  proximity of the nodes. Various choices are made  con- 
cerning  placement of data and programs, and the form  and  loca- 
tion of systems control. 

The diversity of system details suggests that distributed process- 
ing systems are not a new class of system. Definitions  fail to dis- 
tinguish  precisely  among  different  levels of cooperation, inter- 
action and extent of appearance as  a single system (single sys- 
tems  image). There are too many variations of too subtle a nature 
to achieve a comprehensive definition. 
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Figure 1 suggests  an aspect of distribution as a feature of all sys- 
tems, wherein  each  circle represents a layer of system function. 
The inner layer is that of hardware and represents a physical  pro- 
cessing node. This layer supports  a layer of software that is the 
fundamental operating system, which  is  often characterized as 
the kernel and is  made part of a single structural element of pro- 
gramming.  Above the layer of the kernel is a  set of extended serv- 
ices that an operating system undertakes in support of a program 
running in its environment. Such services might  be to acquire and 
release memory space, get and place records in files, etc. Above 
this layer, Figure 1 shows a monitor, which  is a layer of a soft- 
ware structure, such  as a  data base manager. Above the data base 
manager there is an application  layer. 

Figure 1 suggests that a system is a number of software layers 
resting  on a hardware layer. Each software layer depends upon a 
lower software layer for the delivery of certain services and cedes 
certain aspects of control to  a lower layer. The figure  is  an at- 
tempt to unify some  thinking about distributed systems. One  can 
think of various kinds of systems as  a result of configuration  and 
sharing decisions applied to the layers. Figure 1 shows a dedi- 
cated application system. Any transaction entering the system 
from the terminals  talks to the same application. All terminals 
share application code and application logic. 

In Figure  2A,  lines  have  been  drawn  through the application 
layer, suggesting that more than one application  is  sharing  all  lev- 
els of this node. A terminal  population may talk to different  appli- 
cations that share no application code. 

The  multiple applications of Figure 2A suggest a uniprocessor 
that  has  been  multiprogrammed to support independent appli- 
cations. It is possible that the uniprocessor is a multiprocessor 
that is running  under the control of the  same operating system 
and appears to all applications to be a uniprocessor because of the 
image presented by the monitor and  operating system levels. This 
system suggests a lower  level of sharing in that a specific  appli- 
cation  partitioning  has  been undertaken. 

Figure 2B shows the line extended through the monitor level, sug- 
gesting that terminals  have access to different  monitor  level soft- 
ware as well  as to different applications. The system of Figure 2B 
has  multiple subsystems that share an  underlying  operating sys- 
tem. Each subsystem presents a unique interface and a unique set 
of services to an upper layer of application and an upper layer of 
terminal users. 

Figure 2C shows an extension of the partitioning  line  through the 
extended operating system layer, which suggests virtual ma- 
chines. Not only do application programs interface with  unique 
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A great  deal of software  and  hardware packaging thought must be 
undertaken  before Figure 2 is a  real  picture.  However,  the view 
of distributed  processing as a point in a  set of alternative configu- 
rations  is useful as an aid to understanding the relationships 
among distribution, virtual machines,  multisubsystem  nodes,  and 
multiprogrammed nodes.  There is no  conceptual limit to  the pro- 
cess of partitioning. Starting with any of the  slices of Figure 2D, 
more partitions  can be undertaken so that  each slice decomposes 
into a number of smaller  slices. The real limit to  the  process is the 
available hardware,  interconnection  mechanisms,  and  under- 
standing of the way application  and  system  software  structures 
can  be  layered and decomposed. 

The nature of the distribution  process 

Distribution as discussed in this  section  has  strong top-down 
overtones. Although much applies to interconnecting  autono- 
mous systems,  the major thrust is toward  concepts  and activi- 
ties used to design an  application  across multiple nodes, where 
the single systems image is high. 

Distribution is a result of a system design process in which it is 
necessary  to: 

0 Dejne partitions of work. Systems  and  application  activities 
should be discovered  that  cluster  together  into well-defined, 
separate units of program. 

0 Dejne partitions of data. One should seek to discover  natural 
segments or  extractions, and  to  determine  where  these parti- 
tions are  used,  where  they  are  changed,  and  to whom they 
must be made available.  One should also  determine  what  ac- 
cess  paths  to  data  must  be defined, where partitioning is use- 
ful, where replication is useful,  and identify synchronization 
requirements. 
Dejine  relationships between  data and work. This is truly a 
reflection of the need to define work and data partitions  some- 
what  iteratively  and  jointly.  Data  reference  patterns  are  part 
of recognizing separable  programs. Program reference  pat- 
terns  are  part of recognizing separable data. 

0 Dejine  relationships  among partitions. Determine the degrees 
of autonomy among programs  and  the  intensity of their inter- 
action and interdependency.  This will partially indicate how 
geographically distant  the  partitions may be. In addition,  the 
method of interaction  must  be defined. This  involves  determi- 
nation of whether the partitions will be synchronous or 
asynchronous, talk to  each  other on a message basis or on a 
batched  queue  basis. 

