
Highlighted in this technical essay are discussions of the nature
of distributed systems, design processes associated with the dis-
tribution of processing, and the conditions under which benefits
accrue. The essay concentrates on some of the major benefits
expected from distributed systems so as to provide a context in
which to judge particular designs and their benejits. Among the
judgment-informing considerations are the following: centralized
management, historical relationships with on-line systems, relia-
bility and fail-soft, security and privacy, system growth and ca-
pacity limitations, and jitting the system to the organizational
structure.

Distributed processing: An assessment
by H. Lorin

The general notion of a distributed system is that various ele-
ments of a data processing system can be partitioned into well-
defined units that may be located at various logical sites and
linked by agreed-upon protocols. Examples of distributed pro-
cessing have as many points of dissimilarity as similarity and re-
flect a diversity of system solutions to system problems. Distrib-
uted systems take different views of the distributable system
components, of the essential shape of the system, and of the geo-
graphical proximity of the nodes. Various choices are made con-
cerning placement of data and programs, and the form and loca-
tion of systems control.

The diversity of system details suggests that distributed process-
ing systems are not a new class of system. Definitions fail to dis-
tinguish precisely among different levels of cooperation, inter-
action and extent of appearance as a single system (single sys-
tems image). There are too many variations of too subtle a nature
to achieve a comprehensive definition.

Copyright 1979 by International Business Machines Corporation. Copying is per-
mitted without payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright notice are
included on the first page. The title and abstract may be used without further
permission in computer-based and other information-service systems. Permission

Figure 1 suggests an aspect of distribution as a feature of all sys-
tems, wherein each circle represents a layer of system function.
The inner layer is that of hardware and represents a physical pro-
cessing node. This layer supports a layer of software that is the
fundamental operating system, which is often characterized as
the kernel and is made part of a single structural element of pro-
gramming. Above the layer of the kernel is a set of extended serv-
ices that an operating system undertakes in support of a program
running in its environment. Such services might be to acquire and
release memory space, get and place records in files, etc. Above
this layer, Figure 1 shows a monitor, which is a layer of a soft-
ware structure, such as a data base manager. Above the data base
manager there is an application layer.

Figure 1 suggests that a system is a number of software layers
resting on a hardware layer. Each software layer depends upon a
lower software layer for the delivery of certain services and cedes
certain aspects of control to a lower layer. The figure is an at-
tempt to unify some thinking about distributed systems. One can
think of various kinds of systems as a result of configuration and
sharing decisions applied to the layers. Figure 1 shows a dedi-
cated application system. Any transaction entering the system
from the terminals talks to the same application. All terminals
share application code and application logic.

In Figure 2A, lines have been drawn through the application
layer, suggesting that more than one application is sharing all lev-
els of this node. A terminal population may talk to different appli-
cations that share no application code.

The multiple applications of Figure 2A suggest a uniprocessor
that has been multiprogrammed to support independent appli-
cations. It is possible that the uniprocessor is a multiprocessor
that is running under the control of the same operating system
and appears to all applications to be a uniprocessor because of the
image presented by the monitor and operating system levels. This
system suggests a lower level of sharing in that a specific appli-
cation partitioning has been undertaken.

Figure 2B shows the line extended through the monitor level, sug-
gesting that terminals have access to different monitor level soft-
ware as well as to different applications. The system of Figure 2B
has multiple subsystems that share an underlying operating sys-
tem. Each subsystem presents a unique interface and a unique set
of services to an upper layer of application and an upper layer of
terminal users.

Figure 2C shows an extension of the partitioning line through the
extended operating system layer, which suggests virtual ma-
chines. Not only do application programs interface with unique

IBM SYST J VOL 18 NO 4 1979 LORIN

SINGLE KERNEL
SINGLE EXTENDED I
OPERATING SYSTEM
SINGLE MONITOR i

~ -~

A great deal of software and hardware packaging thought must be
undertaken before Figure 2 is a real picture. However, the view
of distributed processing as a point in a set of alternative configu-
rations is useful as an aid to understanding the relationships
among distribution, virtual machines, multisubsystem nodes, and
multiprogrammed nodes. There is no conceptual limit to the pro-
cess of partitioning. Starting with any of the slices of Figure 2D,
more partitions can be undertaken so that each slice decomposes
into a number of smaller slices. The real limit to the process is the
available hardware, interconnection mechanisms, and under-
standing of the way application and system software structures
can be layered and decomposed.

The nature of the distribution process

Distribution as discussed in this section has strong top-down
overtones. Although much applies to interconnecting autono-
mous systems, the major thrust is toward concepts and activi-
ties used to design an application across multiple nodes, where
the single systems image is high.

Distribution is a result of a system design process in which it is
necessary to:

0 Dejne partitions of work. Systems and application activities
should be discovered that cluster together into well-defined,
separate units of program.

0 Dejne partitions of data. One should seek to discover natural
segments or extractions, and to determine where these parti-
tions are used, where they are changed, and to whom they
must be made available. One should also determine what ac-
cess paths to data must be defined, where partitioning is use-
ful, where replication is useful, and identify synchronization
requirements.
Dejine relationships between data and work. This is truly a
reflection of the need to define work and data partitions some-
what iteratively and jointly. Data reference patterns are part
of recognizing separable programs. Program reference pat-
terns are part of recognizing separable data.

