Transaction applications have specialized requirements for
scheduling and data base support. This paper describes the pro-
cedure by which those requirements were identified during the
design of a data base and transaction management program for
the 1BM 8100 Information System. It also provides an overview of
the program structure that evolved to satisfy the functional re-
quirements.

Design of the IBM 8100 Data Base and Transaction Management
System—DTMS

by F. C. H. Waters

The 1BM 8100 Information System is a new minicomputer for dis-
tributed applications. Architecturally, it is an extension of the
IBM 3790 Communication System. To ease the transfer of appli-
cations to the 8100 from the 3790, there is an operating system,
the Distributed Processing Control Executive (DPCX), that is
compatible with the 3790 control program. To handle the larger
configurations and more diverse applications of the 8100, how-
ever, a new operating system, the Distributed Processing Pro-
gram Executive (DPPX), has been developed. Unlike DPCX, DPPX
is a full multiprogramming operating system, supporting both
batch and interactive applications.

In the initial stages of DPPX development, its planners realized
that many 8100 applications would need data base facilities and a
specialized transaction-processing scheduler if they were to make
efficient use of the 8100. Because of our experience with Data
Base/Data Communications (DB/DC) products such as iMs' and
cics’, the Santa Teresa Laboratory was asked to design and im-
plement a small DB/DC product, consisting of a Transaction Pro-
cessor and a Data Base Manager. The resulting program is called
the 1BM 8100 Data Base and Transaction Management System,
which is usually abbreviated DTMS. The progress of DTMS from
initial design criteria to completed program structure is the topic
of this paper.

Copyright 1979 by International Business Machines Corporation. Copying is per-
mitted without payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright notice are
included on the first page. The title and abstract may be used without further
permission in computer-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor.

IBM SYST] ® VOL 18 ® NO 4 » 1979 WATERS

design
objectives

Figure 1 Complete transactions are
typically either (A) serial
conversations or (B) repeti-
tive conversations

INITIATING
REQUEST

PROMPT/
REPLY

PROMPT/
REPLY

PROMPT/
REPLY

COMPLETION
MESSAGE

INITIATING
REQUEST

PROMPT/
REPLY

COMPLETION
MESSAGE

INITIALIZATION

STEP 1

STEP 2

TERMINATION

-

(A

INITIALIZATION

PROCESS
ONE ITEM

TERMINATION

-7

(B)

This project gave us for the first time the opportunity to build a
transaction processor and data base manager in concert with the
design and implementation of the base operating system. By con-
trast, most of the transaction processors that we built for the Sys-
tem/360 and System/370 were designed after the operating system
structure was in place. To avoid changing the operating system in
ways that would have been incompatible with existing application
programs, the System/360 DB/DC products had to add duplicate
functions to create a transaction-oriented environment. We felt
that they were also functionally richer than necessary for the
8100.

As a basis for program design, our planners and consultants con-
structed several scenarios that they considered representative of
the classes of use the proposed data base and transaction manage-
ment system would receive. Each of these scenarios described a
hypothetical company and the application or family of related ap-
plications that such a company would probably implement on the
8100.

At the same time, we adopted a number of overall ground rules
for the design phase of the project. The objectives that had the
most significant effect on DTMS structure were the following:

e The basic program should run in a minimal amount of space,
but should be able to make efficient use of additional space to
improve performance;

A terminal should be able to stay logged on to DTMS with little
overhead, until it submits a transaction;

Data base recovery should occur by default if the system or
the application program fails detectably;

DTMS should be capable of running twenty-four hours a day
indefinitely without significant performance degradation or
wasted space during periods of light load;

No detailed understanding of the internal logic of DTMS should
be required for its installation and efficient execution;
Start-up should require little effort beyond that needed to start
the operating system.

Application program structures

Study of the application scenarios confirmed our experience with
transaction environments and provided some new insights. Most
of the expected applications were conversations between a termi-
nal user and an application program that consisted of short bursts
of processing, separated by comparatively long periods of idle
time waiting for the terminal user to respond. There were com-
paratively few applications whose programs ran continuously for
more than a second or so—and those were really batch or CPU-

WATERS IBM SYST J @ VOL 18 @ NO 4 e 1979

intensive conversational programs for which efficient DPPX mech-
anisms had already been designed.