0 Determine  a  set of possible work structures. Given degrees of 



variations are expected to differ  in the specific clusters, execu- 
tion speeds, access times, and interaction characteristics at a 
program level. 
Dejine  a  set of potential  hardware  bases. For the possible  log- 
ical  work structures,  a choice must  be  made between large 
systems surrounded by trivial work stations, large virtual net- 
works, geographically distributed small systems, multi- 
processors,  etc. 
Choose  hardware. This choice requires estimates of the  abil- 
ity of the nodes to meet capacity requicements for each parti- 
tion, and the ability of the system to meet interaction require- 
ments across interconnect facilities. Also required is the abil- 
ity to meet  reliability goals. Software available with hardware 
must  be  sufficient to minimize the risk  and cost of applications 
development. The hardware and software must  be  available in 
reasonable time  from a reliable source or set of sources. Fi- 
nally, there must  be  an acceptable cost balance involving cost 
tradeoffs  with respect to processor/memory , storage, device 
population, communications, operations, programming, in- 
stallation, maintenance, and end user convenience. 

If the above sequence of activities seems to suggest that under- 
taking a definition of a distributed system may not be less work 
than undertaking the  design of a centralized system, the point is 
well taken. The design of multinode systems is not  simpler  than 
the  design of complex  single-node systems. Certain aspects of 
systems use may certainly be better with a distributed system, 
and certain kinds of complexity may  well disappear. But the im- 
age of simple distributed systems as an antidote for the  com- 
plexity of large  single-node systems cannot be expected to hold 
up  in general. As  we discuss further in this paper, it  is  not  usually 
clear under exactly what circumstances the design  and operation 
of distributed systems is simpler, more stable, and  more attrac- 
tive  than centralized alternatives. This  is an arena of equally as- 
tonishing counterexample. 

Discussed in the following sections are reasons commonly  given 
as motivations for distribution. Each  motivation is discussed 
from the point of  view  of whether the  goal desired is a natural 
attribute of any distributed system or whether it can be  achieved 
only in certain design contexts. 

Maintain  advantages of centralized management 

Centralized management  is cited first to emphasize the distinction 
between distribution and decentralization. The position taken by 
many enterprises is that they wish to maintain an enterprise level 
of control over the development and operation of data processing 
applications and equipment. Although  computing  power is be- 
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' coming  rapidly less expensive and, in some versions, need no 
longer  be  thought of as a capital investment subject to classical 
return on investment justification, it is still true that a company 
benefits  from enterprise-wide direction and  planning. 

There are situations in which  it  is  not necessary to apply enter- 
prise-level  direction  and standards. Computing devices that affect 
only the work of a small  unit of the business, that require no  pro- 
fessional systems support,  that involve  no expensive program- 
ming effort or operational staff, that operate as a departmental 
tool, may  be  allowed  with a minimum of higher-level control. It is 
important, however, to define the situation in which  the  installa- 
tion of such equipment  is permitted, in order to avoid  unforeseen 
complications. Even  where independent installation of computing 
equipment  is feasible, it is useful to provide  some central tech- 
nological  guidance as  to qualified vendors, contract negotiation, 
and application feasibility. The intent is  not to discourage or con- 
strain the installation of equipment, but to ensure that the degree 
of the autonomy of the unit is  well  specified, and to limit the risk 
of failure. 

Centralized services may assume various forms. These services 
range  from a computer in the data processing department (in sup- 
port of remote operation, maintenance, and software service) to 
on-site personnel employed by the data processing department 
rather than the  using organization. Once  again the intent is  not to 
limit or constrain the  use of local computer units, but to provide 
various services that ease the burden on  the  using business unit or 
location. 

The maintenance of a centralized systems management  function 
is essential when the distributed computer structure supports 
cross-departmental functions that are planned as a single system 
although  they are applied to multiple computer nodes. In this situ- 
ation there is need for professional systems planning  and high 
levels of systems assurance. 

The desire to maintain centralized management even for dis- 
persed computer nodes  is based upon three underlying needs: 
better control, personnel, and avoiding the costs of incoherence. 

Better control implies a site for the generalization of standards for 
programming, equipment, operation, and interconnection. The 
function is to set  a policy to ensure the orderly acquisition  and 
use of computing  and  avoid  bad surprises in vendor selection, 
equipment  quality  and availability, programming  difficulty, etc. 
The actual amount of decision-making power possessed by a cen- 
tral policy  and competence organization may vary  widely  from 
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As for personnel,  a  data  processing staff provides  the ability to 
attract good professional data processing management and  opera- 
tional skills. No matter how hardware is dispersed and inter- 
connected,  a minimum set of skills is required to define and en- 
sure systems and to avoid expensive  mistakes.  In  order  to main- 
tain these skills, there  must  be  a company-wide career  path. 
Technology change and the  importance of data processing equip- 
ment to  the competitive and profit position of the whole enter- 
prise suggest the continuing need for skilled computer planning 
and analysis. 