0 Dejine relationships among partitions. Determine the degrees
of autonomy among programs and the intensity of their inter-
action and interdependency. This will partially indicate how
geographically distant the partitions may be. In addition, the
method of interaction must be defined. This involves determi-
nation of whether the partitions will be synchronous or
asynchronous, talk to each other on a message basis or on a
batched queue basis.

0 Determine a set of possible work structures. Given degrees of

variations are expected to differ in the specific clusters, execu-
tion speeds, access times, and interaction characteristics at a
program level.
Dejine a set of potential hardware bases. For the possible log-
ical work structures, a choice must be made between large
systems surrounded by trivial work stations, large virtual net-
works, geographically distributed small systems, multi-
processors, etc.
Choose hardware. This choice requires estimates of the abil-
ity of the nodes to meet capacity requicements for each parti-
tion, and the ability of the system to meet interaction require-
ments across interconnect facilities. Also required is the abil-
ity to meet reliability goals. Software available with hardware
must be sufficient to minimize the risk and cost of applications
development. The hardware and software must be available in
reasonable time from a reliable source or set of sources. Fi-
nally, there must be an acceptable cost balance involving cost
tradeoffs with respect to processor/memory , storage, device
population, communications, operations, programming, in-
stallation, maintenance, and end user convenience.

If the above sequence of activities seems to suggest that under-
taking a definition of a distributed system may not be less work
than undertaking the design of a centralized system, the point is
well taken. The design of multinode systems is not simpler than
the design of complex single-node systems. Certain aspects of
systems use may certainly be better with a distributed system,
and certain kinds of complexity may well disappear. But the im-
age of simple distributed systems as an antidote for the com-
plexity of large single-node systems cannot be expected to hold
up in general. As we discuss further in this paper, it is not usually
clear under exactly what circumstances the design and operation
of distributed systems is simpler, more stable, and more attrac-
tive than centralized alternatives. This is an arena of equally as-
tonishing counterexample.

Discussed in the following sections are reasons commonly given
as motivations for distribution. Each motivation is discussed
from the point of view of whether the goal desired is a natural
attribute of any distributed system or whether it can be achieved
only in certain design contexts.

Maintain advantages of centralized management

Centralized management is cited first to emphasize the distinction
between distribution and decentralization. The position taken by
many enterprises is that they wish to maintain an enterprise level
of control over the development and operation of data processing
applications and equipment. Although computing power is be-

586 LORIN IBM SYST J e VOL I8 NO 4 1979

' coming rapidly less expensive and, in some versions, need no
longer be thought of as a capital investment subject to classical
return on investment justification, it is still true that a company
benefits from enterprise-wide direction and planning.

There are situations in which it is not necessary to apply enter-
prise-level direction and standards. Computing devices that affect
only the work of a small unit of the business, that require no pro-
fessional systems support, that involve no expensive program-
ming effort or operational staff, that operate as a departmental
tool, may be allowed with a minimum of higher-level control. It is
important, however, to define the situation in which the installa-
tion of such equipment is permitted, in order to avoid unforeseen
complications. Even where independent installation of computing
equipment is feasible, it is useful to provide some central tech-
nological guidance as to qualified vendors, contract negotiation,
and application feasibility. The intent is not to discourage or con-
strain the installation of equipment, but to ensure that the degree
of the autonomy of the unit is well specified, and to limit the risk
of failure.

Centralized services may assume various forms. These services
range from a computer in the data processing department (in sup-
port of remote operation, maintenance, and software service) to
on-site personnel employed by the data processing department
rather than the using organization. Once again the intent is not to
limit or constrain the use of local computer units, but to provide
various services that ease the burden on the using business unit or
location.

The maintenance of a centralized systems management function
is essential when the distributed computer structure supports
cross-departmental functions that are planned as a single system
although they are applied to multiple computer nodes. In this situ-
ation there is need for professional systems planning and high
levels of systems assurance.

The desire to maintain centralized management even for dis-
persed computer nodes is based upon three underlying needs:
better control, personnel, and avoiding the costs of incoherence.

Better control implies a site for the generalization of standards for
programming, equipment, operation, and interconnection. The
function is to set a policy to ensure the orderly acquisition and
use of computing and avoid bad surprises in vendor selection,
equipment quality and availability, programming difficulty, etc.
The actual amount of decision-making power possessed by a cen-
tral policy and competence organization may vary widely from