Since we were specializing in handling large numbers of short
programs, we concentrated on speed of allocation and recovery
of resources. We had to give the application program its execu-
tion resources and then retrieve those resources for use by some-
one else, with a minimum of effort.

Fortunately, the job was somewhat simplified by another com-
mon characteristic of transactions: they seldom need resources
beyond the instigating terminal, space to run in, and some data
from the data base. That meant that we could optimize our re-
source allocation mechanism for these requirements. A transac-
tion that needs a tape drive is a very special case, and separate
processing to handle it is not very expensive.

Seekihg to minimize resource allocation overhead, we looked at
the program structure of a typical transaction. Figure 1 illustrates
the fact that most complete transactions are either (A) serial con-
versations with the terminal operator soliciting various pieces of
information; or (B) repetitive conversations, for example, when
entering all of the items on a list.

Both of these structures can be troublesome in a transaction-
oriented system. The *‘think’’ time between query and response
can be long, particularly if there is some physical act to be carried
out by the terminal operator, or if the transaction involves two
people (say a sales clerk and a customer). All that time, the con-
versational application program is occupying precious space.

A close look at the typical application structures in Figure 1
shows that they can be broken up into segments, as in Figure 2.
Each segment can be a small, separate program. Then the space
and other resources needed by the conversation are required only
when a conversation segment is actually being executed. When
each conversation segment application program ends, its re-
sources can be reassigned to a segment of another conversation
that is ready to resume execution. Figure 2 shows the abstract
conversations from Figure 1, restructured into segmented con-
versations.

As a result of our initial studies, we decided to optimize the trans-
action processing mechanism for the execution of a segment of a
conversational transaction. This is not an entirely new concept,
of course; the same general approach was used, for example, in
the Airlines Control Program (acp).’

Figure 3 illustrates the modest resource requirements of the unit
of DTMS processing, a conversation segment. The conversation

IBM SYST J @ VOL 18 ® NO 4 e 1979 WATERS

Figure 2 Segmented conversations:
(A) serial segmented con-
versation and (B) repetitive
conversation

INITIATING
REQUEST

PROMPT 1

REPLY 1
PROMPT 2

REPLY 2
PROMPT 3

REPLY 3

COMPLETION
MESSAGE

INITIATING
REQUEST

PROMPT 1

REPLY 1
PROMPT 1

REPLY 2

COMPLETION
MESSAGE

INITIALIZATION

TERMINATION

INITIALIZATION

PROCESS
ONE ITEM

TERMINATION

segmented
conversations

Figure 3 Resource requirements of
a conversation segment

INITIATING
MESSAGE

CONVER-
SATION
SEGMENT

(3
—-»| DATA
I~ BASE

FINAL
MESSAGE

an
application
scenario

Figure 4 Structure of the APEX order entry application

INITIATING REQUEST
ORDNTRY

® CUSTOMER IDENTIFICATION
AND VERIFICATION CUSTOMER

PROMPT 1
“ENTER PART #"

REPLY 1
NNNNNN

® CHECK STOCK AND UPDATE INVENTORY

PROMPT 1
“ENTER PART #"

REPLY 2
ENDORDER

o TOTAL THE ORDER
® SORT AND WRITE PICKING SLIP

COMPLETION MESSAGE

"ENTER NEXT TRANS" "/ __—

segment is loaded into storage arid given control. It accepts the
terminal message that caused it to be started, processes the mes-
sage, and returns an output message to the terminal. Data base 1/0
may or may not be required.

Starting from the basic element of the program segment, we iden-
tified the functions that application programmers would probably
need to allow them to string together segments to form full-
fledged applications. We then tried to design an efficient program
for scheduling and executing these units of work: the DTMS Trans-
action Processing Manager.

To analyze function requirements, we used the application sce-
narios. One in particular seemed to include most of the require-
ments of the others, and it became our touchstone during func-
tional design. The scenario is known as APEX because it deals
with a fictitious company called ‘‘APEX Auto Parts.”” The struc-
ture of this fictitious company was abstracted from our experi-
ence with various distributing and retailing enterprises, and the
APEX applications are our planners’ and consultants’ assessments
of the ways a typical company of this type would use the 8100.