An incoherent system is one  that springs up and develops as an 
afterthought. Such an unplanned system may be  costly.  Nodes 
that start autonomously may grow toward one  another  as profit- 
able instances of intercommunication are  discovered. A frame- 
work must be provided for achieving post-installation communi- 
cation at reasonable cost  and effort. Otherwise,  the organization 
that has allowed uncontrolled growth of computer nodes may  find 
major problems in causing these nodes to  communicate with one 
another. 

On-line systems 

In  the early 1970s, on-line systems were sometimes  associated 
with small systems.  Whether this is valid or not, the facts ana- 
lyzed in Figure 3 suggest that  there is no longer clear  preference 
between large and small systems  for on-line applications. Figure 3 
depicts  a large-system problem at a time of transition when in- 
terest in small-system solutions was becoming widespread. 

Consider first a large system of 1968 as represented by point A on 
Figure 3 .  This system had an associated  price/performance  ratio 
determined by its hardware  architecture and the  software  that it 
supported.  The vertical axis of Figure 3 shows some notion of 
price per  transaction (index of performance)  for on-line use of this 
large system.  The  achievement of a  particular price/performance 
ratio was determined in part by the  interrupt  structure of the 
hardware and by the  software  structure of the  operating system 
and data manager system. The structure of both  hardware and 
software was heavily influenced by its  orientation toward a batch 
environment. On-line use of large systems was just beginning to 
receive serious  attention in the  late  sixties,  and very few hard- 
ware or software designs were oriented toward on-line com- 
mercial use. 

At the  same  time,  as  represented by point B on Figure 3, there 
already existed  a class of small machines of important  computa- 
tional power and attractive  prices.  These small machines were 
frequently generalizations of architectures aimed at good per- 
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The trend toward  on-line applications has  had an effect  on soft- 
ware for large systems. In the interval between the early 1970s 
and  the present time, important results have  been achieved in re- 
ducing burden on a large processor and  significant improvements 
in large-system efficiency have been achieved. 

As a result of hardware and software trends it  is  no  longer clear 
whether small  machines  have a natural advantage over large ma- 
chines for on-line operation. Setting aside considerations of relia- 
bility and availability, which  will  be discussed later in this paper, 
large systems may  now  be effective in more instances than a dec- 
ade ago because they  have experienced impressive capacity in- 
creases in the  mid-1970s as  a result of technology and software 
improvements. 

One  very important aspect when  considering  large versus small 
systems, or a large system versus a small-system aggregate, is  the 
nature of the load to be  placed  on  small systems. Small process- 
ors of a given capacity may  be very  effective for simple transac- 
tions that require low levels of computational service and have 
simple data reference patterns. Thus sets of simple enquiries or 
basic data entry activities may  be  very  effective  on  small nodes. 
Transactions requiring massive computation or involving  com- 
plex patterns of data reference may exceed the capacity of a small 
node or perform  poorly  on a small  node  and  be better supported 
by a large system of greater computational power and  more  flex- 
ible data subsystem interconnections. 

Communications  costs 

A frequently stated motivation for distributed processing is the 
desire to reduce the cost of a set of unintelligent terminals com- 
municating at geographically  significant distances with a data cen- 
ter. 

Although  it  is  possible to achieve a reduction in communications 
costs, it is  by  no  means clear under what circumstances this re- 
duction will occur. Communications costs may  be a function of 
the  specific  offerings of communications carriers, sensitivity or 
insensitivity to geographical distances between points of data or 
query entry and data manipulation, required speeds, applied 
loads, complexities of network definition, etc. Experience has 
shown that distribution of data processing capability has caused 
communications costs to rise or fall, depending  on  many factors 
related to each particular system. Instances where these costs 
rise are by  no means failures if other costs are reduced or if some 
value  is  added to offset  the rise in communications costs. 
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Typically a system in which communications costs  are lowered  is 
one that has  intelligent terminal-processors at a using location. 
Traffic  on  communications lines is  reduced because the local  pro- 
cessor reduces the volume of traffic to the data center. It does this 
by sending  summary data  rather than  raw transactions, by elimi- 
nating the need for reference to the data center for a class of 
transactions, or by batching and timing transmissions to take ad- 
vantage of special features of certain tariffs or economies of scale 
in transmission bandwidths  being  offered. If a  set of processing 
nodes are geographically dispersed to sites where there was  no 
previous computational power, and if high-speed, mesh-like  in- 
teraction between  nodes  is required, it is clear that communica- 
tions costs may rise. 

Reliability  and  fail-soft 

The view that distributed processing can provide greater reliabil- 
ity or availability  is  based  upon the economics of replication  and 
the granularity of configurability that interconnected smaller sys- 
tems  may  provide. The duplexing or triplexing of small process- 
ors into multiple-processor  logical  nodes  is quite common. The 
practice is attractive because small processor/memory units are 
inexpensive and  additional units give disproportionate reliability 
increments, while  adding  modestly to the total system cost. Thus 
various  partitioning  and replication designs  can provide scope of 
error containment, equivalent performance backup and  fail-soft 
levels  when  multiple machines are used. The same approach is 
not equally well applied to large processing nodes because of the 
larger prices and the incremental jump in total system cost when a 
large  unit  is  replicated in a system. 