Figure 3 Performance comparison
for on-line and. small
systems

1968 1972 1979

588

~~~~~~~ ~ ~ 

As for personnel,  a  data  processing staff provides  the ability to 
attract good professional data processing management and  opera- 
tional skills. No matter how hardware is dispersed and inter- 
connected,  a minimum set of skills is required to define and en- 
sure systems and to avoid expensive  mistakes.  In  order  to main- 
tain these skills, there  must  be  a company-wide career  path. 
Technology change and the  importance of data processing equip- 
ment to  the competitive and profit position of the whole enter- 
prise suggest the continuing need for skilled computer planning 
and analysis. 

An incoherent system is one  that springs up and develops as an 
afterthought. Such an unplanned system may be  costly.  Nodes 
that start autonomously may grow toward one  another  as profit- 
able instances of intercommunication are  discovered. A frame- 
work must be provided for achieving post-installation communi- 
cation at reasonable cost  and effort. Otherwise,  the organization 
that has allowed uncontrolled growth of computer nodes may  find 
major problems in causing these nodes to  communicate with one 
another. 

On-line systems 

In  the early 1970s, on-line systems were sometimes  associated 
with small systems.  Whether this is valid or not, the facts ana- 
lyzed in Figure 3 suggest that  there is no longer clear  preference 
between large and small systems  for on-line applications. Figure 3 
depicts  a large-system problem at a time of transition when in- 
terest in small-system solutions was becoming widespread. 

Consider first a large system of 1968 as represented by point A on 
Figure 3 .  This system had an associated  price/performance  ratio 
determined by its hardware  architecture and the  software  that it 
supported.  The vertical axis of Figure 3 shows some notion of 
price per  transaction (index of performance)  for on-line use of this 
large system.  The  achievement of a  particular price/performance 
ratio was determined in part by the  interrupt  structure of the 
hardware and by the  software  structure of the  operating system 
and data manager system. The structure of both  hardware and 
software was heavily influenced by its  orientation toward a batch 
environment. On-line use of large systems was just beginning to 
receive serious  attention in the  late  sixties,  and very few hard- 
ware or software designs were oriented toward on-line com- 
mercial use. 

At the  same  time,  as  represented by point B on Figure 3, there 
already existed  a class of small machines of important  computa- 
tional power and attractive  prices.  These small machines were 
frequently generalizations of architectures aimed at good per- 

LORIN IBM SYST J VOL 18 NO 4 1979 





The trend toward  on-line applications has  had an effect  on soft- 
ware for large systems. In the interval between the early 1970s 
and  the present time, important results have  been achieved in re- 
ducing burden on a large processor and  significant improvements 
in large-system efficiency have been achieved. 

As a result of hardware and software trends it  is  no  longer clear 
whether small  machines  have a natural advantage over large ma- 
chines for on-line operation. Setting aside considerations of relia- 
bility and availability, which  will  be discussed later in this paper, 
large systems may  now  be effective in more instances than a dec- 
ade ago because they  have experienced impressive capacity in- 
creases in the  mid-1970s as  a result of technology and software 
improvements. 

One  very important aspect when  considering  large versus small 
systems, or a large system versus a small-system aggregate, is  the 
nature of the load to be  placed  on  small systems. Small process- 
ors of a given capacity may  be very  effective for simple transac- 
tions that require low levels of computational service and have 
simple data reference patterns. Thus sets of simple enquiries or 
basic data entry activities may  be  very  effective  on  small nodes. 
Transactions requiring massive computation or involving  com- 
plex patterns of data reference may exceed the capacity of a small 
node or perform  poorly  on a small  node  and  be better supported 
by a large system of greater computational power and  more  flex- 
ible data subsystem interconnections. 

Communications  costs 

A frequently stated motivation for distributed processing is the 
desire to reduce the cost of a set of unintelligent terminals com- 
municating at geographically  significant distances with a data cen- 
ter. 

Although  it  is  possible to achieve a reduction in communications 
costs, it is  by  no  means clear under what circumstances this re- 
duction will occur. Communications costs may  be a function of 
the  specific  offerings of communications carriers, sensitivity or 
insensitivity to geographical distances between points of data or 
query entry and data manipulation, required speeds, applied 
loads, complexities of network definition, etc. Experience has 
shown that distribution of data processing capability has caused 
communications costs to rise or fall, depending  on  many factors 
related to each particular system. Instances where these costs 
rise are by  no means failures if other costs are reduced or if some 
value  is  added to offset  the rise in communications costs. 

LORIN IBM SYST J 0 VOL I8 NO 4 1979 



Typically a system in which communications costs  are lowered  is 
one that has  intelligent terminal-processors at a using location. 
Traffic  on  communications lines is  reduced because the local  pro- 
cessor reduces the volume of traffic to the data center. It does this 
by sending  summary data  rather than  raw transactions, by elimi- 
nating the need for reference to the data center for a class of 
transactions, or by batching and timing transmissions to take ad- 
vantage of special features of certain tariffs or economies of scale 
in transmission bandwidths  being  offered. If a  set of processing 
nodes are geographically dispersed to sites where there was  no 
previous computational power, and if high-speed, mesh-like  in- 
teraction between  nodes  is required, it is clear that communica- 
tions costs may rise. 

Reliability  and  fail-soft 

The view that distributed processing can provide greater reliabil- 
ity or availability  is  based  upon the economics of replication  and 
the granularity of configurability that interconnected smaller sys- 
tems  may  provide. The duplexing or triplexing of small process- 
ors into multiple-processor  logical  nodes  is quite common. The 
practice is attractive because small processor/memory units are 
inexpensive and  additional units give disproportionate reliability 
increments, while  adding  modestly to the total system cost. Thus 
various  partitioning  and replication designs  can provide scope of 
error containment, equivalent performance backup and  fail-soft 
levels  when  multiple machines are used. The same approach is 
not equally well applied to large processing nodes because of the 
