
The Data Management component of the new IBM 8100 Distrib-
uted Processing Programming Executive (Dppx) provides for the
storage and retrieval of data on disk and tape. Its objectives are
to support a broad range of functions and be easy to use, be
easily extendible, and entail minimal cost for the user. The Data
Management component is designed to meet those objectives by
means of a layered structure, an improved concept of device in-
dependence, and the use of catalogs.

Data Management for the Distributed Processing Programming
Executive [DPPX)

by A. K. Fitzgerald and B. F. Goodrich

For the Distributed Processing Programming Executive (DPPX) of
the IBM 8100 Information Processing System,' the Data Manage-
ment component was designed and developed with the under-
standing that a variety of functions must be supported currently,
and that patterns of usage will continue to evolve. The general
objectives and structure of DPPX are described in the accom-
panying paper by S. C. Kiely.' The Data Management com-
ponent provides for the storage and retrieval of named data and
the creation and maintenance of data aggregates. The aggregates
definable in DPPX include records, data sets, and catalogs. As
used in this context, a record is a collection of related data or
words, treated as a unit. A data set (similar to afile for readers
more familiar with that term) is a named collection of records. A
catalog is both a collection of the names of data sets and a collec-
tion of those data sets.

One of the objectives of DPPX Data Management is that it support
a broad range of functions for its users. User data accesses can be
expressed in COBOL or FORTRAN statements, in low-level assem-
bler macro instructions, or in DPPX commands. These accesses
can range from short, interactive operations to massive batch op-
erations, and they can include single-site and network operations.

Copyright 1979 by International Business Machines Corporation. Copying is per-
mitted without payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright notice are
included on the first page. The title and abstract may be used without further
permission in computer-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor.

IBM SYST J VOL 18 NO 4 1979 FITZGERALD AND GOODRICH

Short, interactive operations include DPPX command processing
and the transaction processing provided by the Data Base and
Transaction Management System (DTMSL3 Users can access logi-
cal records sequentially, by record number, or by record key, or
they can access a group of logical records, an entire data set, or a
collection of data sets (an entire catalog).

Accesses by a single user often involve multiple data sets. Mul-
tiple individual users often have to access the same data con-
currently, whether for inquiry or updating. Data can be shared
between interactive and batch operations.

A second objective is that DPPX Data Management be easy to use;
that is, new data sets should be easy to create, and it should be
easy for new users to access the data sets. User access to data
sets should be easy to control, and the programming interface for
data set access should be relatively simple in order to facilitate
the development of new DPPX application programs.

A third objective is that it should be relatively easy to add new
function to, or modify, existing DPPX Data Management support
in a compatible manner; that is, DPPX Data Management should
be easily extendible. Extendibility is important because, with the
continuing evolution of data usage patterns and storage hard-
ware, DPPX Data Management will be subjected to additional
functional requirements. The introduction of new data organiza-
tions or a new disk or tape storage device should result in the
addition of new capability at the appropriate level within DPPX
Data Management; it should not result in a top-to-bottom change
of existing Data Management or a disruptive change to the user
program interface.

Lastly, DPPX Data Management should be provided at minimal
cost to the user.

comparison Because DPPX is used in the distributed systems environment,
with prior various requirements become important for DPPX Data Manage-
systems ment that are not necessarily as important for prior systems. Al-

ready mentioned is increased emphasis on ease of installation and
use because distributed systems are not expected to be staffed by
computer professionals; distributed systems operate where the
user’s main tasks pertain to his business, not to his attending to a
computer.

The ease of use necessary for effective operation of distributed
systems suggests simple, flexible, nonredundant services. The
strategy of prior systems with much specialization gave rise, for
example, to a variety of access methods (SAM, DAM, PAM, ISAM,
VSAM, and others) which by-and-large could not operate on the
same data. This restriction made it difficult for users to change

548 FITZGERALD AND GOODRICH IBM SYST J VOL 18 NO 4 1979

Figure 1 Usual data management
layered structure

+ PS-DM

550

Layer description

The layered structure yields the design benefits predicted by Dijk-
stra: such as greater certainty when testing because of depen-
dencies on lower layers. The variable layering structure permits
Data Management to offer much flexibility to the user, integrity to
the data, and extensibility to the system, while granting the user
improved physical data independence-improved beyond earlier
generations of operating systems because of the ease of adding or
replacing layers.

