Highlighted in this technical essay are discussions of the nature
of distributed systems, design processes associated with the dis-
tribution of processing, and the conditions under which benefits
accrue. The essay concentrates on some of the major benefits
expected from distributed systems so as to provide a context in
which to judge particular designs and their benefits. Among the
Judgment-informing considerations are the following: centralized
management, historical relationships with on-line systems, relia-
bility and fail-soft, security and privacy, system growth and ca-
pacity limitations, and fitting the system to the organizational
structure.

Distributed processing: An assessment
by H. Lorin

The general notion of a distributed system is that various ele-
ments of a data processing system can be partitioned into well-
defined units that may be located at various logical sites and
linked by agreed-upon protocols. Examples of distributed pro-

cessing have as many points of dissimilarity as similarity and re-
flect a diversity of system solutions to system problems. Distrib-
uted systems take different views of the distributable system
components, of the essential shape of the system, and of the geo-
graphical proximity of the nodes. Various choices are made con-
cerning placement of data and programs, and the form and loca-
tion of systems control.

The diversity of system details suggests that distributed process-
ing systems are not a new class of system. Definitions fail to dis-
tinguish precisely among different levels of cooperation, inter-
action and extent of appearance as a single system (single sys-
tems image). There are too many variations of too subtle a nature
to achieve a comprehensive definition.

Copyright 1979 by International Business Machines Corporation. Copying is per-
mitted without payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright notice are
included on the first page. The title and abstract may be used without further
permission in computer-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor.

IBM SYST J o VOL 18 # NO 4 & 1979

Figure 1 suggests an aspect of distribution as a feature of all sys-
tems, wherein each circle represents a layer of system function.
The inner layer is that of hardware and represents a physical pro-
cessing node. This layer supports a layer of software that is the
fundamental operating system, which is often characterized as
the kernel and is made part of a single structural element of pro-
gramming. Above the layer of the kernel is a set of extended serv-
ices that an operating system undertakes in support of a program
running in its environment. Such services might be to acquire and
release memory space, get and place records in files, etc. Above
this layer, Figure 1 shows a monitor, which is a layer of a soft-
ware structure, such as a data base manager. Above the data base
manager there is an application layer.

Figure 1 suggests that a system is a number of software layers
resting on a hardware layer. Each software layer depends upon a
lower software layer for the delivery of certain services and cedes
certain aspects of control to a lower layer. The figure is an at-
tempt to unify some thinking about distributed systems. One can
think of various kinds of systems as a result of configuration and
sharing decisions applied to the layers. Figure 1 shows a dedi-
cated application system. Any transaction entering the system
from the terminals talks to the same application. All terminals
share application code and application logic.

In Figure 2A, lines have been drawn through the application
layer, suggesting that more than one application is sharing all lev-
els of this node. A terminal population may talk to different appli-
cations that share no application code.

The multiple applications of Figure 2A suggest a uniprocessor
that has been multiprogrammed to support independent appli-
cations. It is possible that the uniprocessor is a multiprocessor
that is running under the control of the same operating system
and appears to all applications to be a uniprocessor because of the
image presented by the monitor and operating system levels. This
system suggests a lower level of sharing in that a specific appli-
cation partitioning has been undertaken.

Figure 2B shows the line extended through the monitor level, sug-
gesting that terminals have access to different monitor level soft-
ware as well as to different applications. The system of Figure 2B
has multiple subsystems that share an underlying operating sys-
tem. Each subsystem presents a unique interface and a unique set
of services to an upper layer of application and an upper layer of
terminal users.

Figure 2C shows an extension of the partitioning line through the
extended operating system layer, which suggests virtual ma-
chines. Not only do application programs interface with unique

IBM SYST J 4 VOL 18 4 NO 4 ¢ 1979

Figure 1 Systems layers with mui-
tiple terminals

HARDWARE
KERNEL

EXTENDED
OPERATING SYSTEM

MONITOR
APPLICATION

Figure 2 Partition levels: (A) Multiple applications; (B) Multiple monitors; (C) Multipie operating systems; (D) Multiple systems

MULTIPLE MULTIPLE MULTIPLE EXTENDED MULTIPLE
APPLICATIONS MONITORS OPERATING SYSTEMS SYSTEMS

MULTIPLE HARDWARE
SINGLE HARDWARE SINGLE HARDWARE, MULTIPLE KERNELS
SINGLE KERNEL SINGLE KERNEL SINGLE HARDWARE MULTIPLE EXTENDED
SINGLE EXTENDED SINGLE EXTENDED SINGLE KERNEL OPERATING SYSTEMS
OPERATING SYSTEM OPERATING SYSTEM MULTIPLE MONITORS MULTIPLE MONITORS
SINGLE MONITOR MULTIPLE APPLICATIONS MULTIPLE APPLICATIONS MULTIPLE APPLICATIONS

subsystem layers, but also the subsystem layers interface with a
set of unique extended operating systems. The monitor levels
might be the data base manager (IMS), the time-sharing monitor
(TSO), or the transaction manager/file manager (CICS). The ex-
tended operating systems might be MvS or DOS. The underlying
kernel would be vM/370. Actually, in implementation detail, vM/
370 is a level beneath the entire DOS or MVS operating systems, not
just a substitution for their lowest levels. In Figure 2C a decision
has been made to partition work so that multiple operating sys-
tems can be run on the same hardware.

Figure 2D shows the final level of partitioning. The partitioning
line extends through the hardware circle and gives a family of
dedicated nodes. The decision has been made to dedicate hard-
ware to an operating system kernel.