This approach, however, is constrained by a number of consid- 
erations. The processing/memory  units are the most  reliable  com- 
ponents of a data processing system, and  it  is  not clear, in gen- 
eral, how  replication of the  most  reliable  units addresses system- 
wide issues of reliability. The replication of data storage devices 
is  limited  by their relative costliness, in terms of cost per byte 
stored, when  compared to larger units  and by the logic of an  ap- 
plication.  The  replication of storage units  implies  design conven- 
tions about how data are to be spread across units, transferred, 
synchronized, and accessed. Problems of data integrity emerge in 
systems that can  be  partially operational, which do not occur in 
systems that are either up or down. Increased reliability  comes 
not  from the replication per  se of hardware units but  from sys- 
tems  designs that provide  quick recovery while guaranteeing in- 
tegrity. 

If fail-soft  levels  and scope of error containment points  can  be 
defined,  it  is  probably cheaper to replicate critical points  than to 
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ever,  that  the replication be  selective. If it is necessary  to repli- 
cate  the  entire  system of collected small nodes  to  achieve a de- 
sired reliability, it is not clear  that  the replication of a single large 
node may not be equally effective. I 

~ 

The  operability of the  system is the  joint probability of the  oper- 
ability of all nodes.  The  probability  that  some  part of a  system 
will be down is very high. On the  other  hand,  the probability of all 
nodes being down is equally small. Thus, if a system  depends 
upon all nodes being up, it is not a reliable system. If proper 
backup  and fail-soft levels can be defined so that  the  system is 
meaningfully operational with inoperative  nodes, a reliable sys- 
tem may be designed from collections of smaller  units. In the  end, 
reliability expectation is an  expression of the definition of fail-soft 
and backup  levels. 

User interfaces 

Better  user  interfaces are frequently cited as  an advantage of dis- 
tributed  processing.  The  nature of such  interfaces is not well un- 
derstood in the  data  processing  industry  at  this time. Never- 
theless,  there  seems  to be converging opinion that a good inter- 
face  has  some of the following characteristics: 

It  provides  system  response times appropriate  to the  activity; 
~ 

it does  not  introduce  a  perception of instability,  unpredictabil- ~ 

ity, or lengthiness  that  disturbs  a  user so as  to make him less ~ 

~ 

The  semantics of a good interface is consistent with the  se- 
mantics of the work being done. 
The  syntax of the  interface is as natural as possible  and ap- 
pears intuitively obvious to a user. 
The  syntax is uniform and  consistent within the  context of the 
work. Accomplishing the  same function by multiple variant 
forms is minimized, and  the use of variant forms  for similar 
functions is eliminated. 
The  system allows selectable levels of aid and guidance for 
users of different degrees of expertise. Friendly software need 
not be  chatty  software,  and  experts should not be burdened 
with conventions  for aiding trainees. 

Clearly,  the placing of a  processing unit at a geographical site 
does  not in itself provide good end  user  interfaces.  It may be true, 
however,  that good end  user  interfaces  are  more affordable in the 
context of some distributed  designs.  Elements of good user  inter- 
face relating to  systems  response times may be  achieved by the 
dedication of processing  units  to application activities so as to 
reduce  instances of resource  contention which occur on in- 
tensively shared  systems. 
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If the  load on a  node is more  predictable  because  the workload is 
more homogeneous and the  system is simpler to  analyze, respon- 
siveness may increase.  Similarly, if end  user  actions  are com- 
pletely contained within the  node they may be  faster  than if they 
must be serviced by a remote  node running a  complex  workload. 
The  requirement  for  fast or consistent  responsiveness  cannot be 
met, of course, if the local system is overloaded. It is also true 
that small systems  tend  to  become  unresponsive at lower levels of 
utilization than large systems  and  that  they are inherently  slower. 
Consequently,  better  responsiveness is achieved  at  the  cost of 
maintaining consistently lower  loads on the  smaller local nodes in 
a  hierarchic  system. In a peer  system,  stable  responsiveness may 
imply increased partitioning across a  set of nodes  and very care- 
ful attention to cross-node  referencing.  The  responsiveness of a 
node should not be perturbed  because it is waiting for  interaction 
with other nodes or because  other nodes are inflating its local 
workload. 

Those  aspects of end user  interface  that  are  concerned with the 
quality of dialogue may be  improved by distribution  because dis- 
tribution may make good dialogue more affordable. Good dia- 
logue characteristics involve increased  potential  interaction with 
a processing node and  potentially more significant displays of 
data  and  format. A user  operating in tutorial mode,  for  example, 
may require many more transmissions  between his terminal and a 
processor  than  an  expert. Similarly the  replacement of terse 
codes by descriptive  phrases  increases  data flow from system  to 
tube. 