The layers of Data Management have well specified duties, and
the boundaries between layers are opaque. The basic relation-
ships among the Data Management layers and other DPPX inputl
output components are described in the accompanying paper by
Albrecht and Thoma~on.~

From one vantage point (see Media Services, below), all data sets
in DPPX have the same organization: only the usage varies. That is
to say, a data set that appears to the user to be sequential has the
same underlying structure as a data set that appears to be an in-
dex. Varying degrees of interpretation are given to data sets (or
rather to the use of data sets) by a layered structure within Data
Management. This structure permits higher layers to take advan-
tage of the services of lower layers in a systematic way. This
paper describes enough about the layers of Data Management to
demonstrate how important the layered structure is in meeting
the design objectives.

AS the result of an OPEN FILE statement in a COBOL program,6 a
user’s program is connected, through the layers of Data Manage-
ment, to the data set that corresponds to the file. Each READ (or
WRITE or REWRITE) statement by the program usually becomes a
RECEIVE (or SEND) request at the interface to Data Management.
The External Support Services (ESS) layer (see Figure 1) validates
each request by verifying that the user has been properly con-
nected to the data set. Then it embodies the request in an internal
control block, which is passed as a parameter list across the lay-
ers. Thus, rather than using the operands of the user’s request
directly, Data Management layers use the internal control block.
This embodiment frees the user’s program to possibly proceed in
parallel with Data Management processing, isolates the user-
Data Management interface from interface changes within Data
Management, and permits new Data Management layers to be
substituted or added.

The Presentation Services for Data Management (PS-DM) layer op-
erates on logical records for its users. (Logical record is a syn-
onym for record.) Multiple types of Presentation Services are
built into Data Management, as described below. The Index Man-

FITZGERALD AND GOODRICH IBM SYST 3 VOL 18 NO 4 1979

ager (IXM) layer operates on keys and indices (that is, sets of or-
dered keys). A key usually is a data field within a record and is
used to identify that record. If logical records or keys are in-
appropriate, one or both of these layers can be omitted when the
connection is established.

It is important to observe that the layer is omitted, not bypassed.
There is no residue of a “missing” layer. This is important be-
cause architecturally there is no specific number of layers. Un-
known layers can be added to perform some new function.

The software appropriate to each layer is always re-enterable (in-
ternal locks are used as needed). Therefore the program modules
are shared among all instances of the same layer where appropri-
ate. The layers that are built during CONNECT processing, as the
result of a COBOL OPEN statement, for example, are control blocks
that represent the use of a service or resource.

The Media Services (MS) layer controls logical blocks. within a
data set. A logical block is the smallest unit within a data set that
is transferred to or from a storage device. As discussed below,
Media Services enables its invoker to view a data set as a set of
logical blocks while concealing the storage device.

The Input/Output Attachment Services W A S) layer causes data to
be transmitted between main storage and secondary storage, such
as disk.

In this design, each layer adds a greater degree of interpretation
to the data than do lower layers. Thus PS-DM handles records,
whereas IOAS handles only transmitted bytes.

A user who desires more exact control can connect for a level of
service below that described in Figure 1 . Such a connection is
illustrated in Figure 2. The ESS layer always handles validation,
but the PS-DM, IXM, and MS layers can be omitted, as shown, al-
though the program will lose physical data independence.

As a result of the structuring of Data Management function into a
set of layers, redundant function implementation is avoided while
the user is provided with a variety of services. This “building
block” approach allows different user interfaces to be supported
with less design, development, and testing cost, and it ensures
extensibility, as in the later incorporation of new services in a
compatible manner.

In the following paragraphs, the various layers of DPPX Data Man-
agement are discussed more completely.

IBM SYST J VOL 18 NO 4 1979 FITZGERALD AND GOODRICH

Figure 2 Variable connection ca-
pabilities

1 ESS

PS-DM

IXM

I MS

I IOAS I

551

~~

InPut/OutPut It is the duty of Input/Output Attachment Services (10.4s) to at-
Attachment tend to the physical characteristics not directly handled by the

Services device itself and to make storage devices within a device class
appear similar. Thus IOAS is concerned with device addressing
and device command syntax and semantics. It operates upon de-
vices, volumes, and physical blocks, but not upon data sets. The
unit of data transfer between IOAS and its invoker is a set of phys-
ical blocks.

Disks and diskettes that attach to the IBM 8100 provide for storage
and retrieval of fixed-length physical blocks. Physical block size
is architecturally an exact divisor of 256 bytes. Data sets, in DPPX,
contain fixed-length logical blocks, which are always an exact
multiple of 256 bytes. The size is determined by the user when the
data set is created; however, the maximum is 4096 bytes. Thus a
logical block always contains an integral number of physical
blocks.