The circle is complete, having started with an application-dedi-
cated system followed by a series of partitioning decisions
through multiple applications, multiple monitors, and multiple
operating systems to a family of dedicated hardware nodes. The
sequence of Figure 2 shows a relationship among systems of vari-
ous types along a continuum of sharing and partitioning choices.
It implies that it might be possible, in the future, to configure large
systems that are software partitioned and systems that are hard-
ware partitioned at various levels in a manner not too unlike the
way we currently choose the number of channels or storage de-
vices we want for a configuration. In future systems, it might also
be possible to move a set of applications from systems of the type
shown in Figure 2B to those like Figure 2D with ease, or at least
with acceptable levels of effort.

IBM SYST J @ VOL 18 ® NO 4 » 1979

A great deal of software and hardware packaging thought must be
undertaken before Figure 2 is a real picture. However, the view
of distributed processing as a point in a set of alternative configu-
rations is useful as an aid to understanding the relationships
among distribution, virtual machines, multisubsystem nodes, and
multiprogrammed nodes. There is no conceptual limit to the pro-
cess of partitioning. Starting with any of the slices of Figure 2D,
more partitions can be undertaken so that each slice decomposes
into a number of smaller slices. The real limit to the process is the
available hardware, interconnection mechanisms, and under-
standing of the way application and system software structures
can be layered and decomposed.

The nature of the distribution process

Distribution as discussed in this section has strong top-down
overtones. Although much applies to interconnecting autono-
mous systems, the major thrust is toward concepts and activi-
ties used to design an application across multiple nodes, where
the single systems image is high.

Distribution is a result of a system design process in which it is
necessary to:

e Define partitions of work. Systems and application activities
should be discovered that cluster together into well-defined,
separate units of program.

Define partitions of data. One should seek to discover natural
segments or extractions, and to determine where these parti-
tions are used, where they are changed, and to whom they
must be made available. One should also determine what ac-
cess paths to data must be defined, where partitioning is use-
ful, where replication is useful, and identify synchronization
requirements.

Define relationships between data and work. This is truly a
reflection of the need to define work and data partitions some-
what iteratively and jointly. Data reference patterns are part
of recognizing separable programs. Program reference pat-
terns are part of recognizing separable data.

Define relationships among partitions. Determine the degrees
of autonomy among programs and the intensity of their inter-
action and interdependency. This will partially indicate how
geographically distant the partitions may be. In addition, the
method of interaction must be defined. This involves determi-
nation of whether the partitions will be synchronous or
asynchronous, talk to each other on a message basis or on a
batched queue basis.

Determine a set of possible work structures. Given degrees of
freedom for the previous determinations, the work structure

IBM SYST J @ VOL 18 ®« NO 4 o 1979

variations are expected to differ in the specific clusters, execu-
tion speeds, access times, and interaction characteristics at a
program level.

® Define a set of potential hardware bases. For the possible log-
ical work structures, a choice must be made between large
systems surrounded by trivial work stations, large virtual net-
works, geographically distributed small systems, multi-
processors, etc.
Choose hardware. This choice requires estimates of the abil-
ity of the nodes to meet capacity requicements for each parti-
tion, and the ability of the system to meet interaction require-
ments across interconnect facilities. Also required is the abil-
ity to meet reliability goals. Software available with hardware
must be sufficient to minimize the risk and cost of applications
development. The hardware and software must be available in
reasonable time from a reliable source or set of sources. Fi-
nally, there must be an acceptable cost balance involving cost
tradeoffs with respect to processor/memory, storage, device
population, communications, operations, programming, in-
stallation, maintenance, and end user convenience.

If the above sequence of activities seems to suggest that under-
taking a definition of a distributed system may not be less work
than undertaking the design of a centralized system, the point is
well taken. The design of multinode systems is not simpler than
the design of complex single-node systems. Certain aspects of
systems use may certainly be better with a distributed system,
and certain kinds of complexity may well disappear. But the im-
age of simple distributed systems as an antidote for the com-
plexity of large single-node systems cannot be expected to hoid
up in general. As we discuss further in this paper, it is not usually
clear under exactly what circumstances the design and operation
of distributed systems is simpler, more stable, and more attrac-
tive than centralized alternatives. This is an arena of equally as-
tonishing counterexample.

Discussed in the following sections are reasons commonly given
as motivations for distribution. Each motivation is discussed
from the point of view of whether the goal desired is a natural
attribute of any distributed system or whether it can be achieved
only in certain design contexts.

Maintain advantages of centralized management

Centralized management is cited first to emphasize the distinction
between distribution and decentralization. The position taken by
many enterprises is that they wish to maintain an enterprise level
of control over the development and operation of data processing
applications and equipment. Although computing power is be-

IBM SYST J e VOL 18 ® NO 4 e 1979

coming rapidly less expensive and, in some versions, need no
longer be thought of as a capital investment subject to classical
return on investment justification, it is still true that a company
benefits from enterprise-wide direction and planning.

There are situations in which it is not necessary to apply enter-
prise-level direction and standards. Computing devices that affect
only the work of a small unit of the business, that require no pro-
fessional systems support, that involve no expensive program-
ming effort or operational staff, that operate as a departmental
tool, may be allowed with a minimum of higher-level control. It is
important, however, to define the situation in which the installa-
tion of such equipment is permitted, in order to avoid unforeseen
complications. Even where independent installation of computing
equipment is feasible, it is useful to provide some central tech-
nological guidance as to qualified vendors, contract negotiation,
and application feasibility. The intent is not to discourage or con-
strain the installation of equipment, but to ensure that the degree
of the autonomy of the unit is well specified, and to limit the risk
of failure.