Large computationally effective processing units may have  a dis- 
proportionate burden placed upon them when they  do formatting 
and display organization. This  increase in load discourages  de- 
signers of interfaces from rich support of dialogue and  encourages 
cryptic  and sometimes artificially terse message formats.  This 
tendency is enhanced by a desire  to minimize data flow into and 
out of the  system. In  view of this, it is reasonable to provide for  a 
node in the  system that can effectively improve dialogue without 
a serious  increase in load on the  computational  engine. Very terse 
and compressed messages may  flow between the dialogue sup- 
port  node and the  computationally  oriented  processor.  The dia- 
logue support  node  expands  the messages into  a form convenient 
for users, supports  tutorial phases, and compresses  user-entered 
syntactical  structures  without burdening the  computational or 
data-manipulating element of the  system. 

The partitioning of dialogue support function suggests both that 
the dialogue processor is very good at these  functions  and  that its 
load is sufficiently low as  to maintain good responsiveness.  It is 
not clear,  except  for some improvement in interrupt logic, that 
smaller processors  are more efficient format and  character han- 
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dlers  than large processors;  thus very careful definition of load 
and  activity on the dialogue processor must be undertaken. If ma- 
jor application logic is also  resident in the dialogue support pro- 
cessor,  response  characteristics may become  undesirable. 

Once  the dialogue support  function  has been isolated, a decision 
must yet be made about  where it is  to  be placed relative  to using 
terminals and  the  computational  node. It is probably true  that  the 
dialogue support  processor is best placed local to using terminals 
to  achieve lower transmission volumes across teleprocessing 
lines.  However, it is possible to conceive of situations where the 
dialogue processor should be local to the  computational  process- 
or. 

Although it seems  natural  for  screen quality and message control 
to be local, it is not always  true that the  data managers or oper- 
ating systems of a vendor are able  to permit such partitioning, so 
that  some  degree of duplication of function may be necessary to i 
achieve  the  result. ~ 

The point is sometimes  made  that  cost to a business unit to use 
data  processing  power is reduced with distributed processing. 
The  argument  shows  confusion between the  issue of distributed 
versus  centralized  processing  and  that of batch  versus on-line 
processing. In discussing the  advantages gained by going to a dis- 
tributed  system, much of the  literature  points  out how much less 
expensive  and how much more  convenient  computer  use has be- 
come because of the availability of on-line terminals  that  replace 
awkward  batch submission interfaces. It is clear  that  the  inctease 
in convenience  and  reduction in costs  come from changing the 
mode of access  and not from the dispersion of processing  nodes. 
Most users agree that  terminals are an effective input/output me- 
dium for  computers,  but  whether  the  presence of local processing 
and  storage  contributes  more  than  the  presence of a terminal is 
not generally  clear.  The  confusion  comes  about  because many 
batch  systems  that were centralized  have been replaced by some 
form of on-line distributed  system.  The  virtues of going on-line 
are mistaken  for  the  virtues of going distributed. 

In a similar but  complementary  vein,  distributed  systems  are 
sometimes said to be more complex  than  centralized  systems. 
Frequently  this point of view arises  out of a movement from a 
batch  to  an on-line environment. Many aspects of design and 
planning for on-line use are more complex than designing and 
planning for  batch  use. The complexity is a  function of being on- 
line,  not of being distributed.  The real issue is whether  the rela- 
tive increase in complexity by being on-line over being batch is 
less or greater when one  goes on-line with a centralized or a dis- 
tributed  system. 
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Security and privacy 

The use of hardware-isolated nodes is  often  justified by a desire 
for increased security of data and for increased privacy. This is 
also  an area of astonishing counterexample and  differing  judg- 
ments for a number of reasons. 

Many users of large systems are disturbed by the fact that they 
have no essential control over  data. Because of various backup 
and archiving procedures used at  a data center and because of 
data center operational prerogatives, it is virtually  impossible for 
a user to control access to his  files. Encryption techniques that 
address this issue are beginning to come into maturity, but  they 
are installed  only at the discretion of the data  center. 

Similarly, there are varying degrees of confidence in both  the user 
and software procedures for ensuring against intrusion by other 
users. Although  the subversion of software structures is  not a 
general skill, it causes concern in many places, particularly  where 
sensitive information  is involved. The concern  is  sufficiently  great 
that the federal government, vendors, and universities are under- 
taking studies to determine exactly what  the structural and func- 
tional characteristics of a  secure software system really are. 

With this as a background, the idea of private data on physically 
inaccessible data media in rooms where access can be controlled 
by the owning business unit or mission unit becomes very attrac- 
tive. Whether increased security and  privacy are achieved by us- 
ing central professional security staffs  or by using  private  safes is 
largely a judgmental issue. But  the increase of these character- 
istics in a centralized or distributed system  must  follow  the  same 
lines of argument. 

An important aspect of the discussion is the source of potential 
violation. If there is reason to suspect that the source of violation 
lies in persons or agencies unknown, one may prefer privately 
imposed security. If there is reason to suspect that the source of 
violations  is  within the mission or department, there is  reason to 
prefer professional security at a central place. 

Professional security at  a central place occurs in the form  of large 
software packages  that impose security within a well-disciplined 
set of  staff members  following  well-planned security procedures. 
Private security must  rely  more on physical control of media  and 
access, since smaller systems may not  be able to sustain the soft- 
ware loads of high-level access control software packages. 