Tapes that attach to the IBM 8100 provide for storage and retrieval
of sequential physical blocks. For tape data sets, in DPPX, logical
blocks can be any size from 18 to 4096 bytes. The maximum size
is specified when a tape data set is defined. The size of a physical
block accessed by IOAS is the same as the logical block size.

Media Early in the design of DPPX Data Management, it became clear
Services that user application programs should be able to access the logical

records or the logical blocks of a data set. Also, it is necessary for
the logical record access service routines to access logical blocks
when processing user application program requests because logi-
cal records, as implied earlier, are mapped onto logical blocks.
Thus a design decision was made to develop a layer that would
access logical blocks, and that layer was ta be used for both logi-
cal block access purposes. Its use was extended to other pur-
poses, as in the supporting structure for indices. As a result, there
existed a requirement for a layer that would provide access to
logical blocks of a data set without requiring information as to
type of invoker. That layer is called Media Services (MS).

MS provides for user access to logical blocks of a data set on a
disk or diskette volume or on tape volumes. MS does not interpret
the contents of a logical block, so it is independent of data set
organization.

A particular data set resides on portions of one disk or diskette or
one or more tape volumes. Each portion is called a data set ex-
tent. Each extent is made up of fixed-length logical blocks. An
extent comprises a consecutive set of logical block numbers as-
signed to a consecutive set of physical block numbers. The break-
points between extents are unknown to the invoker of MS.
Beyond specifying, when defining a disk or diskette data set, an

552 FITZGERALD AND GOODRICH IBM SYST J VOL 18 NO 4 1979

appropriate number of logical blocks (or logical records) to be
contained in an extent, the user is removed from extent creation,
maintenance, and manipulation considerations.

For a multiple-volume tape data set, the transition between vol-
umes is handled by MS. And for a multiple-data-set tape volume,
positioning to a data set also is handled by MS.

An understanding of the layered structure of Data Management
and how it satisfies the design objectives requires an understand-
ing of the internal structure of MS. Establishing an instance of the
MS structure for accessing a particular data set is a three-step pro-
cess:

0 Activation of MS support for a particular disk, diskette, or tape

0 Mounting the tape or diskette volume on which the data set

Establishing a connection between the user’s application pro-

device.

resides.

gram and the data set.

MS support for a particular disk, diskette, or tape device is estab-
lished by means of an ACTIVATE command for the corresponding
device. As a result of the activation sequence, an MS-to-IOAS con-
nection (port) is secured, and IOAS presents to MS an interface to
the particular disk, diskette, or tape device. A Media Services
control block is constructed which contains information about the
device, such as the port to IOAS, and which will represent the
disk, diskette, or tape volume.

For either diskette or tape, the system operator is advised by
Data Management to mount the required tape or diskette volume,
if it is not already mounted, when a data set on the volume is to be
accessed. The identification of the volume is found in a catalog, in
a profile for the data set. As a result of the activation and mount-
ing procedures, the MS control block pertaining to the device in-
cludes information that represents the volume.

A connection between the user’s application program and the
data set is established by issuing a CONNECT macro or com-
mand7” or the source language equivalent (for example, OPEN in
COBOL). During this process, MS uses a collection of information
about the data set, called a data set profile, to set up the control
block structure necessary to process logical block accesses to a
data set. A data set profile is created whenever a data set is de-
clared to DPPX by the DEFINE.DATASET command.

The connection processing constructs a set of MS control blocks
that contain information about the data set. These control blocks
are attached to the MS control block that represents the disk or

IBM SYST J VOL 18 NO 4 1979 FlTZGERALD AND GOODRICH

Figure 3 Two users sharing one
data set

USER 1 USER 2

ESS ESS

PS DM PS-DM

M S

IOAS

Presentation
Services

Figure 4 One user using two data
sets on the same volume

USER

tape volume. In addition, a connection (port) to this MS represen-
tation of the data set is established. The subsequent invoker of
this port (for example, a PS-DM layer, or ESS in the case of a user
accessing logical blocks) can then process logical blocks of the
data set.

MS is device-class dependent; that is, different MS processing rou-
tines and control blocks are used for disk data set access than for
tape data set access. Because of the different capabilities of tape
and disk, the invoker of MS (PS-DM, for example) must be given
information about the device class, but only if the user wishes to
take advantage of those differences (primarily the random ad-
dressing capability of disk storage). However, MS is independent
of the particular device type; it requires no information about
whether the device on which a particular data set resides is an
externally attached diskette or physically within, say, an IBM 8130.
When MS support for a tape or disk volume is established, the ca-
pacity of the volume is part of the information given by IOAS to its
invoker, which usually is MS.