Centralized services may assume various forms. These services
range from a computer in the data processing department (in sup-
port of remote operation, maintenance, and software service) to
on-site personnel employed by the data processing department
rather than the using organization. Once again the intent is not to
limit or constrain the use of local computer units, but to provide
various services that ease the burden on the using business unit or
location.

The maintenance of a centralized systems management function
is essential when the distributed computer structure supports
cross-departmental functions that are planned as a single system
although they are applied to multiple computer nodes. In this situ-
ation there is need for professional systems planning and high
levels of systems assurance.

The desire to maintain centralized management even for dis-
persed computer nodes is based upon three underlying needs:
better control, personnel, and avoiding the costs of incoherence.

Better control implies a site for the generalization of standards for
programming, equipment, operation, and interconnection. The
function is to set a policy to ensure the orderly acquisition and
use of computing and avoid bad surprises in vendor selection,
equipment quality and availability, programming difficulty, etc.
The actual amount of decision-making power possessed by a cen-
tral policy and competence organization may vary widely from
that of advisor to that of enforcer, depending upon the particular
style of policy enforcement.

IBM SYST J ¢ VOL 18 ¢ NO 4 & 1979

As for personnel, a data processing staff provides the ability to
attract good professional data processing management and opera-
tional skills. No matter how hardware is dispersed and inter-
connected, a minimum set of skills is required to define and en-
sure systems and to avoid expensive mistakes. In order to main-
tain these skills, there must be a company-wide career path.
Technology change and the importance of data processing equip-
ment to the competitive and profit position of the whole enter-
prise suggest the continuing need for skilled computer planning
and analysis.

An incoherent system is one that springs up and develops as an
afterthought. Such an unplanned system may be costly. Nodes
that start autonomously may grow toward one another as profit-
able instances of intercommunication are discovered. A frame-
work must be provided for achieving post-installation communi-
cation at reasonable cost and effort. Otherwise, the organization
that has allowed uncontrolled growth of computer nodes may find
major problems in causing these nodes to communicate with one
another.

On-line systems

Figure 3 Performance comparison In the early 1970s, on-line systems were sometimes associated

;‘;’ste"’;‘s'""e and small with small systems. Whether this is valid or not, the facts ana-

lyzed in Figure 3 suggest that there is no longer clear preference

between large and small systems for on-line applications. Figure 3

depicts a large-system problem at a time of transition when in-
terest in small-system solutions was becoming widespread.

i
[=]
z
<
=
o
[«}
re
4
wi
a
w
o
>
[}
[=]
b=4

Consider first a large system of 1968 as represented by point A on
Figure 3. This system had an associated price/performance ratio
determined by its hardware architecture and the software that it
supported. The vertical axis of Figure 3 shows some notion of
price per transaction (index of performance) for on-line use of this
large system. The achievement of a particular price/performance
ratio was determined in part by the interrupt structure of the
hardware and by the software structure of the operating system
and data manager system. The structure of both hardware and
software was heavily influenced by its orientation toward a batch
environment. On-line use of large systems was just beginning to
receive serious attention in the late sixties, and very few hard-
ware or software designs were oriented toward on-line com-
mercial use.

At the same time, as represented by point B on Figure 3, there
already existed a class of small machines of important computa-
tional power and attractive prices. These small machines were
frequently generalizations of architectures aimed at good per-

IBM SYST J @ VOL 18 @ NO 4 e 1979

formance in process control applications. They had interrupt
structures that were characteristically more sophisticated than
large batch commercial processors, and they had other archi-
tectural features that suggested good performance in on-line envi-
ronments similar in requirement to process control. At one time
in their early history, however, they lacked mature or complete
operating and programming development systems.

Figure 3 represents, at point C, the evolution of a late 1960s large
system to an early 1970s large system. The astonishing slope of
the line suggests that the price/performance ratio of the 1970s
large system, in terms of cost per transaction, was seen in some
cases to have degraded when compared to the 1968 system. This
degradation occurred in selected software environments despite
an increase in raw system capacity and a general lowering of
prices across components of the system. The phenomenon may
be explained by the fact that the functional richness of new soft-
ware placed a disproportionately heavy load on the system in an
on-line transaction processing situation. The batch-like hardware
and software architectural features remained in place and new
software function reduced the ability of the system to process
transactions at an acceptable rate. Very large systems had very
disappointing rates in transactions per second when running stan-
dard operating systems and data managers. There was an unac-
ceptable burden of systems software on the large system and a
number of basic activities associated with terminal support that a
large system did not do well.

Point D represents the maturity of small systems in the early
1970s. Small systems had continued to demonstrate very good
price/performance ratios, had improved in raw capacity, and had
acquired a reasonable set of software for node control and pro-
gramming. The operating systems tended to be event-driven in
structure and to demonstrate some properties that made them at-
tractive for on-line applications.

The effect of software burden and complexity of use of large sys-
tems in on-line environments, coupled with maturing capacity
and software support for small and intermediate systems led a
number of designers to the inspection of single or interconnected
small systems as possible alternatives to single-node large sys-
tems.

Two basic alternatives emerged. The possibility of augmenting a
configuration by adding small processors to undertake on-line ap-
plication functions led to systems shaped as hierarchic trees. The
possibility of building a system completely out of aggregated
small processing nodes led to cooperating peer structures.