larger prices and the incremental jump in total system cost when a 
large  unit  is  replicated in a system. 

This approach, however, is constrained by a number of consid- 
erations. The processing/memory  units are the most  reliable  com- 
ponents of a data processing system, and  it  is  not clear, in gen- 
eral, how  replication of the  most  reliable  units addresses system- 
wide issues of reliability. The replication of data storage devices 
is  limited  by their relative costliness, in terms of cost per byte 
stored, when  compared to larger units  and by the logic of an  ap- 
plication.  The  replication of storage units  implies  design conven- 
tions about how data are to be spread across units, transferred, 
synchronized, and accessed. Problems of data integrity emerge in 
systems that can  be  partially operational, which do not occur in 
systems that are either up or down. Increased reliability  comes 
not  from the replication per  se of hardware units but  from sys- 
tems  designs that provide  quick recovery while guaranteeing in- 
tegrity. 

If fail-soft  levels  and scope of error containment points  can  be 
defined,  it  is  probably cheaper to replicate critical points  than to 

IBM SYST J VOL I8 NO 4 1979 LORIN 



ever,  that  the replication be  selective. If it is necessary  to repli- 
cate  the  entire  system of collected small nodes  to  achieve a de- 
sired reliability, it is not clear  that  the replication of a single large 
node may not be equally effective. I 

~ 

The  operability of the  system is the  joint probability of the  oper- 
ability of all nodes.  The  probability  that  some  part of a  system 
will be down is very high. On the  other  hand,  the probability of all 
nodes being down is equally small. Thus, if a system  depends 
upon all nodes being up, it is not a reliable system. If proper 
backup  and fail-soft levels can be defined so that  the  system is 
meaningfully operational with inoperative  nodes, a reliable sys- 
tem may be designed from collections of smaller  units. In the  end, 
reliability expectation is an  expression of the definition of fail-soft 
and backup  levels. 

User interfaces 

Better  user  interfaces are frequently cited as  an advantage of dis- 
tributed  processing.  The  nature of such  interfaces is not well un- 
derstood in the  data  processing  industry  at  this time. Never- 
theless,  there  seems  to be converging opinion that a good inter- 
face  has  some of the following characteristics: 

It  provides  system  response times appropriate  to the  activity; 
~ 

it does  not  introduce  a  perception of instability,  unpredictabil- ~ 

ity, or lengthiness  that  disturbs  a  user so as  to make him less ~ 

~ 

The  semantics of a good interface is consistent with the  se- 
mantics of the work being done. 
The  syntax of the  interface is as natural as possible  and ap- 
pears intuitively obvious to a user. 
The  syntax is uniform and  consistent within the  context of the 
work. Accomplishing the  same function by multiple variant 
forms is minimized, and  the use of variant forms  for similar 
functions is eliminated. 
The  system allows selectable levels of aid and guidance for 
users of different degrees of expertise. Friendly software need 
not be  chatty  software,  and  experts should not be burdened 
with conventions  for aiding trainees. 

Clearly,  the placing of a  processing unit at a geographical site 
does  not in itself provide good end  user  interfaces.  It may be true, 
however,  that good end  user  interfaces  are  more affordable in the 
context of some distributed  designs.  Elements of good user  inter- 
face relating to  systems  response times may be  achieved by the 
dedication of processing  units  to application activities so as to 
reduce  instances of resource  contention which occur on in- 
tensively shared  systems. 

I 592 LORIN IBM SYST J VOL 18 NO 4 1979 



If the  load on a  node is more  predictable  because  the workload is 
more homogeneous and the  system is simpler to  analyze, respon- 
siveness may increase.  Similarly, if end  user  actions  are com- 
pletely contained within the  node they may be  faster  than if they 
must be serviced by a remote  node running a  complex  workload. 
The  requirement  for  fast or consistent  responsiveness  cannot be 
met, of course, if the local system is overloaded. It is also true 
that small systems  tend  to  become  unresponsive at lower levels of 
utilization than large systems  and  that  they are inherently  slower. 
Consequently,  better  responsiveness is achieved  at  the  cost of 
maintaining consistently lower  loads on the  smaller local nodes in 
a  hierarchic  system. In a peer  system,  stable  responsiveness may 
imply increased partitioning across a  set of nodes  and very care- 
ful attention to cross-node  referencing.  The  responsiveness of a 
node should not be perturbed  because it is waiting for  interaction 
with other nodes or because  other nodes are inflating its local 
workload. 

Those  aspects of end user  interface  that  are  concerned with the 
quality of dialogue may be  improved by distribution  because dis- 
tribution may make good dialogue more affordable. Good dia- 
logue characteristics involve increased  potential  interaction with 
a processing node and  potentially more significant displays of 
data  and  format. A user  operating in tutorial mode,  for  example, 
may require many more transmissions  between his terminal and a 
processor  than  an  expert. Similarly the  replacement of terse 
codes by descriptive  phrases  increases  data flow from system  to 
tube. 

Large computationally effective processing units may have  a dis- 
proportionate burden placed upon them when they  do formatting 
and display organization. This  increase in load discourages  de- 
signers of interfaces from rich support of dialogue and  encourages 
cryptic  and sometimes artificially terse message formats.  This 
tendency is enhanced by a desire  to minimize data flow into and 
out of the  system. In  view of this, it is reasonable to provide for  a 
node in the  system that can effectively improve dialogue without 
a serious  increase in load on the  computational  engine. Very terse 
and compressed messages may  flow between the dialogue sup- 
port  node and the  computationally  oriented  processor.  The dia- 
logue support  node  expands  the messages into  a form convenient 
for users, supports  tutorial phases, and compresses  user-entered 
syntactical  structures  without burdening the  computational or 
data-manipulating element of the  system. 

The partitioning of dialogue support function suggests both that 
the dialogue processor is very good at these  functions  and  that its 
load is sufficiently low as  to maintain good responsiveness.  It is 
not clear,  except  for some improvement in interrupt logic, that 
smaller processors  are more efficient format and  character han- 

IBM SYST J VOL 18 NO 4 1979 LORIN 



dlers  than large processors;  thus very careful definition of load 
and  activity on the dialogue processor must be undertaken. If ma- 