Just as each instance of Media Services represents a data set,
each instance of Presentation Services for Data Management (PS-
DM) represents a use of logical records of a data set. PS-DM uses an
instance of Media Services to access logical blocks so that it can
operate on logical records of a data set for the PS-DM user. If mul-
tiple concurrent users attempt to share a data set, then multiple
instances of PS-DM, one for each user, will connect to the same
instance of Media Services, because Media Services represents
the data set (see Figure 3). Record locking, when necessary, is
exercised by PS-DM.

Each instance of PS-DM represents the use of logical records of a
single data set. Therefore, if one user is connected to two (or
more) data sets, the connection process creates two (or more) PS-
DM layers, each using a different Media Services instance (see
Figure 4). The number of instances of IOAS used by the Media
Services layers is determined by whether the data sets are on the
same volume or on different volumes.

Logical records are processed by PS-DM. For each data set, the
logical records have a fixed length, according to the user’s specifi-
cations, with a maximum size of 4K bytes. The number of logical
records per logical block is constant for each data set and is al-
ways greater than or equal to one. If that constant is not an in-
teger on disk, the residue of the logical block is padded. It must
be an integer on tape for compatibility with prior systems.

The characteristics of a data set that are important to PS-DM are
housed in the data set profile. This is the same profile that is dis-
cussed above under Media Services.

FITZGERALD AND GOODRICH IBM SYST J VOL 18 NO 4 1979

The assignment of logical records to logical blocks is handled by
PS-DM, thus removing from the user (rather than from the definer
of a data set) all logical block considerations. That is, the user can
view a data set as a set of logical records only. The logical records
of a data set are assigned relative record numbers (RRN’S) starting
with 1.

In DPPX Base Data Management there are two kinds of PS-DM
layers, the relative sequential access method and the Indexed
Record Processor. The relative sequential access method ver-
sion, usually called just PS, is appropriate when the logical rec-
ords are accessed physically-sequentially or directly by reference
to an RRN. Physically-sequential access is access by consecutive
RRN’S, which in turn means access by consecutively numbered
logical blocks independently of their mapping onto physical
blocks and extents. The Indexed Record Processor (IRP) operates
on records within a data set that has a companion index.

A third kind of PS-DM layer, the Data Base Manager, which is
provided by DTMS, processes indexed linear data bases and offers
full recovery. Both the Indexed Record Processor and the Data
Base Manager use the same intermediate layer, the Index Man-
ager (IXM), for index operations.

For sequential or direct access to a data set, the connection pro-
cess constructs control blocks that ensure the use of the PS serv-
ice routines and of the Media Services port that represents the
corresponding data set, as shown in Figures 3 and 4. For strictly
sequential access, as for reading consecutively all (or some) of
the records of a data set or inserting new records at the end, the
user need not be aware of the relative record numbers. During
sequential reading, deleted records are automatically skipped.
That is, PS maintains the incremented value of RRN and can detect
whether a record exists for a given RRN. It continuously in-
crements the RRN until it finds the next existing logical record or
an end-of-file condition.

Because user programs may have no information about the RRN’S
while sequentially reading or writing, the initial loading of a data
set and the appending of new records can appear the same to the
user programs. Of course, information is provided that allows a
user program to be sensitive to relative record numbers. and to
whether the data set is empty at the outset.

The same data set that is processed sequentially can be processed
directly by user programs. The degree of concurrency is contin-
gent on user specifications and system limits that prevent dead-
lock. For direct processing, the user specifies the logical record to
be read or written by its RRN. The PS layer uses the RRN to access
the appropriate logical block and provides the blocking and de-
blocking of logical records to or from logical blocks.

IBM SYST J VOL 18 NO 4 1979 FITZGERALD AND GOODRICH

Because data sets viewed as sets of logical records can be ac-
cessed either directly by relative record numbers or sequentially,
they are called relative sequential data sets.

It should be observed that an instance of PS represents a sequen-
tial or direct usage of the logical records of a data set, and that the
precision of the definition of the functions of a layer has led to
much of the flexibility of the system. So, for example, a single
user can connect for multiple uses of the same data set within the
ground rules of sharing alluded to earlier and in other pub-
l ication~.~ Thus a single user may be inserting at the end while
reading from the beginning of the same data set.

indexed In addition to being able to process the same data set sequentially
access or directly, the user may decide that a field within the logical rec-

ords is a useful key. The user can then request the system to build
an index7 for that relative sequential data set using that key field.
The user can then process that same data set by using the index.
This type of access involves one of the other two PS-DM layers,
the Indexed Record Processor or the Data Base Manager, as well
as the Index Manager.