IBM SYST] ¢ VOL 18 ® NO 4 ® 1979

The trend toward on-line applications has had an effect on soft-
ware for large systems. In the interval between the early 1970s
and the present time, important results have been achieved in re-
ducing burden on a large processor and significant improvements
in large-system efficiency have been achieved.

As a result of hardware and software trends it is no longer clear
whether small machines have a natural advantage over large ma-
chines for on-line operation. Setting aside considerations of relia-
bility and availability, which will be discussed later in this paper,
large systems may now be effective in more instances than a dec-
ade ago because they have experienced impressive capacity in-
creases in the mid-1970s as a result of technology and software
improvements.

One very important aspect when considering large versus small
systems, or a large system versus a small-system aggregate, is the
nature of the load to be placed on small systems. Small process-
ors of a given capacity may be very effective for simple transac-
tions that require low levels of computational service and have
simple data reference patterns. Thus sets of simple enquiries or
basic data entry activities may be very effective on small nodes.
Transactions requiring massive computation or involving com-
plex patterns of data reference may exceed the capacity of a small
node or perform poorly on a small node and be better supported
by a large system of greater computational power and more fiex-
ible data subsystem interconnections.

Communications costs

A frequently stated motivation for distributed processing is the
desire to reduce the cost of a set of unintelligent terminals com-
municating at geographically significant distances with a data cen-
ter.

Although it is possible to achieve a reduction in communications
costs, it is by no means clear under what circumstances this re-
duction will occur. Communications costs may be a function of
the specific offerings of communications carriers, sensitivity or
insensitivity to geographical distances between points of data or
query entry and data manipulation, required speeds, applied
loads, complexities of network definition, etc. Experience has
shown that distribution of data processing capability has caused
communications costs to rise or fall, depending on many factors
related to each particular system. Instances where these costs
rise are by no means failures if other costs are reduced or if some
value is added to offset the rise in communications costs.

IBM SYST J e VOL 18 @ NO 4 & 1979

Typically a system in which communications costs are lowered is
one that has intelligent terminal-processors at a using location.
Traffic on communications lines is reduced because the local pro-
cessor reduces the volume of traffic to the data center. It does this
by sending summary data rather than raw transactions, by elimi-
nating the need for reference to the data center for a class of
transactions, or by batching and timing transmissions to take ad-
vantage of special features of certain tariffs or economies of scale
in transmission bandwidths being offered. If a set of processing
nodes are geographically dispersed to sites where there was no
previous computational power, and if high-speed, mesh-like in-
teraction between nodes is required, it is clear that communica-
tions costs may rise.

Reliability and fail-soft

The view that distributed processing can provide greater reliabil-
ity or availability is based upon the economics of replication and
the granularity of configurability that interconnected smaller sys-
tems may provide. The duplexing or triplexing of small process-
ors into multiple-processor logical nodes is quite common. The
practice is attractive because small processor/memory units are
inexpensive and additional units give disproportionate reliability
increments, while adding modestly to the total system cost. Thus
various partitioning and replication designs can provide scope of
error containment, equivalent performance backup and fail-soft
levels when multiple machines are used. The same approach is
not equally well applied to large processing nodes because of the
larger prices and the incremental jump in total system cost when a
large unit is replicated in a system.

This approach, however, is constrained by a number of consid-
erations. The processing/memory units are the most reliable com-
ponents of a data processing system, and it is not clear, in gen-
eral, how replication of the most reliable units addresses system-
wide issues of reliability. The replication of data storage devices
is limited by their relative costliness, in terms of cost per byte
stored, when compared to larger units and by the logic of an ap-
plication. The replication of storage units implies design conven-
tions about how data are to be spread across units, transferred,
synchronized, and accessed. Problems of data integrity emerge in
systems that can be partially operational, which do not occur in
systems that are either up or down. Increased reliability comes
not from the replication per se of hardware units but from sys-
tems designs that provide quick recovery while guaranteeing in-
tegrity.

If fail-soft levels and scope of error containment points can be
defined, it is probably cheaper to replicate critical points than to

IBM SYST J e VOL 18 ® NO 4 ¢ 1979

replicate larger, more monolithic systems. It is important, how-
ever, that the replication be selective. If it is necessary to repli-
cate the entire system of collected small nodes to achieve a de-
sired reliability, it is not clear that the replication of a single large
node may not be equally effective.

The operability of the system is the joint probability of the oper-
ability of all nodes. The probability that some part of a system
will be down is very high. On the other hand, the probability of all
nodes being down is equally small. Thus, if a system depends
upon all nodes being up, it is not a reliable system. If proper
backup and fail-soft levels can be defined so that the system is
meaningfully operational with inoperative nodes, a reliable sys-
tem may be designed from collections of smaller units. In the end,
reliability expectation is an expression of the definition of fail-soft
and backup levels.

User interfaces

Better user interfaces are frequently cited as an advantage of dis-
tributed processing. The nature of such interfaces is not well un-
derstood in the data processing industry at this time. Never-
theless, there seems to be converging opinion that a good inter-
face has some of the following characteristics:

& It provides system response times appropriate to the activity;
it does not introduce a perception of instability, unpredictabil-
ity, or lengthiness that disturbs a user so as to make him less
effective.

The semantics of a good interface is consistent with the se-
mantics of the work being done.

The syntax of the interface is as natural as possible and ap-
pears intuitively obvious to a user.