The APEX applications are primarily the computerizing of the cler-
ical tasks of a wholesale parts distribution outlet: order entry,
shipping and receiving, and accounts receivable. In terms of vol-
ume, the order-entry activity dominates the system. Since it also
demonstrates most of the functional requirements we identified, it
is used here as an example. Figure 4 shows the overall structure
of the APEX order entry application.

A customer in an APEX outlet is typically from an auto repair shop
and is looking for a specific list of parts to complete a job. Since

WATERS IBM SYST J » VOL 18 ®« NO 4 ¢ 1979

the shop usually has a running account with APEX, the first activ-
ity is to verify the customer’s account number and its standing.
Assuming that the account number is valid, the next step is to
open a new order and direct the terminal operator to start re-
guesting parts by number. This seemingly straightforward pro-
cess may involve some complex exception routines, because the
customer does not always know the part number. Even if he does
know the number, that number may have been superseded. Each
item ordered constitutes a separate transaction to DTMS, and an
incorrect part number or obsolete item may start a digression that
is a conversation within a conversation. To keep the illustration
simple, we ignore exception processing.

If the part number is valid, the order entry application program
obtains the inventory data base record of that part and, if the
stock is sufficient to fill the order, decreases the inventory by the
quantity requested. It also records in the order the part number,
quantity, price, and warehouse location. It then sends a message
back to the terminal to indicate that the part is available and to
request another part number.

This loop continues until the entire order has been entered. Then
the total amount of the charge is calculated and the customer is
asked whether it is acceptable. If so, a picking slip is printed out
on the warehouse floor asking that the order be collected and
shipped or held for customer pickup.

Function analysis

When viewed at such a high level of abstraction, APEX seems
simple. One can hardly understand why it needs help from DTMS.
But consider the application programmer’s implementation prob-
lems.

In the interests of efficiency and better program design, we are
asking the programmer to divide the application into discrete
steps. In an unsegmented conversational application program, he
could keep data, such as the accumulated order record, in storage
until the order is complete. But his segmented application does
not have any storage during think time. To solve this problem, we
decided to allow the conversation segment to pass a scratch pad
of up to 4096 bytes to DTMS before terminating. DTMS retains the
scratch pad during think time and then passes it to the next seg-
ment of the conversation as an input parameter when it starts
execution. This process is shown in Figure 5.

Another problem with stringing together conversation segments
is that of identifying the program to be run next. Since the conver-
sation segments are logical subroutines of the overall application,

IBM SYST J @ VOL 18 & NO 4 » 1979 WATERS

transaction
processing
functions

Figure 5 Use of scratch pad in order entry (ORDNTRY)

ORDNTRY
CUSTOMER
XXXX

CUSTOMER IDENTIFICATION

AND VERIFICATION CALL

TSPSAVE SCRATCH PAD
CUST. #

AAAAAA (XXXX)

QUANTITY 3

“ENTER PART #”

I ORDER #

CHECK STOCK AND UPDATE CALL

TSPSAVE SCRATCH PAD
CUST. #

(XXXX) l ORDER #

BEERES AAAAAA IE

QUANTITY 1

“ENTER PART #"

CHECK STOCK AND UPDATE

CALL

TSPSAVE SCRATCH PAD
enteR parT 1 4/ — CUST # | opner g
OXXXX)

AAAAAA 3
BBBBBB 1

Figure 6 Use of the next transaction (NXTRANS) service

ORDNTRY

ORDNTRY

CUSTOMER IDENTIFICATION AND VERIFICATION | CALL NXTRANS
“ENTER PART #" \

ADDPART

ADDPART

AAAAAA
QUANTITY 3

CHECK STOCK AND UPDATE CALL NXTRANS
“ENTER PART #”

ADDPART

the determination of the sequence of segments should be under
program control. Also, from a human factors viewpoint, the ter-
minal operator should not have to enter the transaction name
each time he wants to enter some part numbers. Yet a part num-
ber is not very helpful in determining what application program to
run.