DPPX is designed with emphasis on interactive operations and for
use in a network of homogeneous or heterogeneous computers
and terminals. Thus the design anticipates that typical access to
logical records on disk will often be random. To aid the system-
atic yet random access to data, DPPX provides for indexed access
to records and an index structure.

For many reasons, including consistency of definition and conve-
nience of use, it is important that a record identifier be invariant
with respect to time and place. The invariant record identifier is a
key, usually imbedded in the record. When logical records are
copied from one data set to another, on the same machine or a
different one, the keys remain the invariant identifier of the rec-
ord. The ordering of the keys of a data set constitutes an index.

In particular, an index data set in DPPX is a well ordered set of
keys, each with an associated pointer. An Index Manager, imple-
mented as a layer for Data Management, maintains the order of
the keys within an index data set. Each index entry of an index
data set contains a control byte, a key, and a pointer. The index
entries are assembled into an index block, which is identical to a
logical block. Thus the Index Manager gains all the benefits of
any other user of Media Services regarding the processing of logi-
cal blocks of a data set.

The index entries are prepared so that they form an inverted tree
structure of index blocks, thereby ensuring an efficient search
whether a read access is random or sequential with respect to the

556 FITZGERALD AND GOODRICH IBM SYST J VOL 16 NO 4 1979

Figure 5 An example of an index data set, a strict inverted tree with two roots

I "1
order of the keys. The pointer field of each index entry of an
index block that is not at the leaves of the tree (for example, a
root block) identifies by logical block number the index block on
the next level that corresponds to that entry. Therefore the search
can be repeated to find the index entry on a leaf of the tree that
corresponds to the key of the search. The index is in the general
form of a B'Tree as described by Comer." See Figure 5 .

In addition, the index blocks on a level are laced together,
thereby enabling sequential index entries within a level to be ac-
cessed. This technique not only optimizes GET NEXT requests, it
enables operations to continue in spite of hardware or software
malfunctions that prevent the maintenance of index entries on a
level closer to the root during an insertion of a new key.

The pointer in each index entry on a leaf of the index tree identi-
fies the logical record, by its relative record number, in the asso-
ciated relative sequential data set, which is called its target data
set.

From the point of view of the Index Manager, the interpretation
placed on the pointer of the index entries at the leaves is of no
consequence. Again, employing the design principle of DPPX,
each layer performs a well defined service and no more. There-
fore, the Index Manager does not get involved in interpreting the
significance of the argument associated with a key. Its duty is to
maintain the strict tree structure of the index, to insert, update,

IBM SYST J VOL 18 NO 4 lW9 FITZGERALD AND GOODRICH 557

Figure 6 Connection for an in-
dexed data set with two
associated index data
sets

MS MS MS

and delete index entries at the leaves, and to fetch an index entry
either by key (key = x , or key > = x) or next sequentially from the
last request by the same user of the index.

This strict adherence by the Index Manager to its duties has led to
an easy extension of index operations to permit the accessing of
stand-alone index data sets (those without an associated target
data set). In this case, the index entries on the bottom (the leaves)
contain data fields of a fixed length determined when the data set
is defined.

Thus a user can define a data set as a relative sequential data set
which he intends to use or to share with other users in any combi-
nation for logical block processing, sequential or direct logical
record processing, or through an associated index. Also, a user
can define a data set as an index data set with the data in the
index. There are, of course, enforced ground rules governing
modification of data sets to ensure data

Because it may be important to access the records of a target data
set by more than one key-that is, to consider the records as
having more than one sequence-it is possible to define up to
eight index data sets across the same target data set. Each index
corresponds to a different key field within the logical records. So
for index-target set operations, at least two data sets are treated
more or less as a unit, namely the target data set and at least one
index data set. The Indexed Record Processor, IRP, uses the In-
dex Manager, which in turn uses Media Services, for operations
on the index data set. IRP also uses Media Services for accessing
logical blocks of the target data set. Thus IRP provides services
for the indexed access of logical records of an indexed data set.

All the index data sets that pertain to the same target data set
form a set of indices. It is the duty of the Index Manager to main-
tain the integrity of the set of indices. Information passed from
IRP to IXM on every update, insertion, and deletion makes it pos-
sible for IXM to maintain the set. This is done in such a manner
that IXM is not given information about the interpretation of the
pointer field of index entries at the leaves. For example, on an
insertion, a pointer value and all the keys within the record being
inserted come across the interface to IXM. All indices in the set
have the appropriate key inserted with the specified pointer.