The syntax is uniform and consistent within the context of the
work. Accomplishing the same function by multiple variant
forms is minimized, and the use of variant forms for similar
functions is eliminated.

The system allows selectable levels of aid and guidance for
users of different degrees of expertise. Friendly software need
not be chatty software, and experts should not be burdened
with conventions for aiding trainees.

Clearly, the placing of a processing unit at a geographical site
does not in itself provide good end user interfaces. It may be true,
however, that good end user interfaces are more affordable in the
context of some distributed designs. Elements of good user inter-
face relating to systems response times may be achieved by the
dedication of processing units to application activities so as to
reduce instances of resource contention which occur on in-
tensively shared systems.

IBM SYST J & VOL 18 &4 NO 4 & 1979

If the load on a node is more predictable because the workload is
more homogeneous and the system is simpler to analyze, respon-
siveness may increase. Similarly, if end user actions are com-
pletely contained within the node they may be faster than if they
must be serviced by a remote node running a complex workload.
The requirement for fast or consistent responsiveness cannot be
met, of course, if the local system is overloaded. It is also true
that small systems tend to become unresponsive at lower levels of
utilization than large systems and that they are inherently slower.
Consequently, better responsiveness is achieved at the cost of
maintaining consistently lower loads on the smaller local nodes in
a hierarchic system. In a peer system, stable responsiveness may
imply increased partitioning across a set of nodes and very care-
ful attention to cross-node referencing. The responsiveness of a
node should not be perturbed because it is waiting for interaction
with other nodes or because other nodes are inflating its local
workload.

Those aspects of end user interface that are concerned with the
quality of dialogue may be improved by distribution because dis-
tribution may make good dialogue more affordable. Good dia-
logue characteristics involve increased potential interaction with
a processing node and potentially more significant displays of
data and format. A user operating in tutorial mode, for example,
may require many more transmissions between his terminal and a
processor than an expert. Similarly the replacement of terse
codes by descriptive phrases increases data flow from system to
tube.

Large computationally effective processing units may have a dis-
proportionate burden placed upon them when they do formatting
and display organization. This increase in load discourages de-
signers of interfaces from rich support of dialogue and encourages
cryptic and sometimes artificially terse message formats. This
tendency is enhanced by a desire to minimize data flow into and
out of the system. In view of this, it is reasonable to provide for a
node in the system that can effectively improve dialogue without
a serious increase in load on the computational engine. Very terse
and compressed messages may flow between the dialogue sup-
port node and the computationally oriented processor. The dia-
logue support node expands the messages into a form convenient
for users, supports tutorial phases, and compresses user-entered
syntactical structures without burdening the computational or
data-manipulating element of the system.

The partitioning of dialogue support function suggests both that
the dialogue processor is very good at these functions and that its
load is sufficiently low as to maintain good responsiveness. It is
not clear, except for some improvement in interrupt logic, that
smaller processors are more efficient format and character han-

IBM SYST J @ VOL 18 @ NO 4 & 1979

dlers than large processors; thus very careful definition of load
and activity on the dialogue processor must be undertaken. If ma-
jor application logic is also resident in the dialogue support pro-
cessor, response characteristics may become undesirable.

Once the dialogue support function has been isolated, a decision
must yet be made about where it is to be placed relative to using
terminals and the computational node. It is probably true that the
dialogue support processor is best placed local to using terminals
to achieve lower transmission volumes across teleprocessing
lines. However, it is possible to conceive of situations where the
dialogue processor should be local to the computational process-
or.

Although it seems natural for screen quality and message control
to be local, it is not always true that the data managers or oper-
ating systems of a vendor are able to permit such partitioning, so
that some degree of duplication of function may be necessary to
achieve the result.

The point is sometimes made that cost to a business unit to use
data processing power is reduced with distributed processing.
The argument shows confusion between the issue of distributed
versus centralized processing and that of batch versus on-line
processing. In discussing the advantages gained by going to a dis-
tributed system, much of the literature points out how much less
expensive and how much more convenient computer use has be-
come because of the availability of on-line terminals that replace
awkward batch submission interfaces. It is clear that the increase
in convenience and reduction in costs come from changing the
mode of access and not from the dispersion of processing nodes.
Most users agree that terminals are an effective input/output me-
dium for computers, but whether the presence of local processing
and storage contributes more than the presence of a terminal is
not generally clear. The confusion comes about because many
batch systems that were centralized have been replaced by some
form of on-line distributed system. The virtues of going on-line
are mistaken for the virtues of going distributed.

In a similar but complementary vein, distributed systems are
sometimes said to be more complex than centralized systems.
Frequently this point of view arises out of a movement from a
batch to an on-line environment. Many aspects of design and
planning for on-line use are more complex than designing and
planning for batch use. The complexity is a function of being on-
line, not of being distributed. The real issue is whether the rela-
tive increase in complexity by being on-line over being batch is
less or greater when one goes on-line with a centralized or a dis-
tributed system.

IBM SYST J @ VOL 18 @ NO 4 e 1979

Security and privacy

The use of hardware-isolated nodes is often justified by a desire
for increased security of data and for increased privacy. This is
also an area of astonishing counterexample and differing judg-
ments for a number of reasons.

Many users of large systems are disturbed by the fact that they
have no essential control over data. Because of various backup
and archiving procedures used at a data center and because of
data center operational prerogatives, it is virtually impossible for
a user to control access to his files. Encryption techniques that
address this issue are beginning to come into maturity, but they
are installed only at the discretion of the data center.