Another dimension to this issue is that distributed systems are 
distinct from stand-alone systems and by their nature imply  some 
amount of physical access from  one  node to the data of another. 

IBM SYST J VOL 18 NO 4 1979 LORIN 



A secure  system must provide  software  that  protects against re- 
mote  violations of privacy. It is not  absolutely  clear just what 
software designs will ensure privacy and  security in multinode 
systems  and  be  less  subject to subversion  than  software in large 
systems.  The problem is compounded, of course, in systems con- 
sisting of heterogeneous  nodes. 

Economics of dedication 

The  fundamental  assumption of the  idea  that it is better  to distrib- 
ute activity  across a family  of processing  nodes is that economy 
of scale in systems pricing is no longer an  important  aspect of the 
computer  marketplace. Small processing  units may display price/ 
performance  ratios  equal  to or  even  better than  those of large- 
scale  processors.  To illuminate the  issues  surrounding  this  point, 
consider an example involving a review of current  prices  for dif- 
ferent  processor  classes  and a division of these  numbers by a 
rated  processor  speed. (Very strong  arguments against this kind 
of exercise  can be mustered,  but it does  provide  some  instructive 
results.) 

The  total  hardware  cost of a  system is determined  less  and  less by 
the  price of processors  and more and more by communications, 
storage  and peripheral equipment.  Therefore,  despite  the loss of 
economy of scale  across  processors,  a collection of small systems 
with power equivalent to  that of a large system may cost more in 
hardware  than  the large system with more price-effective storage 
and  peripheral  units. In addition,  there is evidence from queuing 
theory in support of the idea that a single system of a given power 
can deliver more service  than a system  composed of a set of 
smaller  units of equivalent nominal power. Even considering our 
confidence in queuing theory, it is,  nevertheless, by no means 
clear how much more power is required for small systems  to 
match a large system,  nor  under what exact  conditions of work- 
load and  software load characteristics  the  superiority of the large 
single system  obtains. 

In  any event, the  economic  feasibility, if not the  preferability, of 
building large systems from interconnected  processing  nodes is a 
reality.  There  seems  to be a  potential  economics of dedication 
that is replacing the  economics of sharing based  upon economy of 
scale.  Thus it is  at least  doubtful  whether  a  consolidated work- 
load machine that  attempts  to  support  a large number of unrelated 
and disparate  users is in general a more efficient instrument  than a 
machine dedicated to  the work of each using business unit or lo- 
cation. 

There are degrees in the  notions of dedication.  Some  distributed 
architectures built from single-board computers  dedicate  very 
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specific and small units of work  to  each  processor  to form a  sys- 
tem of highly specialized activity  nodes.  Such designs may be 
found in aircraft or submarine monitoring systems. At the  other 
extreme,  the  entire  set of applications  relevant to an  entire  de- 
partment or business unit  may be put on a single system  node. 
The  departmental application set may contain a number of unre- 
lated applications sharing the machine on a multiprogrammed or 
time-shared  basis.  Between these  extremes  there  are many points 

I on a continuum of sharing of equipment  between units of work. 

There are a number of factors  that  determine  the congruency of 
the activity/equipment mapping. One is the  extent  to which units 
of work are decomposable  and  isolatable. Work units  that  tend  to 
access  the  same  data or talk to  each  other intensively may be left 
on the  same  system.  Another  factor is the availability of various 
kinds of interconnection. It may be  possible, for example,  to  de- 
compose work into  thirty-four  areas of major activity and dedi- 
cate  a  processing unit to  each  area. It may not,  however, be pos- 
sible to  achieve an interconnection between them  that  displays 
desirable  characteristics of speed  and  performance.  Another de- 
tail is that  traces of economy of scale may remain, in that very 
small versions of an architecture may be less  attractively priced 
than  somewhat larger versions. Although price/performance  ratio 
advantages  may,  for  practical  purposes,  disappear in comparing 
machines from the middle performance range to  the upper  per- 
formance  range, it is possible to rediscover  them in comparing 
machines at the low performance range to  those tending toward 
the middle. 

The rapid performance improvements in middle-range processors 
has shifted the balance somewhat  toward  the use of multifunction 
rather  than single-function small systems.  Nevertheless,  the het- 
erogeniety of work and extensiveness of sharing  across  a popu- 
lation of such  systems is certainly  less than with a large single 
processing  node. 

Associated with the idea that  collections of small systems may be 
economically feasible is the  idea  that they may be less  expensive 
to  operate.  A number of very  important  systems  expenses  are 
associated with trying to  share a large machine at significant lev- 
els of utilization.  There is a  constant tuning and  performance ef- 
fort to achieve  acceptable  response times and maintain required 
utilization levels.  This  contrasts with populations of small ma- 
chines that can run at  lower utilization levels and provide good 
performance at much lower  systems tuning costs. 