Considering first an unshared data set, during the connection pro-
cess for the use of logical records of a target data set with two
indices, the following layer structure is established (see Figure 6):

Control blocks that represent the three data sets are prepared
for the Media Services layer (that is, three instances of Media
Services are constructed).

558 FITZGERALD AND GOODRICH IBM SYST J VOL 18 NO 4 1979

0 Control blocks that represent the two index data sets and their
usage are prepared for the IXM layer (one IXM instance for the
set of indices).

0 Control blocks that represent the use, via an index, of logical
records of a target data set are prepared for the IRP layer (one
IRP instance).

When there is sharing, there is another instance of IW with an
additional port from the same instances of both the Index Man-
ager and Media Services (see Figure 7).

The extensibility made possible by rigid interfaces and exacting
definitions of the duties of each layer is exemplified by the fact
that IRP is replaced by the Data Base Manager of DTMS with no
changes required in ESS, IXM, MS, or the connection process.

The Data Base Manager (DBM) portion of DTMS is designed for
strict compatibility with IW. User programs that operate on index-
target sets by means of IRP can use DBM with no change. The con-
verse is not necessarily true because additional data base ser-
vices may be used. Also, an indexed data set and its associated
indices can become an indexed linear data base, and vice veisa,
with no change to the data sets. Some additional control attri-
butes must be declared by a user when defining a data base to
benefit from the recovery facilities provided by DTMS.

The DBM operates as a “Presentation Services” layer even
though it is licensed and installed separately after the DPPX Base.
The installation process for DTMS adds modules to the program
library and entries to system tables used by the connection pro-
cess. Thereafter, operationally, DBM appears as another access
method. It uses IXM and MS much the same way IRP uses them.
DBM is invoked by ESS identically to any Data Management layer.

In addition to serving user program requests for sequential or
keyed access to logical records of a data base-for retrieval, in-
sertion, updating, and deletion-DBM provides improved dead-
lock detection and prevention compared with the DPPX Base, it
provides the ability to back out changes to a data base if the work
unit is not completed satisfactorily, and it provides the ability to
recreate a data base from a prior checkpoint by re-entering inter-
vening modifications from an audit file.

The extension of Data Management to Data Base Management is
made possible by the compatibility of user interfaces and data
structure on the part of IRP and DBM, and by the opacity of com-
ponent interfaces within DPPX.

The layered structure of DPPX Data Management provides a broad
range of functions for users. A user can access physical blocks,

IBM SYST J VOL 18 NO 4 1979 FITZGERALD AND GOODRICH

Figure 7 Two connections to the
same indexed data set
and index data sets

IRP IRP

IXM

MS I MS I MS

Data Ease
Manager

layer summary

559

logical blocks, stand-alone index entries, or logical records. Logi-
cal records can be accessed either sequentially or directly by a
relative record number or a key. This structure makes DPPX Data
Management easy to use because data sets can be installed in a
variety of ways.

The layered structure also makes DPPX Data Management easily
extendible. It provides a variety of logical record interfaces, for
example, all of which use the same Media Services support, and it
enables various functions such as extent manipulation of Media
Services to be supported for logical block and logical record ac-
cesses.

Lastly, the layered design allowed DPPX Data Management to be
developed and tested at minimal cost, since support for functions
is implemented only once in the appropriate layer.

Device independence

DPPX Data Management insulates programs and data sets from
definitional changes in each other. Typically, a user’s application
program is connected to a data set by means of a CONNECT
macro,’ which may have been compiled from a COBOL OPEN FILE
statement. Because program modules often cannot be per-
manently bound to a particular data set, commands make the data
set name indirectly available to the program and to Data Manage-
ment at execution time. That is, the set of commands that in-
cludes the invocation of the program can establish the conditions
for the program, such as its data sets. The conditions are estab-
lished primarily by an ASSOCIATE command‘ which relates the
data set name to a synonym used within the program. Thus
ASSOCIATE, which easily can vary from one execution to another,
and CONNECT, which usually is stable within a program module,
together relate an instance of a program’s execution to a data set.

This indirect relationship between a program module and a data
set plays a key role in providing a simple programming interface
to data set access. (Resources other than data sets also are in-
directly related to the using program.) This relationship allows
one to write a generalized program, which can operate on any
data set meaningful to the program, simply by changing the name
of the data set on the ASSOCIATE command. As shown below, for
example, an accounting program (here called ACNTNG) can oper-
ate each month on the data set that contains the month’s ledger.