In response to this requirement, DTMS provides an interface to
allow the application program to identify the transaction that is to
process the next input from the terminal, as illustrated in Figure
6. Since the application programmer knows what data should be
elicited by his next terminal prompt, he can specify the program
to process it. If a next transaction (NXTRANS) has been indicated,
the usual DTMS process of looking for the transaction name at the
beginning of the input record is bypassed, so the end of the repeti-

WATERS IBM SYST J e VOL 18 ® NO 4 ¢ 1979

Figure 7 The never-ending segmented conversation

LOGON — " 7
SET DEVICE TO 4¢
INITIAL STATE

INITIALIZE
DEVICE

INTERPRETER

SUBCONVERSATION A SUBCONVERSATION B

1ST MESSAGE 1ST MESSAGE
PROCESSOR PROCESSOR

NXTRAN NXTRAN

SUBCONVERSATION C
.

1ST MESSAGE
PROCESSOR

NXTRAN

2ND MESSAGE 2ND MESSAGE
PROCESSOR PROCESSOR

PROMPT

| |
|

| NXTRAN | NxTRAN
I !

| |

DATA —— t t

2ND MESSAGE
PROCESSQR

|
|
I' NXTRAN
|

R

RTH MESSAGE STH MESSAGE
PROCESSOR PROCESSOR

SET
DEVICETO #—— 7
INITIAL
STATE

NXTRAN NXTRAN

T TH MESSAGE
PROCESSOR

NXTRAN

tive conversation cannot be indicated to DTMS by the user’s reply.
The ADDPART program tests for the ENDORDER reply and pro-
ceeds directly to that program.

The next-transaction function is also used in the design for one of
our industrial application scenarios. Some limited-function termi-
nals, such as magnetic stripe readers or analog-to-digital convert-
ers, are not capable of supplying a transaction name in character
form. Figure 7 shows the mechanism that we designed to allow
segmented conversations with such devices. We call it the never-
ending segmented conversation. The first segment is an initial-
izing transaction that is run when the terminal is logged on. In
addition to initializing the device, it requests as next transaction
an interpreter that is capable of accepting raw input from the ter-
minal and starting a segmented conversation. The final segment

IBM SYST J ® VOL 18 ® NO 4 o 979 WATERS

Figure 8 Message input and output of each conversation always requests the interpreter as the next

interface transaction. To ensure that such segmented conversations are
never irretrievably lost, we designed DTMS to return to the initial-
MESSAGE izing transaction (if the session has one) whenever a segment fails

CALL or ends without giving a next transaction.
MSGSAVE | APPLICA-

PROGRAV A conversation segment normally has a single message as input
and a single message as output, although the message may consist
of a screen full of text. This fact led us to create the interface
shown in Figure 8, in which the segment receives its input—the
message that caused it to be executed—as a parameter of in-
vocation. Its output message can be transferred to DTMS via a
service call.

RESPONSE“47 |

This structure has the following purposes: (1) it saves the appli-
cation programmer from having to code any terminal /O macros
in his program, and (2) it allows the program to terminate without
waiting for the result of terminal /0. DTMS takes responsibility for
delivery of the message, and if the transmission fails or the sys-
tem comes down before the transmission is completed, the data
base activity is all reset. Since the line delay in sending the mes-
sage to the terminal and receiving a response back can be sub-
stantial, we save considerable space on the average by not requir-
ing the application to wait for the response. This does not mean
that the program cannot perform terminal /O, just that it does not
have to.

In addition to transaction requests entered from terminals, we
have provided a facility by which an executing program can
request a transaction. This service, CREATX, is available to any
program in the DPPX system, whether transaction or not. The re-
questing application program passes DTMS a buffer containing the
transaction in the same form in which it would be received from a
terminal. DTMS enqueues the transaction for execution resources
as it would any other. Unlike a terminal-entered transaction,
however, a CREATX transaction is not released for execution be-
fore its requester has terminated successfully. If an application
program fails, its CREATX requests, like its data base changes, are
backed out.

Figure 9 shows the final segment of the order entry process sub-
mitting a CREATX for a transaction to be run in the session be-
tween DTMS and a terminal printer in the warehouse. When the
printer becomes available, the transaction is executed and prints
the picking slip.

Data base functions

So far, we have looked only at the transaction processing aspect
of DTMS. The data base services were designed to serve all appli-

WATERS IBM SYST J e VOL 18 ® NO 4 ¢ 1979

Figure 9 Creating a transaction (CREATX)

TERMINAL 1 SESSION TERMINAL 2 SESSION
(WITH SALES COUNTER TERMINAL) (WITH WAREHOUSE TERMINAL PRINTER)

— T

MESSAGE ¢, CALL
APPLICATION CREATX
PROGRAM
RESPONSE ¢

PENDING
REQUEST
QUEUE

APPLICATION
PROGRAM RESPONSE

(PICKING
SLIP)

Figure 10 DTMS data base structure

PART NUMBER INDEX DATA SET (LOWEST LEVEL) SUPPLIER INDEX DATA SET (LOWEST LEVEL)

SMITH LTD
JACKSON INC
BROWN CO.