jor application logic is also  resident in the dialogue support pro- 
cessor,  response  characteristics may become  undesirable. 

Once  the dialogue support  function  has been isolated, a decision 
must yet be made about  where it is  to  be placed relative  to using 
terminals and  the  computational  node. It is probably true  that  the 
dialogue support  processor is best placed local to using terminals 
to  achieve lower transmission volumes across teleprocessing 
lines.  However, it is possible to conceive of situations where the 
dialogue processor should be local to the  computational  process- 
or. 

Although it seems  natural  for  screen quality and message control 
to be local, it is not always  true that the  data managers or oper- 
ating systems of a vendor are able  to permit such partitioning, so 
that  some  degree of duplication of function may be necessary to i 
achieve  the  result. ~ 

The point is sometimes  made  that  cost to a business unit to use 
data  processing  power is reduced with distributed processing. 
The  argument  shows  confusion between the  issue of distributed 
versus  centralized  processing  and  that of batch  versus on-line 
processing. In discussing the  advantages gained by going to a dis- 
tributed  system, much of the  literature  points  out how much less 
expensive  and how much more  convenient  computer  use has be- 
come because of the availability of on-line terminals  that  replace 
awkward  batch submission interfaces. It is clear  that  the  inctease 
in convenience  and  reduction in costs  come from changing the 
mode of access  and not from the dispersion of processing  nodes. 
Most users agree that  terminals are an effective input/output me- 
dium for  computers,  but  whether  the  presence of local processing 
and  storage  contributes  more  than  the  presence of a terminal is 
not generally  clear.  The  confusion  comes  about  because many 
batch  systems  that were centralized  have been replaced by some 
form of on-line distributed  system.  The  virtues of going on-line 
are mistaken  for  the  virtues of going distributed. 

In a similar but  complementary  vein,  distributed  systems  are 
sometimes said to be more complex  than  centralized  systems. 
Frequently  this point of view arises  out of a movement from a 
batch  to  an on-line environment. Many aspects of design and 
planning for on-line use are more complex than designing and 
planning for  batch  use. The complexity is a  function of being on- 
line,  not of being distributed.  The real issue is whether  the rela- 
tive increase in complexity by being on-line over being batch is 
less or greater when one  goes on-line with a centralized or a dis- 
tributed  system. 

594 LORIN IBM SYST J 0 VOL 18 NO 4 1979 j 



Security and privacy 

The use of hardware-isolated nodes is  often  justified by a desire 
for increased security of data and for increased privacy. This is 
also  an area of astonishing counterexample and  differing  judg- 
ments for a number of reasons. 

Many users of large systems are disturbed by the fact that they 
have no essential control over  data. Because of various backup 
and archiving procedures used at  a data center and because of 
data center operational prerogatives, it is virtually  impossible for 
a user to control access to his  files. Encryption techniques that 
address this issue are beginning to come into maturity, but  they 
are installed  only at the discretion of the data  center. 

Similarly, there are varying degrees of confidence in both  the user 
and software procedures for ensuring against intrusion by other 
users. Although  the subversion of software structures is  not a 
general skill, it causes concern in many places, particularly  where 
sensitive information  is involved. The concern  is  sufficiently  great 
that the federal government, vendors, and universities are under- 
taking studies to determine exactly what  the structural and func- 
tional characteristics of a  secure software system really are. 

With this as a background, the idea of private data on physically 
inaccessible data media in rooms where access can be controlled 
by the owning business unit or mission unit becomes very attrac- 
tive. Whether increased security and  privacy are achieved by us- 
ing central professional security staffs  or by using  private  safes is 
largely a judgmental issue. But  the increase of these character- 
istics in a centralized or distributed system  must  follow  the  same 
lines of argument. 

An important aspect of the discussion is the source of potential 
violation. If there is reason to suspect that the source of violation 
lies in persons or agencies unknown, one may prefer privately 
imposed security. If there is reason to suspect that the source of 
violations  is  within the mission or department, there is  reason to 
prefer professional security at a central place. 

Professional security at  a central place occurs in the form  of large 
software packages  that impose security within a well-disciplined 
set of  staff members  following  well-planned security procedures. 
Private security must  rely  more on physical control of media  and 
access, since smaller systems may not  be able to sustain the soft- 
ware loads of high-level access control software packages. 

Another dimension to this issue is that distributed systems are 
distinct from stand-alone systems and by their nature imply  some 
amount of physical access from  one  node to the data of another. 

IBM SYST J VOL 18 NO 4 1979 LORIN 



A secure  system must provide  software  that  protects against re- 
mote  violations of privacy. It is not  absolutely  clear just what 
software designs will ensure privacy and  security in multinode 
systems  and  be  less  subject to subversion  than  software in large 
systems.  The problem is compounded, of course, in systems con- 
sisting of heterogeneous  nodes. 

Economics of dedication 

The  fundamental  assumption of the  idea  that it is better  to distrib- 
ute activity  across a family  of processing  nodes is that economy 
of scale in systems pricing is no longer an  important  aspect of the 
computer  marketplace. Small processing  units may display price/ 
performance  ratios  equal  to or  even  better than  those of large- 
scale  processors.  To illuminate the  issues  surrounding  this  point, 
consider an example involving a review of current  prices  for dif- 
ferent  processor  classes  and a division of these  numbers by a 
rated  processor  speed. (Very strong  arguments against this kind 
of exercise  can be mustered,  but it does  provide  some  instructive 
results.) 

The  total  hardware  cost of a  system is determined  less  and  less by 
the  price of processors  and more and more by communications, 
storage  and peripheral equipment.  Therefore,  despite  the loss of 
economy of scale  across  processors,  a collection of small systems 
with power equivalent to  that of a large system may cost more in 
hardware  than  the large system with more price-effective storage 
and  peripheral  units. In addition,  there is evidence from queuing 