Similarly, there are varying degrees of confidence in both the user
and software procedures for ensuring against intrusion by other
users. Although the subversion of software structures is not a
general skill, it causes concern in many places, particularly where
sensitive information is involved. The concern is sufficiently great
that the federal government, vendors, and universities are under-
taking studies to determine exactly what the structural and func-
tional characteristics of a secure software system really are.

With this as a background, the idea of private data on physically
inaccessible data media in rooms where access can be controlled
by the owning business unit or mission unit becomes very attrac-
tive. Whether increased security and privacy are achieved by us-
ing central professional security staffs or by using private safes is
largely a judgmental issue. But the increase of these character-
istics in a centralized or distributed system must follow the same
lines of argument.

An important aspect of the discussion is the source of potential
violation. If there is reason to suspect that the source of violation
lies in persons or agencies unknown, one may prefer privately
imposed security. If there is reason to suspect that the source of
violations is within the mission or department, there is reason to
prefer professional security at a central place.

Professional security at a central place occurs in the form of large
software packages that impose security within a well-disciplined
set of staff members following well-planned security procedures.
Private security must rely more on physical control of media and
access, since smaller systems may not be able to sustain the soft-
ware loads of high-level access control software packages.

Another dimension to this issue is that distributed systems are

distinct from stand-alone systems and by their nature imply some
amount of physical access from one node to the data of another.

IBM SYST J e VOL 18 ® NO 4 e 1979

A secure system must provide software that protects against re-
mote violations of privacy. It is not absolutely clear just what
software designs will ensure privacy and security in multinode
systems and be less subject to subversion than software in large
systems. The problem is compounded, of course, in systems con-
sisting of heterogeneous nodes.

Economics of dedication

The fundamental assumption of the idea that it is better to distrib-
ute activity across a family of processing nodes is that economy
of scale in systems pricing is no longer an important aspect of the
computer marketplace. Small processing units may display price/
performance ratios equal to or even better than those of large-
scale processors. To illuminate the issues surrounding this point,
consider an example involving a review of current prices for dif-
ferent processor classes and a division of these numbers by a
rated processor speed. (Very strong arguments against this kind
of exercise can be mustered, but it does provide some instructive
results.)

The total hardware cost of a system is determined less and less by
the price of processors and more and more by communications,
storage and peripheral equipment. Therefore, despite the loss of
economy of scale across processors, a collection of small systems
with power equivalent to that of a large system may cost more in
hardware than the large system with more price-effective storage
and peripheral units. In addition, there is evidence from queuing
theory in support of the idea that a single system of a given power
can deliver more service than a system composed of a set of
smaller units of equivalent nominal power. Even considering our
confidence in queuing theory, it is, nevertheless, by no means
clear how much more power is required for small systems to
match a large system, nor under what exact conditions of work-
load and software load characteristics the superiority of the large
single system obtains.

In any event, the economic feasibility, if not the preferability, of
building large systems from interconnected processing nodes is a
reality. There seems to be a potential economics of dedication
that is replacing the economics of sharing based upon economy of
scale. Thus it is at least doubtful whether a consolidated work-
load machine that attempts to support a large number of unrelated
and disparate users is in general a more efficient instrument than a
machine dedicated to the work of each using business unit or lo-
cation.

There are degrees in the notions of dedication. Some distributed
architectures built from single-board computers dedicate very

IBM SYST J 8 VOL 18 #NO 4 %1979

specific and small units of work to each processor to form a sys-
tem of highly specialized activity nodes. Such designs may be
found in aircraft or submarine monitoring systems. At the other
extreme, the entire set of applications relevant to an entire de-
partment or business unit may be put on a single system node.
The departmental application set may contain a number of unre-
lated applications sharing the machine on a multiprogrammed or
time-shared basis. Between these extremes there are many points
on a continuum of sharing of equipment between units of work.

There are a number of factors that determine the congruency of
the activity/equipment mapping. One is the extent to which units
of work are decomposable and isolatable. Work units that tend to
access the same data or talk to each other intensively may be left
on the same system. Another factor is the availability of various
kinds of interconnection. It may be possible, for example, to de-
compose work into thirty-four areas of major activity and dedi-
cate a processing unit to each area. It may not, however, be pos-
sible to achieve an interconnection between them that displays
desirable characteristics of speed and performance. Another de-
tail is that traces of economy of scale may remain, in that very
small versions of an architecture may be less attractively priced
than somewhat larger versions. Although price/performance ratio
advantages may, for practical purposes, disappear in comparing
machines from the middle performance range to the upper per-
formance range, it is possible to rediscover them in comparing
machines at the low performance range to those tending toward
the middle.

The rapid performance improvements in middle-range processors
has shifted the balance somewhat toward the use of multifunction

rather than single-function small systems. Nevertheless, the het-
erogeniety of work and extensiveness of sharing across a popu-
lation of such systems is certainly less than with a large single
processing node.

Associated with the idea that collections of small systems may be
economically feasible is the idea that they may be less expensive
to operate. A number of very important systems expenses are
associated with trying to share a large machine at significant lev-
els of utilization. There is a constant tuning and performance ef-
fort to achieve acceptable response times and maintain required
utilization levels. This contrasts with populations of small ma-
chines that can run at lower utilization levels and provide good
performance at much lower systems tuning costs.