PART NO. NAME SUPPLIER (TQS%FID%ACT:NSETE N
1234 ADAPTER SMITH LTD.

ANY SEQUENCE OR IN
RANDOM ORDER)

PART NO. NAME SUPPLIER
6501 WIDGET BROWN CO.

PART NO NAME SUPPLIER
2178 PLUG JACKSON INC.

cation programs in DPPX, not just those that run under the Trans-
action Processing Manager. After studying a number of possible
data base organizations, we decided that an indexed data struc-
ture would allow a wide spectrum of transaction, interactive, and
batch applications. An indexed organization would also be com-
patible with COBOL and could be implemented in a reasonable
period of time. Figure 10 is a simplified depiction of the chosen
structure.

The target data set contains the user’s data records. Each index
data set contains a tree-structure index* that provides a pointer to
the target data set record (or records) that contains a given value
of the key field. There is one index for each key, up to a maximum

IBM SYST J @ VOL 18 ® NO 4 ® 1979 WATERS

organization

data base
manager

indexed
access
method

levels of
data
recovery

of eight indexes per target data set. The indexes are updated
whenever a target data set record is inserted, deleted, or altered
in such a way that a key field changes.

Records are always processed by key, either randomly or sequen-
tially. We decided not to allow reference to the records by rela-
tive record number (the DPPX interface used within the Data Base
Manager itself) so as to avoid interference with the data recovery
mechanism.

The target data set and index structures are the same as those for
the DPPX/BASE Distributed Indexed Access Method (DXAM). Also,
the programming interfaces to the Data Base Manager are com-
patible with those of DXAM. When DTMS is installed on a
DPPX/BASE system, two DPX/BASE control blocks are expanded
with the Linkage Editor to add identifiers for the Data Base
Manager. Thereafter, the operating system deals with the Data
Base Manager as with any other access method. A program can
be written to process data bases and indexed data sets inter-
changeably, or debugged using indexed data sets and then run in
production using data bases. To smooth the transition, we have
provided the ability to convert most indexed data sets to data
bases simply by identifying them to the Data Base Manager and
describing their processing requirements.

The Data Base Manager operates a central buffer pool and record
locking structure for all data base users, regardless of where in
the operating system they are running. This reduces the total
amount of storage required for buffers and the probability of data
integrity loss.

Data integrity has been one of our major concerns in the design of
DTMS. Complex data structures and elaborate search mechanisms
could be implemented later, if customers indicated a need for
them. Data integrity, though, is so fundamental to Data Base
Manager design that it is very cumbersome to retrofit it to an
existing product that must continue to serve existing applications
and data bases compatibly.

In addition to such integrity measures as record locking and pro-
tected buffer pools, we decided to allow three levels of data re-
covery. The first is none. That is, there are some cases for which
one may want to use data base management services, such as
central buffer pools, but not be concerned about the integrity of
the records, for example, when the data base is temporary
scratch space. In that kind of situation, one does not want to pay
the record keeping price that data recovery involves.

The second level of recovery is resettability, by which we mean
the ability to recover from an application program error and back

WATERS IBM SYST J @ VOL 18 @ NO 4 » 1979

out all data base changes made by that program. In the case of a
system problem, we back out all changes that had been made to
resettable data bases by work in flight at the time of the failure.
Use of resettability assumes that neither the data set we use for
recovery nor the data bases themselves will be physically de-
stroyed.

The highest level of recovery is recreatability . At this level, DTMS
takes the precautions required for resettability, and also main-
tains an audit file of all changes to any recreatable data base. The
audit file can be used in conjunction with a previous dump of a
data base to recover from physical 1/0 device problems.

The recovery mechanisms can be used for more than just disaster
recovery. In the APEX scenario, for example, the order entry
transaction updates the inventory at the time each item is or-
dered. Obviously, if anything goes wrong at that point, the inven-
tory data base is out of step. However, use of the resettability
feature permits recovery, as follows.