theory in support of the idea that a single system of a given power 
can deliver more service  than a system  composed of a set of 
smaller  units of equivalent nominal power. Even considering our 
confidence in queuing theory, it is,  nevertheless, by no means 
clear how much more power is required for small systems  to 
match a large system,  nor  under what exact  conditions of work- 
load and  software load characteristics  the  superiority of the large 
single system  obtains. 

In  any event, the  economic  feasibility, if not the  preferability, of 
building large systems from interconnected  processing  nodes is a 
reality.  There  seems  to be a  potential  economics of dedication 
that is replacing the  economics of sharing based  upon economy of 
scale.  Thus it is  at least  doubtful  whether  a  consolidated work- 
load machine that  attempts  to  support  a large number of unrelated 
and disparate  users is in general a more efficient instrument  than a 
machine dedicated to  the work of each using business unit or lo- 
cation. 

There are degrees in the  notions of dedication.  Some  distributed 
architectures built from single-board computers  dedicate  very 

LORIN IBM SYST J VOL 18 NO 4 1979 



specific and small units of work  to  each  processor  to form a  sys- 
tem of highly specialized activity  nodes.  Such designs may be 
found in aircraft or submarine monitoring systems. At the  other 
extreme,  the  entire  set of applications  relevant to an  entire  de- 
partment or business unit  may be put on a single system  node. 
The  departmental application set may contain a number of unre- 
lated applications sharing the machine on a multiprogrammed or 
time-shared  basis.  Between these  extremes  there  are many points 

I on a continuum of sharing of equipment  between units of work. 

There are a number of factors  that  determine  the congruency of 
the activity/equipment mapping. One is the  extent  to which units 
of work are decomposable  and  isolatable. Work units  that  tend  to 
access  the  same  data or talk to  each  other intensively may be left 
on the  same  system.  Another  factor is the availability of various 
kinds of interconnection. It may be  possible, for example,  to  de- 
compose work into  thirty-four  areas of major activity and dedi- 
cate  a  processing unit to  each  area. It may not,  however, be pos- 
sible to  achieve an interconnection between them  that  displays 
desirable  characteristics of speed  and  performance.  Another de- 
tail is that  traces of economy of scale may remain, in that very 
small versions of an architecture may be less  attractively priced 
than  somewhat larger versions. Although price/performance  ratio 
advantages  may,  for  practical  purposes,  disappear in comparing 
machines from the middle performance range to  the upper  per- 
formance  range, it is possible to rediscover  them in comparing 
machines at the low performance range to  those tending toward 
the middle. 

The rapid performance improvements in middle-range processors 
has shifted the balance somewhat  toward  the use of multifunction 
rather  than single-function small systems.  Nevertheless,  the het- 
erogeniety of work and extensiveness of sharing  across  a popu- 
lation of such  systems is certainly  less than with a large single 
processing  node. 

Associated with the idea that  collections of small systems may be 
economically feasible is the  idea  that they may be less  expensive 
to  operate.  A number of very  important  systems  expenses  are 
associated with trying to  share a large machine at significant lev- 
els of utilization.  There is a  constant tuning and  performance ef- 
fort to achieve  acceptable  response times and maintain required 
utilization levels.  This  contrasts with populations of small ma- 
chines that can run at  lower utilization levels and provide good 
performance at much lower  systems tuning costs. 

There is an argument that money invested in performance tuning 
might be  better  spent on more hardware.  Here we immediately 
run into a problem with the idea  that, in general, families of small 
machines generate  fewer  operational  expenses  than  a single large 

IBM SYST J VOL 18 NO 4 1979 LORIN 597 I 



consolidated workload system. Depending upon the  software in- 
terface  characteristics of a system,  the  cost  to  operate and  adjust 
tends to  vary. Thus  a  number of geographically distributed units 
may require local systems  programmer or operator staffs at  each 
site. Although the effort of tuning and  adjustment may go down at 
each  site,  the  total  cost may go up.  The  total  cost of operating the 
equipment  becomes  the  sum  for all sites  and may exceed  the  cost 
of operators on a large system  at a single center.  The additional 
dimension here is that different systems  generate different opera- 
tional and  software  support  expenses. 

There is widespread interest  amongst  vendors of computing prod- 
ucts in reducing the  operational  costs of remote processing 
nodes.  This reduction is brought  about by providing a facility 
whereby  certain  operational  activities  can  be  provided from a 
processing  node in one  place.  Thus  a collection of remote nodes 
can be serviced by a single operator. Similarly, mechanisms for 
remote  software  support  and  remote  performance  analysis  are be- 
ginning to  receive  attention.  It may be some  time,  however, be- 
fore  heterogeneous  systems  can profit from remote  operator sup- 
port. 

An alternative  approach to reducing  operator  expenses in geo- 
graphically remote  systems is to improve the  operational inter- 
faces  presented by those systems.  Thus,  instead of remote-oper- 
ator  services  there would be programmed-operator  services 
whereby  each  node would sufficiently automate  its Operational 
interfaces that only a very reduced  operational staff of very re- 
duced skill levels would be locally required. 

In general, from both an equipment  and  an  operational point of 
view, it is no longer absurd to consider  various  levels of dedica- 
tion that would have been prima facie infeasible in an industry 
with the pricing structure of the 1960s. 

Incremental  growth  and flexibility 

Since  distributed  processing  systems  contain  a  number of small 
nodes, it should be easy  to  achieve growth by adding additional 
nodes to  the  system  as load increases or as new function is added. 
So goes an argument that finds support in the  hardware  base  for 
distributed  systems.  The  major  hardware limitation seems  to lie 
in the limits of interconnect  mechanisms. Although incremental 
node addition allows an  orderly  increase in power with small 
granules of system  cost, it is not  clear  that  this  can be achieved 
across all interconnect  designs. A single-bus interconnect design 
is limited by the load it can carry. Considerable  reanalysis of load 
patterns  and  cross-node  loads may  be necessary to successfully 
repartition  work.  Another limitation in multibus,  crossbar,  and 

598 LORIN IBM SYST J VOL 18 NO 4 1979 