There is an argument that money invested in performance tuning
might be better spent on more hardware. Here we immediately
run into a problem with the idea that, in general, families of small
machines generate fewer operational expenses than a single large

IBM SYST J 9 VOL 18 ¢ NO 4 #1979

consolidated workload system. Depending upon the software in-
terface characteristics of a system, the cost to operate and adjust
tends to vary. Thus a number of geographically distributed units
may require local systems programmer or operator staffs at each
site. Although the effort of tuning and adjustment may go down at
each site, the total cost may go up. The total cost of operating the
equipment becomes the sum for all sites and may exceed the cost
of operators on a large system at a single center. The additional
dimension here is that different systems generate different opera-
tional and software support expenses.

There is widespread interest amongst vendors of computing prod-
ucts in reducing the operational costs of remote processing
nodes. This reduction is brought about by providing a facility
whereby certain operational activities can be provided from a
processing node in one place. Thus a collection of remote nodes
can be serviced by a single operator. Similarly, mechanisms for
remote software support and remote performance analysis are be-
ginning to receive attention. It may be some time, however, be-
fore heterogeneous systems can profit from remote operator sup-
port.

An alternative approach to reducing operator expenses in geo-
graphically remote systems is to improve the operational inter-
faces presented by those systems. Thus, instead of remote-oper-
ator services there would be programmed-operator services
whereby each node would sufficiently automate its operational
interfaces that only a very reduced operational staff of very re-
duced skill levels would be locally required.

In general, from both an equipment and an operational point of
view, it is no longer absurd to consider various levels of dedica-
tion that would have been prima facie infeasible in an industry
with the pricing structure of the 1960s.

Incremental growth and flexibility

Since distributed processing systems contain a number of small
nodes, it should be easy to achieve growth by adding additional
nodes to the system as load increases or as new function is added.
So goes an argument that finds support in the hardware base for
distributed systems. The major hardware limitation seems to lie
in the limits of interconnect mechanisms. Although incremental
node addition allows an orderly increase in power with small
granules of system cost, it is not clear that this can be achieved
across all interconnect designs. A single-bus interconnect design
is limited by the load it can carry. Considerable reanalysis of load
patterns and cross-node loads may be necessary to successfully
repartition work. Another limitation in multibus, crossbar, and

IBM SYST } & VOL 18 ® NO 4 & 1979

switch designs is the capacity of the system to add more members
because of physical constraints. In general, it is preferred to have
an idea of how the system is expected to grow in order to ensure
that growth steps are nondisruptive.

The addition of more nodes to support new applications may be a
simpler task than adding new nodes to support increased load or
increased function within a single application. Unless care is
taken in structuring program modules and attention paid to defin-
ing the mechanisms that repartition data, the hardware potential
for growth may be denied because of expenses associated with
software and data restructuring.

Capacity limitation

Closely connected with the idea of incremental growth is the idea
of overcoming the capacity limitations of a system by putting new
function on additional nodes. The classic scenario lies in the idea
of extending the life of a central large system by offloading func-
tion onto associated peripheral processing nodes. In general this
is probably a workable notion. It is not clear, however, exactly
how effective an offloading strategy may be. The support of a set
of small nodes may create a new kind of load for the large system.
Many installation managers believe that distributed systems
should be controlled from a single point. Software and operator
functions to establish systems control, recovery, and remote op-
eration, and to permit remote program development and testing
also add to the load at the central site. Whether this load trivially,
importantly, or unacceptably counterbalances the offloaded ac-
tivities is an assessment that must be made for each system. It
depends in part on the activity that can be moved out into the
smaller nodes and the degrees of control and central function that
are vested in the large system.

Increased installation simplicity

The idea that distributed systems allow applications to be brought
up more quickly than large systems is often heard expressed, but
it is flawed for a number of reasons. It is essentially a carryover
from an image of the use of stand-alone autonomous processors
surrounded by business unit programming staff. An image of
quick installability of applications accrues to small systems be-
cause no negotiations are required to get programming staff and
computer resource, because the systems are easy to use, and be-
cause the applications are often small.

It is not demonstrable that the planning and design of multinode
systems represent more or less effort than the planning and design

IBM SYST J e VOL 18 @ NO 4 & 1979

of single large systems, and it is not clear that the stylistics of the
autonomous use of small business systems applies to the defini-
tion and implementation of distributed processing.

It is not yet known to what degree the aspects of simplicity which
associate with small machines will associate with distributed sys-
tems.

A more stable software environment

The idea that operating systems and subsystems environments
are more stable for small systems than for large systems is
founded on the current stylistics of software offerings in the mar-
ketplace. Large systems vendors have tended to announce soft-
ware products on an evolutionary cycle, making improvements
arid enhancements from version to version. Thus a user of a large
system who depends on an operating system and a collection of
access methods and subsystems experiences a constant churning.
Each major software component has an independent version re-
lease cycle that keeps an installation in perturbation to stay in the
mainstream.

By contrast, software for small systems has tended to be offered
on a purchase basis at different levels of function and to remain
stable through the lifetime of the hardware it supports.

While this has been the historical perception, a clear picture has
yet to emerge about the preferability of the two approaches.
There seems to be a trend toward new features of large software
packages announced as optional purchase units for the more
stable underlying program. (An example is the MVS operating sys-
tem and its optional features.) It may be preferable for some users
to pace an evolutionary cycle rather than commit to stable soft-
ware environments that must be radically revised or replaced at
certain intervals of time. If the large systems software evolution
can be made to be somewhat less disruptive, draw off less re-
source for installation, and intervene less in application develop-
ment cycles, the perception of churning can be ameliorated.
Large-system software suppliers seem to be sensitive to the need
for less installation effort and more mature software systems. It
seems today that many of the stylistics of large-system software
marketing that have previously been unattractive are being ad-
dressed.