Whenever a data base record in a resettable data base is updated,
it is locked by the Data Base Manager. No other program can
read or update the locked record until this program is finished
with it. In the case of APEX, the terminal is not really finished with
any of the inventory records until the customer gives his final
acceptance of the order and its price. To allow the application to
keep control of its updates, we have given the programmer the
ability to request extension of the scope of recovery. The scope of
recovery is simply the series of segments about which DTMS re-
tains enough information to allow the resetting of all data base

updates and any CREATX requests that have been made.

In the APEX case, as Figure 11 shows, the application extends the
scope of recovery by calling the hold scope (HSCOPE) service at
the end of each segment except the last. DTMS locks each record
as it is changed and keeps accumulating back-out information in
the reset information data set until a segment ends successfully,
without requesting that the scope of recovery be extended. When
that happens, DTMS releases the locks on all updated records and
recycles the space used for the reset information. This is called
the commit point. 1t is also the point at which any CREATX
requests are released for execution. After the commit point, there
is no automatic way to back out the results of this particular con-
versation.

We also allow the program to commit or reset explicitly all re-
corded data base changes that have occurred within this recovery
scope. The reset operation is used in APEX if the customer cancels
the order because the price is too high or some item is out of
stock. When the application program receives a reply indicating

IBM SYST J » VOL 18 @ NO 4 e 1979 WATERS

Figure 11 Use of hold scope (HSCOPE)

CUSTOMER
IDENTIFICATION
AND VERIFICATION

CALL HSCOPE SCOPE OF RECOVERY

EXTENDED

CHECK STOCK
AND UPDATE

CALL HSCOPE

SCOPE OF RECOVERY OVERALL RECOVERY
EXTENDED SCOPE

CHECK STOCK
AND UPDATE

CALL HSCOPE SCOPE OF RECOVERY

EXTENDED

TOTAL ORDER
WRITE PICKING SLIP

/
~-—— COMMIT POINT

cancellation, it simply calls the reset service to return the data
bases to their state at the start of the conversation.

deadlock The locking mechanism, of course, creates the possibility of a
deadlock, shown in Figure 12. Session 1 and Session 2 have up-
dated one record each (not necessarily in the same data base).
When Session 2 requests the record that Session 1 has updated,
Session 2 is added to a queue to wait for Session 1 to complete
and release the record. When Session 1 requests the record that
Session 2 has updated, DTMS cannot put it in a queue because that
would leave both sessions perpetually in a wait state. In this situ-
ation, DTMS detects the incipient deadlock—including a deadlock
that involves more than two users—and gives Session 1 an appro-

Figure 12 An example of deadlock priate return code. The Session 1 application program can then
SESSION 1 oTws SESSION 2 either terminate abnormally, which requires the terminal user to
ACTION re-enter his request, or Session 1 can request a restart. If the deci-
(JPOATE | LOCKA sion is to restart, the Session 1 data base changes are backed out,
its locks are released (allowing Session 2 to proceed), and Session
LOCKB | UPDATE 1 is put into a wait state until the record it asked for is unlocked.
The Session 1 application program is then restarted from the be-
enqueve s2 | upoate ginning. The restart capability is limited to the current segment of
FORRECORD A | RECORD A the conversation, however, because that is the only program for
which DTMS has the initiating message. If the deadlock involves a
JPORTE | celkcTsi's lock acquired by an earlier segment, the resolution has to be by
le— REQUEST resetting the whole conversation and having the Session 1 termi-

nal user re-enter his request from the beginning.

DTMS program structure

In designing the program structure of DTMS, we were striving for
the most economical implementation of the required functions we

WATERS IBM SYST J ¢ VOL 18 e NO 4 o 1979

had identified. We considered briefly the possibility of seizing a
large block of storage and a set of terminals and writing our own
routines to manage those resources independently of the under-
lying operating system. That is expensive, takes up space for du-
plicate code, and makes it difficult to provide services to non-
transaction programs. Since we were coming in at the start of the
new DPPX operating system, we had the opportunity to design
DTMS to work cooperatively with that operating system. We de-
cided to make maximum use of the functions of bPPX and to make
DTMS interfaces compatible with those of DPPX wherever pos-
sible.