~~~ 

switch designs is the capacity of the system to add more members
because of physical constraints. In general, it is preferred to have
an idea of how the system is expected to grow in order to ensure
that growth steps are nondisruptive.

The addition of more nodes to support new applications may be a
simpler task than adding new nodes to support increased load or
increased function within a single application. Unless care is
taken in structuring program modules and attention paid to defin-
ing the mechanisms that repartition data, the hardware potential
for growth may be denied because of expenses associated with
software and data restructuring.

Capacity limitation

Closely connected with the idea of incremental growth is the idea
of overcoming the capacity limitations of a system by putting new
function on additional nodes. The classic scenario lies in the idea
of extending the life of a central large system by offloading func-
tion onto associated peripheral processing nodes. In general this
is probably a workable notion. It is not clear, however, exactly
how effective an offloading strategy may be. The support of a set
of small nodes may create a new kind of load for the large system.
Many installation managers believe that distributed systems
should be controlled from a single point. Software and operator
functions to establish systems control, recovery, and remote op-
eration, and to permit remote program development and testing
also add to the load at the central site. Whether this load trivially,
importantly, or unacceptably counterbalances the offloaded ac-
tivities is an assessment that must be made for each system. It
depends in part on the activity that can be moved out into the
smaller nodes and the degrees of control and central function that
are vested in the large system.

Increased installation simplicity

The idea that distributed systems allow applications to be brought
up more quickly than large systems is often heard expressed, but
it is flawed for a number of reasons. It is essentially a carryover
from an image of the use of stand-alone autonomous processors
surrounded by business unit programming staff. An image of
quick installability of applications accrues to small systems be-
cause no negotiations are required to get programming staff and
computer resource, because the systems are easy to use, and be-
cause the applications are often small.

It is not demonstrable that the planning and design of multinode
systems represent more or less effort than the planning and design

IBM SYST J VOL 18 NO 4 1979 LORIN

of single large systems, and it is not clear that the stylistics of the
autonomous use of small business systems applies to the defini-
tion and implementation of distributed processing.

It is not yet known to what degree the aspects of simplicity which
associate with small machines will associate with distributed sys-
tems.

A more stable software environment

The idea that operating systems and subsystems environments
are more stable for small systems than for large systems is
founded on the current stylistics of software offerings in the mar-
ketplace. Large systems vendors have tended to announce soft-
ware products on an evolutionary cycle, making improvements
and enhancements from version to version. Thus a user of a large
system who depends on an operating system and a collection of
access methods and subsystems experiences a constant churning.
Each major software component has an independent version re-
lease cycle that keeps an installation in perturbation to stay in the
mainstream.