In February:
ASSOCIATE Synonym- 1 ResourceName = FebruaryLedger
CALL.PGM ACNTNG

560 FITZGERALD AND GOODRICH IBM SYST 1 VOL 18 NO 4 1979

And in March:
ASSOCIATE Synonym-1 ResourceName = MarchLedger
CALL.PGM ACNTNG

General utilities of DPPX, such as the COPY.DATA command pro-
cessor, also take advantage of the indirect relationship between a
data set and the using program. The COPY.DATA utility gains even
more flexibility by, in effect, executing the ASSOCIATE command.
It gains information to do so from its operands or from a catalog.

In addition to making the data set name a variable, the ASSOCIATE
command enables the resource type to be a variable, thus provid-
ing another degree of flexibility. A user’s program can, in sepa-
rate executions, operate on a terminal, a data set, or a data base,
thereby, as mentioned above, implying a much higher degree of
recoverability.

Another aspect of achieving a simple user programming interface,
related to the flexibility of associations, pertains to the high de-
gree of device independence for users and user programs that is
effected by Data Management. For user programs that access se-
quential records within a data set sequentially, the data set can
reside on disk, diskette, or tape. The user interface for such ac-
cess extends naturally to records not in data sets-for example,
records transmitted to or from terminals or other programs. Data
sets whose records might be accessed nonsequentially can be on
disk or diskette. Although such device independence, while im-
portant, is not novel, the interchangeability of data sets and
terminals is novel. It is also practical; for example, in testing a pro-
gram, input text from a terminal can be simulated by a data set.

For accessing data sets on disk, additional independence is af-
forded to programs; in particular, the access mode is independent
of data set organization, as explained earlier. Thus sequential and
direct processing can apply to all data sets-whether created by a
sequential load or a sparse random operation, or indexed by keys.
Explicit indexing operations do require the existence of an index;
however, some indexing operations can be implied. For example,
if a COBOL program executes the statement

READ WITH KEY = x

then DPPX can fetch the record with key x if the data set is an
indexed data set. This operation is invalid on a data set without an
index. On the other hand, if a data set is accessed sequentially, it
is irrelevant to the program whether it is indexed or not. If it is
indexed, then the records are accessed in the order determined by
the index. If the data set has multiple indices (more than one key
per record), then the index of reference can be decided by use of
the ASSOCIATE command. Thus, greater separation is achieved
between programs and data set organization.

~

IBM SYST J VOL 18 NO 4 1979 PITZGERALD AND GOODRICH 5 i6 1

In summary, device independence provides:

0 A broad range of services for a user program by enabling a

0 Ease of use for user programming and application develop-

0 Extensibility of customer configurations by being able to sub-

A means of assuring minimal cost for user program develop-

program without change to use various resources.

ment and maintenance.

stitute new resources freely.

ment and maintenance.

Catalogs

Catalogs aid in the installing of programs and data sets by provid-
ing a convenient means of control for a group of related users.
The importance of catalogs is derived from the fact that they
house data sets and their descriptors. Catalogs are themselves
special data sets, operated upon in an almost recursive manner. A
catalog from one point of view is a data set, while from another it
is a collection of data sets and an allocator of disk or diskette
space. The fact that a catalog is both a data set and a collection of
data sets assures extensibility in the future development of cata-
logs.

Unless a data set is declared to DPPX Data Management, it does
not exist: once defined, the data set exists within a catalog.

Initially, by the design of Data Management, there is a master
catalog, which exists on the system residency disk volume. The
master catalog controls the space on that disk volume and con-
trols all other disk volumes declared to DPPX Data Management.
All data sets and catalogs with a simple name are listed in the
master catalog.

There are two other types of catalogs: user and volume. A user
catalog controls a portion of a particular disk or diskette volume.
A volume catalog controls an entire volume. Volume catalogs are
useful for the portability of data sets. For example, a diskette that
is defined as a volume catalog and that contains data sets and user
catalogs can be transported to another DPPX installation and be
accessed there merely by entering the definition of the volume
catalog. Its constituent data sets become immediately available.