We started with the fact that the basic element of resource alloca- environments
tion in DPPX is as an environment. An environment is somewhat

analogous to an OS region, a DOS partition, or an MVS virtual

memory. An environment holds real storage, /0 devices, and ac-

cess to data sets. It may have one or more tasks—which DPPX

calls threads —running against those resources.

In the Interactive Command Facility (ICF) of DPPX, a separate Figure 13 DPPX environment struc-
environment is created for each terminal as it logs on, as illus- ture for terminals
trated by Figure 13. This is a desirable structure for some pur- —
poses, such as program debugging, but we did not believe that emvm'ciﬁmgm
each transaction terminal would require a distinct environment. <= —

An environment, even though idle, still ties up all the resources ENVIRONMENT
allocated to it.)

ICF
ENVIRONMENT
2

The structure of DTMS is shown in Figure 14. DTMS has an envi- INTERACTIVE
ronment of its own, which persists as long as DTMS is running. Eﬁccv('?giﬁ; LBJT)
The DTMS Transaction Processing Manager and Data Base Man- 1
ager run in that environment. Within the DTMS environment are

several subenvironments in which the transaction application

programs execute. Normally, these transaction subenvironments

have different DPPX address spaces from the DTMS environment

and from each other. This isolates application program failures to

one environment, and protects the DTMS buffer pool and control

blocks from interference and unauthorized access.

To control the flow of work through the transaction sub- thegovernor
environments, we designed a program called the Governor.

Whereas most of DTMS runs in the DTMS persistent environment,

the Governor runs in the transaction subenvironment, and repre-

sents DTMS there. The Governor receives directions from the

main part of DTMS as to which application program to execute. It

loads and transfers control to that program, and control is re-

turned to the Governor when the program ends.

In its own environment, DTMS keeps queues of messages that

have been received from the terminals. When the Governor of an
environment indicates that it has executed the requested appli-

IBM SYST J & VOL 18 @ NO 4 » 1979 WATERS

transaction
subenvironments

Figure 14 Environment structure for DTMS

DTMS ENVIRONMENT

TRANSACTION
PROCESSING
MANAGER TRANSACTION

SUBENVIRONMENT
/ 2
TRANSACTION

SUBENVIRONMENT
1

DATA BASE
MANAGER

GOVERNOR

BUFFER
POOL

cation program, DTMS takes the next request from the queue and
passes it to the Governor. If there is no request ready to be pro-
cessed, that subenvironment simply waits for work.

A key point is that these transaction subenvironments are true
DPPX environments. All DPPX services that are available to a pro-
gram running in an Interactive Command Facility or Batch Queue
Manager environment are available to that program in a transac-
tion subenvironment through the identical interface. DTMS also
allows the execution of Interactive Command Facility commands
by terminals logged on to the DTMS transaction processor, al-
though some of them may not execute very efficiently there, be-
cause they are not segmented conversations. Nevertheless, an
application programmer checking out a transaction does not have
to log off DTMS and log on to the Command Facility just to use a
command.

Because they are designed to work with programs that run in
standard DPPX environments, many DTMS services need no addi-
tional code to accept requests from any environment in DPPX.
Data Base Manager services, the CREATX service for generating a
transaction, and others that are meaningful to nontransaction pro-
grams are available in any DPPX environment. Facilities that are

IBM SYST J » VOL 18 ® NO 4 & 1979

meaningful only for transactions, such as the transaction scratch
pad, are restricted to transaction subenvironment users.

We make maximum use of DPPX operating system services in our
terminal support as well. In fact, it is not strictly accurate to refer
to DTMS as supporting terminals at all. Unlike a conventional data
communications product, DTMS has no device-specific terminal
1/0 code. It deals strictly with the DPPX Presentation Services lay-
ers (the terminal access methods that provide a logical 1O inter-
face to the terminals). No terminal is permanently reserved for
DTMS. If a terminal logs on to DTMS, it is a DTMS terminal for the
duration of that session. If it logs off DTMS and then logs on to the
Interactive Command Facility (ICF), it becomes an ICF terminal.
Since DTMS is completely session-oriented, we included a service
that allows one terminal to cause another to be logged on, for
example an output-only terminal. (This service is used in the
APEX application to start the session with the terminal printer that
writes picking slips.)