By contrast, software for small systems has tended to be offered
on a purchase basis at different levels of function and to remain
stable through the lifetime of the hardware it supports.

While this has been the historical perception, a clear picture has
yet to emerge about the preferability of the two approaches.
There seems to be a trend toward new features of large software
packages announced as optional purchase units for the more
stable underlying program. (An example is the MVS operating sys-
tem and its optional features.) It may be preferable for some users
to pace an evolutionary cycle rather than commit to stable soft-
ware environments that must be radically revised or replaced at
certain intervals of time. If the large systems software evolution
can be made to be somewhat less disruptive, draw off less re-
source for installation, and intervene less in application develop-
ment cycles, the perception of churning can be ameliorated.
Large-system software suppliers seem to be sensitive to the need
for less installation effort and more mature software systems. It
seems today that many of the stylistics of large-system software
marketing that have previously been unattractive are being ad-
dressed.

The system and the organization

The granular structure of distributed systems suggests the possi-
bility of mapping the system onto the organizational structure.

600 LORlN IBM SYST J VOL 18 NO 4 1979

Regardless of the amount of control exercised over each node,
the structure of computing fits the structure of the company. Two
caveats apply. Company organizations are not stable, and organi-
zational reforms must not be hampered by computer structures.
Although there are many businesses that have achieved a mature
organizational structure, there are those that are continuing to
discover their proper organizational attitudes, and many that find
it useful to change for the sake of change. Experience of success-
ful organizations shows that the computer structure should fit the
organization and not that the organizational structure should fit
the computer structure.

It is also probably true that it is less burdensome to modify a
centralized data base system to represent new business units than
it is to move data and computer hardware from one business loca-
tion to another. It is critical, therefore, when mapping systems to
organizational charts, that this be done only when there is con-
fidence that the chart will at least endure for the payback period
of the system, or that provision for reasonable variations be in-
cluded in the initial design.

An additional problem with fitting a system to the organization is
that organizations are rarely the neat hierarchic trees drawn on
the organization charts. The true organization is a network of
which only some of the connections are known. Thus, unless it is
very clear who needs specific data, who needs various reports,
who needs various system activities, it is risky to undertake hard-
ware partitioning along formal organizational lines. As regards
distribution for organizational reasons, the message must be to
undertake distribution for this motive only if the organization is
stable and really understood.

Concluding remarks

The intent of this paper has been to introduce even-handed criti-
cal thought to distributed processing, which is such an amor-
phous concept.

In view of the many unclean, caveats, cautions, and counter-
examples, when is it reasonable to undertake the effort of distrib-
uted systems? Insofar as there is an answer to this, it seems to be
when the following are clear and well understood:

Relationships among business organizations and data
Relationships among organizations and applications
Relationships among applications and data
Loads placed upon the system at various points as well as the
capacity of nodes present at those points
Cross-node loads coming from planned internode interactions

IBM SYST J VOL 18 NO 4 1979 LORlN

If these are the elements of a desirable environment for distribu-
tion it is necessary to determine whether the organization is will-
ing to undertake necessary action to clarify its own shape and
form.

Certainly all systems design depends upon stability and clarity.
However, distributed designs may be more sensitive and require
better definitions of applications characteristics. This may be a
strength of the distributed approach.

From the above list of desirables one can infer a list of uncer-
tainties, according to which distribution should be looked at very
cautiously:

0 Communication skills in an enterprise
0 Interconnectability of various nodes because of hardware and

software capabilities at each node
0 Data reference patterns and sources of load, combined with

uncertainty about node performance
0 The direction of evolution of applications

We do not know, in general, whether complexity will increase or
decrease in distributed processing systems, nor how operational
costs will evolve. We are just discovering an art.

Despite these factors, distributed processing is a data processing
design alternative that is real for any set of applications. We have
tried here to highlight the considerations necessary to make con-
sidered decisions in order to achieve the potential advantages and
avoid the potential disappointments.

GENERAL REFERENCES
G. M. Booth, “Distributed information systems,’’ AFIPS Conference Pro-
ceedings 45 (1976 National Computer Conference, June 7-10, 1976, New York
City), 789-794 (1976).
0. H. Bray, “Distributed data base design considerations,” Trends and Appli-
cations: Computer Networks, IEEE Computer Society, Long Beach, CA (1976),
pp. 162-169.
G . S. Champine, “Six approaches to distributed data bases,” Datamation 23, No.
5 , 69-72 (May 1977) (ITIRC INF0037142).
J. Hannan and L. Fried, “Should you decentralize?” Computer Decisions 9, No.
2, 40-42 (February 1977).
M. Hofri and C. J. Jenny, On the Allocation of Processes in Distributed Compuf-
ing Systems, Research Report RZ905. May be obtained from the IBM Thomas J.
Watson Research Center, Yorktown Heights, NY 10598 (ITIRC 78A003934).
N . Knottek, “Selecting a distributed processing system,” Computer Decisions 8,
No. 6, 42-44 (June 1976).
D. L. Mills, Dynamic File Access in a Distributed Computer Network, Technical

LORIN 603