The system and the organization

The granular structure of distributed systems suggests the possi-
bility of mapping the system onto the organizational structure.

IBM SYST J & VOL 18 & NO 4 & 1979

Regardless of the amount of control exercised over each node,
the structure of computing fits the structure of the company. Two
caveats apply. Company organizations are not stable, and organi-
zational reforms must not be hampered by computer structures.
Although there are many businesses that have achieved a mature
organizational structure, there are those that are continuing to
discover their proper organizational attitudes, and many that find
it useful to change for the sake of change. Experience of success-
ful organizations shows that the computer structure should fit the
organization and not that the organizational structure should fit
the computer structure.

It is also probably true that it is less burdensome to modify a
centralized data base system to represent new business units than
it is to move data and computer hardware from one business loca-
tion to another. It is critical, therefore, when mapping systems to
organizational charts, that this be done only when there is con-
fidence that the chart will at least endure for the payback period
of the system, or that provision for reasonable variations be in-
cluded in the initial design.

An additional problem with fitting a system to the organization is
that organizations are rarely the neat hierarchic trees drawn on
the organization charts. The true organization is a network of
which only some of the connections are known. Thus, unless it is
very clear who needs specific data, who needs various reports,
who needs various system activities, it is risky to undertake hard-
ware partitioning along formal organizational lines. As regards
distribution for organizational reasons, the message must be to
undertake distribution for this motive only if the organization is
stable and really understood.

Concluding remarks

The intent of this paper has been to introduce even-handed criti-
cal thought to distributed processing, which is such an amor-
phous concept.

In view of the many unclears, caveats, cautions, and counter-
examples, when is it reasonable to undertake the effort of distrib-
uted systems? Insofar as there is an answer to this, it seems to be
when the following are clear and well understood:

Relationships among business organizations and data
Relationships among organizations and applications
Relationships among applications and data

Loads placed upon the system at various points as well as the
capacity of nodes present at those points

Cross-node loads coming from planned internode interactions

IBM SYST J e VOL 18 @ NO 4 e 1979

If these are the elements of a desirable environment for distribu-
tion it is necessary to determine whether the organization is will-
ing to undertake necessary action to clarify its own shape and
form.

Certainly all systems design depends upon stability and clarity.
However, distributed designs may be more sensitive and require
better definitions of applications characteristics. This may be a
strength of the distributed approach.

From the above list of desirables one can infer a list of uncer-
tainties, according to which distribution should be looked at very
cautiously:

Communication skills in an enterprise

Interconnectability of various nodes because of hardware and
software capabilities at each node

Data reference patterns and sources of load, combined with
uncertainty about node performance

The direction of evolution of applications

We do not know, in general, whether complexity will increase or
decrease in distributed processing systems, nor how operational
costs will evolve. We are just discovering an art.

Despite these factors, distributed processing is a data processing
design alternative that is real for any set of applications. We have
tried here to highlight the considerations necessary to make con-
sidered decisions in order to achieve the potential advantages and
avoid the potential disappointments.

GENERAL REFERENCES

G. M. Booth, “‘Distributed information systems,”” AFIPS Conference Pro-
ceedings 45 (1976 National Computer Conference, June 7-10, 1976, New York
City), 789-794 (1976).

O. H. Bray, ‘‘Distributed data base design considerations,”” Trends and Appli-
cations: Computer Networks, IEEE Computer Society, Long Beach, CA (1976),
pp. 162-169.

G. S. Champine, ‘‘Six approaches to distributed data bases,”’ Datamation 23, No.
5, 69-72 (May 1977) (ITIRC INF0037142).

J. Hannan and L. Fried, ‘‘Should you decentralize?’’ Computer Decisions 9, No.
2, 40-42 (February 1977).

M. Hofri and C. J. Jenny, On the Allocation of Processes in Distributed Comput-
ing Systems, Research Report RZ905. May be obtained from the IBM Thomas J.
Watson Research Center, Yorktown Heights, NY 10598 (ITIRC 78A003934).
N. Knottek, ‘*Selecting a distributed processing system,”” Computer Decisions 8,
No. 6, 42-44 (June 1976).

D. L. Mills, Dynamic File Access in a Distributed Computer Network, Technical
Report TR-415, University of Maryland, College Park, MD (October 1975) ITIRC
76B000485).

IBM SYST J ¢ VOL 18 @ NO 4 » 1979

J. F. Rockart, C. V. Bullen, and J. S. Leventer, Centralization vs. Decentral-
ization of Information Systems: A Preliminary Model for Decision Making , Cen-
ter for Information Systems Research, Sloan School, Massachusetts Institute of
Technology, Cambridge, MA.

A. L. Scherr, *‘Distributed data processing,”” IBM Systems Journal 17, No. 4,
324-343 (1978).

Stanford Research Institute, The Promise of Distributed Processing, SRI Busi-
ness Intelligence Program Guidelines, Report No. 10, Stanford Research Insti-
tute, Palo Alto, CA (1976) (ITIRC 77B000339).

The author is located at the IBM Systems Research Institute,
205 East 42nd Street, New York, NY 10017.

Reprint Order No. G321-5111.

IBM SYST J ¢ VOL 18 ¢ NO 4 e 1979