Our objectives of continuous operation and efficient use of addi-
tional storage caused us to add a number of tuning functions
to DTMS, and affected the design of other areas. To speed up
the processing of very frequent transactions, such as order entry,
the transaction descriptors of those transactions can be kept resi-
dent in storage. Also, data bases that are used frequently can be
left in a partly opened state (i.e., the control block structures are
not destroyed when the application program ends) so that full
open processing is not necessary each time a transaction accesses
such a data base.

Data bases and transactions can be defined to DTMS while it is

running. The definitions can also be altered and deleted without
stopping DTMS, although the particular data base affected may
have to be deactivated temporarily while the change is made.
Data bases can be deactivated, dumped for backup, or even re-
created from a previous backup and the audit file, and then reacti-
vated without stopping the Data Base Manager.

The Data Base Manager and the Transaction Processing Manager
can be started and stopped independently of each other. This al-
lows, for example, the Data Base Manager to run twenty-four
hours a day, while the Transaction Processing Manager runs only
during business hours. The space that the Transaction Processing
Manager and the transaction subenvironments normally occupy
is then available for large batch programs that run overnight.

The number of transaction subenvironments can be varied with-
out stopping the Transaction Processing Manager. This allows
additional subenvironments to be activated to process peak pe-
riod workloads without leaving idle environments at other times.

IBM SYST J & VOL 18 ¢ NO 4 1979 WATERS

other
DTMS
features

Status commands are available to determine the number of trans-
actions that are queued and the state of the transaction sub-
environments.

The size of the Data Base Manager’s central buffer pool in the
persistent DTMS environment varies with the number of data
bases that are active and the number of concurrent data base ref-
erences that are taking place.

To simplify installation and startup of DTMS, most of the setup
information required is kept in small data sets called command
lists. Although these command lists may need customization for
unusual user requirements, the default command lists that are
supplied with DTMS allow the system to run effectively immedi-
ately after installation.

Summary and concluding remarks

In DTMS, we have attempted to construct a Transaction Process-
ing Manager and a Data Base Manager that are optimized to the
projected needs of the true transaction application. We envision
such an application as a sequence of simple programs, each of
which processes a single message from the terminal and then
prompts the user to continue the conversation.

The Transaction Processing Manager receives each message from
the terminal and assigns it to a transaction subenvironment for
execution. The Data Base Manager provides the application pro-
gram with data base records from its buffer pool. As the appli-
cation program is executing, it indicates to the Transaction Pro-
cessing Manager the services to be performed after it completes,
including the message to be sent back to the terminal. When the
application program ends successfully, all of its requests are hon-
ored and its data base changes are committed. The transaction
subenvironment is released to process messages from other ter-
minals. The specified message is sent to the terminal, and DTMS
waits for more input.

We believe that the design of DTMS represents a good trade-off of
storage, speed, and function, and that it provides the 1BM 8100
Information System application programmer with the tools to
build segmented conversation applications simply and reliably
without disallowing the more complex program structures when
necessary.

ACKNOWLEDGMENTS

I am indebted to my colleagues at the Santa Teresa Laboratory
whose contributions this paper describes. In particular, my
thanks go to Wayne R. Maple, Chief Programmer of DTMS, who

WATERS IBM SYST J & VOL 18 ® NO 4 & 1979

corrected my technical mistakes (and tried to correct my stylistic
ones), and who has directed DTMS design from its inception.

CITED REFERENCES

1. W. C. McGee, *‘The information management system IMS/VS,”” IBM Systems
Journal 16, No. 2, 84-168 (1977).

2. D. J. Eade, P. Homan, and J. H. Jones, ‘““CICS/VS and its role in Systems
Network Architecture,”” IBM Systems Journal 16, No. 3, 258-286 (1977).

3. 1. E. Siwiec, ‘‘A high-performance DB/DC system,”’ IBM Systems Journal 16,
No. 2, 169-195 (1977).

4. D. Comer, *‘The ubiquitous B-tree,”” ACM Computing Surveys 11, No. 2, 121-
137 (June, 1979).

The author is located at the IBM General Products Division Santa
Teresa Laboratory, 555 Bailey Avenue, San Jose, CA 95150.

Reprint Order No. G321-5110.

IBM SYST J @ VOL 18 @ NO 4 e 1979 WATERS

581