There is an argument that money invested in performance tuning 
might be  better  spent on more hardware.  Here we immediately 
run into a problem with the idea  that, in general, families of small 
machines generate  fewer  operational  expenses  than  a single large 
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consolidated workload system. Depending upon the  software in- 
terface  characteristics of a system,  the  cost  to  operate and  adjust 
tends to  vary. Thus  a  number of geographically distributed units 
may require local systems  programmer or operator staffs at  each 
site. Although the effort of tuning and  adjustment may go down at 
each  site,  the  total  cost may go up.  The  total  cost of operating the 
equipment  becomes  the  sum  for all sites  and may exceed  the  cost 
of operators on a large system  at a single center.  The additional 
dimension here is that different systems  generate different opera- 
tional and  software  support  expenses. 

There is widespread interest  amongst  vendors of computing prod- 
ucts in reducing the  operational  costs of remote processing 
nodes.  This reduction is brought  about by providing a facility 
whereby  certain  operational  activities  can  be  provided from a 
processing  node in one  place.  Thus  a collection of remote nodes 
can be serviced by a single operator. Similarly, mechanisms for 
remote  software  support  and  remote  performance  analysis  are be- 
ginning to  receive  attention.  It may be some  time,  however, be- 
fore  heterogeneous  systems  can profit from remote  operator sup- 
port. 

An alternative  approach to reducing  operator  expenses in geo- 
graphically remote  systems is to improve the  operational inter- 
faces  presented by those systems.  Thus,  instead of remote-oper- 
ator  services  there would be programmed-operator  services 
whereby  each  node would sufficiently automate  its Operational 
interfaces that only a very reduced  operational staff of very re- 
duced skill levels would be locally required. 

In general, from both an equipment  and  an  operational point of 
view, it is no longer absurd to consider  various  levels of dedica- 
tion that would have been prima facie infeasible in an industry 
with the pricing structure of the 1960s. 

Incremental  growth  and flexibility 

Since  distributed  processing  systems  contain  a  number of small 
nodes, it should be easy  to  achieve growth by adding additional 
nodes to  the  system  as load increases or as new function is added. 
So goes an argument that finds support in the  hardware  base  for 
distributed  systems.  The  major  hardware limitation seems  to lie 
in the limits of interconnect  mechanisms. Although incremental 
node addition allows an  orderly  increase in power with small 
granules of system  cost, it is not  clear  that  this  can be achieved 
across all interconnect  designs. A single-bus interconnect design 
is limited by the load it can carry. Considerable  reanalysis of load 
patterns  and  cross-node  loads may  be necessary to successfully 
repartition  work.  Another limitation in multibus,  crossbar,  and 
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switch designs is the  capacity of the  system  to  add more members 
because of physical constraints. In general, it is preferred to have 
an  idea of how the  system is expected  to grow in order  to  ensure 
that  growth  steps  are  nondisruptive. 

The  addition of more nodes to  support new applications may be a 
simpler task  than adding new nodes to support  increased load or 
increased  function within a single application.  Unless  care is 
taken in structuring program modules  and  attention paid to defin- 
ing the mechanisms that  repartition data, the  hardware potential 
for growth may be denied because of expenses  associated with 
software and  data  restructuring. 

Capacity  limitation 

Closely connected with the  idea of incremental growth is the idea 
of overcoming  the  capacity limitations of a system by putting new 
function on additional nodes.  The classic scenario lies in the idea 
of extending  the life  of a  central large system by  offloading func- 
tion onto associated  peripheral  processing  nodes. In general  this 
is probably  a workable notion.  It is not clear,  however,  exactly 
how effective an offloading strategy may be. The  support of a  set 
of small nodes may create  a new kind of load for  the large system. 
Many installation managers believe that  distributed  systems 
should be controlled from a single point.  Software  and  operator 
functions  to establish systems  control,  recovery,  and  remote op- 
eration,  and  to permit remote program development  and testing 
also add  to  the load at the  central  site.  Whether  this load trivially, 
importantly,  or  unacceptably  counterbalances  the offloaded ac- 
tivities is an assessment that must be made for  each  system.  It 
depends in part on the  activity  that can be moved out  into  the 
smaller nodes  and  the  degrees of control and central function that 
are  vested in the large system. 

Increased  installation  simplicity 

The idea  that  distributed  systems allow applications  to be brought 
up more quickly than large systems is often heard  expressed,  but 
it  is flawed for  a number of reasons.  It is essentially a carryover 
from an image of the use of stand-alone  autonomous  processors 
surrounded by business unit programming staff. An  image  of 
quick installability of applications  accrues  to small systems be- 
cause  no negotiations are  required to get programming staff and 
computer  resource,  because  the  systems  are  easy  to  use,  and be- 
cause  the applications are  often small. 

It is not demonstrable  that  the planning and design of multinode 
systems  represent more or  less effort than the planning and design 
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of single  large systems, and  it  is  not clear that the stylistics of the 
autonomous use of small business systems applies to the defini- 
tion and implementation of distributed processing. 

It is  not  yet  known to what degree the aspects of simplicity  which 
associate with  small  machines  will associate with distributed sys- 
tems. 