User catalogs are comparable to libraries on previous systems.
By defining data sets within a catalog, the user can create a col-
lection of data sets, restrict access to the collection, and in gen-
eral maintain tighter control of those data sets. Also, user cata-
logs enable pre-allocation of space to effect physical proximity of
related data sets. In some instances, physical proximity is desir-

562 FITZGERALD AND GOODRICH IBM SYST J VOL 18 e NO 4 e 1979

able to enhance performance. In addition, user catalogs are used
by other components of DPPX, such as the Command Facility,*
and they contribute to the easy assembling of data sets with simi-
lar attributes. This feature is especially useful for catalogs that are
treated as data sets-for example, the DPPX standard program
module library.

A catalog is a single data set composed of three parts:

0 An index of data set names (the same index structure as that

0 A series of profiles.
0 The data sets and catalogs defined within this catalog.

Catalog Management functions provide for data set and catalog Catalog
creation and deletion, including alteration and displaying of the Management
characteristics of an existing data set or catalog. They also pro-
vide for disk space management; that is, creating and deleting
disk space, and allocating and deallocating disk space to and from
data sets and catalogs.

In addition, Catalog Management provides a naming convention
for data sets and catalogs with qualified names, enabling two lev-
els of nesting to occur for data sets and catalogs. Specifically, a
user catalog (B) might be defined within a volume catalog (A) with
the qualified name A.B. In addition, a data set (C) might be de-
fined within a user or volume catalog (A.B or X), and its name
would be qualified A.B.C or X.C. Data sets X.C and A.B.C
would be entirely different.

Finally, Catalog Management provides for detecting and recover-
ing damaged catalogs and data sets.

In addition to using these Catalog Management functions, a user
can access a catalog as a single data set because of the simplicity
and consistency of the data access interface. However, such ac-
cesses are not allowed to violate the integrity of the catalog. This
kind of catalog access is especially advantageous to the perform-
ance of a user program that accesses similar data sets in a read-
only manner.

Thus, the design of DPPX catalogs offers a range of services in-
cluding portability, data space control, and a data set naming con-
vention. Catalogs contribute to ease of use because they provide
for nested management of the constituent data sets, thereby al-
lowing a user to control his data in a variety of ways. Also, be-
cause of the naming convention and portability assistance, new
applications can be easily installed or transported to new 8100
systems. Because of the recursive implementation for processing
data sets and catalogs, redundant facilities are avoided.

used by the Index Manager).

IBM SYST J VOL I8 NO 4 1979 FITZGERALD AND GOODRICH 563

Summary

DPPX Data Management, together with DTMS Data Base Manage-
ment, is designed using a layered structure in which each layer
implements its functions strictly according to specific interfaces
at its upper and lower boundaries to provide a consistent set of
services. The opacity of the interfaces and the strictly defined
functions provide a great degree of flexibility in designing new
services. The Data Management design, together with other parts
of DPPX, improves the concept of device independence. As a re-
sult, terminal operations and data sets can be processed by the
same program without change. Data Management uses and pro-
vides catalogs which aid in the administrative control of data sets
and storage and also offer programming conveniences. Thus its
design enables DPPX Data Management to support a broad range
of functions at minimal cost. It is extensible, and it is easy to
install and use.

CITED REFERENCES

I . DPPX General Information Manual, IBM Systems Library, order number
GC27-0400, available through IBM branch offices.

2. S. C. Kiely, “An operating system for distributed processing-DPPX,” IBM
Systems Journal 18, No. 4, 507-525 (1979, this issue).

3. DPPXIDTMS General Information, IBM Systems Library, order number
GC26-3915, available through IBM branch offices.

4. E. W. Dijkstra, “The Structure of the ‘THE’-Multiprogramming System,”
Communications ofthe ACM 11, No. 5 , 341-346 (1968).

5. H. R. Albrecht and L. C. Thomason, “VO facilities of the Distributed Process-
ing Programming Executive (DPPX),” IBM Systems Journal 18, No. 4, 526-
546 (1979, this issue).

6 . DPPX COBOL Language Reference, IBM Systems Library, order number
GC26-3923, available through IBM branch offices.

7. DPPX Commands: General Use , IBM Systems Library, order number SC27-
0404, available through IBM branch offices.

8. DPPX Macro Reference, IBM Systems Library, order number SC27-0413,
available through IBM branch offices.

9. DPPX Guide to System Services, IBM Systems Library, order number SC27-
0405, available through IBM branch offices.

10. D. Comer, “The Ubiquitous B-Tree,” ACM Computing Surveys 11, No. 2
(June 1979).

The authors are located at the IBM System Communications
Division laboratory, Neighborhood Road, Kingston, N . Y . 12401

Reprint Order No. (3321-5109.

564 FITZGERALD AND GOODRICH IBM SYST J VOL 18 NO 4 1979