A more  stable  software  environment 

The idea that operating systems and subsystems environments 
are more stable for small systems than for large systems is 
founded  on  the current stylistics of software offerings in the  mar- 
ketplace. Large systems vendors have  tended to announce soft- 
ware products on an evolutionary cycle, making improvements 
and enhancements from version to version. Thus a user of a large 
system who depends on  an operating system and a collection of 
access methods and subsystems experiences a constant churning. 
Each major software component has an independent version re- 
lease cycle that keeps an installation in perturbation to stay in the 
mainstream. 

By contrast, software for small systems has tended to be  offered 
on a purchase basis at different  levels of function  and to remain 
stable through  the  lifetime of the hardware it supports. 

While this has  been  the historical perception, a clear picture  has 
yet to emerge about the preferability of the two approaches. 
There seems to be a trend toward new features of large software 
packages announced as optional purchase units for the more 
stable underlying  program.  (An  example  is the MVS operating sys- 
tem  and its optional features.)  It may  be preferable for some users 
to pace an evolutionary cycle rather than  commit to stable soft- 
ware environments that must  be  radically revised or replaced at 
certain intervals of time. If the large systems software evolution 
can  be  made to be  somewhat less disruptive, draw off less re- 
source for installation, and intervene less in application develop- 
ment cycles, the perception of churning  can  be ameliorated. 
Large-system software suppliers seem  to  be sensitive to the need 
for less installation  effort and more  mature software systems. It 
seems today that many  of the stylistics of large-system software 
marketing that have previously been unattractive are being  ad- 
dressed. 

The  system  and  the  organization 

The granular structure of distributed systems suggests the  possi- 
bility of mapping  the system onto the  organizational structure. 
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Regardless of the  amount of control  exercised  over  each  node, 
the  structure of computing fits the  structure of the  company.  Two 
caveats  apply. Company organizations  are  not  stable,  and organi- 
zational reforms  must  not  be  hampered by computer  structures. 
Although there are many businesses  that  have  achieved a mature 
organizational structure,  there  are  those  that  are continuing to 
discover  their  proper  organizational  attitudes, and many that find 
it useful to change  for  the  sake of change.  Experience of success- 
ful organizations  shows  that the  computer  structure should fit the 
organization and not that the organizational structure should fit 
the  computer  structure. 

It is also probably true  that it is less  burdensome  to modify a 
centralized  data  base  system to represent new business units than 
it is  to  move  data and computer  hardware from one business  loca- 
tion to  another. It is critical,  therefore, when mapping systems  to 
organizational charts,  that  this be done only when there is con- 
fidence that  the  chart will at least  endure for the  payback period 
of the  system, or that  provision for reasonable  variations be in- 
cluded in the initial design. 

An additional problem with fitting a system  to  the organization is 
that  organizations  are  rarely the neat  hierarchic  trees  drawn on 
the  organization  charts. The  true organization is a  network of 
which only some of the  connections  are  known.  Thus, unless it  is 
very clear who needs specific data, who needs  various  reports, 
who needs  various  system  activities, it  is risky to  undertake hard- 
ware partitioning along formal organizational lines. As regards 
distribution  for organizational reasons,  the  message must be to 
undertake distribution for  this motive only if the organization is 
stable  and really understood. 

Concluding remarks 

The  intent of this  paper  has  been  to  introduce  even-handed criti- 
cal  thought to distributed  processing, which is  such  an  amor- 
phous  concept. 

In view of the many unclean, caveats,  cautions,  and  counter- 
examples, when is it reasonable to undertake  the effort of distrib- 
uted systems?  Insofar  as  there is an  answer  to  this, it seems  to be 
when the following are clear  and well understood: 

Relationships among business organizations and  data 
Relationships among organizations  and  applications 
Relationships among applications and data 
Loads placed upon the  system  at various  points as well as the 
capacity of nodes present at  those points 
Cross-node  loads coming from planned internode  interactions 
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If these  are  the elements of a  desirable  environment for distribu- 
tion it is  necessary to determine  whether  the organization is  will- 
ing to undertake  necessary  action to clarify its own shape and 
form. 

Certainly all systems design depends upon stability and clarity. 
However, distributed designs may be more sensitive and require 
better definitions of applications  characteristics.  This may be a 
strength of the distributed approach. 

From the  above list of desirables  one can infer a list of uncer- 
tainties, according to which distribution should be looked at very 
cautiously: 

0 Communication skills in an  enterprise 
0 Interconnectability of various nodes because of hardware and 

software capabilities at  each node 
0 Data  reference  patterns  and  sources of load, combined with 

uncertainty  about node performance 
0 The direction of evolution of applications 

We do not know, in general,  whether complexity will increase or 
decrease in distributed processing systems, nor how operational 
costs will evolve. We are  just discovering an art. 

Despite these  factors,  distributed processing is a  data processing 
design alternative  that is real for any set of applications. We have 
tried here to highlight the  considerations  necessary  to make con- 
sidered decisions in order  to  achieve  the  potential advantages and 
avoid the potential disappointments. 
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